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Markov Models

The results presented in this book have been written in the desire that practitioners
will use them. We have tried therefore to illustrate the use of the theory in a systematic
and accessible way, and so this book concentrates not only on the theory of general
space Markov chains, but on the application of that theory in considerable detail.

We will apply the results which we develop across a range of specific applications:
typically, after developing a theoretical construct, we apply it to models of increasing
complexity in the areas of systems and control theory, both linear and nonlinear,
both scalar and vector-valued; traditional “applied probability” or operations research
models, such as random walks, storage and queueing models, and other regenerative
schemes; and models which are in both domains, such as classical and recent time-
series models.

These are not given merely as “examples” of the theory: in many cases, the
application is difficult and deep of itself, whilst applications across such a diversity
of areas have often driven the definition of general properties and the links between
them. Our goal has been to develop the analysis of applications on a step by step
basis as the theory becomes richer throughout the book.

To motivate the general concepts, then, and to introduce the various areas of
application, we leave until Chapter 3 the normal and necessary foundations of the
subject, and first introduce a cross-section of the models for which we shall be devel-
oping those foundations.

These models are still described in a somewhat heuristic way. The full mathemat-
ical description of their dynamics must await the development in the next chapter of
the concepts of transition probabilities, and the reader may on occasion benefit by
moving to some of those descriptions in parallel with the outlines here.

It is also worth observing immediately that the descriptive definitions here are
from time to time supplemented by other assumptions in order to achieve specific
results: these assumptions, and those in this chapter and the last, are collected for
ease of reference in Appendix C.

As the definitions are developed, it will be apparent immediately that very many
of these models have a random additive component, such as the i.i.d. sequence {W,}
in both the linear state space model and the random walk model. Such a component
goes by various names, such as error, noise, innovation, disturbance or increment
sequence, across the various model areas we consider. We shall use the nomenclature
relevant to the context of each model.
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We will save considerable repetitive definition if we adopt a global convention
immediately to cover these sequences.

Error, Noise, Innovation, Disturbance and Increments

Suppose W = {W,} is labeled as an error, noise, innovation, distur-
bance or increment sequence. Then this has the interpretation that the
random variables {W,, } are independent and identically distributed, with
distribution identical to that of a generic variable denoted W'.

We will systematically denote the probability law of such a variable W
by I'.

It will also be apparent that many models are defined inductively from their own
past in combination with such innovation sequences. In order to commence the in-
duction, initial values are needed. We adopt a second convention immediately to avoid
repetition in defining our models.

Initialization

Unless specifically defined otherwise, the initial state {®y} of a Markov
model will be taken as independent of the error, noise, innovation, dis-
turbance or increments process, and will have an arbitrary distribution.

2.1 Markov Models In Time Series

The theory of time series has been developed to model a set of observations developing
in time: in this sense, the fundamental starting point for time series and for more
general Markov models is virtually identical. However, whilst the Markov theory
immediately assumes a short-term dependence structure on the variables at each time
point, time series theory concentrates rather on the parametric form of dependence
between the variables.

The time series literature has historically concentrated on linear models (that is,
those for which past disturbances and observations are combined to form the present
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observation through some linear transformation) although recently there has been
greater emphasis on nonlinear models. We first survey a number of general classes of
linear models and turn to some recent nonlinear time series models in Section 2.2.

It is traditional to denote time series models as a sequence X = {X,, : n € Z. },
and we shall follow this tradition.

2.1.1 Simple linear models

The first class of models we discuss has direct links with deterministic linear mod-
els, state space models and the random walk models we have already introduced in
Chapter 1.

We begin with the simplest possible “time series” model, the scalar autoregression
of order one, or AR(1) model on R'.

Simple Linear Model

The process X = {X,,,n € Z.} is called the simple linear model, or
AR(1) model if

(SLM1) for each n € Z, X, and W,, are random variables on
IR, satisfying
Xnt1 = aXy + Wiy,

for some « € IR;

(SLM2)  the random variables {W,,} are an error sequence with
distribution I" on IR.

The simple linear model is trivially Markovian: the independence of X,; from
Xp—1,Xn—2,... given X,, = z follows from the construction rule (SLM1), since the
value of W;, does not depend on any of {X,_1, X, _2...} from (SLM2).

The simple linear model can be viewed in one sense as an extension of the random
walk model, where now we take some proportion or multiple of the previous value,
not necessarily equal to the previous value, and again add a new random amount
(the “noise” or “error”) onto this scaled random value. Equally, it can be viewed as
the simplest special case of the linear state space model LSS(F',G), in the scalar case
with F =« and G = 1.

In Figure 2.1 and Figure 2.2 we give sets of sample paths of linear models with
different values of the parameter a.

The choice of this parameter critically determines the behavior of the chain. If
|a| < 1 then the sample paths remain bounded in ways which we describe in detail in
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Y

Fig. 2.1. Linear model path with & = 0.85, increment distribution N (0, 1)

Y

Fig. 2.2. Linear model path with a = 1.05, increment distribution N (0, 1)
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later chapters, and the process X is inherently “stable”: in fact, ergodic in the sense
of Section 1.3.1 (IIT) and Theorem 1.3.1, for reasonable distributions I'. But if |a| > 1
then X is unstable, in a well-defined way: in fact, evanescent with probability one, in
the sense of Section 1.3.1 (II), if the noise distribution I" is again reasonable.

2.1.2 Linear autoregressions and ARMA models

In the development of time series theory, simple linear models are usually analyzed
as a subset of the class of autoregressive models, which depend in a linear manner on
their past history for a fixed number k > 1 of steps in the past.

Autoregressive Model

A process Y = {Y,,} is called a (scalar) autoregression of order k, or
AR(k) model, if it satisfies, for each set of initial values (Yp,...,Y_g11),

(AR1) for eachn € Z,,Y, and W, are random variables on IR
satisfying inductively for n > 1

Y=oV 1+ aYu o+ ... +apYy  + W,
for some aq,...,a; € R;

(AR2)  the sequence W is an error sequence on IR.

The collection Y = {Y,} is generally not Markovian if £ > 1, since information on
the past (or at least the past in terms of the variables Y,,_1,Y,,_o,..., Y, k) provides
information on the current value Y;, of the process. But by the device mentioned in
Section 1.2.1, of constructing the multivariate sequence

Xn = (Yna .. aYn—k—i—l)T

and setting X = {X,,,n > 0}, we define X as a Markov chain whose first component
has exactly the sample paths of the autoregressive process. Note that the general
convention that Xy has an arbitrary distribution implies that the first & variables
(Yo,...,Y g4+1) are also considered arbitrary.

The autoregressive model can then be viewed as a specific version of the vector-
valued linear state space model LSS(F,G). For by (AR1),

al .« “ e ak 1

0 0
X, = N | X | | W (2.1)
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The same technique for producing a Markov model can be used for any linear model
which admits a finite dimensional description. In particular, we take the following
general model:

Autoregressive-Moving Average Models

The process Y = {Y,,} is called an autoregressive-moving average process
of order (k,£), or ARMA(k, £) model, if it satisfies, for each set of initial
values (YE)a s 7Y7k—|—17 WOa s 1W7£—|—1)a

(ARMA1) for each n € Z, Y,, and W,, are random variables
on IR, satisfying, inductively for n > 1,

Yo = aiYp 1t aY, ot oYy

+W, + BIWn—l + /62Wn—2 +...+ ﬁZanf,
for some aq,...,a,61,...,0; € IR;

(ARMA2)  the sequence W is an error sequence on IR.

In this case more care must be taken to obtain a suitable Markovian description of
the process. One approach is to take

Xn = (Y'Ih s 7YTL—IC+17 Wna s ’Wn—e—Fl)T

Although the resulting state process X is Markovian, the dimension of this realization
may be overly large for effective analysis. A realization of lower dimension may be
obtained by defining the stochastic process Z inductively by

Ip =012y 1+ asZp o+ ...+ apZp_+ Wy, (22)

When the initial conditions are defined appropriately, it is a matter of simple algebra
and an inductive argument to show that

Yon=2n+P1Zn-1+ oZn—o+ ...+ BeZn s,

Hence the probabilistic structure of the ARMA (k, £) process is completely determined
by the Markov chain {(Zy,..., Zn_k+1)" : n € Z} which takes values in IR.

The behavior of the general ARMA (k, £) model can thus be placed in the Marko-
vian context, and we will develop the stability theory of this, and more complex
versions of this model, in the sequel.
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2.2 Nonlinear State Space Models

In discrete time, a general (semi) dynamical system on IR is defined, as in Section 1.3.2,
through a recursion of the form

Tny1 = F(zy), neZ, (2.3)

for some continuous function F:IR — IR. Hence the simple linear model defined in
(SLM1) may be interpreted as a linear dynamical system perturbed by the “noise”
sequence W.

The theory of time series is in this sense closely related to the general theory of
dynamical systems: it has developed essentially as that subset of stochastic dynamical
systems theory for which the relationships between the variables are linear, and even
with the nonlinear models from the time series literature which we consider below,
there is still a large emphasis on linear substructures.

The theory of dynamical systems, in contrast to time series theory, has grown from
a deterministic base, considering initially the type of linear relationship in (1.3) with
which we started our examples in Section 1.2, but progressing to models allowing a
very general (but still deterministic) relationship between the variables in the present
and in the past, as in (2.3). It is in the more recent development that “noise” variables,
allowing the system to be random in some part of its evolution, have been introduced.

Nonlinear state space models are stochastic versions of dynamical systems where
a Markovian realization of the model is both feasible and explicit: thus they satisfy a
generalization of (2.3) such as

X1 = F(Xn, Wai1), keZ, (2.4)

where W is a noise sequence and the function F:IR"™ x IR? — IR" is smooth (C*):
that is, all derivatives of F' exist and are continuous.

2.2.1 Scalar nonlinear models

We begin with the simpler version of (2.4) in which the random variables are scalar.
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Scalar Nonlinear State Space Model

The chain X = {X,,} is called a scalar nonlinear state space model on
R driven by F, or SNSS(F') model, if it satisfies

(SNSS1)  for each n > 0, X,, and W,, are random variables on
IR, satisfying, inductively for n > 1,

Xn = F(Xp-1,Wy),
for some smooth (C*°) function F : IR x R — IR;

(SNSS2)  the sequence W is a disturbance sequence on IR, whose
marginal distribution I" possesses a density +,, supported on
an open set O,.

The independence of X1 from X, _1, Xp—o,... given X,, = z follows from the rules
(SNSS1) and (SNSS2), and ensures as previously that X is a Markov chain.

As with the linear control model (LCM1) associated with the linear state space
model (LSS1), we will analyze nonlinear state space models through the associated
deterministic “control models”. Define the sequence of maps {Fj: IR x RFSR: k>
0} inductively by setting Fo(z) = =, Fi(zo,u1) = F(zo,u1) and for k > 1

Fy(xzo,u1,...,ux) = F(Fr_1(zo,u1,- .., Up—1), Ug)- (2.5)

We call the deterministic system with trajectories
Ty = Fi(zo,ut,-..,ug),  k€Zy (2.6)

the associated control model CM(F') for the SNSS(F') model, provided the determinis-
tic control sequence {u1,...,ux, k € Z} lies in the set O,,, which we call the control
set for the scalar nonlinear state space model.

To make these definitions more concrete we define two particular classes of scalar
nonlinear models with specific structure which we shall use as examples on a number
of occasions.

The first of these is the bilinear model, so called because it is linear in each of its
input variables, namely the immediate past of the process and a noise component,
whenever the other is fixed: but their joint action is multiplicative as well as additive.
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Fig. 2.3. Simple bilinear model path with F(z,w) = (0.707 + w)z + w

Simple Bilinear Model

The chain X = {X,,} is called the simple bilinear model if it satisfies

(SBL1) for each n > 0, X,, and W,, are random variables on IR,
satisfying for n > 1,

Xp =0X, 1 +b0X, AW, +W,

where 6 and b are scalars, and the sequence W is an error
sequence on IR.

The bilinear process is thus a SNSS(F') model with F' given by
F(z,w) = 0z + brxw + w, (2.7)

where the control set O,, C IR depends upon the specific distribution of W.
In Figure 2.3 we give a sample path of a scalar nonlinear model with

F(z,w) = (0.707 + w)z + w

and with I" = N (0, ). This is the simple bilinear model with § = 0.707 and b = 1.
One can see from this simulation that the behavior of this model is quite different
from that of any linear model.
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The second specific nonlinear model we shall analyze is the scalar first-order
SETAR model. This is piecewise linear in contiguous regions of IR, and thus while it
may serve as an approximation to a completely nonlinear process, we shall see that
much of its analysis is still tractable because of the linearity of its component parts.

SETAR Models

The chain X = {X,,} is called a scalar self-exciting threshold autoregres-
sion (SETAR) model if it satisfies

(SETAR1) for each 1 < 57 < M, X,, and W,(j) are random
variables on IR, satisfying, inductively for n > 1,

Xn = ¢(.7) + H(J)X’n—l + Wn(j)a rj—1 < Xp1 < Tj,

where —oco =19 < r; < --- < rpy = oo and {Wy(j)} forms
an i.i.d. zero-mean error sequence for each j, independent of

{Whn(2)} for i # j.

Because of lack of continuity, the SETAR models do not fall into the class of nonlinear
state space models, although they can often be analyzed using essentially the same
methods. The SETAR model will prove to be a useful example on which to test
the various stability criteria we develop, and the overall outcome of that analysis is
gathered together in Section B.2.

2.2.2 Multi-dimensional nonlinear models

Many nonlinear processes cannot be modeled by a scalar Markovian model such
as the SNSS(F) model. The more general multi-dimensional model is defined quite
analogously.
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Nonlinear State Space Models

Suppose X = {X}}, where

(NSS1) for each k > 0 X and Wy, are random variables on IR",
IR? respectively, satisfying inductively for & > 1,

Xy = F(Xp—1,Wy),

for some smooth (C*°) function F:X x O, — X, where X is
an open subset of IR", and O,, is an open subset of IR?;

(NSS2)  the random variables {W}} are a disturbance sequence
on IR?, whose marginal distribution I" possesses a density 7,
which is supported on an open set O,,.

Then X is called a nonlinear state space model driven by F', or NSS(F')
model, with control set O,,.

The general nonlinear state space model can often be analyzed by the same methods
that are used for the scalar SNSS(F') model, under appropriate conditions on the
disturbance process W and the function F.

It is a central observation of such analysis that the structure of the NSS(F')
model (and of course its scalar counterpart) is governed under suitable conditions by
an associated deterministic control model, defined analogously to the linear control
model and the linear state space model.

The Associated Control Model CM(F')

(CM1) The deterministic system
T = Fi(®0,u1,- - ., ug), ke, (2.8)

where the sequence of maps {Fy : X x O — X : k > 0}
is defined by (2.5), is called the associated control system
for the NSS(F') model and is denoted CM(F) provided the
deterministic control sequence {ui,...,ux,k € Z;} lies in
the control set O, C IRP.
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The general ARMA model may be generalized to obtain a class of nonlinear models,
all of which may be “Markovianized”, as in the linear case.

Nonlinear Autoregressive-Moving Average Models

The process Y = {Y,,} is called a nonlinear autoregressive-moving av-
erage process of order (k,£) if the values Yy, ..., Yy 1 are arbitrary and

(NARMA1) for each n > 0, Y, and W,, are random variables on
IR, satisfying, inductively for n > k,

Y, = G(Ynfla Yoo, o s Yk, Wn, W1, Wi 9, Wn—ﬁ)
where the function G: IRFT+! — IR is smooth (C*);

(NARMA2)  the sequence W is an error sequence on IR.

As in the linear case, we may define
_ W W T
Xn - (Y;la"'aY;L—k—l—la Ny===y n—£+1)

to obtain a Markovian realization of the process Y. The process X is Markovian, with
state space X = R*¥**, and has the general form of an NSS(F) model, with

X, =F(Xn_1,W,), neZ,. (2.9)

2.2.3 The gumleaf attractor

The gumleaf attractor is an example of a nonlinear model such as those which fre-
quently occur in the analysis of control algorithms for nonlinear systems, some of
which are briefly described below in Section 2.3. In an investigation of the patholo-
gies which can reveal themselves in adaptive control, a specific control methodology
which is described in Section 2.3.2, Mareels and Bitmead [161] found that the closed
loop system dynamics in an adaptive control application can be described by the

simple recursion
1 1

Up = — + s n e Z_|_.
Un—1 Un—2
Here v, is a “closed loop system gain” which is a simple function of the output of the
system which is to be controlled. By setting ,, = () = (,." ) we obtain a nonlinear

state space model with
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Fig. 2.4. The gumleaf attractor

o))

n Tn—-1 n—1

If F is required to be continuous then the state space X in this example must be taken
as two dimensional Euclidean space IR? minus the z and y axes, and any other initial
conditions which might result in a zero value for z& or z% for some n.

A typical sample path of this model is given in Figure 2.4. In this figure 40,000
consecutive sample points of {z,} have been indicated by points to illustrate the
qualitative behavior of the model. Because of its similarity to some Australian flora,
the authors call the resulting plot the gumleaf attractor. Ydstie in [285] also finds that
such chaotic behavior can easily occur in adaptive systems.

One way that noise can enter the model (2.10) is directly through the first com-
ponent z% to give

X a_ ~1/X2 ;+1/Xb W,
X = n| _ g n 1) — ( n—1 n—1 + n (2.11)
" (Xg> <X72—1 g—l 0

where W is i.i.d..

The special case where for each n the disturbance W), is uniformly distributed on
[—%, %] is illustrated in Figure 2.5. As in the previous figure, we have plotted 40,000
values of the sequence X which takes values in IR?. Note that the qualitative behavior
of the process remains similar to the noise-free model, although some of the detailed
behavior is “smeared out” by the noise.

The analysis of general models of this type is a regular feature in what follows,
and in Chapter 7 we give a detailed analysis of the path structure that might be
expected under suitable assumptions on the noise and the associated deterministic

model.

so that
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Fig. 2.5. The gumleaf attractor perturbed by noise

2.2.4 The dependent parameter bilinear model

As a simple example of a multidimensional nonlinear state space model, we will
consider the following dependent parameter bilinear model, which is closely related to
the simple bilinear model introduced above. To allow for dependence in the parameter
process, we construct a two dimensional process so that the Markov assumption will
remain valid.

The Dependent Parameter Bilinear Model

The process ¢ = (g) is called the dependent parameter bilinear model if
it satisfies

(DBL1) For some |a| < land allk e Z,,

Y1 = 0 Y+ Wi (2.12)

Ok+1 = b+ Zgi1, (2.13)

(DBL2)  The joint process (Z, W) is a disturbance sequence on
IR2, Z and W are mutually independent, and the distribu-
tions I3, and I, of W, Z respectively possess densities which
are lower semicontinuous. It is assumed that W has a finite
second moment, and that E[log(1 + |Z])] < oo.
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Fig. 2.6. Dependent parameter bilinear model paths with o = 0.933, W}, ~ N(0,0.14) and
Zj, ~ N(0,0.01)

This is described by a two dimensional NSS(F') model, where the function F' is of the

form
F((), (7)) = (;;fj:vzv) (2.14)

As usual, the control set O, C IR? depends upon the specific distribution of W and
Z.

A plot of the joint process (5) is given in Figure 2.6. In this simulation we have
a =0.933, Wy ~ N(0,0.14) and Zj ~ N(0,0.01).

The dark line is a plot of the parameter process @, and the lighter, more explosive
path is the resulting output Y. One feature of this model is that the output oscillates
rapidly when 6;, takes on large negative values, which occurs in this simulation for
time values between 80 and 100.

2.3 Models In Control And Systems Theory

2.3.1 Choosing controls

In Section 2.2, we defined deterministic control systems, such as (2.5), associated
with Markovian state space models. We now begin with a general control system,
which might model the dynamics of an aircraft, a cruise control in an automobile, or
a controlled chemical reaction, and seek ways to choose a control to make the system
attain a desired level of performance.

Such control laws typically involve feedback; that is, the input at a given time
is chosen based upon present output measurements, or other features of the system
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which are available at the time that the control is computed. Once such a control law
has been selected, the dynamics of the controlled system can be complex. Fortunately,
with most control laws, there is a representation (the “closed loop” system equations)
which gives rise to a Markovian state process @ describing the variables of interest
in the system. This additional structure can greatly simplify the analysis of control
systems.

We can extend the AR models of time series to an ARX (autoregressive with
ezogenous variables) system model defined for £k > 1 by

Yie + o1 (B)Ye—1 + - 4 o, (k) Yeen, = Br(k)Ug—1 + -+ + By (k) Ug—ny + Wi (2.15)

where we assume for this discussion that the output process Y, the input process (or
exogenous variable sequence) U, and the disturbance process W are all scalar-valued,
and initial conditions are assigned at k£ = 0.

Let us also assume that we have random coefficients o;(k),3;(k) rather than
fixed coefficients at each time point k. In such a case we may have to estimate the
coefficients in order to choose the exogenous input U.

The objective in the design of the control sequence U is specific to the particular
application. However, it is often possible to set up the problem so that the goal
becomes a problem of regulation: that is, to make the output as small as possible.
Given the stochastic nature of systems, this is typically expressed using the concepts
of sample mean square stabilizing sequences and minimum variance control laws.

We call the input sequence U sample mean square stabilizing if the input-output

process satisfies
N

1
lim sup — Z[Y,f + UP] < o0 a.s.
for every initial condition. The control law is then said to be minimum variance if it
is sample mean square stabilizing, and the sample path average

. 1 &K,
ll]Ivn_>Solép N kgl Y (2.16)
is minimized over all control laws with the property that, for each k, the input Uy is
a function of Yj,...,Y,, and the initial conditions.
Such controls are often called “causal”, and for causal controls there is some
possibility of a Markovian representation. We now specialize this general framework to
a situation where a Markovian analysis through state space representation is possible.

2.3.2 Adaptive control

In adaptive control, the parameters {«;(k),B;(k)} are not known a priori, but are
partially observed through the input-output process. Typically, a parameter estima-
tion algorithm, such as recursive least squares, is used to estimate the parameters
on-line in implementations. The control law at time & is computed based upon these
estimates and past output measurements.

As an example, consider the system model given in equation (2.15) with all of
the parameters taken to be independent of &, and let

0 = (_ala"'a_anu :815"'7/3H2)
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denote the time invariant parameter vector. Suppose for the moment that the param-
eter 0 is known. If we set

¢/—c|——1 = (Yk—17 Tt ’Yk—nla Uk‘—la e 7Uk—n2)7

and if we define for each k the control Uy as the solution to

¢p 0 =0, (2.17)

then this will result in Y, = Wy, for all k. This control law obviously minimizes the
performance criterion (2.16) and hence is a minimum variance control law if it is
sample mean square stabilizing.

It is also possible to obtain a minimum variance control law, even when @ is
not available directly for the computation of the control Ug. One such algorithm
(developed in [87]) has a recursive form given by first estimating the parameters
through the following stochastic gradient algorithm:

A~

0, = 6Or1 + 1t k-1 Yk
(2.18)

Tk i1+ ||kl

the new control Uy, is then defined as the solution to the equation

F 0, = 0.

With X, € X:=IR, x R¥™*"2) defined as

we see that X is of the form Xy = F(Xj, Wg41), where F: X x IR — X is a rational
function, and hence X is a Markov chain.

To illustrate the results in stochastic adaptive control obtainable from the theory
of Markov chains, we will consider here and in subsequent chapters the following
ARX(1) random parameter, or state space, model.
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Simple Adaptive Control Model
The simple adaptive control model is a triple Y, U, @ where

(SAC1) the output sequence Y and parameter sequence 8 are
defined inductively for any input sequence U by

Yiti = Y, +Up+ Wiy (2.19)
Ok+r1 = by + Zgy1, k>1 (2.20)

where « is a scalar with |a| < 1;

(SAC2)  the bivariate disturbance process (w) is Gaussian and

satisfies
el = (o)
E[(77) (Zks Wi)] = (UOZ 0%))5”—/67 n>1;

(SAC3) the input process satisfies Uy € Vi, k € Z,, where
Vi = o{Yy,...,Y;}. That is, the input Uy at time k is a
function of past and present output values.

The time varying parameter process @ here is not observed directly but is partially
observed through the input and output processes U and Y.

The ultimate goal with such a model is to find a mean square stabilizing, minimum
variance control law. If the parameter sequence 8 were completely observed then this
goal could be easily achieved by setting Uy = —0;Y} for each k € Z, as in (2.17).

Since @ is only partially observed, we instead obtain recursive estimates of the
parameter process and choose a control law based upon these estimates. To do this
we note that by viewing 6 as a state process, as defined in [39], then because of the
assumptions made on (W, Z), the conditional expectation

Ok == E[6), | V]

is computable using the Kalman filter (see [165, 156]) provided the initial distribution
of (Uo, Yo,60) for (2.19), (2.20) is Gaussian.

In this scalar case, the Kalman filter estimates are obtained recursively by the
pair of equations

Ze(Yis1 — 0y — Up)Ys,
EkYk? =+ 0'121)

ék+1 = aék+a
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o?o 3,

Spp1 = 024 =k
z 2
S Y2+ o2,

When a =1, 0y, = 1 and o, = 0, so that 8, = 6y for all k, these equations define the
recursive least squares estimates of 6, similar to the gradient algorithm described in
(2.18).

Defining the parameter estimation error at time n by én =0, — én, we have that
O = 0x — E[0x | Vi), and Xy, = E[6? | Vx] whenever 6 is distributed N (0, Xp) and Yy
and X, are constant (see [172] for more details).

We use the resulting parameter estimates {0 : k > 0} to compute the “certainty
equivalence” adaptive minimum variance control U = —ékYk, k € Z,. With this
choice of control law, we can define the closed loop system equations.

Closed Loop System Equations

The closed loop system equations are

§k+1 = Ozék - ()éZkYk+1Yk(ZkYk2 + 0'121))_1 + Zk—|—1 (2.21)
Y1 = 0pYp+ Wi (2.22)
Thi1 = o2+ 2R D (Y2 +02), k> 1 (2.23)

where the triple X, éo, Y, is given as an initial condition.

The closed loop system gives rise to a nonlinear state space model of the form (NSS1).
It follows then that the triple

Dy = (Zk,ék,yk)—r, k€ Z_|_, (224:)

is a Markov chain with state space X = [02, %2‘] x TR%. Although the state space
is not open, as required in (NSS1), when necessary we can restrict the chain to the
interior of X to apply the general results which will be developed for the nonlinear
state space model.

As we develop the general theory of Markov processes we will return to this
example to obtain fairly detailed properties of the closed loop system described by
(2.21)-(2.23).

In Chapter 16 we characterize the mean square performance (2.16): when the
parameter o2 which defines the parameter variation is strictly less than unity, the
limit supremum is in fact a limit in this example, and this limit is independent of the
initial conditions of the system.

This limit, which is the expectation of Yy with respect to an invariant measure,
cannot be calculated exactly due to the complexity of the closed loop system equa-
tions.
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Fig. 2.7. Disturbance W for the SAC model: N(0,0.01) Gaussian white noise

Using invariance, however, we may obtain explicit bounds on the limit, and give
a characterization of the performance of the closed loop system which this limit
describes. Such characterizations are helpful in understanding how the performance
varies as a function of the disturbance intensity W and the parameter estimation
error 6.

In Figure 2.8 and Figure 2.9 we have illustrated two typical sample paths of the
output process Y, identical but for the different values of o, chosen.

The disturbance process W in both instances is i.i.d. N(0,0.01); that is, g, = 0.1.
A typical sample path of W is given in Figure 2.7.

In both simulations we take a = 0.99. In the “stable” case in Figure 2.8, we have
0, = 0.2. In this case the output Y is barely distinguishable from the noise W. In
the second simulation, where o, = 1.1, we see in Figure 2.9 that the output exhibits
occasional large bursts due to the more unpredictable behavior of the parameter
process.

2.4 Markov Models With Regeneration Times

The processes in the previous section were Markovian largely through choosing a
sufficiently large product space to allow augmentation by variables in the finite past.
The chains we now consider are typically Markovian using the second paradigm
in Section 1.2.1, namely by choosing specific regeneration times at which the past is
forgotten. For more details of such models see Feller [76, 77] or Asmussen [10].

2.4.1 The forward recurrence time chain

A chain which is a special form of the random walk chain in Section 1.2.3 is the renewal
process. Such chains will be fundamental in our later analysis of the structure of even
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Fig. 2.8. Output Y of the SAC model with a = 0.99, ¢, = 0.1, and o, = 0.2

1000

Fig. 2.9. Output Y of the SAC model with & = 0.99, 0, = 0.1, and 0, = 1.1
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the most general of Markov chains, and here we describe the specific case where the
state space is countable.

Let {Y1,Y5,...} be a sequence of independent and identical random variables,
with distribution function p concentrated, not on the positive and negative integers,
but rather on Z,. It is customary to assume that p(0) = 0. Let Yy be a further
independent random variable, with the distribution of Yy being a, also concentrated
on Z. The random variables

n
Zn=) Y
1=0

form an increasing sequence taking values in Z, and are called a delayed renewal
process, with a being the delay in the first variable: if @ = p then the sequence {Z,}
is merely referred to as a renewal process.

As with the two-sided random walk, Z, is a Markov chain: not a particularly
interesting one in some respects, since it is evanescent in the sense of Section 1.3.1 (II),
but with associated structure which we will use frequently, especially in Part III.

With this notation we have P(Zy = n) = a(n) and by considering the value of Z;
and the independence of Yy and Y7, we find

P(Z1 =n) =) a(j)p(n — j).
j=0

To describe the n-step dynamics of the process {Z,} we need convolution notation.

Convolutions

We write a * b for the convolution of two sequences a and b given by

n n

axb(n):=3 b(jla(n —j) =3 a(j)b(n - j)

J=0 J=0

and a** for the k** convolution of @ with itself.

By decomposing successively over the values of the first n variables Zy,..., Z,_1 and
using the independence of the increments Y; we have that

P(Z, =n) = a* p* (n).

Two chains with appropriate regeneration associated with the renewal process are the
forward recurrence time chain, sometimes called the residual lifetime process, and the
backward recurrence time chain, sometimes called the age process.
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Forward and backward recurrence time chains

If {Z,} is a discrete time renewal process, then the forward recurrence
time chain Vt =V (n),n € Z,, is given by

(RT1) V*(n):=inf(Z, —n: Zy, >n), n >0

and the backward recurrence time chain V- =V~ (n),n € Z,, is given
by

(RT2) V™ (n):=inf(n—Z, : Zyn < n), n > 0.

The dynamics of motion for VT and V™~ are particularly simple.

If Vt(n) = k for k > 1 then, in a purely deterministic fashion, one time unit
later the forward recurrence time to the next renewal has come down to k& — 1. If
V*(n) =1 then a renewal occurs at n + 1: therefore the time to the next renewal has
the distribution p of an arbitrary Yj, and this is the distribution also of V*(n + 1) .
For the backward chain, the motion is reversed: the chain increases by one, or ages,
with the conditional probability of a renewal failing to take place, and drops to zero
with the conditional probability that a renewal occurs. We define the laws of these
chains formally in Section 3.3.1.

The regeneration property at each renewal epoch ensures that both V* and V~
are Markov chains; and, unlike the renewal process itself, these chains are stable under
straightforward conditions, as we shall see.

Renewal theory is traditionally of great importance in countable space Markov
chain theory: the same is true in general spaces, as will become especially apparent in
Part III. We only use those aspects which we require in what follows, but for a much
fuller treatment of renewal and regeneration see Kingman [136] or Lindvall [155].

2.4.2 The GI/G/1, GI/M/1 and M/G/1 queues

The theory of queueing systems provides an explicit and widely used example of the
random walk models introduced in Section 1.2.3, and we will develop the application
of Markov chain and process theory to such models, and related storage and dam
models, as another of the central examples of this book.

These models indicate for the first time the need, in many physical processes,
to take care in choosing the timepoints at which the process is analyzed: at some
“regeneration” time-points, the process may be “Markovian”, whilst at others there
may be a memory of the past influencing the future.

In the modeling of queues, to use a Markov chain approach we can make cer-
tain distributional assumptions (and specifically assumptions that some variables are
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exponential) to generate regeneration times at which the Markovian forgetfulness
property holds. We develop such models in some detail, as they are fundamental
examples of the use of regeneration in utilizing the Markovian assumption.

Let us first consider a general queueing model to illustrate why such assumptions
may be needed.

Queueing Model Assumptions

Suppose the following assumptions hold.

(Q1) Customers arrive into a service operation at timepoints
To = 0, Ty + Ty, Ty + 11 + T5,... where the interarrival
times T;, ¢ > 1, are independent and identically distributed
random variables, distributed as a random variable 7" with
G(—o0,t] =P(T <1).

(Q2) The n'* customer brings a job requiring service S, where
the service times are independent of each other and of the
interarrival times, and are distributed as a variable S with
distribution H(—o0,t] = P(S < t).

(Q3) There is one server and customers are served in order of
arrival.

Then the system is called a GI/G/1 queue.

The notation and many of the techniques here were introduced by Kendall [128, 129]:
GI for general independent input, G for general service time distributions, and 1 for a
single server system. There are many ways of analyzing this system: see Asmussen [10]
or Cohen [54] for comprehensive treatments.

Let N(t) be the number of customers in the queue at time ¢, including the cus-
tomers being served. This is clearly a process in continuous time. A typical sample
path for {N(¢),t > 0}, under the assumption that the first customer arrives at ¢t = 0,
is shown in Figure 2.10, where we denote by T, the arrival times

T =T +--+T, i>1 (2.25)
and by S the sums of service times
Si=So+-+58;, i>0. (2.26)

Note that, in the sample path illustrated, because the queue empties at S5, due to
T4 > SY, the point z = T3 + S3 is not S%, and the point T + Sy is not S}, and so on.
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Fig. 2.10. A typical sample path of the single server queue

Although the process {N(t¢)} occurs in continuous time, one key to its analysis
through Markov chain theory is the use of embedded Markov chains.

Consider the random variable N, = N(T),—), which counts customers immedi-
ately before each arrival. By convention we will set Ny = 0 unless otherwise indicated.
We will show that under appropriate circumstances for k > —j

P(Nn—H =7+ k | N, =7, Nn—laNn—27-'- 7N0) = Pk, (227)

regardless of the values of {N,_1,..., Ny}. This will establish the Markovian nature
of the process, and indeed will indicate that it is a random walk on Z .

Since we consider N(t) immediately before every arrival time, N, can only
increase from N,, by one unit at most; hence, equation (2.27) holds trivially for & > 1.

For N, ;1 to increase by one unit we need there to be no departures in the time
period T}, — T},, and obviously this happens if the job in progress at Ty, is still in
progress at Ty, ;.

It is here that some assumption on the service times will be crucial. For it is easy
to show, as we now sketch, that for a general GI/G/1 queue the probability of the
remaining service of the job in progress taking any specific length of time depends,
typically, on when the job began. In general, the past history {N, 1,...,Np} will
provide information on when the customer began service, and this in turn provides
information on how long the customer will continue to be served.

To see this, consider, for example, a trajectory such as that up to (7{—) on
Figure 2.10, where {N,, = 1,N,,_1 = 0,---}. This tells us that the current job began
exactly at the arrival time 77, _,, so that (as at (75—))

P(Npt1=2| Ny =1,Ny1=0)=P(Sy_2>Tpni1 + Ty | Sno >Tn).  (2.28)

However, a history such as {N,, = 1, N,,_1 = 1, N,,_2 = 0}, such as occurs up to (T —)
on Figure 2.10, shows that the current job began within the interval (7},,7),_;), and
so for some z < T, (given by T — z on Figure 2.10), the behavior at (7g—) has the
probability

P(Nn—H =2 | N,=1,N, 1 =1,N, o = 0) = P(Sn >Thi1+ 2 | Sp > Z) (229)

It is clear that for most distributions H of the service times S;, if we know Tp41 =1
and T, =t' > 2
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P(Sp>t+2|8Sy>2)#P(Spy>t+t'| S, >t); (2.30)

so N = {N,} is not a Markov chain, since from equation (2.28) and equation (2.29)
the different information in the events {N,, = 1,N,,_; = 0} and {N,, = 1,N,,_; =
1, Np—2 = 0} (which only differ in the past rather than the present position) leads to
different probabilities of transition.

There is one case where this does not happen. If both sides of (2.30) are identical
so that the time until completion of service is quite independent of the time already
taken, then the extra information from the past is of no value.

This leads us to define a specific class of models for which N is Markovian.

GI/M/1 Assumption

(Q4) If the distribution H(—o0, t] of service times is exponential
with
H(—oco,f]=1—e "  t>0

then the queue is called a GI/M/1 queue.

Here the M stands for Markovian, as opposed to the previous “general” assumption.
If we can now make assumption (Q4) that we have a GI/M/1 queue, then the
well-known “loss of memory” property of the exponential shows that, for any %, z,

P(Sp,>t+2z|S,>2) = e_“(t+z)/e_“z = e M,

In this way, the independence and identical distribution structure of the service times
show that, no matter which previous customer was being served, and when their
service started, there will be some z such that

P(Np+1=7+1| Ny =4 Np1,...) = P(S>T+2z|85>2)
(2.31)
= [Ce M G(dt)

independent of the value of z in any given realization, as claimed in equation (2.27).

This same reasoning can be used to show that, if we know N, = j, then for
0 <1 <j,wewill find N1 =1 provided j — %+ 1 customers legve in the interarrival
time (7}, 7, ;). This corresponds to (j —i + 1) jobs being completed in this period,
and the (j —i+ 1) job continuing past the end of the period. The probability of this
happening, using the forgetfulness of the exponential, is independent of the amount of
time the service is in place at time 7, has already consumed, and thus N is Markovian.

A similar construction holds for the chain N* = {N;} defined by taking the
number in the queue immediately after the n'” service time is completed. This will be
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a Markov chain provided the number of arrivals in each service time is independent
of the times of the arrivals prior to the beginning of that service time. As above, we
have such a property if the inter-arrival time distribution is exponential, leading us
to distinguish the class of M/G/1 queues, where again the M stands for a Markovian
inter-arrival assumption.

M/G/1 Assumption

(Q5) If the distribution G(—o0,t] of inter-arrival times is expo-
nential with

G(—oo,t] =1—e M >0

then the queue is called an M/G/1 queue.

The actual probabilities governing the motion of these queueing models will be de-
veloped in Chapter 3.

2.4.3 The Moran dam

The theory of storage systems provides another of the central examples of this book,
and is closely related to the queueing models above.

The storage process example is one where, although the time of events happening
(that is, inputs occurring) is random, between those times there is a deterministic
motion which leads to a Markovian representation at the input times which always
form regeneration points.

A simple model for storage (the “Moran dam” [189, 10]) has the following ele-
ments. We assume there is a sequence of input times To =0, To+ 11, To+T1 4+ 15 . . .,
at which there is input into a storage system, and that the inter-arrival times T;,
1 > 1, are independent and identically distributed random variables, distributed as a
random variable T with G(—o0,t] = P(T < t).

At the n'® input time, the amount of input S, has a distribution H(—o0,t] =
P(S, < t); the input amounts are independent of each other and of the interarrival
times. Between inputs, there is steady withdrawal from the storage system, at a rate
r: so that in a time period [z, z + t], the stored contents drop by an amount 7t since
there is no input.

When a path of the contents process reaches zero, the process continues to take
the value zero until it is replenished by a positive input.

This model is a simplified version of the way in which a dam works; it is also a
model for an inventory, or for any other similar storage system.
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The basic storage process operates in continuous time: to render it Markovian we
analyze it at specific timepoints when it (probabilistically) regenerates, as follows.

Simple Storage Models

(SSM1)  For each n > 0 let S,, and T}, be independent random
variables on IR with distributions H and G as above.

(SSM2)  Define the random variables
an—f—l = [én + S5, — Jn]+

where the variables J,, are independent and identically dis-
tributed, with

P(Jp, < z) = G(—00,z/r] (2.32)
for some r > 0.
Then the chain ¢ = {&,} represents the contents of a storage system at

the times {7,,—} immediately before each input, and is called the simple
storage model.

The independence of Sy, 1 from S,_1,Sp—2,... and the construction rules (SSM1)
and (SSM2) ensure as before that {®,} is a Markov chain: in fact, it is a specific
example of the random walk on a half line defined by (RWHL1), in the special case
where

Wy =8,—Jn, neZ,.

It is an important observation here that, in general, the process sampled at other
time points (say, at regular time points) is not a Markov system, since it is crucial in
calculating the probabilities of the future trajectory to know how much earlier than
the chosen time-point the last input point occurred: by choosing to examine the chain
embedded at precisely those pre-input times, we lose the memory of the past. This
was discussed in more detail in Section 2.4.2.

We define the mean input by o = [;° 2 H(dz) and the mean output between
inputs by 8 = [;° rz G(dz). In Figure 2.11 and Figure 2.12 we give two sample paths
of storage models with different values of the parameter ratio a/8. The behavior of
the sample paths is quite different for different values of this ratio, which will turn
out to be the crucial quantity in assessing the stability of these models.
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Fig. 2.12. Storage system path with a/8 =0.5,r =1
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2.4.4 Content-dependent release rules

As with time-series models or state space systems, the linearity in the Moran storage
model is clearly a first approximation to a more sophisticated system.

There are two directions in which this can be taken without losing the Markovian
nature of the model.

Again assume there is a sequence of input timepoints Ty = 0, Ty + T1, To +
T1 4+ 15 ..., and that the interarrival times 73, 1 > 1, are independent and identically
distributed random variables, with distribution G.

Then one might assume that, if the contents at the n'® input time are given
by &, = z, the amount of input S,(z) has a distribution given by H,(—o0,t] =
P(S,(z) < t) dependent on z; the input amounts remain independent of each other
and of the interarrival times.

Alternatively, one might assume that between inputs, there is withdrawal from
the storage system, at a rate r(x) which also depends on the level z at the moment
of withdrawal. This assumption leads to the conclusion that, if there are no inputs,
the deterministic time to reach the empty state from a level z is

R) = [ @Iy (2.33)

Usually we assume R(x) to be finite for all z. Since R is strictly increasing the inverse
function R=1(¢) is well-defined for all ¢, and it follows that the drop in level in a time
period t with no input is given by

Ju(t) =z — q(z,t)

where

q(z,t) = R™Y(R(z) — t).

This enables us to use the same type of random walk calculation as for the Moran
dam.

As before, when a path of this storage process reaches zero, the process continues
to take the value zero until it is replenished by a positive input.

It is again necessary to analyze such a model at the times immediately before
each input in order to ensure a Markovian model. The assumptions we might use for
such a model are
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Content-Dependent Storage Models

(CSM1) For each n > 0 let S, (z) and T,, be independent ran-
dom variables on IR with distributions H, and G as above.

(CSM2)  Define the random variables
(pn—l—l - [(pn - Jn + Sn(én - Jn)]+

where the variables J,, are independently distributed, with

PUn<y| B0 =2) = [G@P(L(H <y) (230

Then the chain ¢ = {&,} represents the contents of the
storage system at the times {7},—} immediately before each
input, and is called the content-dependent storage model.

Such models are studied in [96, 34]. In considering the connections between queueing
and storage models, it is then immediately useful to realize that this is also a model of
the waiting times in a model where the service time varies with the level of demand,
as studied in [38].

2.5 Commentary

We have skimmed the Markovian models in the areas in which we are interested, trying
to tread the thin line between accessibility and triviality. The research literature
abounds with variations on the models we present here, and many of them would
benefit by a more thorough approach along Markovian lines.

For many more models with time series applications, the reader should see Brock-
well and Davis [32], especially Chapter 12; Granger and Anderson for bilinear models
[88]; and for nonlinear models see Tong [267], who considers models similar to those
we have introduced from a Markovian viewpoint, and in particular discusses the bi-
linear and SETAR models. Linear and bilinear models are also developed by Duflo
in [69], with a view towards stability similar to ours. For a development of general
linear systems theory the reader is referred to Caines [39] for a controls perspective,
or Aoki [6] for a view towards time series analysis.

Bilinear models have received a great deal of attention in recent years in both time
series and systems theory. The dependent parameter bilinear model defined by (2.13,
2.12) is called a doubly stochastic autoregressive process of order 1, or DSAR(1), in
Tjostheim [265]. Realization theory for related models is developed in Guégan [90] and
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Mittnik [186], and the papers Pourahmadi [219], Brandt [28], Meyn and Guo [177],
and Karlsen [123] provide various stability conditions for bilinear models.

The idea of analyzing the nonlinear state space model by examining an associated
control model goes back to Stroock and Varadhan [260] and Kunita [144, 145] in
continuous time. In control and systems models, linear state space models have always
played a central role, while nonlinear models have taken a much more significant role
over the past decade: see Kumar and Varaiya [143], Duflo [69], and Caines [39] for
a development of both linear adaptive control models, and (nonlinear) controlled
Markov chains.

The embedded regeneration time approach has been enormously significant since
its introduction by Kendall in [128, 129]. There are many more sophisticated variations
than those we shall analyze available in the literature. A good recent reference is
Asmussen [10], whilst Cohen [54] is encyclopedic.

The interested reader will find that, although we restrict ourselves to these rel-
atively less complicated models in illustrating the value of Markov chain modeling,
virtually all of our general techniques apply across more complex systems. As one
example, note that the stability of models which are state-dependent, such as the
content-dependent storage model of Section 2.4.4, has only recently received attention
[38], but using the methods developed in later chapters it is possible to characterize
it in considerable detail [178, 180, 181].

The storage models described here can also be thought of, virtually by renaming
the terms, as models for state-dependent inventories, insurance models, and models of
the residual service in a GI/G/1 queue. To see the last of these, consider the amount of
service brought by each customer as the input to the “store” of work to be processed,
and note that the server works through this store of work at a constant rate.

The residual service can be, however, a somewhat minor quantity in a queueing
model, and in Section 3.5.4 below we develop a more complex model which is a better
representation of the dynamics of the GI/G/1 queue.

Added in Second Printing In the last two years there has been a virtual explosion
in the use of general state space Markov chains in simulation methods, and especially
in Markov chain Monte Carlo methods which include Hastings-Metropolis and Gibbs
sampling techniques, which were touched on in Chapter 1.1(f). Any future edition will
need to add these to the collection of models here and examine them in more detail:
the interested reader might look at the recent results [44, 191, 245, 246, 225, 166, 224,
which all provide examples of the type of chains studied in this book.



