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Transition Probabilities

As with all stochastic processes, there are two directions from which to approach the
formal definition of a Markov chain.

The first is via the process itself, by constructing (perhaps by heuristic arguments
at first, as in the descriptions in Chapter 2) the sample path behavior and the dynam-
ics of movement in time through the state space on which the chain lives. In some of
our examples, such as models for queueing processes or models for controlled stochas-
tic systems, this is the approach taken. From this structural definition of a Markov
chain, we can then proceed to define the probability laws governing the evolution of
the chain.

The second approach is via those very probability laws. We define them to have
the structure appropriate to a Markov chain, and then we must show that there is
indeed a process, properly defined, which is described by the probability laws initially
constructed. In effect, this is what we have done with the forward recurrence time
chain in Section 2.4.1.

From a practitioner’s viewpoint there may be little difference between the ap-
proaches. In many books on stochastic processes, such as Cinlar [40] or Karlin and
Taylor [122], the two approaches are used, as they usually can be, almost interchange-
ably; and advanced monographs such as Nummelin [202] also often assume some of
the foundational aspects touched on here to be well-understood.

Since one of our goals in this book is to provide a guide to modern general space
Markov chain theory and methods for practitioners, we give in this chapter only
a sketch of the full mathematical construction which provides the underpinning of
Markov chain theory.

However, we also have as another, and perhaps somewhat contradictory, goal the
provision of a thorough and rigorous exposition of results on general spaces, and for
these it is necessary to develop both notation and concepts with some care, even if
some of the more technical results are omitted.

Our approach has therefore been to develop the technical detail in so far as it
is relevant to specific Markov models, and where necessary, especially in techniques
which are rather more measure theoretic or general stochastic process theoretic in
nature, to refer the reader to the classic texts of Doob [68], and Chung [49], or the
more recent exposition of Markov chain theory by Revuz [223] for the foundations we
need. Whilst such an approach renders this chapter slightly less than self-contained,
it is our hope that the gaps in these foundations will be either accepted or easily filled
by such external sources.



56 3. Transition Probabilities

Our main goals in this chapter are thus

(i) to demonstrate that the dynamics of a Markov chain {®,} can be completely
defined by its one step “transition probabilities”

P(z,A) =P(®, € A|Pp_1 =2x),
which are well-defined for appropriate initial points z and sets A;

(ii) to develop the functional forms of these transition probabilities for many of the
specific models in Chapter 2, based in some cases on heuristic analysis of the
chain and in other cases on development of the probability laws; and

(iii) to develop some formal concepts of hitting times on sets, and the “Strong Markov
Property” for these and related stopping times, which will enable us to address
issues of stability and structure in subsequent chapters.

We shall start first with the formal concept of a Markov chain as a stochastic process,
and move then to the development of the transition laws governing the motion of the
chain; and complete the cycle by showing that if one starts from a set of possible
transition laws then it is possible to move from these to a chain which is well defined
and governed by these laws.

3.1 Defining a Markovian Process

A Markov chain & = {®y, Py, ...} is a particular type of stochastic process taking, at
times n € Z, values @, in a state space X.

We need to know and use a little of the language of stochastic processes. A
discrete time stochastic process @ on a state space is, for our purposes, a collection
@ = ($y, D1, ...) of random variables, with each @; taking values in X; these random
variables are assumed measurable individually with respect to some given o-field
B(X), and we shall in general denote elements of X by letters z,v, z, ... and elements
of B(X) by A,B,C.

When thinking of the process as an entity, we regard values of the whole chain
@ itself (called sample paths or realizations) as lying in the sequence or path space
formed by a countable product 2 = X* = [[;2,X;, where each X; is a copy of X
equipped with a copy of B(X). For @ to be defined as a random variable in its own
right, {2 will be equipped with a o-field F, and for each state = € X, thought of as an
initial condition in the sample path, there will be a probability measure P, such that
the probability of the event {& € A} is well-defined for any set A € F; the initial
condition requires, of course, that P,(®y = z) = 1.

The triple {£2, F,P;} thus defines a stochastic process since 2 = {wp,w1,... :
w; € X} has the product structure to enable the projections w, at time n to be well
defined realizations of the random variables &,,.

Many of the models we consider (such as random walk or state space models)
have stochastic motion based on a separately defined sequence of underlying variables,
namely a noise or disturbance or innovation sequence W. We will slightly abuse
notation by using P(W € A) to denote the probability of the event {W € A} without
specifically defining the space on which W exists, or the initial condition of the chain:
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this could be part of the space on which the chain @ is defined or it could be separate.
No confusion should result from this usage.

Prior to discussing specific details of the probability laws governing the motion
of a chain &, we need first to be a little more explicit about the structure of the state
space X on which it takes its values. We consider, systematically, three types of state
spaces in this book:

State Space Definitions

(i) The state space X is called countable if X is discrete, with a finite
or countable number of elements, and with B(X) the o-field of all
subsets of X.

(ii) The state space X is called general if it is equipped with a countably
generated o-field B(X).

(iii) The state space X is called topological if it is equipped with a locally
compact, separable, metrizable topology with B(X) as the Borel o-
field.

It may on the face of it seem odd to introduce quite general spaces before rather than
after topological (or more structured) spaces.

This is however quite deliberate, since (perhaps surprisingly) we rarely find the
extra structure actually increasing the ease of approach. From our point of view, we
introduce topological spaces largely because specific applied models evolve on such
spaces, and for such spaces we will give specific interpretations of our general results,
rather than extending specific topological results to more general contexts.

For example, after framing general properties of sets, we identify these general
properties as holding for compact or open sets if the chain is on a topological space;
or after framing general properties of &, we develop the consequences of these when
@ is suitably continuous with respect to the topology considered.

The first formal introduction of such topological concepts is given in Chapter 6,
and is exemplified by an analysis of linear and nonlinear state space models in Chap-
ter 7. Prior to this we concentrate on countable and general spaces: for purposes of
exposition, our approach will often involve the description of behavior on a countable
space, followed by the development of analogous behavior on a general space, and
completed by specialization of results, where suitable, to more structured topological
spaces in due course.

For some readers, countable space models will be familiar: nonetheless, by de-
veloping the results first in this context, and then the analogues for the less familiar
general space processes on a systematic basis we intend to make the general context
more accessible. By then specializing where appropriate to topological spaces, we
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trust the results will be found more applicable for, say, those models which evolve on
multi-dimensional Euclidean space IR, or one of its subsets.

There is one caveat to be made in giving this description. One of the major
observations for Markov chains is that in many cases, the full force of a countable
space is not needed: we merely require one “accessible atom” in the space, such as
we might have with the state {0} in the storage models in Section 2.4.1. To avoid
repetition we will often assume, especially later in the book, not the full countable
space structure but just the existence of one such point: the results then carry over
with only notational changes to the countable case.

In formalizing the concept of a Markov chain we pursue this pattern now, first
developing the countable space foundations and then moving on to the slightly more
complex basis for general space chains.

3.2 Foundations on a Countable Space

3.2.1 The initial distribution and the transition matrix

A discrete time Markov chain @ on a countable state space is a collection & =
{®y,P1,...} of random variables, with each ®; taking values in the countable set X.
In this countable state space setting, B(X) will denote the set of all subsets of X.

We assume that for any initial distribution p for the chain, there exists a proba-
bility measure which denotes the law of @ on (£2,F), where F is the product o-field
on the sample space {2 := X*°. However, since we have to work with several initial
conditions simultaneously, we need to build up a probability space for each initial
distribution.

For a given initial probability distribution y on B(X), we construct the probability
distribution P, on F so that P,(®¢ = z¢) = pu(z¢) and for any A € F,

P® € A| By = 1) = Py (S € A) (3.1)

where P, is the probability distribution on F which is obtained when the initial
distribution is the point mass d,, at zo.

The defining characteristic of a Markov chain is that its future trajectories depend
on its present and its past only through the current value.

To commence to formalize this, we first consider only the laws governing a tra-
jectory of fixed length n > 1. The random variables {®...®,}, thought of as a
sequence, take values in the space X"*! = Xy x - -+ x X,,, the (n 4 1)-fold product of
copies X; of the countable space X, equipped with the product o-field B(X"*!) which
consists again of all subsets of X"*1,

The conditional probability
P (@1 = T1,..., Py = Tp) 1= P (D1 = 71,...,Pp = T0), (3.2)

defined for any sequence {zo, ..., z,} € X"! and zo € X, and the initial probability
distribution p on B(X) completely determine the distributions of {®y,...,&,}.
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Definition of a Countable Space Markov Chain

The process ¢ = (g, D1, ...), taking values in the path space (2, F,P),
is a Markov chain if for every n, and any sequence of states {zg, z1 ...z},

P'u(éo = .’L'(),@l = .771,@2 =Z2y... ,@n = .’I,'n)
(3.3)
= M(‘TO)Pl‘o(@l = xl)le (@1 = .'L'Q) e Pl‘n—l (@1 = .’L‘n)

The probability y is called the initial distribution of the chain.

The process @ is a time-homogeneous Markov chain if the probabilities
P, (P4 = acj+1.) depend only on the values of z;, ;41 and are independent
of the timepoints j.

By extending this in the obvious way from events in X" to events in X* we have that
the initial distribution, followed by the probabilities of transitions from one step to
the next, completely define the probabilistic motion of the chain.

If @ is a time-homogeneous Markov chain, we write

P(z,y) = Py(®1 = y);
then the definition (3.3) can be written

PH(QSO = .’E(),Q-Sl = .Tl,...,@n = .’IIn)

(3.4)
= wu(zo) P(z0, 1) P(71,72) - - - P(Tp—1,Tn),
or equivalently, in terms of the conditional probabilities of the process @,
P,u(¢n—|—1 = Tp+1 | QSn = Tpy--- ,@0 = .’E()) = P(.’,Cn, .Tn+1). (35)

Equation (3.5) incorporates both the “loss of memory” of Markov chains and the
“time-homogeneity” embodied in our definitions. It is possible to mimic this definition,
asking that the P;;(®1 = z;11) depend on the time j at which the transition takes
place; but the theory for such inhomogeneous chains is neither so ripe nor so clean
as for the chains we study, and we restrict ourselves solely to the time-homogeneous
case in this book.

For a given model we will almost always define the probability P, for a fixed
zo by defining the one-step transition probabilities for the process, and building the
overall distribution using (3.4).

This is done using a Markov transition matriz.
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Transition Probability Matrix

The matrix P = {P(z,y),z,y € X} is called a Markov transition matriz
if
P(.T),y) >0, Z P(LE,Z) =1, z,y € X (36)
zeX

We define the usual matrix iterates P" = {P"(z,v),z,y € X} by setting P® = I, the
identity matrix, and then taking inductively

P'(z,z) = Z P(z,y)P" (y, 2). (3.7)
yeX

In the next section we show how to take an initial distribution x4 and a transition
matrix P and construct a distribution P, so that the conditional distributions of the
process may be computed as in (3.1), and so that for any z, y,

Pu(@n =y | §o=1z) = P"(z,y) (3.8)
For this reason, P" is called the n-step transition matriz. For A C X, we also put

P*(z,A) := Z P"*(z,y).
yeA

3.2.2 Developing & from the transition matrix

To define a Markov chain from a transition function we first consider only the laws
governing a trajectory of fixed length n > 1. The random variables {®,...,®P,},
thought of as a sequence, take values in the space X"t = Xy x --- x X, equipped
with the o-field B(X"*!) which consists of all subsets of X" 1.

Define the distributions P, of @ inductively by setting, for each fixed z € X

Pw(¢0 == LE) =1
ch(qSl = y) = P(m,y)
Px(¢2 = zadsl = y) = P(‘Tay)P(yaz)

and so on. It is then straightforward, but a little lengthy, to check that for each fixed
z, this gives a consistent set of definitions of probabilities P2 on (X", B(X")), and
these distributions can be built up to an overall probability measure P, for each z on
the set 2 = []72, X; with o-field F = /2, B(X;), defined in the usual way. Once we
prescribe an initial measure p governing the random variable @y, we can define the
overall measure by
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(P E€A) =" pu(x)Py(® € A)
T€EX
to govern the overall evolution of @. The formula (3.1) and the interpretation of the
transition function given in (3.8) follow immediately from this construction.
A careful construction is in Chung [49], Chapter 1.2. This leads to

Theorem 3.2.1 If X is countable, and

p={pu(z),z € X}, P ={P(z,y),r,y € X}

are an initial measure on X and a Markov transition matriz satisfying (3.6) then there
exists a Markov chain @ on (2, F) with probability law P, satisfying

PIL(¢TL+1 :qusn :"Ea""éo :"Ll(]) :P("an)

3.3 Specific Transition Matrices

In practice models are often built up by constructing sample paths heuristically, often
for quite complicated processes, such as the queues in Section 2.4.2 and their many
ramifications in the literature, and then calculating a consistent set of transition prob-
abilities. Theorem 3.2.1 then guarantees that one indeed has an underlying stochastic
process for which these probabilities make sense.

To make this more concrete, let us consider a number of the models with Marko-
vian structure introduced in Chapter 2, and illustrate how their transition probabili-
ties may be constructed on a countable space from physical or other assumptions.

3.3.1 The forward and backward recurrence time chains

Recall that the forward recurrence time chain VT is given by
V*t(n):=inf(Z, —n: Z, > n), n>0

where Z,, is a renewal sequence as introduced in Section 2.4.1.

The transition matrix for VT is particularly simple. If VT (n) = k for some k > 0,
then after one time unit V*(n+1) = k—1. If V" (n) = 1 then a renewal occurs at n+1
and V*(n + 1) has the distribution p of an arbitrary term in the renewal sequence.
This gives the sub-diagonal structure

p(1) p(2) p3) p(4)

The backward recurrence time chain V~ has a similarly simple structure. For any
n € Z4, let us write

pn) = > p(j) (3.9)
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Write M = sup(m > 1 : p(m) > 0); if M < oo then for this chain the state space
X=1{0,1,...,M — 1}; otherwise X = Z . In either case, for z € X we have (with Y’
as a generic increment variable in the renewal process)

P(z,z+1) = P(Y >z +1|Y >2) = pla+1)/p()
P(z,0) = PY =2+1|Y >z)=p(z+1)/p(z) (3.10)
and zero otherwise. This gives a superdiagonal matrix of the form
b(1) 1-0b(1) 0 0
b(2) 0 1-0b(2) 0
P =

b3) 0 o 1-b(3)

where we have written b(j) = p(j + 1)/p(4).

These particular chains are a rich source of simple examples of stable and unstable
behaviors, depending on the behavior of p; and they are also chains which will be found
to be fundamental in analyzing the asymptotic behavior of an arbitrary chain.

3.3.2 Random walk models

Random walk on the integers Let us define the random walk @ = {®,;n € Z}
by setting, as in (RW1), &, = &,,_1 + W,, where now the increment variables W,, are
i.i.d. random variables taking only integer values in Z = {...,—1,0,1,...}. As usual,
write I'(y) = P(W =vy).

Then for z,y € Z, the state space of the random walk,

P(z,y) = P(@1=y| P =1)
P(@o+ Wi =y| Py =)
= P(Wi=y-2)
= I'(y—x). (3.11)

The random walk is distinguished by this translation invariant nature of the transition
probabilities: the probability that the chain moves from x to y in one step depends
only on the difference x — y between the values.

Random walks on a half line It is equally easy to construct the transition prob-
ability matrix for the random walk on the half-line Z , defined in (RWHLI).

Suppose again that {W;} takes values in Z, and recall from (RWHL1) that the
random walk on a half line obeys

&, = D1+ W,]T. (3.12)

Then for y € Z,, the state space of the random walk on a half line, we have as in
(3.11) that for y > 0
P(z,y) = I'(y — z); (3.13)
whilst for y = 0,
P(.T),O) = P(qﬁ0+W1 <0 | Py :.13)
= P(W; < —x) (3.14)
(—o0, —z].

N
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The simple storage model The storage model given by (SSM1)-(SSM2) is a con-
crete example of the structure in (3.13) and (3.14), provided the release rate is r = 1,
the inter-input times take values n € Z, with distribution G, and the input values
are also integer valued with distribution H.

The random walk on a half line describes the behavior of this storage model, and
its transition matrix P therefore defines its one-step behavior. We can calculate the
values of the increment distribution function I' in a different way, in terms of the
basic parameters G and H of the models, by breaking up the possibilities of the input
time and the input size: we have

I'(z) = P(S,—J,=x)
= Y X H®G)G(z +1).

We have rather forced the storage model into our countable space context by assuming
that the variables concerned are integer valued. We will rectify this in later sections.

3.3.3 Embedded queueing models

The GI/M/1 Queue The next context in which we illustrate the construction of
the transition matrix is in the modeling of queues through their embedded chains.
Consider the random variable N, = N(T},—), which counts customers immedi-
ately before each arrival in a queueing system satisfying (Q1)-(Q3).
We will first construct the matrix P = (P(z,y)) corresponding to the number of
customers N = {N,,} for the GI/M/1 queue; that is, the queue satisfying (Q4).

Proposition 3.3.1 For the GI/M/1 queue, the sequence N = {N,,n > 0} can be
constructed as a Markov chain with state space Z ., and transition matriz

q0 Do
g P1 Do 0

P = 92 P2 P1 Po

where q; = Z;’ijﬂ pi, and

po=P(S>T)= /oo e G (dt) (3.15)

0

pj = P{S;>T>5; )
= [Ty e, iz (3.16)

Hence N is a random walk on a half line.

PROOF In Section 2.4.2 we established the Markovian nature of the increases at
T} —, in (2.27), under the assumption of exponential service times.

Since we consider N(t) immediately before every arrival time, N, can only
increase from N,, by one unit at most; hence for k£ > 1 it is trivial that

P(Npy1=7+k| Ny =3,Npn_1,Np_9,...,Ng) =0. (3.17)
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The independence and identical distribution structure of the service times show as in
Section 2.4.2 that, no matter which previous customer was being served, and when
their service started,

x
P(Nn—l—l =741 ‘ N, =3,Np_1,Np_9,... ,N()) = ‘/0 e Mt G(dt) = Do (318)
as shown in equation (2.31). This establishes the upper triangular structure of P.
If N, = j, then for 0 < i < j, we have N, ;1 = i provided exactly (j —i + 1)
jobs are completed in an inter-arrival period. It is an elementary property of sums of
exponential random variables (see, for example, Cinlar [40], Chapter 4) that for any

t, the number of services completed in a time [0,%] is Poisson with parameter put, so
that

P(So+ -+ 841 >t>8y+ -+ 8;) = e (ut) /3! (3.19)

from which we derive (3.16).

It remains to show that P(j,0) = ¢; = 322, pi; but this follows analogously
with equation (3.16), since the queue empties if more than (j+1) customers complete
service between arrivals.

Finally, to assert that N = {NN,,} can actually be constructed in its entirety as a
Markov chain on Z, we appeal to the general results of Theorem 3.2.1 above to build
N from the probabilistic building blocks P = (P(4,7)), and any initial distribution

M. O

The M/G/1 queue Next consider the random variables N;!, which count customers
immediately after each service time ends in a queueing system satisfying (Q1)-(Q3).

We showed in Section 2.4.2 that this is Markovian when the inter-arrival times
are exponential: that is, for an M/G/1 model satisfying (Q5).

Proposition 3.3.2 For the M/G/1 queue, the sequence N* = {N},n > 0} can be
constructed as a Markov chain with state space Z and transition matriz

9 91 G2 g3 q4
9 91 G2 g3 q4

P = @ 91 92 g3
g q1 Qg2
where for each 7 >0
o .
g = / (e MO/ H(d) > 1. (3-20)
0

Hence N* is similar to a random walk on a half line, but with a different modification
of the transitions away from zero.

ProOOF  Exactly as in (3.19), the expressions g represent the probabilities of k
arrivals occurring in one service time with distribution H, when the interarrival times
are independent exponential variables of rate . ad



3.3 Specific Transition Matrices 65

3.3.4 Linear models on the rationals

The discussion of the queueing models above not only gives more explicit examples of
the abstract random walk models, but also indicates how the Markov assumption may
or may not be satisfied, depending on how the process is constructed: we need the
exponential distributions for the basic building blocks, or we do not have probabilities
of transition independent of the past.

In contrast, for the simple scalar linear AR(1) models satisfying (SLM1) and
(SLM2), the Markovian nature of the process is immediate. The use of a countable
space here is in the main inappropriate, but some versions of this model do provide a
good source of examples and counterexamples which motivate the various topological
conditions we introduce in Chapter 6. Recall then that for an AR(1) model X, and
W, are random variables on IR, satisfying

Xn = aXp_1 + Wy,

for some o € IR, with the “noise” variables {W,} independent and identically dis-
tributed. To use the countable structure of Section 3.2 we might assume, as with the
storage model in Section 3.3.2 above, that « is integer valued, and the noise variables
are also integer valued.

Or, if we need to assume a countable structure on X we might, for example, find
a better fit to reality by supposing that the constant « takes a rational value; and
that the generic noise variable W also has a distribution on the rationals Q, with
P(W =q) =I'(q), g € Q. We then have, in a very straightforward manner

Proposition 3.3.3 Provided o € Q, the sequence X = {X,,n > 0} can be con-
structed as a time homogeneous Markov chain on the countable space Q, with transi-
tion probability matriz

P(r,q) = P(Xny1=¢q|Xn=r)
= F(q—ar), raqu'

PrROOF  We have established that X is Markov. Clearly, from (SLM1), when X, €
@, the value of X is in Q also; and P(r,q) merely describes the fact that the chain
moves from r to ar in a deterministic way before adding the noise with distribution
wW.

Again, once we have P = {P(r,q),r,q € Q}, we are guaranteed the existence
of the Markov chain X, using the results of Theorem 3.2.1 with P as transition
probability matrix. O

This autoregression highlights immediately the shortcomings of the countable
state space structure. Although @ is countable, so that in a formal sense we can
construct a linear model satisfying (SLM1) and (SLM2) on Q in such a way that we
can use countable space Markov chain theory, it is clearly more natural to take, say,
« as real and the variable W as real-valued also, so that X, is real-valued for any
initial =y € IR.

To model such processes, and the more complex autoregressions and nonlinear
models which generalize them in Chapter 2, and which are clearly Markovian but
continuous-valued in conception, we need a theory for continuous-valued Markov
chains. We turn to this now.
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3.4 Foundations for General State Space Chains

3.4.1 Developing & from transition probabilities

The countable space approach guides the development of the theory we shall present
in this book for a much broader class of Markov chains, on quite general state spaces:
it is one of the more remarkable features of this seemingly sweeping generalization that
the great majority of the countable state space results carry over virtually unchanged,
without assuming any detailed structure on the space.

We let X be a general set, and B(X) denote a countably generated o-field on X:
when X is topological, then B(X) will be taken as the Borel o-field, but otherwise it
may be arbitrary.

In this case we again start from the one-step transition probabilities and construct
@ much as in Theorem 3.2.1.

Transition Probability Kernels

If P={P(z,A),z € X,A € B(X)} is such that

(i) for each A € B(X), P(-, A) is a non-negative measurable function on
(ii) for each z € X, P(z, -) is a probability measure on B(X)

then we call P a transition probability kernel or Markov transition func-
tion.

On occasion, as in Chapter 6, we may require that a collection T = {T'(z, A),z €
X, A € B(X)} satisfies (i) and (ii), with the exception that T'(z,X) < 1 for each z:
such a collection is called a substochastic transition kernel. In the other direction,
there will be times when we need to consider completely non-probabilistic mappings
K:X x B(X) - IRy with K(z, -) a measure on B(X) for each z, and K(-,B) a
measurable function on X for each B € B(X). Such a map is called a kernel on
(X, B(X)).

We now imitate the development on a countable space to see that from the
transition probability kernel P we can define a stochastic process with the appropriate
Markovian properties, for which P will serve as a description of the one-step transition
laws.

We first define a finite sequence ¢ = {Py, 1, ..., P, } of random variables on the
product space X" = [, X;, equipped with the product o-field /I, B(X;), by an
inductive procedure.
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For any measurable sets 4; C X;, we develop the set functions P?(-) on X"*! by
setting, for a fixed starting point £ € X and for the “cylinder sets” Ay x --- x A,

PL(A1) = P(z,4),
PZ(A; x Ag) = /AP(%dyl)P(yl,Aﬂ,

1

PR x o x Ay) = [ Plody) [ Plys,dyn) - Plya-, Av).
Ay Az
These are all well-defined by the measurability of the integrands P(-, -) in the first
variable, and the fact that the kernels are measures in the second variable.
If we now extend P? to all of \/ij B(X;) in the usual way [25] and repeat this
procedure for increasing n, we find

Theorem 3.4.1 For any initial measure p on B(X), and any transition probabil-
ity kernel P = {P(z,A),z € X,A € B(X)}, there ezists a stochastic process
D = {Dy,P1,...} on 2 =T[[2,Xi, measurable with respect to F = \[520 B(X;), and a
probability measure P, on F such that P,(B) is the probability of the event {® € B}
for B € F; and for measurable A; C X;,1 =0,...,n, and any n

Pu(¢0 S A0,¢1 S Al, ey, ®p € An) (3.21)
p(dyo)P(yo, dy1) - - - P(yn—1, An).

yOEAO ‘/yn—1€An—1

PROOF  Because of the consistency of definition of the set functions P}, there is an
overall measure P, for which the P} are finite dimensional distributions, which leads
to the result: the details are relatively standard measure theoretic constructions, and
are given in the general case by Revuz [223], Theorem 2.8 and Proposition 2.11;
whilst if the space has a suitable topology, as in (MC1), then the existence of @ is a
straightforward consequence of Kolmogorov’s Consistency Theorem for construction
of probabilities on topological spaces. ad

The details of this construction are omitted here, since it suffices for our purposes
to have indicated why transition probabilities generate processes, and to have spelled
out that the key equation (3.21) is a reasonable representation of the behavior of the
process in terms of the kernel P.

We can now formally define

Markov Chains on General Spaces

The stochastic process @ defined on ({2, F) is called a time-homogeneous
Markov chain with transition probability kernel P(z, A) and initial dis-
tribution g if the finite dimensional distributions of @ satisfy (3.21) for
every n.
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3.4.2 The n-step transition probability kernel

As on countable spaces the n-step transition probability kernel is defined iteratively.
We set P%(z, A) = §,(A), the Dirac measure defined by

1 z€A
0z (A) = { 0 o¢A, (3.22)
and, for n > 1, we define inductively
P"(z,A) = / P(x,dy)P" (y,A), zeX AcB(X). (3.23)
X

We write P" for the n-step transition probability kernel { P"(z, A),z € X, A € B(X)}:
note that P™ is defined analogously to the m-step transition probability matrix for
the countable space case.

As a first application of the construction equations (3.21) and (3.23), we have the
celebrated Chapman-Kolmogorov equations. These underlie, in one form or another,
virtually all of the solidarity structures we develop.

Theorem 3.4.2 For any m with 0 < m < n,

Pz, A) = / P™(z,dy)P" ™(y,A), ze€X, A€ B(X). (3.24)

X
ProOF In (3.21), choose p = ¢, and integrate over sets A; = Xfori=1,...,n—1;
and use the definition of P™ and P"~™ for the first m and the last n — m integrands.
O

We interpret (3.24) as saying that, as @ moves from z into A in n steps, at any
intermediate time m it must take (obviously) some value y € X; and that, being a
Markov chain, it forgets the past at that time m and moves the succeeding (n — m)
steps with the law appropriate to starting afresh at y. We can write equation (3.24)
alternatively as

Py(Bn € A) = /X Po (B € dy)Py(Prm € A). (3.25)

Exactly as the one-step transition probability kernel describes a chain @, the m-step
kernel (viewed in isolation) satisfies the definition of a transition kernel, and thus
defines a Markov chain ™ = {®]'} with transition probabilities

P, (8™ € A) = P™(z, A). (3.26)

This, and several other transition functions obtained from P, will be used widely in
the sequel.



3.4 Foundations for General State Space Chains 69

Skeletons and Resolvents

The chain ¢ with transition law (3.26) is called the m-skeleton of the
chain &.

The resolvent K,_ is defined for 0 < ¢ < 1 by

K, (z,A):=(1-¢) ZeiPi(x,A), z € X, A € B(X).
1=0

The Markov chain with transition function K, is called the K,_-chain.

This nomenclature is taken from the continuous-time literature, but we will see that
in discrete time the m-skeletons and resolvents of the chain also provide a useful tool
for analysis.

There is one substantial difference in moving to the general case from the count-
able case, which flows from the fact that the kernel P" can no longer be viewed as
symmetric in its two arguments.

In the general case the kernel P™ operates on quite different entities from the left
and the right. As an operator P™ acts on both bounded measurable functions f on
X and on o-finite measures p on B(X) via

Prf@)= [ Pad)fw),  uP(4) = [ alde)P(z,4),

and we shall use the notation P"f, uP"™ to denote these operations. We shall also
write

P"(z, f):= /P"(:z:,dy)f(y) =0, P"f

if it is notationally convenient. In general, the functional notation is more compact:
for example, we can rewrite the Chapman-Kolmogorov equations as

prtn— pmpn g e Z.

On many occasions, though, where we feel that the argument is more transparent
when written in full form we shall revert to the more detailed presentation.

The form of the Markov chain definitions we have given to date concern only
the probabilities of events involving é. We now define the expectation operation E,
corresponding to P,.

For cylinder sets we define E, by

E,u[]leX---XAn(éﬂ, ce 7¢n)] = PIL({QO’ - ,dsn} € Ag X -+ X An),

where 15 denotes the indicator function of a set B. We may extend the definition to
that of E,[h(®g, D1, ...)] for any measurable bounded real-valued function A on {2 by
requiring that the expectation be linear.
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By linearity of the expectation, we can also extend the Markovian relationship
(3.21) to express the Markov property in the following equivalent form. We omit the
details, which are routine.

Proposition 3.4.3 If ¢ is a Markov chain on (£2,F), with initial measure pu, and
h: 2 = R is bounded and measurable, then

Ep[h(¢n+17 ¢n+25 .. ) | @0, A ,@n; @n = .T] = Ex[h(@h @2, .. )] (327)
o

The formulation of the Markov concept itself is made much simpler if we develop
more systematic notation for the information encompassed in the past of the process,
and if we introduce the “shift operator” on the space (2.

For a given initial distribution, define the o-field

FE.=o(&y,...,d,) C BXX"T)

which is the smallest o-field for which the random variable {®, ..., ®,} is measurable.
In many cases, .7-"”45 will coincide with B(X™), although this depends in particular on
the initial measure y chosen for a particular chain.

The shift operator 6 is defined to be the mapping on (2 defined by

0({zo,T1,---,Tn,y--.}) = {Z1, T2, -+, Tpg1,-- -}
We write 8% for the k' iterate of the mapping 6, defined inductively by
=0, Ot =000% k>1.
The shifts 6% define operators on random variables H on ({2, F, P,) by
(0FH)(w) = H o 6%(w).

It is obvious that &, o 8%(w) = &, . Hence if the random variable H is of the form
H = h(Py,P1,...) for a measurable function h on the sequence space {2 then

0 H = h(Dg, Pri1,--.)

Since the expectation E;[H] is a measurable function on X, it follows that Eg [H] is
a random variable on (2, F,P,) for any initial distribution. With this notation the
equation

Eu[0"H | F] = Eo,[H]  as. [P)] (3.28)

valid for any bounded measurable h and fixed n € Z,, describes the time homoge-
neous Markov property in a succinct way.

It is not always the case that F is complete: that is, contains every set of P.-
measure zero. We adopt the following convention as in [223]. For any initial measure
p we say that an event A occurs P,-a.s. to indicate that A° is a set contained in an
element of F2 which is of P,-measure zero.

If A occurs Py-a.s. for all x € X then we write that A occurs Py-a.s.



3.4 Foundations for General State Space Chains

3.4.3 Occupation, hitting and stopping times

71

The distributions of the chain @ at time n are the basic building blocks of its existence,
but the analysis of its behavior concerns also the distributions at certain random times

in its evolution, and we need to introduce these now.

Occupation Times, Return Times and Hitting Times

by @ to A after time zero, and is given by
o
NA = Z 1{P, € A}.
n=1

(ii) For any set A € B(X), the variables

T4 = min{n >1:&, € A}
o4 = min{n >0:P, € A}

(i) For any set A € B(X), the occupation time 14 is the number of visits

are called the first return and first hitting times on A, respectively.

For every A € B(X), n4, 74 and o4 are obviously measurable functions from {2 to

Z, U{x}.

Unless we need to distinguish between different returns to a set, then we call 74
and o4 the return and hitting times on A respectively. If we do wish to distinguish
different return times, we write 74 (k) for the random time of the k** visit to A: these

are defined inductively for any A by

TA(1) = 7Ta
Ta(k) = min{n > 714(k—1): P, € A}.

Analysis of @ involves the kernel U defined as

o0

U(z,A) = Z P"(z,A)
n=1
= Egna]
which maps X x B(X) to IRU {oo}, and the return time probabilities

L(z,A) = Py(ra < )
= P,(®Pever enters A).

(3.29)

(3.30)

(3.31)
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In order to analyze numbers of visits to sets, we often need to consider the behavior
after the first visit 74 to a set A (which is a random time), rather than behavior
after fixed times. One of the most crucial aspects of Markov chain theory is that the
“forgetfulness” properties in equation (3.21) or equation (3.27) hold, not just for fixed
times n, but for the chain interrupted at certain random times, called stopping times,
and we now introduce these ideas.

Stopping Times

A function (: 2 — Z, U {oo} is a stopping time for @ if for any initial
distribution u the event {¢ =n} € FZ for all n € Z,.

The first return and the hitting times on sets provide simple examples of stopping
times.

Proposition 3.4.4 For any set A € B(X), the variables T4 and o4 are stopping
times for ®.

PROOF  Since we have

(ra=n} = ML {dpne AN {Byec A} e F?, n>1
{oa=n} = M (P AYN{S, c AleF? n>0

it follows from the definitions that 74 and o4 are stopping times. O
We can construct the full distributions of these stopping times from the basic

building blocks governing the motion of @, namely the elements of the transition

probability kernel, using the Markov property for each fixed n € Z,. This gives

Proposition 3.4.5 (i) For all z € X, A € B(X)
Pr(ra = 1) = P(z, 4),

and inductively for n > 1

/. Pla.dy)Py(ra=n—1)
/ P($ady1)/ P(y1,dys) -+
Ac Ac

/AC P(yn72adynfl)P(yn71>A)-

P(t4 =n)
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(ii) For allx € X, A € B(X)

and forn > 1, x € A°

P.(ca = n) =Py(r4 = n).
O
If we use the kernel Ip defined as Ip(z, A) := l4np(x), we have, in more compact
functional notation,
P, (74 = ) = [(PLac)""LP) (s, A).

From this we obtain the formula

L(z,A) := i[(PIAc)k_lP] (z,A)
k=1

for the return time probability to a set A starting from the state x.

The simple Markov property (3.28) holds for any bounded measurable h and fixed
n € Z. We now extend (3.28) to stopping times.

If ¢ is an arbitrary stopping time, then the fact that our time-set is Z enables
us to define the random variable @, by setting & = @, on the event {( = n}. For a
stopping time ( the property which tells us that the future evolution of @ after the
stopping time depends only on the value of @, rather than on any other past values,
is called the Strong Markov Property.

To describe this formally, we need to define the o-field .7-"? ={AeF:{(=
n}NA € F2,n € Z,}, which describes events which happen “up to time ¢”.

For a stopping time ¢ and a random variable H = h(®g, ®1,...) the shift 8¢ is
defined as

O°H = h(®¢,Dern,---),

on the set {¢ < oco}. The required extension of (3.28) is then

The Strong Markov Property

We say @ has the Strong Markov Property if for any initial distribution u,
any real-valued bounded measurable function A on {2, and any stopping
time C,

Eu[0°H | FE] = Eg [H] a.s. [P, (3.32)

on the set {{ < oo}.

Proposition 3.4.6 For a Markov chain @ with discrete time parameter, the Strong
Markov Property always holds.
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PROOF  This result is a simple consequence of decomposing the expectations on
both sides of (3.32) over the set where {( = n}, and using the ordinary Markov
property, in the form of equation (3.28), at each of these fixed times n. O

We are not always interested only in the times of visits to particular sets. Often
the quantities of interest involve conditioning on such visits being in the future.

Taboo Probabilities

We define the n-step taboo probabilities as
AP"(z,B) :=Py(®, € B,74 > n), z € X, A, B € B(X).

The quantity 4P"(z, B) denotes the probability of a transition to B in n steps of the
chain, “avoiding” the set A. As in Proposition 3.4.5 these satisfy the iterative relation

API("EaB) = P(iE,B)
and for n > 1

aP"(@,B) = [ Plo,daP"(4,B), seX ABEBX, (33

or, in operator notation, oP"(x, B) = [(PI4)" 'P](z, B).
We will also use extensively the notation
o0
Ua(z,B):=»_ aP™(x,B), z€X, A BEeBX); (3.34)
n=1

note that this extends the definition of L in (3.31) since

Uy(z,A) = L(z, A), z e X

3.5 Building Transition Kernels For Specific Models

3.5.1 Random walk on a half line

Let @ be a random walk on a half line, where now we do not restrict the increment
distribution to be integer-valued. Thus {W;} is a sequence of i.i.d. random variables
taking values in R = (—o00,00), with distribution function I'(4) = P(W € A),
A € B(R).

For any A C (0,00), we have by the arguments we have used before
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P(z,A) = P(@g+Wre€A|Py=r1)

= P(W1 € A— .’E)
= I'(A-2x), (3.35)
whilst
P(z,{0}) = P(@o+W;<0|Py=12x)
= P(W1 S —:E)
= I'(-o0,—z]. (3.36)

These models are often much more appropriate in applications than random walks
restricted to integer values.

3.5.2 Storage and queueing models

Consider the Moran dam model given by (SSM1)-(SSM2), in the general case where
7 > 0, the inter-input times have distribution G; and the input values have distribu-
tion H.

The model of a random walk on a half line with transition probability kernel P
given by (3.36) defines the one-step behavior of the storage model. As for the integer
valued case, we calculate the distribution function I" explicitly by breaking up the

possibilities of the input time and the input size, to get a similar convolution form
for I' in terms of G and H:

I'(A) = P(S,—Jnc€A)
_ /Ooo G(AJr +y/r) H(dy), (3.37)

where as usual the set A/r:={y:ry € A}.

The model (3.37) is of a storage system, and we have phrased the terms ac-
cordingly. The same transition law applies to the many other models of this form:
inventories, insurance models, and models of the residual service in a GI/G/1 queue,
which were mentioned in Section 2.5.

In Section 3.5.4 below we will develop the transition probability structure for a
more complex system which can also be used to model the dynamics of the GI/G/1
queue.

3.5.3 Renewal processes and related chains

We now consider a real-valued renewal process: this extends the countable space
version of Section 2.4.1 and is closely related to the residual service time mentioned
above.

Let {Y1,Ys,...} be a sequence of independent and identical random variables,
now with distribution function I' concentrated, not on the whole real line nor on
Z ., but rather on IR,. Let Y be a further independent random variable, with the
distribution of Yy being Iy, also concentrated on IR, . The random variables

Zn::ZYi

n
=0
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are again called a delayed renewal process, with Iy being the distribution of the delay
described by the first variable. If Iy = I" then the sequence {Z,} is again referred to
as a renewal process.

As with the integer-valued case, write Iy * I' for the convolution of Iy and I’
given by

t

Iy« I' (dt) :== /Ot I'(dt — s) I'y(ds) = /0 I'o(dt — s) I'(ds) (3.38)

and I'™* for the n'* convolution of I" with itself. By decomposing successively over
the values of the first n variables Z,..., Z,_1 we have that

P(Z, € dt) = Ty I™ (dt)

and so the renewal measure given by U(—o0,t] = > 5° I'™ (—o0, t| has the interpre-
tation

U|0,t] = Eg[number of renewals in [0, ¢]]

and

I'y x U [0,t] = Ep,[number of renewals in [0, ]],

where Eq refers to the expectation when the first renewal is at 0, and Ep, refers to
the expectation when the first renewal has distribution 1.

It is clear that Z,, is a Markov chain: its transition probabilities are given by
P(z,A)=P(Z, € A|Z,_1=2)=T(A —1x)

and so Z, is a random walk. It is not a very stable one, however, as it moves inexorably
to infinity with each new step.

The forward and backward recurrence time chains, in contrast to the renewal pro-
cess itself, exhibit a much greater degree of stability: they grow, then they diminish,
then they grow again.
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Forward and backward recurrence time chains

If {Z,} is a renewal process with no delay, then we call the process

(RT3)

V() :=inf(Z, —t: Z, > t, n>1), t>0 (3.39)

the forward recurrence time process; and for any § > 0, the discrete time
chain Vi = {V;"(n) = VT (nd), n € Z.} is called the forward recurrence
time §-skeleton.

We call the process
(RT4)

V7(t):=inf(t — Z, : Z, <t, n>1), t>0

the backward recurrence time process; and for any § > 0, the discrete
time chain Vj = {Vy (n) = V™ (nd), n € Z,} is called the backward
recurrence time d-skeleton.

No matter what the structure of the renewal sequence (and in particular, even if I is
not exponential), the forward and backward recurrence time §-skeletons V(‘;" and Vy
are Markovian.

To see this for the forward chain, note that if > §, then the transition proba-
bilities P° of V(}" are merely

P(z,{z —0}) =1

whilst if x < § we have, by decomposing over the time and the index of the last
renewal in the period after the current forward recurrence time finishes, and using
the independence of the variables Y;

o—x

4 _ Tk _ — ] —
P(z, A) _/0 ZBF (dt)T(A = [§ — o] — 1)

- /0 AT (A — 5 — 1] — 1), (3.40)
For the backward chain we have similarly that for all z
PV (nd)=z+d6|V ((n—1))=2)=IT(z+d00)/I'(z,00)
whilst for dv C [0, d]

I'(v, )

T+9
PV~ (n8) € dv | V- ((n — 1)6) = z) = / T(d)U(do — (u =) = 0) e, "2
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3.5.4 Ladder chains and the GI/G/1 queue

The GI/G/1 queue satisfies the conditions (Q1)-(Q3). Although the residual service
time process of the GI/G/1 queue can be analyzed using the model (3.37), the more
detailed structure involving actual numbers in the queue in the case of general (i.e.
non-exponential) service and input times requires a more complex state space for a
Markovian analysis.

We saw in Section 3.3.3 that when the service time distribution H is exponential,
we can define a Markov chain by

N,, = { number of customers at 7,—,n =1,2,...},

whilst we have a similarly embedded chain after the service times if the inter-arrival
time is exponential. However, the numbers in the queue, even at the arrival or depar-
ture times, are not Markovian without such exponential assumptions.

The key step in the general case is to augment {N,,} so that we do get a Markov
model. This augmentation involves combining the information on the numbers in the
queue with the information in the residual service time

To do this we introduce a bivariate “ladder chain” on a “ladder” space Z x IR,
with a countable number of rungs indexed by the first variable and with each rung
constituting a copy of the real line.

This construction is in fact more general than that for the GI/G/1 queue alone,
and we shall use the ladder chain model for illustrative purposes on a number of
occasions.

Define the Markov chain @ = {®,} on Z, x IR with motion defined by the
transition probabilities P(i,z;j x A), i,j € Z4+, z € R, A € B(IR) given by

Pli,z;jxA) = 0 j>i+1
Pli,z;jx A) = Aiji(z,4), j=1,...i+1 (3.41)
P(i,z;0 x A) = Aj(z,A).

where each of the A;, A7 is a substochastic transition probability kernel on IR in its
own right.

The translation invariant and “skip-free to the right” nature of the movement of
this chain, incorporated in (3.42), indicates that it is a generalization of those random
walks which occur in the GI/M/1 queue, as delineated in Proposition 3.3.1. We have

AL Ay
A5 A Ay 0
P=1 A5 Ay A A

where now the A;, A} are substochastic transition probability kernels rather than mere
scalars.
To use this construction in the GI/G/1 context we write

b, = (Nn,Rn)a n>1

where as before NN, is the number of customers at 7;,— and
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R,, = {total residual service time in the system at 7, +} :

then & = {®,;;n € Z} can be realised as a Markov chain with the structure (3.42),
as we now demonstrate by constructing the transition kernel P explicitly.

As in (Q1)-(Q3) let H denote the distribution function of service times, and G
denote the distribution function of interarrival times; and let Z1, Z5, Z3, ... denote
an undelayed renewal process with Z, — Z,,_1 = §,, having the service distribution
function H, as in (2.26). This differs from the process of completion points of services
in that the latter may have longer intervals when there is no customer present, after
completion of a busy cycle.

Let R; denote the forward recurrence time in the renewal process {Z} at time ¢
in this process, i.e., Rt = Zy(;)41 — t, where N(t) = sup{n : Z, <t} as in (3.39). If
Ry = x then Z; = . Now write

Pi(x,y) =P(Zy <t < Zny1,R <y | Ry = x) (3.42)

for the probability that, in this renewal process n “service times” are completed in
[0,¢] and that the residual time of current service at ¢ is in [0,y], given Ry = z.

With these definitions it is easy to verify that the chain @ has the form (3.42)
with the specific choice of the substochastic transition kernels 4;, A7 given by

Au(,0,9]) = [ Pi(a,y) Gat (3.43)

and -
A, 0,]) = [ 3 44w, [0, 00)) | HIO, ) (3.44)

n+1

3.5.5 State space models

The simple nonlinear state space model is a very general model and, consequently, its
transition function has an unstructured form until we make more explicit assumptions
in particular cases. The general functional form which we construct here for the scalar
SNSS(F') model of Section 2.2.1 will be used extensively, as will the techniques which
are used in constructing its form.

For any bounded and measurable function h: X — IR we have from (SNSS1),

h(Xn—I—l) = h(F(Xna Wn+1))
Since {W,,} is assumed i.i.d. in (SNSS2) we see that

Ph(z) = E[h(Xus1)| Xy = 1]
— E[W(F(2,W))]

where W is a generic noise variable. Since I' denotes the distribution of W, this
becomes

Ph(z) = /_ 0; h(F (z, w)) T'(dw)

and by specializing to the case where h = 14, we see that for any measurable set A
and any x € X,
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Pz, A) = /_ O:o 1 F(z,w) € A} I'(dw).

To construct the k-step transition probability, recall from (2.5) that the transi-
tion maps for the SNSS(F') model are defined by setting Fy(z) = z, Fi(zg,w1) =
F(zg,w1), and for k > 1,

Fyy1(zo, wi, ... wiy1) = F(Fi(wo, w1, - - - wk), Wy 1)

where zy and w; are arbitrary real numbers. By induction we may show that for any
initial condition Xy = zo and any k € Z,

Xy = Fy(zo, W1,...,Wy),
which immediately implies that the k-step transition function may be expressed as
PF(z,A) = P(Fy(z,Wi,...,W;) € A)
= [+ [ M wn, . wn) € A} T(duwn) ... T(dwy)  (3.49)

3.6 Commentary

The development of foundations in this chapter is standard. The existence of the
excellent accounts in Chung [49] and Revuz [223] renders it far less necessary for us
to fill in specific details.

The one real assumption in the general case is that the o-field B(X) is countably
generated. For many purposes, even this condition can be relaxed, using the device of
“admissible o-fields” discussed in Orey [208], Chapter 1. We shall not require, for the
models we develop, the greater generality of non-countably generated o-fields, and
leave this expansion of the concepts to the reader if necessary.

The Chapman-Kolmogorov equations, simple though they are, hold the key to
much of the analysis of Markov chains. The general formulation of these dates to
Kolmogorov [139]: David Kendall comments [132] that the physicist Chapman was
not aware of his role in this terminology, which appears to be due to work on the
thermal diffusion of grains in a non-uniform fluid.

The Chapman-Kolmogorov equations indicate that the set P™ is a semigroup of
operators just as the corresponding matrices are, and in the general case this obser-
vation enables an approach to the theory of Markov chains through the mathematical
structures of semigroups of operators. This has proved a very fruitful method, espe-
cially for continuous time models. However, we do not pursue that route directly in
this book, nor do we pursue the possibilities of the matrix structure in the countable
case.

This is largely because, as general non-negative operators, the P" often do not act
on useful spaces for our purposes. The one real case where the P™ operate successfully
on a normed space occurs in Chapter 16, and even there the space only emerges after
a probabilistic argument is completed, rather than providing a starting point for
analysis.

Foguel [79, 81] has a thorough exposition of the operator-theoretic approach to
chains in discrete time, based on their operation on L' spaces. Vere-Jones [283, 284]
has a number of results based on the action of a matrix P as a non-negative operator
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on sequence spaces suitably structured, but even in this countable case results are
limited. Nummelin [202] couches many of his results in a general non-negative operator
context, as does Tweedie [272, 273], but the methods are probabilistic rather than
using traditional operator theory.

The topological spaces we introduce here will not be considered in more detail
until Chapter 6. Very many of the properties we derive will actually need less structure
than we have imposed in our definition of “topological” spaces: often (see for example
Tuominen and Tweedie [269]) all that is required is a countably generated topology
with the T} separability property. The assumptions we make seem unrestrictive in
practice, however, and avoid occasional technicalities of proof.

Hitting times and their properties are of prime importance in all that follows. On
a countable space Chung [49] has a detailed account of taboo probabilities, and much
of our usage follows his lead and that of Nummelin [202], although our notation differs
in minor ways from the latter. In particular our 74 is, regrettably, Nummelin’s S4
and our o4 is Nummelin’s T4; our usage of 74 agrees, however, with that of Chung
[49] and Asmussen [10], and we hope is the more standard.

The availability of the Strong Markov Property is vital for much of what follows.
Kac is reported as saying [35] that he was fortunate, for in his day all processes had
the Strong Markov Property: we are equally fortunate that, with a countable time
set, all chains still have the Strong Markov Property.

The various transition matrices that we construct are well-known. The reader
who is not familiar with such concepts should read, say, Cinlar [40], Karlin and Taylor
[122] or Asmussen [10] for these and many other not dissimilar constructions in the
queueing and storage area. For further information on linear stochastic systems the
reader is referred to Caines [39]. The control and systems areas have concentrated
more intensively on controlled Markov chains which have an auxiliary input which is
chosen to control the state process @. Once a control is applied in this way, the “closed
loop system” is frequently described by a Markov chain as defined in this chapter.
Kumar and Varaiya [143] is a good introduction, and the article by Arapostathis et al
[7] gives an excellent and up to date survey of the controlled Markov chain literature.



