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This review type of thesis summarizes the relevant core theoretical results with a slight overview the of

application. The results of general space Markov chain is reviewed first, mainly Markov chain convergence

theorem, theory of ergodicity and quantitative bounds. Next, the result of Adaptive MCMC is reviewed,

with a focus on the theory of ergodicity. Finally, results of the boundedness of Adversarial Markov Chain

are reviewed.
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Chapter 1

General Space Markov Chain

In this section, we will dicuss the concepts of the Markov chain on general (non-countable) state

spaces, with emphasis on its asymptotic convergence and its ergodicity. The results are summarized

from [3], [5], [6]. Future work includes summarizing central limit theorem on Markov chain, optimal

scaling proofs, Harris recurrence, adaptive MCMC and relevant applications.
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1.1 Foundations

Definition 1. General State Space

A state space X is general if it is equipped with a countably generated σ-algebra B(X )

Definition 2. Transition Probability Kernels

If P = {P (x,A), x ∈ X , A ∈ B(X )} is such that

1. For each A ∈ B(X ), P (·, A) is a non-negative measurable function on X

2. For each x ∈ X , P (x, ·) is a probability measure on B(X ).

Theorem 1.1. For any initial measure µ on B(X ) and any transition probility kernel P = {P (x,A), x ∈

X , A ∈ B(X )}, there exist a stochastic process Φ = {Φ0,Φ1, ...} on Ω =
∏∞
i=0 Xi, measurable with respect

to F =
∨∞
i=0 B(Xi) , and a probability measure Pµ on F such that Pµ(B) is the probability of the event

{Φ ∈ B} , for B ∈ F ;and for measurable Ai ⊆ Xi,i = 0, ..., n and any n

Pµ(Φ0 ∈ A0,Φ1 ∈ A1, ...,Φn ∈ An) =

∫
y0∈A0

...

∫
yn−1∈An−1

µ(dy0)P (y0, dy1)...P (yn, An)

Typically, Pµ(Φn ∈ A|Φ0) = Pn(x,A)

Theorem 1.2. (ChapmanKolmogorov equations) For any m with 0 ≤ m ≤ n,

Pn(x,A) =

∫
X

Pm(x, dy)Pn−m(y,A), x ∈ X , A ∈ B(X )

Definition 3. Let f be a bounded measurable function and µ be a σ-finite measure on B(X ). Then

define operator Pn such that

Pnf(x) =

∫
X
Pn(x, dy)f(y)

µPn(A) =

∫
X
µ(dx)Pn(x,A)

Definition 4. Stationary distribution

A probability measure π(·) on (X ,B(X )) is a stationary measure for a Markov chain with transition

probability P , if

π(A) =

∫
x∈ch

P (x,A)π(dx), ∀x ∈ X ,∀A ∈ B(X ).

Definition 5. First Hitting that and Return time

For any set A ⊆ X , the variable τA is defined as min{n ≥ 0 : Φn ∈ A}, namely, first hitting time.

For any set A ⊆ X , the variable σA is defined as min{n ≥ 1 : Φn ∈ A}, namely, first return time.
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1.2 Convergence of Markov Chains

Definition 6. Total Variation Distance

The total variation distance between two probability measures ν1(·) and ν2(·) is:

‖ν1(·)− ν2(·)‖ = sup
A
|ν1(A)− ν2(A)|

Proposition 1.3.

(a) ‖ν1(·)− ν2(·)‖ = sup
f :X→[0,1]

|
∫
fdν1 −

∫
fdν2|.

(b) ‖ν1(·)− ν2(·)‖ =
1

b− a
sup

f :X→[0,1]

|
∫
fdν1 −

∫
fdν2| for any a < b, and in particular

‖ν1(·)− ν2(·)‖ =
1

2
sup

f :X→[−1,1]

|
∫
fdν1 −

∫
fdν2|

(c) if π(·) is stationary for a Markov chain kernel P, then‖Pn(x, ·)− π(·)‖ is non-increasing in n, i.e.

‖Pn(x, ·)− π(·)‖ ≤ ‖Pn−1(x, ·)− π(·)‖ for n ∈ N

(d) More generally, letting (νiP )(A) =

∫
νi(dx)P (x,A), we always have

‖(ν1P )(·)− (ν2P )(·)‖ ≤ ‖ν1(·)− ν2(·)‖

(e) Let t(n) = 2 sup
x∈X
‖Pn(x, ·)− π(·)‖, where π(·) is stationary. Then t is sub-multiplicative, i.e.

t(m+ n) ≤ t(m)t(n) for m, n ∈ N

(f) If µ(·) and ν(·) have densities g and h, respectively, with respect to some σ-finite measure ρ(·),

and M = max(g, h) and m = min(g, h), then ‖µ(·)− ν(·)‖ =
1

2

∫
X

(M −m)dρ = 1−
∫
X
mdρ

(g) Given probability measures µ(·) and ν(·), there are jointly defined random variables X and Y

such that X ∼ µ(·), Y ∼ ν(·), and P[X = Y ] = 1− ‖µ(·)− ν(·)‖

Proof. (a): Let ρ(·) be any σ-finite measure such that ν1 � ρ and ν2 � ρ. We could always find such

measure such as ρ = ν1 + ν2. By Radon-Nikodym Theorem, ν1 and ν2 are absolute continuous with

respect to ρ. Set g = dν1
dρ and h = dν2

dρ .Then |
∫
fdν1 − fdν2| = |

∫
f(g − h)dρ| = |

∫
{g>h}(g − h)dρ +∫

{g<h} f(g−h)dρ| which is maximized when f = 1 on {g > h} and f = 0 on {g < h}(or vice-versa) .The

above equation equals to |
∫
{g>h}(g − h)dρ| = |

∫
A
dν1 −

∫
A
dν2| = |ν1(A)− ν2(A)| if let A = {g > h} or

{g < h}, corresponding to the value of ‖ν1(·)− ν2(·)‖, thus prove the equivalence.

Proof. (b): Following part (a), |
∫
fdν1− fdν2| = |

∫
f(g − h)dρ| = |

∫
{g>h}(g−h)dρ+

∫
{g<h} f(g−h)dρ|

which is maximized when f = b on {g > h} and f = a on {g < h}(or vice-versa) .
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The equation above becomes

|
∫
{g>h} b(g − h)dρ−

∫
{g>h} a(g − h)dρ+

∫
{g>h} a(g − h)dρ+

∫
{g<h} a(g − h)dρ|

= |
∫
{g>h}(b(g− h)− a(g− h))dρ+

∫
X a(g− h)dρ| = |

∫
{g>h}(b(g− h)− a(g− h))dρ+ a(ν1(X )− ν2(X ))|

= |
∫
{g>h}(b(g − h)− a(g − h))dρ| since ν1 and ν2 are probability measures.

= (b− a)|ν1(A)− ν2(A)| if we let A = {g > h}, thus prove the equivalence.

Proof. (c) |pn+1(x,A)− π(A)| = |
∫
y∈X P

n(x, dy)p(y,A)−
∫
y∈X π(dy)p(y,A)|

= |
∫
y∈X P

n(x, dy)f(y)−
∫
y∈X π(dy)f(y)|

Let p(y,A) = f(y) and clearly f ∈ [0, 1]

≤ supf :X→[0,1]|
∫
y∈X P

n(x,dy)f−
∫
y∈X π(dy)f | = ‖pn(x, ·)− π(·)‖

since it holds for every A

⇒ ‖pn+1(x,A)− π(A)‖ ≤ ‖pn(x,A)− π(A)‖ for ∀n

Proof. (d) |
∫
ν1(dx)p(x,A)−

∫
ν2(dx)p(x,A)| = |

∫
ν1(dx)f(x)−

∫
ν2(dx)f(x)|

Let p(y,A) = f(y) and clearly f ∈ [0, 1]

≤ supf :X→[0,1]|
∫
ν1(dx)p(x,A)−

∫
ν2(dx)p(x,A)| = ‖ν1(·)− ν2(·)‖

Since it holds for every A

then ‖(ν1P )(·)− (ν2P )(·)‖ ≤ ‖ν1(·)− ν2(·)‖

Proof. (e): Let P̂ (x, ·) = Pn(x, ·)− π(·) and Q̂(x, ·) = Pm(x, ·)− π(·), so that

(P̂ Q̂f)(x) ≡
∫
y∈X

f(y)

∫
z∈X

[Pn(x, dz)− π(dz)][Pm(z, dy)− π(dy)]

=

∫
y∈X

f(y)

∫
z∈X

[Pn(x, dz)Pm(z, dy)− Pn(x, dz)π(dy)− π(dz)Pm(z, dy) + π(dz)π(dy)]

=

∫
y∈X

f(y)[Pm+n(x, dy)− π(dy)− π(dy) + π(dy)]

=

∫
y∈X

f(y)[Pm+n(x, dy)− π(dy)]

Then let f : X → [0, 1], let g(x) = (Q̂f)(x) ≡
∫
y∈X Q̂(x, dy)f(y) and let g∗ = supx∈X |g(x)|

|g(x)| = |
∫
y∈X [Pm(x, dy) − π(dy)]f(y)| ≤ supf :X→[0,1]|

∫
y∈X [Pm(x, dy) − π(dy)]f(y)| = ‖Pm(x, ·) −

π(·)‖ ≤ supx∈X ‖Pm(x, ·)−π(·)‖ = 1
2 t(m) by part (a)⇒ g∗ ≤ 1

2 t(m) since it holds for ∀x ∈ X . If g∗ = 0,

then clearly P̂ Q̂f = 0. Otherwise, we compute that

2 sup
x∈X
|(P̂ Q̂f)(x)| = 2g∗ sup

x∈X
|(P̂ [g/g∗)(x)| ≤ t(m) sup

x∈X
|(P̂ [g/g∗])(x)| (1.1)

Since −1 ≤ g/g∗ ≤ 1, we have (P̂ [g/g∗])(x) ≤ 2‖Pn(x, ·)− π(·)‖ by part(b).
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So that supx∈X (P̂ [g/g∗])(x) ≤ t(n).

t(n+m) = 2 sup
x∈X
‖Pn+m(x, ·)− π(·)‖

= 2 sup
x∈X

sup
f :X→[0,1]

|(P̂ Q̂f(x)|

= 2 sup
f :X→[0,1]

sup
x∈X
|(P̂ Q̂f(x)|

≤ t(m)t(n) by (1.1)

Proof. (f): we first show the first equality:

‖µ(·)− ν(·)‖ = 1
2 supf :X→[−1,1]|

∫
fdµ(·)− fdν(·)| = 1

2 supf :X→[−1,1]|
∫
fdµ(·)− fdν(·)|

= 1
2 supf :X→[−1,1]|

∫
f(g − h)dρ| = 1

2 supf :X→[−1,1]|
∫
{g>h} f(g − h)dρ+

∫
{g<h} f(g − h)dρ|

= 1
2 |
∫
{g>h}(g − h)dρ+

∫
{g<h}(h− g)dρ| = 1

2 (
∫
{g>h}(g − h)dρ+

∫
{g<h}(h− g)dρ) = 1

2

∫
X (M −m)dρ

Since M +m = g + h, then
∫
X (M +m)dρ = 2

1
2

∫
X (M −m)dρ = 1− 1

2 (2−
∫
X (M −m)dρ = 1− 1

2 (
∫
X (M +m)dρ−

∫
X (M −m)dρ = 1−

∫
X mdρ

Proof. (g): let a =
∫
X mdρ, b =

∫
X (g −m)dρ and c =

∫
X (h −m)dρ. We only consider the case when

they are positive, since it is trivial if they are zero. We then define random variables Z, U , V , I, jointly,

such that Z has density m/a, U has density (g −m)/b, V has density (h −m)/b and I is independent

of Z, U , V with P[I = 1] = a and P[I = 0] = 1− a. Let X = Y = Z if I = 1, and X = U and Y = V if

I = 0. Then

P(X ∈ A) =P(Z ∈ A|I = 1)P(I = 1) + P(U ∈ A|I = 0)P(I = 0)

=a

∫
A

(m/a)dρ+ (1− a)

∫
A

((g −m)/b)dρ

=

∫
A

mdρ+ (1− a)

∫
A

(g −m)dρ∫
X (g −m)dρ

=

∫
A

mdρ+
1−

∫
X mdρ∫

X gdρ−
∫
X mdρ

∫
A

(g −m)dρ

=

∫
A

mdρ+

∫
A

(g −m)dρ

=

∫
A

gdρ =

∫
A

dµ = µ(A)
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P(Y ∈ A) =P(Z ∈ A|I = 1)P(I = 1) + P(V ∈ A|I = 0)P(I = 0)

=a

∫
A

(m/a)dρ+ (1− a)

∫
A

((h−m)/b)dρ

=

∫
A

mdρ+ (1− a)

∫
A

(h−m)dρ∫
X (h−m)dρ

=

∫
A

mdρ+
1−

∫
X mdρ∫

X hdρ−
∫
X mdρ

∫
A

(h−m)dρ

=

∫
A

mdρ+

∫
A

(h−m)dρ

=

∫
A

hdρ =

∫
A

dν = ν(A)

we thus show that, X ∼ µ(·) and Y ∼ ν(·).Also, U supports the region {g > h} and V supports the

region {h > g}, so P[U = V ] = 0. Then P[X = Y ] = P[I = 1] = a = 1− ‖µ(·)− ν(·)‖ by part(f).

The concepts to total variance helps us to answer question like is limn→∞‖Pn(x, ·)−π(·)‖ = 0? And,

given ε > 0, how large must n be so that ‖Pn(x, ·)− π(·)‖ < ε.

To admit convergence, we not only require that the chain have a stationary distribution, but also require

the chain to be irreducible and aperiodic. We then introduce the concept of the weaker condition of

φ−irreducibly and aperiodic.

Definition 7. A chain is φ-irreducible if there exists a non-zero σ-finite measure φ on X such that for

all A ⊆ X with φ(A) > 0, and for all x ∈ X , there exists a positive integer n = n(x,A) such that

Pn(x,A) > 0.

Definition 8. A Markov chain with stationary distribution π(·) is aperiodic if there do not exist d ≥ 2

and disjoint subsets X1,X2,X3, ...,Xd ⊆ X with P (x,Xi+1) = 1 for all x ∈ Xi(i ≤ i ≤ d − 1) and

P (x,X1) = 1 for all x ∈ Xd, such that π(X1) > 0(and hence π(Xi) > 0 for all i).(Otherwise, the chain is

periodic, with period d, and periodic decomposition X1, ...,Xd

To better understand these two concepts, we provide an example here.

Example 1. Suppose π(·) is a probability measure with unnormalised density function πµ with respect

to d-dimensional Lebesgue measure. Consider the Metropolis-Hastings algorithm for πµ with proposal

density q(x, ·) with respect to d-dimensional Lebesgue measure. Suppose q(·, ·) is positive and continuous

on Rd ×Rd, and πµ is finite everywhere, we then show the algorithm is π-irreducible and aperiodic.

Proof. Let π(A) > 0. Then ∃ R¿0 such that π(AR) > 0, where AR = A ∩BR(0). BR(0) represents the

ball of radius R centered at 0. Then by continuity, for any x ∈ Rd, infy∈AR min q(x,y) ≥ ε for some
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ε > 0, so we have

P (x, A) ≥ P (x, AR) ≥
∫
AR

q(x,y) min
[
1,
πµ(y)q(y,x

πµ(x)q(y,x

]
dy

≥εLeb({y ∈ AR : πµ(y) ≥ πµ(x)}) +
ε

πµ(x)
π({y ∈ AR : πµ(y) ≥ πµ(x)})

Since π(·) is absolutely continuous with respect to Lebesgue measure, and since Leb(AR) > 0, it follows

that the terms in this final sum cannot both be 0, so that we must have P (x,A) > 0. Hence, the chain

is π-irreducible.

For aperiodicity. Suppose that X1 and X2 are disjoint subsets of X both of positive π measure, with

P (x,X2) = 1 for all x ∈ X1. But just take any x ∈ X1, then since X1 must have positive Lebesgue

measure,

P (x,X1) ≥
∫
y∈X

q(x,y)α(x,y)dy > 0

which is a contradiction. Therefore aperiodicity must hold.

Then we state the main asymptotic convergence theorem, whose proof is shown in section later.

Theorem 1.4. If a Markov chain on a state space with countably generated σ-algebra is φ-irreducible

and aperiodic, and has a stationary distribution π(·), then for π-a.e. x ∈ X

lim
n→∞

‖Pn(x, ·)− π(·)‖ = 0.

In particular, limn→∞ Pn(x,A) = π(A) for all measurable A ⊆ X .

Corollary 1. If a Markov chain is φ irreducible, with period d ≥ 2, and has a stationary distribution

π(·), then for π-a.e. x ∈ X ,

lim
n→∞

‖(1/d)

n+d−1∑
i=n

P i(x, ·)− π(·)‖ = 0

Proof. Let the chain have periodic decomposition X1,X2, ...,Xd ⊆ X , and let P ′ be the d-step chain

P d restricted to the state space X1. Then P ′ is φ- irreducible and aperiodic on X1, with stationary

distribution π′(·). We then show that for state space Xj , the stationary distribution is π′P j−1(·), for
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1 ≤ j ≤ d. Let A ⊆ Xj∫
y∈Xj

π′P j−1(dy)P d(y,A) =

∫
z∈X1

∫
y∈Xj

π′P j−1(dy)P d−j+1(y, dz)P j−1(z,A)

=

∫
z∈X1

∫
x∈X1

∫
y∈Xj

π′(dx)P j−1(x, dy)P d−j+1(y, dz)P j−1(z,A)

=

∫
z∈X1

∫
x∈χ1

π′(dx)P d(x, dz)P j−1(z,A)

=

∫
z∈X1

π′(dz)P j−1(z,A)

= π′P j−1(A)

Thus we know π(·) = (1/d)
∑d−1
j=0(π′P j)(·), we then prove the Corollary when n = md with m→∞. We

assume without loss of generality that x ∈ X1. By Proposition (d) we have ‖Pmd+j(x, ·)− (π′P j)(·)‖ ≤

‖Pmd(x, ·)− π′(·)‖ ∀j ∈ N

‖(1/d)

md+d−1∑
i=md

P i(x, ·)− π(·)‖ =‖(1/d)

d−1∑
j=0

Pmd+j(x, ·)− (1/d)

d−1∑
j=0

(π′P j)(·)‖

≤(1/d)

d−1∑
j=0

‖Pmd+j(x, ·)− (π′P j)(·)‖

≤(1/d)

d−1∑
j=0

‖Pmd(x, ·)− π′(·)‖

= (1/d)

d−1∑
j=0

‖P ′(x, ·)− π′(·)‖

(1.2)

By applying theorem to P ′, we have that limm→∞‖Pmd(x, ·)− π′(·)‖ = 0 for π′-a.e. x ∈ X1

Similarly, the result holds for (π′P j)(·)-a.e. x ∈ Xj , for 1 < j ≤ d, the Corollary is then proved.

1.3 Ergodicity of Markov Chain

In this section, we discuss the rate of convergence. Uniform ergodicity is one qualitative convergence

rate property.

Definition 9. A Markov chain having stationary distribution π(·) is uniformly ergodic if

‖Pn(x, ·)− π(·)‖ ≤Mρn, n = 1, 2, 3, ...

for some ρ < 1 and M ≤ ∞.

Proposition 1.5. A Markov chain with stationary distribution π(·) is uniformly ergodic if and only if

supx∈X ‖Pn(x, ·)− π(·)‖ ≤ 1
2 for some n ∈ N.
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Proof. If the chain is uniformly ergodic, then limn→∞ supx∈X ‖Pn(x, ·) − π(·)‖ ≤ limn→∞Mρn = 0.

Thus, for n to be sufficiently large, supx∈χ‖Pn(x, ·)−π(·)‖ ≤ 1
2 . Conversely, if supx∈χ‖Pn(x, ·)−π(·)‖ ≤

1
2 for some n ∈ N, using notation in proposition, we have that t(n) ≡ β < 1, so that for j ∈ N,

t(jn) ≤ (t(n))j = βj . Hence, from proposition,

‖Pm(x, ·)− π(·)‖ ≤‖P bm/ncn(x, ·)− π(·)‖ ≤ 1

2
t(bm/ncn)

≤βbm/nc ≤ β−1(β1/n)m
(1.3)

so the chain is uniformly ergodic with M = β−1 and ρ = β1/n

Remark. The Proposition continuous to hold if 1
2 is replaced by θ for any 0 < θ < 1

2 .But not for θ ≥ 1
2

To further develop the concept of uniform ergodicity, we present the concept of small sets first.

Definition 10. A subset C ⊆ X is small (or,(n0, ε, ν)-small) if there exists a positive integer n0, ε > 0,

and a probability measure ν(·) on X such that the following minorisation condition holds:

Pn0(x, ·) ≥ εν(·) x ∈ C, (1.4)

i.e. Pn0(x,A) ≥ εν(A) for all x ∈ C and all measurable A ⊆ X

Remark. Intuitively, the condition here means that all of the n0-step transitions from within C, all

have an ”ε-overlap”, i.e. a component of size ε. Small sets are widely used in Couplings we illustrated

later. There is a notion weaker than small set, called pseudo-small set.

Theorem 1.6. Consider a Markov chain with invariant probability distribution π(·). Suppose the mi-

norisation condition is satisfied for some n0 ∈ N and ε > 0 and probability measure ν(·), in the special

case C = X (i.e., the entire state space is small). Then the chain is uniformly ergodic, and in fact

‖Pn(x, ·)− π(·)‖ ≤ (1− ε)bn/n0c for all x ∈ X , where brc is the greatest integer not exceeding r.

Remark. The theorem helps us to find a quantitative bound on the distance to stationarity ‖Pn(x, ·)−

π(·)‖, i.e. it must be ≤ (1− ε)bn/n0c. Once ε and n0 are known, we can find n∗, such that ‖Pn∗(x, ·)−

π(·)‖ ≤ 0.001. We can say that after n∗ iterations, the Markov chain converges.

We illustrate an example and a counter-example to better understand this concept.

Example 2. Consider in dimension d = 1, and suppose that πµ(x) = 10<|x|<1|x|
−1/2

, and let q(x, y) ∝

exp−(x− y)2/2 we show that the any neighbourhood of 0 is not small.

Proof. let S be the set that contain 0. Then P (x, dy) = q(x, y)dymin {1, πµ(y)
πµ(x)}. Let x ∈ S and we have

x→ 0, P (x, dy)→ 0. Thus the minorisation condition does not hold, so S is not small.
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Example 3. Suppose π(·) is a probability measure with unnormalised density function πµ with respect

to d-dimensional Lebesgue measure. Consider the Metropolis-Hastings algorithm for πµ with proposal

density q(x, ·) with respect to d-dimensional Lebesgue measure. Suppose q(·, ·) is positive and continuous

on Rd ×Rd, and πµ is finite everywhere, we then show that all compact sets on which πµ is bounded

are small.

Proof. Let C be a compact set on which πµ is bounded by k < ∞. Let x ∈ C, and D be any compact

set of positive Lebesgue and π measure, such that infx∈C,y∈D q(x,y) = ε > 0 for all y ∈ D. We then

have

P (x, dy) ≥ q(x,y)dy min {1, πµ(y)

πµ(x)
} ≥ εdy min {1, πµ(y)

k
}

which is a positive measure independent of x. Hence, C is small.

A weaker condition than uniform ergodicity is geometric ergodicity, which is defined as follows:

Definition 11. A Markov chain with stationary distribution π(·) is geometrically ergodic if

‖Pn(x, ·)− π(·)‖ ≤M(x)ρn, n = 1, 2, 3, ...

for some ρ < 1, where M(x) <∞ for π-a.e. x ∈ X

The difference bewteen geometric ergodicity and uniform ergodicity is that not the constant M may

depend on the initial state x.

If the state space X is finite, then all irreducible and aperiodic Markov Chains are geometrically ergodic.

However, for infinite X this is not the case. We then illustrate the conditions which ensure geometric

ergodicity.

Definition 12. Given Markov chain transition probabilities P on a state space X , and a measurable

function f : X → R, define the function Pf : X → R such that (Pf)(x) is the conditional expected

value of f(Xn+1), given that Xn = x. In symbols, (Pf)(x) =
∫
y∈X f(y)P (x, dy).

Definition 13. A Markov chain satisfies a drift condition(or, univariate geometric drift condition) if

there are constants 0 < λ < 1 and b <∞, and a function V : X → [1,∞), such that

PV ≤ λV + b1C(x), (1.5)

i.e. such that
∫
X P (x, dy)V (y) ≤ λV (x) + b1C(x) for all x ∈ X .

The main result guaranteeing geometric ergodicity is the following



Chapter 1. General Space Markov Chain 11

Theorem 1.7. Consider a φ-irreducible, aperiodic Markov chain with stationary distribution π(·). Sup-

pose the minorisation condition is satisfied for some C ⊆ X and ε > 0 and probability measure ν(·).

Suppose further that the drift condition is satisfied for some constants 0 < λ < 1 and b < ∞, and a

function V : X → [1,∞] with V (x) <∞ for at least one (and hence for π-a.e.) x ∈ X . Then the chain

is geometrically ergodic.

The theorem is proved in the latter section and we then illustrate an example.

Example 4. Consider a simple example of geometric ergodicity of Metropolis algorithms on R. Suppose

that X = R+ and πµ(x) = e−x. We will use a symmetric (about x) proposal distribution q(x, y) =

q(|y−x|) with support contained in [x−a, x+a]. We then show that the algorithm is geometric ergodic.

Proof. Take drift function to be V (x) = ecx for some c > 0. For x ≥ a, compute:

PV (x) =

∫ x

x−a
V (y)q(x, y)dy +

∫ x+a

x

V (y)q(x, y)dy
πu(y)

πu(x)

+V (x)

∫ x+a

x

q(x, y)dy(1− πu(y)/πu(x))

By the symmetry of q, this can be written as∫ x+a

x

I(x, y)q(x, y)dy,

where

I(x, y) =
V (y)

πu(y)
+ V (2x− y) + V (x)

(
1− πu(y)

πu(x)

)
= ecx

[
2− (1 + e(c−1)u)(1− e−cu)

]
where u = y − x. For c < 1, this is 2(1− ε)V (x) for some positive constant ε.Thus in this case, we have

shown that for all x > a

PV (x) ≤
∫ x+a

x

2V (x)(1− ε)q(x, y)dy = (1− ε)V (x) (1.6)

Similarly, we could show that PV (x) is bounded on [0, a], and that [0, a] is a small set. Thus the drift

condition holds and hence the algorithm is geometrically ergodic.

1.4 Quantitative Convergence Rates

In this section, the result of quantitative bounds on convergence rates is presented.

Definition 14. The bivariate drift condition is satisfied if

P̄ h(x, y) ≤ h(x, y)/α, (x, y) /∈ C × C (1.7)
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for some function h : X × X → [1,∞) and some α > 1, where

P̄ h(x, y) =

∫
X

∫
X
h(z, w)P (x, dz)P (y, dw)

Proposition 1.8. Suppose the univariate drift condition (13) is satisfied for some V : X → [1,∞),

C ⊆ X , λ < 1, and b < ∞. Let d = infx∈Cc V (x). Then if d > [b/(1 − λ)] − 1, then the bivariate drift

condition (1.7) is satisfied for the same C, with h(x, y) = 1
2 [V (x) + V (y)] and α−1 = λ+ b/(d+ 1) < 1.

Proof. If (x, y) /∈ C × C, either x /∈ C or y /∈ C(or both), so h(x, y) ≥ (1 + d)/2. Since univariate drift

condition is satisfied, PV (x) + PV (y) ≤ λV (x) + λV (y) + b. Then

P̄ h(x, y) =
1

2
(PV (x) + PV (y)) ≤ 1

2
(λV (x) + λV (y) + b)

= λh(x, y) + b/2 ≤ λh(x, y) + (b/2)[h(x, y)/((1 + d)/2)]

= [λ+ b/(1 + d)]h(x, y).

Since d > [b/(1− λ)]− 1, then λ+ b/(1 + d) < 1.

we let

Bn0 = max

[
1, αn0(1− ε) sup

C×C
R̄h

]
(1.8)

where for (x, y) ∈ C × C,

R̄h(x, y) =
∫
X
∫
X (1− ε)−2h(z, w)(Pn0(x, dz)− εν(dz))(Pn0(y, dw)− εν(dw)).

Theorem 1.9. Consider a Markov chain on a state space X , having transition kernel P. Suppose there

is C ⊆ X , h : X ×X → [1,∞), a probability distribution ν(·) on X , α > 1, n0 ∈ N, and ε > 0, such that

(??) and (1.7) hold. Define Bn0
by 1.8. Then for any joint distribution L(X0, X

′
0), and any integers

1 ≤ j ≤ k, if {Xn} and {X ′n} are two copies of the Markov chain started in the joint initial distribution

L(X0, X
′
0), then

‖L(Xk)− L(X ′k)‖TV ≤ (1− ε)j + α−k(Bn0
)j−1E[h(X0, X

′
0)]. (1.9)

In particular, by choosing j = brkc for sufficiently small r > 0, we obtain an explicit, quantitative

convergence bound which goes to 0 exponentially quickly as k →∞.

The theorem is then proved in Section below.
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1.5 Convergence Proofs using Coupling Constructions

In this section, we prove the theorems stated earlier. We focus on the method of coupling for the

proof, which are well-suited to analyzing MCMC algorithms on general state spaces.

1.5.1 The Coupling Inequality

Suppose we have two random variables X and Y , defined jointly on some space X . If we write L(X)

and L(Y ) for their repective probability distirbutions, then we can write

‖L(X)− L(Y )‖ = sup
A
|P (X ∈ A)− P (Y ∈ A)|

= sup
A
|P (X ∈ A,X = Y ) + P (Y ∈ A,X 6= Y )

−P (Y ∈ A, Y = X)− P (Y ∈ A, Y 6= X)|

= sup
A
|P (X ∈ A,X 6= Y )− P (Y ∈ A, Y 6= X)|

= sup
A

(P (X ∈ A,X 6= Y )− P (Y ∈ A, Y 6= X))

or sup
A

(P (Y ∈ A,X 6= Y )− P (X ∈ A, Y 6= X))

≤P (X 6= Y )

(1.10)

The last inequality holds because both supA(P (X ∈ A,X 6= Y )) and supA(P (Y ∈ A, Y 6= X)) are

non-negative and are smaller than P (X 6= Y ).

The coupling equality shows that the variation distance between the laws of two random variables is

bounded by the probability that they are equal.

1.5.2 Small Sets and Coupling

Suppose C denotes the small set. The idea of coupling is to run two copies {Xn} and {X ′n} of the

Markov chain, each of which marginally follows the updating rules P (x, ·), but whose joint construc-

tion(using C) gives them as high a probability as possible of becoming equal to each other.

THE COUPLING CONSTRUCTION:

Start with X0 = x and X
′

0 ∼ π(·), and n = 0, and repeat the following loop forever.

Beginning of Loop. Given Xn and X
′

0:

1. If Xn = X
′

0, choose Xn = X
′

0 ∼ P (Xn, ·), and replace n by n+ 1.

2. Else, if (Xn, X
′

0) ∈ C × C, then:
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(a) w.p. ε, choose Xn+n0 = X
′

n+n0
∼ ν(·);

(b) else, w.p. 1− ε, conditionally independently choose

Xn+n0
∼ 1

1− ε
[Pn0(Xn, ·)− εν(·)]

X ′n+n0
∼ 1

1− ε
[Pn0(X ′n, ·)− εν(·)]

In the case n0 > 1, for completeness go back and construct Xn+1, ..., Xn+n0−1 from their correct

conditional distributions given Xn and Xn+n0
, and conditionally and independently construct

X ′n+1, ..., X
′
n+n0−1 from their correct conditional distributions given X ′n, ..., X

′
n+n0

. In any case,

replace n by n+ n0.

3. Else, conditionally independently choose Xn+1 ∼ P (Xn, ·) and X ′n ∼ P (X ′n+1, ·), and replace n

and n+ 1.

Then return to Beginning of Loop

We then check that P[Xn ∈ A] = Pn(x,A) and P[X ′n ∈ A] = π(A) for all n.

Proof. It trivial that the equality holds for condition 1 and 3, since these two variables are independently

updated based on transition kernel P .

For conditional 2, when (Xn, X
′

0) ∈ C × C

Xn+n0
∼ εν(·) +

1− ε
1− ε

[Pn0(Xn, ·)− εν(·)] = Pn0(Xn, ·)

X ′n+n0
∼ εν(·) +

1− ε
1− ε

[Pn0(X ′n, ·)− εν(·)] = Pn0(X ′n, ·)

It then follows that P[Xn+n0
∈ A] = Pn+n0(x,A) and P[X ′n+n0

∈ A] = π(A) for all n.

For 1 ≤ a ≤ n0 − 1 and given Xn+a−1 = b,X ′n+a−1 = b′,we update Xn+a by

P[Xn+a ∈ A|Xn+a−1 = b,Xn+n0 = c] =

∫
A

P (b, dx)Pn0−a(x, c)

, continuing this pattern and same thing holds for X ′n+a. Since they are updated by transition kernel P ,

the result is proved.

The Coupling equality then shows that

‖Pn(x, ·)− π(·)‖ = sup
A

(P[Xn ∈ A])−P[X ′n ∈ A]) ≤ P[Xn 6= X ′n]

We then use this inequality to prove the theorem we state in the previous section.
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1.5.3 Proof of Theorem 1.6

In this case, C = X , so every n0 steps we have probability at least ε of making Xn and X ′n equal.

Then if n = n0m, then P[Xn 6= X ′n] ≤ (1 − ε)m. Hence from coupling inequality, ‖Pn(x, ·) − π(·)‖ ≤

(1− ε)m = (1− ε)n/n0 in this case. It then follows from Proposition that ‖Pn(x, ·)−π(·)‖ ≤ (1− ε)bn/n0c

for any n.

1.5.4 Proof of Theorem 1.4

Theorem 1.10. Every φ-irreducible Markov chain, on a state space with countably generated σ-algebra,

contains a small set C ∈ X with φ(C) > 0.(In fact, each B ⊆ X with φ(B) > 0 in turn contains a small

set C ⊆ B with φ(C) > 0) Furthermore, the minorisation measure ν(·) may be taken to satisfy ν(C) > 0.

The idea behind this proof is that, if one can show that the pair (Xn, X
′
n) will hit C × C infinitely

often, then they will have infinitely many opportunity to couple, with probability ≥ ε > 0 of coupling

each time. Hence, they will eventually couple with probability 1, thus proving Theorem .

Lemma 1. Consider a Markov chain on a state space X , having stationary distribution π(·). Suppose

that for some A ∈ X , we have Px(τA < ∞) > 0 for all x ∈ X . Then for π-almost-every x ∈ X ,

Px(τA <∞) = 1

Proof. Suppose to the contrary that the conclusion does not hold,

π{x ∈ X : Px(τA =∞) > 0} > 0 (1.11)

Then the following claims are made:

Claim 1. Condition (1.11) implies that there are constant l, l0 ∈ N, δ > 0, and B ⊆ X with π(B) > 0,

such that

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B} < l) ≥ δ, x ∈ B

Claim 2. Let B, l, l0, and δ be as in Claim 1. Let L = ll0, and let S = sup{k ≥ 1;XkL ∈ B}, using the

convention that S = −∞ if the set {k ≥ 1;XkL ∈ B} is empty. Then for all integers 1 ≤ r ≤ j,∫
x∈X

π(dx)Px[S = r,XjL /∈ A] ≥ π(B)δ



Chapter 1. General Space Markov Chain 16

Assuming the claim. We have by stationarity that for any j ∈ N,

π(AC) =

∫
x∈X

π(dx)P jL(x,AC) =

∫
x∈X

π(dx)Px[XjL /∈ A]

≥
j∑
r=1

∫
x∈X

π(dx)Px[S = r,XjL /∈ A] ≥
j∑
r=1

π(B)δ = jπ(B)δ

For j > 1/π(B)δ, this gives π(AC) > 1, which is impossible. This gives a contradiction, and hence

completes the proof Lemma20, subject to the proofs of Claim 1 and 2 below.

Proof of Claim 1. By (1.11), we can find δ1 and a subset B1 ⊆ X with π(B1) > 0, such that

Px(τA < ∞) ≤ 1 − δ1 for all x ∈ B1. On the other hand, since Px(τA < ∞) > 0 for all x ∈ X , we can

find l0 ∈ N and δ2 > 0 and B2 ⊆ B1 with π(B2) > 0 and with P l0(x,A) ≥ δ2 for all x ∈ B2.

Set η = #{k ≥ 1;Xkl0 ∈ B2}.Then for any r ∈ N and x ∈ X , we have Px(τA = ∞, η = r) ≤ (1 − δ2)r.

In particular, Px(τA =∞, η = r) = 0. Hence for x ∈ B2, we have

Px(τA =∞, η <∞) = 1−Px(τA =∞, η =∞)−Px(τA <∞)

≥1− 0 + (1− δ1) = δ1

Hence, there is l ∈ N, δ > 0, and B ⊆ B2 with π(B) > 0, such that

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B2} < l) ≥ δ, x ∈ B

Since B ⊆ B2, we have sup{k ≥ 1;Xkl0 ∈ B2} ≥ sup{k ≥ 1;Xkl0 ∈ B}, thus

Px(τA =∞, sup{k ≥ 1;Xkl0 ∈ B} < l) ≥ δ, x ∈ B

Proof of Claim 2. Compute using staionarity and then Claim 1 that∫
x∈X

π(dx)Px[S = r,XjL /∈ A]

=

∫
x∈X

π(dx)

∫
y∈B

P rL(x, dy)Px[S = −∞, XjL /∈ A]

=

∫
y∈B

∫
x∈X

π(dx)P rL(x, dy)Py[S = −∞, X(j−r)L /∈ A]

=

∫
y∈B

π(dy)Py[S = −∞, X(j−r)L /∈ A]

≥
∫
y∈B

π(dy)δ = π(B)δ

Let C be a small set as in Theorem 1.10. Consider the coupling construction {(Xn, Yn}. Let

G ⊆ X × X be the set of (x, y) such that P(x,y)(∃n ≥ 1;Xn = Yn) = 1. From the coupling constuction,

if (X0, X
′
0) ≡ (x,X ′0) ∈ G, then limn→∞P[Xn = X ′n] = 1, so that limn→∞‖Pn(x, ·)−π(·)‖ = 0, proving
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the theorem. Hence, it suffices to show that for π-a.e. x ∈ X , we have P([(x,X ′0) ∈ G]) = 1.

Let G be as above, let Gx = {y ∈ X ; (x, y) ∈ G} for x ∈ X , and let Ḡ = {x ∈ X ;π(Gx) = 1}. Then

Theorem follows from π(Ḡ) = 1. To achieve this, we first prove a lemma, below.

Lemma 2. Consider an aperiodic Markov chain on a state space X , with stationary distribution π(·).

Let ν(·) be any probability measure on X . Assume that ν � π(·), and that for all x ∈ X , there is

n = n(x) ∈ N and δ = δ(x) > 0 (for example, this always holds if ν is a minorisation measure for a small

or petite set which is reachable from all states). Let T = {n ≥ 1;∃δn > 0s.t.
∫
ν(dx)Pn(x, ·) ≥ δnν(·)},

and assume that T is non-empty. Then there is n∗ ∈ N with T ⊇ {n∗, n∗ + 1, n∗ + 2, ...}.

Proof. Since P (n(x)) ≥ δ(x)ν(·) for all x ∈ χ, it follows that T is non-empty.

If n,m ∈ T , then we have∫
x∈X

ν(dx)Pn+m(x, ·) =

∫
x∈X

∫
y∈X

ν(dx)Pn(x, dy)Pm(y, ·)

≥
∫
y∈X

δnν(dy)Pm(y, ·) ≥ δnδmν(·)
(1.12)

thus, T is additive, i.e. if n,m ∈ T , then n + m ∈ T . We then prove gcd(T ) = 1. By leema, if T is

non-empty and additive, and gcd(T ) = 1, then there is n∗ ∈ N such that T ⊇ n∗, n∗ + 1, n∗ + 2, ..., as

claimed.

Suppose that gcd(T ) = d > 1. A contradiction will be derived.

For 1 ≤ d ≤ j, let

Xi = {x ∈ X ;∃l ∈ N and δ > 0 s.t. P ld−i(x, ·) ≥ δν(·)}

Then
⋃d
i Xi = X by assumption above. Now, let

S =
⋃
i 6=j

(Xi ∪ Xj) (1.13)

let

S̄ = S ∪ {x ∈ X ;∃m ∈ N s.t. Pm(x, S) > 0} (1.14)

and let

X ′i = Xi \ S̄ (1.15)

Then X1,X2, ...,Xd are disjoint by construction since S is removed. Also if x ∈ X ′i , then P (x, S̄) = 0, so

that P (x,X \ S̄) = P (x,
⋃d
j=1 X ′j) = 1. If P (x,X ′i+1) > 0 and P (x,X ′i+k) => 0, then x have the positive
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probability to be in state X ′i+1 or X ′i+k after one step. Then we have∫
z∈A

∫
y∈Xi+1

P (x, dy)P l
∗(y)(d−i−1)(y, dz) = P l

∗(y)d−i(A)

≥
∫
z∈A

∫
y∈Xi+1

P (x, dy)δ(y)ν(dz) ≥ δ∗(y)ν(A)

(1.16)

∫
z∈A

∫
y∈Xi+k

P (x, dy)P l
′
(y)(d−i−k)(y, dz) = P l

′
(y)d−i−k+1(A)

≥
∫
z∈A

∫
y∈Xi+k

P (x, dy)δ(y)ν(dz) ≥ δ
′
(y)ν(A)

(1.17)

Thus, x ∈ X ′i ∩ X ′i+k−1 then x would be in two different X ′j at once, contradicting their jointedness.

We claim that for all m ≥ 0, νPm(Xi ∩ Xj) = 0 whenever i 6= j. If νPm(Xi ∩ Xj) > 0, then there

would S′ ⊆ X , l1, l2 ∈ N and δ > 0 such that for all x ∈ S′ , P l1d−i(x, ·) ≥ δν(·) and P l2d−i(x, ·) ≥ δν(·)

implying that l1d − i + m ∈ T and l2d − j + m ∈ T , contradicting the fact that gcd(T ) = d. Then

m = 0, we have ν(Xi ∩ Xj) = 0 for i 6= j. If m > 0, then ν({x ∈ X ;m ∈ N s.t. Pm(x, S) ≥ δν(·)}) = 0.

Then ν(S̄) ≤ ν(
⋃
i 6=j(Xi ∩ Xj) + ν({x ∈ X ;m ∈ N s.t. Pm(x, S) ≥ δν(·)}) ≤ 0, which implies ν(S̄) = 0.

Therefore ν(
⋃d
i=1 X ′i ) = ν(

⋃d
i=1 Xi)− ν(S̄) = ν(X ) = 1. Since ν � π, we must have π(

⋃d
i=1 X ′i ) > 0.

Thus we conclude that from all of this that X ′1, ...,X ′d are subsets of positive π-measure, which respect

to which the chain is periodic, contradicting the assumption of aperiodicity

Lemma 3. π(Ḡ) = 1

Proof. First prove that (π× π)(G) = 1. Indeed, since ν(C) > 0, φ(C) > 0, by Theorem (1.10) and since

Markov chain is φ-irreducible, from lemma 2, we know for any (x, y) ∈ X ×X , the joint chain has positive

probability of eventually hitting C ×C. By applying lemma 1,the joint chain will return to C ×C with

probability 1 from π×π-a.e. (x, y) ∈ C×C. Once the joint chain reaches C×C, the joint chain update

from 1
(1−ε)2 (Pn0(Xn, ·)− εν(·))(Pn0(X ′n, ·)− εν(·)), which is absolutely continous with respect to π × π

and hence by lemma 1, the joint chain will repeatedly return to C × C with probability 1. Hence, the

joint chain will repeatedly return to C × C with probability 1, until such time as Xn = X ′n.And by

coupling construction, each time the joint chain is in C ×C, it has probability ≥ ε of forcing Xn = X ′n.

Hence, eventually, we will have Xn = X ′n, thus proving that (π × π)(G) = 1

If π((̄G) < 1, contradicting with the fact that (π × π)(G) = 1.

1.5.5 Proof of Theorem 1.9

First assume that n0 = 1 in the minorisation condition for the small set for the small C, then we

write Bn0
as B, then we consider the case when n0 > 1.
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Let

Nk = #{m : 0 ≤ m ≤ k, (Xm, X
′
m) ∈ C × C},

and let τ1, τ2,... be the times of the successive visits of {(Xn, X
′
n)} to C × C. Then for any integer j

with 1 ≤ j ≤ k,

P[Xk 6= X ′k] = P[Xk 6= X ′k, Nk−1 ≥ j] + P[Xk 6= X ′k, Nk−1 < j]

The event Xk 6= X ′k, Nk−1 ≥ j} is contained in the event that the first j coin flips all camp up tails.

Hence, P[Xk 6= X ′k, Nk−1 ≥ j] ≤ (1− ε)j , which bounds the first term in (1.9).

To bound the second term in (1.9), let

Mk = αkB−Nk−1h(Xk, X
′
k)1(Xk 6= X ′k), k = 0, 1, 2, ...

where (N−1 = 0).

Lemma 4. We have

E[Mk+1|X0, ..., Xk, X
′
0, ..., X

′
k] ≤Mk,

i.e. {MK} is a supermartingale.

Proof. If (Xk, X
′
k) /∈ C × C, then Nk = Nk−1, so

E[Mk+1|X0, ..., Xk, X
′
0, ..., X

′
k]

= αk+1B−Nk−1E[h(Xk+1, X
′
k+1)1(Xk+1 6= X ′k+1)|Xk, X

′
k]

= αk+1B−Nk−1E[h(Xk, X
′
k+1|Xk, X

′
k]P[Xk+1 6= X ′k+1|Xk, X

′
k]

≤ αk+1B−Nk−1E[h(Xk, X
′
k+1|Xk, X

′
k]1(Xk 6= X ′k)

= MkαE[h(Xk, X
′
k+1|Xk, X

′
k]/h(Xk, X

′
k)

≤Mk ,

by (1.7). If (Xk, X
′
k) ∈ C × C, then Nk = Nk−1 + 1, assuming Xk 6= X ′k( since if Xk = X ′k, then the
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result is trivial, then we have

E[Mk+1|X0, ..., Xk, X
′
0, ..., X

′
k]

= αk+1B−Nk−1−1E[h(Xk+1, X
′
k+1)1(Xk+1 6= X ′k+1)|Xk, X

′
k]

= αk+1B−Nk−1−1(1− ε)(R̄h)(Xk, X
′
k)

= MkαB
−1(1− ε)(R̄h)(Xk, X

′
k)/h(Xk, X

′
k)

≤Mk ,

by (1.8). Hence, {Mk} is a supermartingale.

Since B ≥ 1, we have

P[Xk 6= X ′k,Nk−1 < j] = P[Xk 6= X ′k, Nk−1 ≤ j − 1] ≤ P[Xk 6= X ′k, B
−Nk−1 ≥ B−(j−1)]

= P[1(Xk 6= X ′k)B−Nk−1 ≥ B−(j−1)] ≤ Bj−1E[1(Xk 6= X ′k)B−Nk−1 ] (by Markov′s inequality)

≤ Bj−1E[1(Xk 6= X ′k)B−Nk−1h(Xk, X
′
k)] (since h ≥ 1)

= α−kBj−1E[Mk] ≤ α−kBj−1E[M0] (since {Mk} is supermartingale)

= α−kBj−1E[h(X0, X
′
0)]

Theorem 1.9 then follows by combining these two bounds.

Finally, we consider the changes required if n0 > 1. In this case, the visits to C×C corresponding to

the ”filling in” times for going back and constructing Xn+1, ..., Xn+n0
( also X ′) in step 2 of the coupling

contruction should not be counted. Thus let Nk count the number of visits to C×C, and {τi} the actual

visit times, avoiding all such ”filling in” times. Thus, we consider,

P[Xk 6= X ′k] = P[Xk 6= X ′k, Nk−n0
≥ j] + P[Xk 6= X ′k, Nk−n0

< j]

Same as above, the first part is bounded by (1 − ε)j . Considering the second part, define t(k) as the

latest time ≤ k which does not correspond to a ”filling in” time. Then {Mt(k)} is a martingale, where

Mk = αkB−Nk−n0h(Xk, X
′
k)1(Xk 6= X ′k), k = 0, 1, 2, ... .

Proof. If (Xt(k), X
′
t(k)) /∈ C × C, then Nk = Nk−n0

and t(k) = k. Then the proof follows the same as

first part of the proof above.

If (Xt(k), X
′
t(k)) ∈ C ×C, then we only consider the case such that (Xt(k+1), X

′
t(k+1)) = (Xs+n0 , X

′
s+n0

),

where s = k− n0 + 1 is the latest time ≤ k which does not correspond to a ”filling time”, otherwise the
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result is trivial. Then Mt(k+1) = Ms+n0 and Ns = Ns−n0 + 1

E[Ms+n0 |X0, ..., Xs, X
′
0, ..., X

′
s]

= αs+n0Bn0

−Ns−n0
−1E[h(Xs+n0 , X

′
s+n0

)1(Xs+n0 6= X ′s+n0
)|Xs, X

′
s]

= αs+n0Bn0

−Ns−n0
−1(1− ε)(R̄h)(Xs, X

′
s)

= Msα
n0Bn0

−1(1− ε)(R̄h)(Xs, X
′
s)/h(Xs, X

′
s)

≤Ms ,

Thus, Mt(k) is a martingale.

Since Bn0
≥ 1, and only consider k that is not correspondent to the filling time. we have

P[Xk 6= X ′k,Nk−n0 < j] ≤ P[Xt(k) 6= X ′t(k) , Nt(k)−n0
< j]

= P[Xt(k) 6= X ′t(k), Nt(k)−n0
≤ j − 1] ≤ P[Xt(k) 6= X ′t(k), Bn0

−Nt(k)−n0 ≥ Bn0

−(j−1)]

= P[1(Xt(k) 6= X ′t(k))Bn0

−Nt(k)−n0 ≥ Bn0

−(j−1)]

≤ Bn0

j−1E[1(Xt(k) 6= X ′t(k))Bn0

−Nt(k)−n0 ] (by Markov′s inequality)

≤ Bn0

j−1E[1(Xt(k) 6= X ′t(k))Bn0

−Nt(k)−n0h(Xt(k), X
′
t(k))] (since h ≥ 1)

= α−t(k)Bn0

j−1E[Mt(k)] ≤ α−t(k)Bn0

j−1E[M0] (since {Mtk} is supermartingale)

= α−kBn0

j−1E[h(X0, X
′
0)]

Theorem 1.9 then follows by combining these two bounds and two cases.

1.5.6 Proof of Theorem 1.7

The proof of this theorem makes use of Theorem 1.9. To begin, set h(x, y) = 1
2 [V (x) + V (y)]. The

proof will use the following technical result.

Lemma 5. We may assume without loss of generality that

sup
x∈C

V (x) <∞ (1.18)

Specifically, given a small set C and drift condition V satisfying (1.4) and (1.5), we can find a small set

C0 ⊆ C such that (1.4) and (1.5) still hold (with the same n0 and ε and b, but with λ replaced by some

λ0 < 1), and such that (1.18) also holds.

Proof. Let λ and b be as in (1.5). Choose δ with 0 < δ < 1− λ, let K = b/(1− λ− δ), and set

C0 = C ∩ {x ∈ X : V (x) ≤ K
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Since C0 ⊆ C, (1.4) continues to hold on C0. It then remains to verify that (1.5) holds with C replaced

by C0, and λ replaced by λ0. clearly, (1.5) holds for x ∈ C0 and x /∈ C. Finally for x ∈ C \C0, we have

V (x) ≥ K, and so using the original drift condition 1.5, we have

(PV )(x) ≤ λV (x) + b1C(x) = (1− δ)− (1− λ− δ)V (x) + b

≤ (1− δ)V (x)− (1− λ− δ)K + b = (1− δ)V (x) = λ0V (x),

showing that (10) still holds, with C replaced by C0 and λ replaced by λ0.

Thus, for the reminder of the proof, it is valid to assume that (1.18) holds. Together with (1.6),

implies that

sup
(x,y)∈C×C

R̄h(x, y) <∞, (1.19)

which ensures that the Bn0 in (1.8) is finite.

Let d = infCc V. Then we see from Proposition 1.8 that the bivariate drift condition (1.7) will hold,

provided that d > b/(1 − λ) − 1. In that case, Theorem 1.7 follows (in a quantitative version) by

combining Proposition 1.8 with Theorem 1.9.

However, if d ≤ b/(1 − λ) − 1, then this argument does not go through. The plan is to enlarge the

small set C so that the new value of d satisfies d > b/(1 − λ) − 1 and to use aperiodicity to show that

C remains a small set. Theorem 9 will then follow from Proposition 1.8 and Theorem 1.9 as above.

Because there is no direct control over the new values of n0 and ε, this approach does not provide a

quantitative convergence rate bound.

To proceed, choose any d′ > b/(1 − λ) − 1, let S = {x ∈ X ;V (x) ≤ d′}, and set C ′ = C ∪ S. Thus

infx∈C′c V (x) ≥ d′ > b/(1− λ)− 1. Furthermore, since V is bounded on S by construction, then (1.18)

will still hold with C replaced by C ′. It then follows from (1.19) that it is still ture that Bn0 <∞. Now,

it remains to show that C ′ is a small set.

Before continuing, the notion of ”petite set” is introduced.

Definition 15. A subset C ⊆ X is petite (or, (n0, ε, ν)-petite), relative to a Markov chain P , if there

exists a positive integer n0, ε > 0, and a probability measure ν(·) on X such that

n0∑
i=1

P i(x, ·) ≥ εν(·) x ∈ C. (1.20)

Intuitively, the definition of petite set is like that of small set, except that it allows different states

in C to cover the minorisation measure εν(·) at different times i (for each x ∈ C, ∃i and δ(x) > 0 such

that P i(x, ·) ≥ δ(x)εν(·)) . It is obvious that every small set is petite set but the converse is false in

general, as the petite set condition does not itself rule out periodic behaviour of the chain (for example,
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some of the states x ∈ C cover εν(·) only at odd times, and others only at even times). However, for an

aperiodic, φ-irreducible Markov chain, all petite sets are small sets.

Lemma 6. For an aperiodic, φ-irreducibel Markov chain, all petite sets are small sets.

Proof. Let R be (n0, ε, ν(·))-petite, so that
∑n0

i=1 P
i(x, ·) ≥ εν(·) for all x ∈ R. Let T be as in Lemma

2. Then
∫
x∈X

∑n0

i=1 ν(dx)P i(x, ·) =
∑n0

i=1

∫
x∈X ν(dx)P i(x, ·) ≥ εν(·), so we must have i ∈ T for some

1 ≤ i ≤ n0, so that T is non-empty. Hence, from Lemma 2, we can find n∗ and δn > 0 such that∫
ν(dx)Pn(x, ·) > δnν(·) for all n ≥ n∗. Let r = min

{
δn;n∗ ≤ n ≤ n∗ + n0 − 1

}
, and set N = n∗ + n0.

Then for x ∈ R,

PN (x, ·) ≥
n0∑
i=1

∫
y∈X

PN−i(x, dy)P i(y, ·)

≥
n0∑
i

∫
y∈R

rν(dy)P i(y, ·)

≥
∫
y∈R

rν(dy)εν(·) = rεν(·)

Thus, R is (N, rε, ν(·))-small.

To make use of Lemma 6, the following lemma is stated.

Lemma 7. Let C ′ = C ∪ S where S = {x ∈ X ;V (x) ≤ d′} for some d′ < ∞, as above. Then C ′ is

petite.

Proof. Choose N large enough that r ≡ 1− λNd′ > 0. Let τC = inf{n ≥ 1;Xn ∈ C} be the first return

time to C. Let Zn = λ−nV (Xn), and let Wn = Zmin(n,τc). Then the drift condition (1.5) implies that

Wn is a supermartingale. Indeed, if τC ≤ n, then

E[Wn+1|X0, X1, ..., Xn] = E[ZτC |X0, X1, ..., Xn] = ZτC = Wn

while if τC > n, then Xn /∈ C, so using (1.5),

E[Wn+1|X0, X1, ..., Xn] = λ−(n+1)(PV )(Xn)

≤ λ−(n+1)λV (Xn)

= λ−nV (Xn)

= Wn
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Hence, for x ∈ S, using Markov’s inequality and the fact that V ≥ 1,

P[τC ≥ N |X0 = x] = P[λ−τC ≥ λ−N |X0 = x]

≤ λNE[λ−τC |X0 = x] ≤ λNE[WτC |X0 = x]

≤ λNE[W0|X0 = x] = λNV (x) ≤ λNd′,

so that P[τC < N |X0 = x] ≥ r.

On the other hand, recall that C is (n0, ε, ν(·))-small, so that Pn0(x, ·) ≥ εν(·) for x ∈ C. Then for

x ∈ S
N+n0∑
i=1

P i(x, ·) ≥
N+n0∑
i=1+n0

P i(x, ·)

=

N∑
i=1

P i+n0(x, ·)

≥
N∑
i=1

∫
y∈C

P i(x, dy)Pn0(y, ·)

≥
∫
y∈C

N∑
i=1

P i(x, dy)εν(·)

= P[τC ≤ N |X0 = x]εν(·)

≥ rεν(·)

So C ′ = S ∪ C is petite. Then we have,

Lemma 8. C’ is a small set

Proof. Combine Lemma 6 and Lemma 7, then we prove this Lemma 8.

Hence, Theorem 9 is proved.
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2.1 Preliminaries

Let π(·) be a fixed ”target” probability distribution, on a state space X with σ-algebra F . The goal

of MCMC is to approximately sample from π(·) through the use of Markov chains.

Let {Pγ}γ∈Y be a collection of Markov chain kernels on X , each of which has π(·) as a stationary

distribution: (πPγ)(·) = π(·).

Assuming Pγ is φ-irreducible and aperiodic, this implies that Pγ be ergodic for π(·), i.e. that for all

x, limn→∞‖Pnγ (x, ·) − π(·)‖. That is, Pγ represents a ”valid” MCMC algorithm. So, if γ is fixed, then

the Markov chain algorithm described by Pγ will eventually converge to π(·).

Some choices of γ may lead to far less efficient algorithms than others and to know in advance which

choices of γ are preferable might be difficult. To make the algorithm as efficient as possible, adaptive

MCMC proposes that at each time n, the choice of γ is given by a Y-valued random variable Γn, updated

according to specified rules.

Formally, for n = 0, 1, 2, ..., we propose a X -value random variable Xn representing the state of the

algorithm at time n, and a Y-valued random variable Γn representing the choice of kernel to be used

when updating from Xn to Xn+1. We let

Gn = σ(X0, ..., Xn,Γ0, ...,Γn)

be the filtration generated by {(Xn,Γn}. Thus,

P[Xn+1 ∈ B|Xn = x,Γn = γ,Gn−1] = Pγ(x,B), x ∈ X , γ ∈ Y, B ∈ F , (2.1)

while the conditional distribution of Γn+1 given Gn is to be specified by the particular adaptive algorithm

being used. We let

A(n)((x, γ), B) = P[Xn ∈ B|X0 = x,Γ0 = γ], B ∈ F

record the conditional probabilities for Xn for the adaptive algorithm, given the initial conditions X0 = x

and Γ0 = γ.

Finally, we let

T (x, γ, n) = ‖A(n)((x, γ), ·)− π(·)‖ ≡ sup
B∈F
|A(n)((x, γ), B)− π(B)|

denote the total variation distance bewteen the distribution of our adaptive algorithm at time n, and

the targe distribution π(·). The adaptive algorithm is ergodic if limn→∞ T (x, γ, n) = 0 for all x ∈ X and

γ ∈ Y. In this section below, we will try to answer the question “Will the adaptive chain necessarily be

ergodic?”
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2.2 Some special cases

First introduce some special cases of Adaptive MCMC schemes,

• Traditional MCMC: Γn ≡ 1 for all n.

• Systematic-scan hybrid algorithm: (Γn) = (1, 2, ..., d, 1, 2, ..., d, 1, 2, ...), where Pi moves only the

ith coordinate.

• Random-scan hybrid algorithm: {Γn} are i.i.d. ∼ Uniform{1,2,...,d}.

All those algorithms above are independent adaptation such that for all n, Γn is independent of Xn.

For independent adaptations, stationary of π(·) is guaranteed:

Proposition 2.1. Consider an independent adaptation algorithm A(n)((x, γ), ·), where π(·) is station-

ary for each Pγ(x, ·). Then π(·) is also stationary for each Pγ(x, ·). Then π(·) is also stationary for

A(n)((x, γ), ·), i.e. ∫
x∈X

P[Xn+1 ∈ B|Xn = x,Gn−1]π(dx) = π(B), B ∈ F

Proof. Using (1), and the independence of Γn and Xn, and the stationary of π(·) for Pγ , we have:∫
x∈X

P[Xn+1 ∈ B|Xn = x,Gn−1]π(dx)

=

∫
x∈X

∫
γ∈Y

P[Xn+1 ∈ B|Xn = x,Γn = γ,Gn−1]P[Γn ∈ dγ|Xn = x,Gn−1]π(dx)

=

∫
x∈X

∫
γ∈Y

Pγ(x,B)P[Γn ∈ dγ|Gn−1]π(dx)

=

∫
γ∈X

P[Γn ∈ dγ|Gn−1]

∫
x∈X

Pγ(x,B)π(dx)

=1 · π(B) = π(B)

However, for independent adaptions, irreducibility might be destroyed

Example 5. Let X = {1, 2, 3, 4}, with π{1} = π{2} = π{3} = 2/7, and π{4} = 1/7. Let P1(1, {2}) =

P1(3, {1}) = P1(4, {3}) = 1, and P1(2, {3}) = P1(2, {4}) = 1/2. Similarly, P2(2, {1}) = P2(3, {2}) =

P2(4, {3}) = 1, and P2(1, {3}) = P2(1, {4}) = 1/2. We could check that two chains P1 and P2 are

irreducible and aperiodic, with stationary distribution π(·). On the other hand, (P1P2)(1, {1}) = 1, so

when beginning in state 1, the systematic-scan adaptive chain P1P2 alternates bewteen states 1 and 2

but never reaches the state 3. Hence, this adaptive algorithm fails to be irreducible, and also T (x, γ, n)

does not converge to as n→∞, even though each individual Pi is ergodic.
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2.2.1 Examples

To illustrate the limitations of adaptive MCMC, and the application of our theorems, the following

running example is presented.

Let K ≥ 4 be an integer, and let X = {1, 2, ...,K}. Let π{2} = b > 0 be very small, and π{1} = a > 0,

and π{3} = π{4} = ... = π{K} = (1− a− b)/(K + 2) > 0. Let Y = N. For γ ∈ Y, let Pγ be the kernel

corresponding to a random-walk Metropolis algorithm for π(·), with proposal distribution

Qγ(x, ·) = Uniform{x− γ, x− γ + 1, ..., x− 1, x+ 1, x+ 2, ..., x+ γ}

i.e. uniform on all the integers within γ of x, aside from x itself. The kernel Pγ then proceeds, given

Xn, Γn, by first choosing a proposal state Yn+1 ∼ QΓn(Xn, ·). With probability min[1, π(Yn+1)/π(Xn)] it

then accepts this proposal by settingXn+1 = Yn+1. Otherwise, with probability 1-min[1, π(Yn+1)/π(Xn)],

it rejects this proposal by setting Xn+1 = Xn (If Yn+1 /∈ X , then the proposal is always rejected, which

corresponds to setting π(y) = 0 for y /∈ X .)

We define the adaptive scheme as follows. Begin with Γ0 = 1(say). Let M ∈ N ∪ {∞} and let

p : N→ [0, 1]. For n = 0, 1, 2, ..., given Xn and Γn, if the next proposal is accepted (i.e., if Xn+1 6= Xn)

and Γn < M , then with probability p(n) let Γn+1 = Γn + 1, otherwise let Γn+1 = Γn. Otherwise, if the

next proposal is rejected (i.e., if Xn+1 = Xn) and Γn > 1, then with probability p(n) let Γn+1 = Γn− 1,

otherwise let Γn+1 = Γn. In words, with probability p(n), we increase γ (to a maximum of M) each time

a proposal is accepted, and decrease γ (to minimum of 1) each time a proposal is rejected.

The specific versions of this scheme is recorded below:

• The ”original running example” has M = ∞ and p(n) ≡ 1, i.e. it modifies Γn in every iteration

except when Γn = 1 and the next proposal is rejected

• The ”singly-modified running example” has M =∞ but arbitrary p(n).

• The ”doubly-modified running example ”has M <∞ and arbitrary p(n).

• The ”One-Two” version has M = 2 and p(n) ≡ 1.

We now provide an example that such adaptive scheme can completely destroy convergence to π(·) :

Example 6. Let ε > 0, and consider One- Two version with K = 4, a = ε, and b = ε3. Then it is easily

verified that there is c > 0 such that P[X3 = Γ3 = 1|X0 = x,Γ0 = γ] ≥ cε for all x ∈ X and γ ∈ Y,

i.e. the algorithm has O(ε) probability of reaching the configuration {x = γ = 1}. On hte other hand,

P[X1,Γ1 = 1|X0 = Γ0 = 1] = 1− ε2/2. On the other hand, P[X1,Γ1 = 1|X0 = Γ0 = 1] = 1− ε2/2, i.e.
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the algorithm has just O(ε2) probability of leaving the configuration {x = γ = 1} once it is there. This

probabilistic asymmetry implies that limε→0 limn→∞P[Xn = Γn = 1] = 1. Hence,

lim
ε→0

lim
n→∞

T (x, γ, n) ≥ lim
ε→0

(1− π{1}) = lim
ε→0

(1− ε) = 1. (2.2)

In particular, for any δ > 0, there is ε > 0 with limn→∞ T (x, γ, n) ≥ 1 − δ, so the algorithm does not

converge at all.

2.2.2 Uniformly Converging Case.

Theorem 2.2. Consider an adaptive MCMC algorithm, on a state space X , with adaption index Y, so

π(·) is stationary for each kernel Pγ for γ ∈ Y. Assume that:

(a) [ Simultaneous Uniform Ergodicity]For all ε > 0, there is N = N(ε) ∈ N such that ‖PNγ −

π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y.

(b) [ Diminishing Adaptation] limn→∞Dn = 0 in probability, where Dn = supx∈X ‖PΓn+1(x, ·) −

PΓn(x, ·)‖ is a Gn+1-measurable random variable (depending on random values Γn and Γn+1).

Proof. Let ε > 0, by (a), we choose N = N(ε). Let Hn = {Dn ≥ ε/N2} and use condition (b) to choose

n∗ = n∗(ε) ∈ N large enough so that

P(Hn) ≤ ε/N, n ≥ n∗ (2.3)

Fix a ”target time” K ≥ n∗ + N . The idea of the proof is to construct a coupling which depends on

the target time K and to prove L(Xk) ≈ π(·). Define the event E = ∩n+N−1
i=n Hc

i . It follows from 2.3

that for n ≥ n∗, we have P(E) ≥ 1 − ε. By the triangle inequality and induction, on event E we have

supx∈X ‖PΓn+k
(x, ·)− PΓn(x, ·)‖ ≤ ε/N for all k ≤ N , and in particular

‖PΓK−N (x, ·)−PΓm(x, ·)‖ < ε/N on E, x ∈ X ,K −N ≤ m ≤ K (2.4)

we first construct the original adaptive chain {Xn} together with the adaptation sequence {Γn}, starting

with X0 = x and Γ0 = γ. Claim that on E, we could construct a second chain {X ′n}Kn=K−N such that

X ′K−N = XK−N , and X ′n ∼ PΓK−N (X ′n−1, ·) for K −N + 1 ≤ n ≤ K, and P[X ′i = Xi for K −N ≤ i ≤

m] ≥ 1− [m− (K −N)]ε/K.

The claim is trivial true for m = K − N . Assume the inequality holds for some value m. Then

conditional on Gm and the event that X ′i = Xi for K − N ≤ i ≤ m, we have Xm+1 ∼ PΓm(Xm, ·)

and X ′m+1 ∼ PΓK−N (X ′m, ·) = PΓK−N (Xm, ·). It follow from 2.4 that the conditional distributions of

Xm+1 and X ′m+1 within ε/N of each other. Then by Proposition (1.3)(g), we know that the conditional
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probability that Xm+1 = X ′m+1 is great than or equal to 1− ε/N . It follows that

P[Xi = X ′i for K −N ≤ i ≤ m+ 1] ≥ P[Xi = X ′i for K −N ≤ i ≤ m](1− ε/N)

= (1− [m− (K −N)]ε/N)(1− ε/N)

= 1− [m− (K −N)]ε/N − ε/N

= 1− [(m+ 1)− (K −N)]ε/N + [m− (K −N)](ε/N)2

≥ 1− [(m+ 1)− (K −N)]ε/N

Thus, the claim follows from the induction.

This shows that on E, P[X ′K = XK ] ≥ 1− (K− (K−N))ε/N = 1− ε. That is, P[X ′K 6= XK , E] < ε.

Using the condition (a) that conditioning on XK−N , we have ‖PNΓK−N (XK−N , ·) − π(·)‖ < ε. Then

‖
∫
PNΓK−N (x, ·)PK−Nγ (y, dx) −

∫
π(·)PK−Nγ (y, dx)‖ = ‖L(X ′K) − π(·)‖ < ε

∫
PK−Nγ (y, dx) = ε. It again

follows from Proposition 1.3 (g) that we can construct Z ∼ π(·) such that P[X ′K 6= Z] < ε. Furthermore,

we can construct all of {Xn}, {X ′n} and Z jointly on a common probability space, by first constructing

{Xn} and {X ′n} as above, and then constructing Z conditional on {Xn} and {X ′n} from any conditional

distribution satisfying that Z ∼ π(·) and P[X ′K 6= Z] < ε.

Then on event E, we have ‖L(XK) − π(·)‖ = ‖L(XK) − L(X
′

K) + L(X
′

K) − π(·)‖ ≤ ‖L(XK) −

L(X
′

K)‖ + ‖L(X
′

K) − π(·)‖. By coupling inequality, on event E, we have ‖L(XK) − π(·)‖ ≤ P[XK 6=

X ′K ] + P[X ′K 6= Z]. Thus we have

P[XK 6= Z] ≤ P[XK 6= Z,E] + P[Ec] ≤ P[Xk 6= X ′K , E] + P[X ′K 6= Z,E] + P[Ec] < ε+ ε+ ε = 3ε

Hence, ‖L(XK) − π(·)‖ < 3ε, i.e. T (x, γ,K) < 3ε. Since K ≥ n∗ + N was arbitrary, this means that

T (x, γ,K) ≤ 3ε for all sufficiently large K. Hence, limK→∞ T (x, γ,K) = 0.

We then have following corollaries from Theorem 2.2.

Corollary 2. Suppose an adaptive MCMC algorithm satisfies Diminishing Adaptation, and also that

each Pγ is ergodic for π(·)(i.e., limn→∞‖Pnγ (x, )̇− π(·)‖ = 0 for all x ∈ X and γ ∈ Y). Suppose further

that X and Y are finite. Then the adaptive algorithm is ergodic.

Proof. Let ε > 0. By assumption for each x ∈ X and γ ∈ Y, there is N(x, γ, ε) such that ‖PN(x,γ,ε)
γ −

π(·)‖ < ε. Letting N(ε) = maxx∈X ,γ∈Y N(x, γ, ε), we see that condition (a) of Theorem 5 is satisfied.

So we could apply Theorem 5 and the result follows.

Corollary 3. The doubly-modified running example (presented above) is ergodic provided that the

adaptation probabilities p(n) satisfy limn→∞ p(n) = 0.
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Proof. In that example, for each γ, since Metropolis-Hasting Algorithm is used, Pγ is π-irreducible and

aperiodic, and hence ergodic for π(·). Furthermore, both X and Y are finite. Also, for this scheme we

have for each n ∈ N Dn = a ≤ 1 with probability p(n) and Dn = 0 with probability 1− p(n), thus given

ε > 0, P(Dn > ε) ≤ p(n). Because limn→∞ p(n) = 0, as n→∞, P(Dn > ε) ≤ ε. Thus thee Diminishing

Adaptation holds. Hence the result follows from Corollary 6.

Corollary 4. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adaption property, and

also that each Pγ is ergodic for π(·). Suppose further that X × Y is compact in some topology, with

respect to which the mapping (x, γ)→ d(x, γ, n) is continuous for each fixed n ∈ N. Then the adaptive

algorithm is ergodic.

Proof. Fix ε > 0. For n ∈ N, letWn ⊆ X×Y be the set of all pairs of (x, γ) such that ‖Pnγ (x, ·)−π(·)‖ < ε.

Since each Pγ is ergodic, this means that every pair (x, γ) is in Wn for all sufficiently large n. Hence

∪nWn = X × Y.

By continuity, the pre-image of an open set is open, soWn is an open set. By compactness of X ×Y,

there is a finite set {n1, ..., nr} such that Wn1 ∪ ...∪Wnr = X ×Y. Letting N = N(ε) = max[n1, ..., nr],

we find that the condition of Theorem 5 is satisfied. The result follows.

The following lemma is sometimes useful in applying Corollary 8.

Lemma 9. Suppose the mapping (x, γ)→ Pγ(x, ·) is continuous with respect to a product metric space

topology, meaning that for each x ∈ X , γ ∈ Y, and ε > 0, there is δ = δ(x, γ, ε) > 0, such that

‖Pγ′(x′, ·)− Pγ(x, ·)‖ < ε for all x′ ∈ X and γ′ ∈ Y satisfying d(x, x′) + d(γ, γ′) < δ( for some distance

metrics on X and Y). Then for each n ∈ N, the mapping (x, γ)→ d(x, γ, n) is continuous.

Proof. Given x ∈ X , γ ∈ Y, n ∈ N and ε > 0, find δ > 0 with ‖Pγ′(x′, ·) − Pγ(x, ·)‖ < ε/n whenever

d(x, x′) + d(γ, γ′) < δ. Then given x′ and γ′ with d(x, x′) + d(γ, γ′) < δ, as in proof of Theorem 5

we can construct X ′n and Xn with X ′n ∼ Pnγ′(x
′, ·), Xn ∼ Pnγ (x, ·). Specifically, starting with X0 = x

and Γ0 = γ, X ′0 = x′ and Γ′0 = γ′, we construct the un-adaptive chain recursively as follows. First,

we have X ′1 ∼ Pγ′(x
′, ·) and X1 ∼ Pγ(x, ·), then given X ′m and Xm, we have X ′m+1 ∼ Pγ′(X

′
m, ·) and

Xm+1 ∼ Pγ(Xm, ·). We claim that P[X ′i = Xi for 1 ≤ i ≤ m] ≥ 1−mε/n for 1 ≤ m ≤ n.

We show it by induction. When m = 1, by Proposition (1.3)(g), we can ensure that P[X ′1 = X1] ≥

1 − ε/n. Then conditional on the event X ′i = Xi for 1 ≤ i ≤ m, then the conditional distribution of

Xm+1 and X ′m+1 are within ε/n of each other. Hence by Proposition (1.3)(g) we can ensure that Xm+1

and X ′m+1 with probability ≥ 1 − ε/n. It follows that P[X ′i = Xi, for 1 ≤ i ≤ m + 1] ≥ P[X ′i =

Xi for 1 ≤ i ≤ m](1− ε/n) ≥ [1−mε/n][1− ε/n] ≥ 1− (m+1)
n ε. The claim then follows by induction.
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Thus P[Xn = X ′n] ≥ 1 − ε by construction. So P[Xn 6= X ′n] < ε. Thus, by coupling inequality, we

have ‖L(X ′n)−L(Xn)‖ < ε. By triangle inequality, this implies that ‖L(X ′n)−π(·)‖ and ‖L(Xn)−π(·)‖

are within ε of each other. It is also clear that Xn ∼ Pnγ (x, ·), X ′n ∼ Pnγ′(x, ·). Hence ‖Pnγ (x, ·) − π(·)‖

and ‖Pnγ′(x, ·)− π(·)‖ are within ε of each other, thus giving the result.

The continuity conditions in Lemma 9 will be satisfied if the transition kernels have bounded densities

with continuous dependencies.

Corollary 5. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adaptation property, and

also that each Pγ is ergodic for π(·). Suppose further that for each γ ∈ Y, Pγ(x, dz) = fγ(x, z)λ(dz) has

a density fγ(x, ·) with respect to some finite reference measure λ(·) on X . Finally, suppose the fγ(x, z)

are uniformly bounded, and that for each fixed z ∈ X , the mapping (x, γ)→ fγ(x, z) is continuous with

respect to some product metric space topology, with respect to which X × Y is compact. Then the

adaptive algorithm is ergodic.

Proof. We have that

‖Pγ′(x′, ·)− Pγ(x, ·)‖ =
1

2

∫
X

[M(y)−m(y)]λ(dy), (2.5)

By continuity of the mapping (x, γ) → fγ(x, y), and the finiteness of λ(·), it follows from the Bounded

Convergence Theorem that the mapping (x, γ) → Pγ(x, ·) is continuous. The result then follows by

applying Lemma 9 to Corollary 2.2.

Metropolis-Hastings algorithms do not have densities because they have positive probability of re-

jecting the proposal. However, if the proposal kernels have densities, then asimilar result srill holds:

Corollary 6. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adaptation property,

and also that each Pγ is ergodic for π(·). Suppose further that for each γ ∈ Y, Pγ represents a Metropolis-

Hasting algorithm with proposal kernel Qγ(x, dy) = fγ(x, y)λ(dy) having a density fγ(x, ·) with respect

to some finite reference measure λ(·) on X , with corresponding density g for π(·) so that π(dy) =

g(y)λ(dy). Finally, suppose that the fγ(x, y) are uniformly bounded, and for each fixed y ∈ X , the

mapping (x, γ) → fγ(x, y) is continuous with respect to some product metric space topology, with

respect to which X × Y is compact. Then the adaptive algorithm is ergodic.

Proof. In this case, the probability of accepting a proposal from x is given by:

aγ(x) =

∫
X

min

[
1,
g(y)fγ(y, x)

g(x)fγ(x, y)

]
fγ(x, y)λ(dy),
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which is a jointly continuous function of (x, γ) ∈ X × Y by the Bounded convergence theorem. The

probability measure Pγ(x, ·) as:

Pγ(x, dz) = [1− aγ(x)]δx(dz) + pγ(x, z)λ(dz) (2.6)

hwere pγ(x, z) is jointly continuous in x and γ. Iterating this, we can write the n−step transition law

as:

Pnγ (x, dz) = [1− aγ(x)]nδx(dz) + pnγ (x, z)λ(dz)

for appropriate jointly continuous pnγ (x, z).

We can assume without loss of generality that aγ(x) = 1 whenever λ{x} > 0, i.e. that δx(·) and

π(·) are orthogonal measures. (Indeed, if λ{x} > 0, then we can modify the proposal densities so as to

include [1− aγ(x)]δx(dz) as part of pγ(x, z)λ(dz).) It then follows

‖Pnγ (x, ·)− π(·)‖ = [1− aγ ]n +
1

2

∫
X
|pn(x, z)− g(z)|λ(dz).

This quantity is jointly continuous in x and γ, again by the Bounded Convergence Theorem. Moreover,

by ergodicity, it converges to zero as n → ∞ for each fixed x and γ. Hence, the results follows by

Corollary 5.

2.2.3 Non-uniformly converging Case

In this section the uniform convergence rate condition (a) of Theorem 2.2 is relaxed. To proceed, for

ε > 0, define the ”ε convergence time function” Mε : X × Y → N by

Mε(x, γ) = inf{n ≥ 1 : ‖Pnγ (x, ·)− π(·)‖ ≤ ε}.

If each individual Pγ is ergodic, then Mε(x, γ) <∞.

Theorem 2.3. Consider an adaptive MCMC algorithm with Diminishing Adaptation

(i.e., limn→∞ supx∈X ‖PΓn+1
(x, ·) − PΓn(x, ·)‖ = 0 in probability). Let x∗ ∈ X and γ∗ ∈ X . Then

limn→∞ T (x∗, γ∗, n) = 0 provided that for all ε > 0, the sequence {Mε(Xn,Γn)}∞n=0 is bounded in proba-

bility given X0 = x∗ and Γ0 = γ∗, i.e. for all δ > 0, there is N ∈ N such that P[Mε(Xn,Γn) ≤ N |X0 =

x∗,Γ0 = γ∗] ≥ 1− δ for all n ∈ N .

Proof. From the condition above, we could find N ∈ N such that (writing that G0 for {X0 = x∗,Y0 =

γ∗}),

P[Mε(XK−N ,ΓK−N ) > N |G0] ≤ ε

Since we start with X0 = x∗,Γ0 = γ∗, we have P[G0] = 1. Thus, P[Mε(XK−N ,ΓK−N ) > N ] ≤ ε.
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From the proof of Theorem 2.2, we have for all ε > 0 there is n∗ ∈ N such that for all N ∈ N and all

K ≥ n∗ +N , we can construct the chain {Xn}, {X ′n}, and Z ∼ π(·) such that

P[XK 6= Z] ≤ P[XK 6= X ′K , E] + P[X ′K 6= Z,E] + P[Ec]

= P[XK 6= X ′K , E] + P[X ′K 6= Z,E,Mε(XK−N ,ΓK−N ) ≤ N ]

+ P[X ′K 6= Z,E,Mε(XK−N ,ΓK−N ) > N ] + P[Ec]

= P[XK 6= X ′K , E] + P[X ′K 6= Z,E|Mε(XK−N ,ΓK−N ) ≤ N ]P[Mε(XK−N ,ΓK−N ) ≤ N ]

+ P[X ′K 6= Z,E|Mε(XK−N ,ΓK−N ) > N ]P[Mε(XK−N ,ΓK−N ) > N ] + P[Ec]

< ε+ ε+ ε+ P[Mε(XK−N ,ΓK−N ) > N ] = 3ε+ P[Mε(XK−N ,ΓK−N ) > N ] ≤ 4ε

By coupling inequality, ‖L(XK)−π(·)‖ < 4ε, i.e. T (x∗, γ∗,K) < 4ε. Since K ≥ n∗+N is arbitrary, this

means that T (x∗, γ∗,K) < 4ε for arbitrary large K. Thus limn→∞ T (x∗, γ∗, n) = 0.

Lemma 10. Let {en}∞n=0 be a sequence of real numbers. Suppose en+1 ≤ λn + b for some 0 ≤ λ < 1

and 0 ≤ b <∞, for all n = 0, 1, 2, 3, .... Then supn en ≤ max[e0, b/(1− λ)]

Proof. Prove this lemma by induction. For n = 1, we know e1 ≤ λe0 +b. Then either e1 ≤ e0 or e1 ≥ e0.

If e1 ≥ e0, then λe1 + b ≥ λe0 + b ≥ e1 ⇒ e1 ≤ b/(1− λ). Thus sup e1 ≤ max[e0, b/(1− λ).

Suppose supn en ≤ max[e0, b/(1 − λ)]. We have two cases en+1 ≤ en or en+1 ≥ en. If en+1 ≤ en,

then en+1 < max[e0, b/(1 − λ)]. If en+1 ≥ en, en+1 ≤ λen+1 + b ⇒ en+1 ≤ b/(1 − λ), which implies

en+1 ≤ max[e0, b/(1−λ)]. In either case, we have en+1 ≤ max[e0, b/(1−λ)]. The result then follows.

Lemma 11. Let {Wn}∞n=0 be a sequence of non-negative random variables. If supn E(Wn) < ∞, then

{Wn} is bounded in probability.

Proof. Since supn E(Wn) <∞, let K = supn E(Wn). Given ε > 0, there exist M = K/ε, such that, by

Markov inequality, P[Wn > M ] ≤ P[Wn ≥ M ] ≤ K/M = ε ⇒ supn P[Wn > M ] ≤ ε. Thus, {Wn} is

bounded in probability.

2.2.4 Laws of large numbers

The sequences of random variables X1, X2, ..., Xn generated by adaptive MCMC are usually combined

together to form averages of the form 1
n

∑n
i=1 g(Xi) to estimate the mean π(g) =

∫
g(x)π(dx) of a

function g : X → R. To justify such approximations, we require laws of large numbers for ergodic

averages if the form: ∑n
i=1 g(Xi)

n
→ π(g)
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either in probability or almost surely, for suitably regular functions g.

In this section, the laws of large numbers which hold for adaptive MCMC under weaker assumptions

are considered.

Theorem 2.4 (Weak Law of Large Number). Consider an adaptive MCMC algorithm. Suppose ethat

conditions (a) and (b) of Theorem 5 hold. Let g : X → R be a bounded measurable function. Then for

any starting values x ∈ X and γ ∈ Y. Then for any starting values x ∈ X and γ ∈ Y, conditional on

X0 = x and Γ0 = γ we have ∑n
i=1 g(Xi)

n
→ π(g) (2.7)

in probability as n→∞.

Proof. Assume without loss of generality that π(g) = 0. Let a = supx∈X |g(x)| < ∞. Denote Eγ,x for

expectations with respect to the Markov chain kernel Pγ when started from X0 = x, and write Pγ,x for

the corresponding probabilities. Denote E and P for expectations and probabilities with respect to the

adaptive chain.

The usual law of large numbers for Markov chains implies that for each fixed x ∈ X and γ ∈ Y,

limn→∞Eγ,x| 1n
∑n
i=1 g(Xi)| → π(g) = 0. Condition (a) implies that this convergence can be bounded

uniformly over choices of x and γ, i.e. given ε > 0 we can find an integer N such that

Eγ,x

(
| 1
n

n∑
i=1

g(Xi)|

)
< ε, x ∈ X , γ ∈ Y.

In terms of this N , condition b is used to find n∗ ∈ N satisfying (2). The coupling argument in the

proof of Theorem 5 then implies that on the event E( which has probability ≥ 1− ε, for all n ≥ n∗, the

adaptive chain sequence Xn+1, ..., Xn+N can be coupled with probability ≥ 1− ε with a corresponding

sequence arising from the fixed Markov chain PΓn . In other words, since |g| ≤ a, we have∣∣∣∣∣E
(

1

N

∣∣∣∣∣
n+N∑
i=n+1

g(Xi)

∣∣∣∣∣∣∣∣Gn
)
−EΓn,Xn

(
1

N

∣∣∣∣∣
n+N∑
i=n+1

g(Xi)

∣∣∣∣∣
)∣∣∣∣∣

≤ aε+ aP(Ec) ≤ 2aε

The first term aε comes to the fact the if the sequences Xn and X ′n are not coupled ( with probability

≤ ε ), the differences is less than aε because g is bounded by a. The second term aP(Ec) means that if

it is not on event E(with probability < ε), the difference is less than aP(Ec) because g is bounded by a.

By triangle inequality, we have

E

(
1

N

∣∣∣∣∣
n+N∑
i=n+1

g(Xi)

∣∣∣∣∣∣∣∣Gn
)
< (1 + 2a)ε (2.8)
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Now consider any integer T sufficiently large that

max
[an∗
T
,
aN

T

]
≤ ε (2.9)

Then (brc denotes the greatest integer not exceeding r) we have:

∣∣∣ 1

T

T∑
i=1

g(Xi)
∣∣∣ ≤ ∣∣∣ 1

T

n∗∑
i=1

g(Xi)
∣∣∣+∣∣∣∣∣ 1

bT−n∗N c

bT−n
∗

N c∑
j=1

1

N

N∑
k=1

g(XN(j−1)+k+n∗)

∣∣∣∣∣
+
∣∣∣ 1

T

T∑
n∗+bT−n∗N cN+1

g(Xi)
∣∣∣

≤
∣∣∣ 1

T

n∗∑
i=1

g(Xi)
∣∣∣+ 1

bT−n∗N c

bT−n
∗

N c∑
j=1

∣∣∣∣∣ 1

N

N∑
k=1

g(XN(j−1)+k+n∗)

∣∣∣∣∣
+
∣∣∣ 1

T

T∑
n∗+bT−n∗N cN+1

g(Xi)
∣∣∣

(2.10)

By 2.9, the first and last terms on the right-hand side of 2.10 are each ≤ ε. By 2.8, the middle term is

an average of terms each of which has absolute expectation ≤ (1 + 2a)ε, thus we have that

E

(∣∣∣ 1

T

T∑
i=1

g(Xi)
∣∣∣) ≤ ε+ (1 + 2a)ε+ ε = ε(3 + 2a).

Markov’s inequality then gives that

P

(∣∣∣ 1

T

T∑
i=1

g(Xi)
∣∣∣ ≥ ε1/2) ≤ ε1/2(3 + 2a).

Since this holds for all sufficiently large T, and ε > 0 was arbitrary, the result follows.
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3.1 Set up and assumptions

Let X be a nonempty general state space, on which is defined a metric η, giving rise to a corresponding

Borel σ algebra F . Assume that X contains some specified ”origin” point 0 ∈ X . Let P be the transition

probability kernel for a fixed time-homogeneous Markov chain on X . Assume that P is Harris ergodic

with stationary probability distribution π, so that

lim
n→∞

‖Pn(x, ·)− π‖ = 0, x ∈ X (3.1)

To relate the Markov chain to the geometry of X , assume that there is a constant D <∞ such that P

never moves more than a distance D, that is such that

P (x, {y ∈ X : η(x, y) ≤ D}) = 1, x ∈ X (3.2)

Let K ∈ F be a fixed bounded nonempty subset of X , and for r > 0 let Kr be the set of all states within

a distance r of K, so that each Kr is also bounded.

Based on the above assumptions, the ”adversarial Markov chain” {Xn} is defined as follows. It

begins with X0 = x0 for some specific initial state x0; For simplicity, assume that x0 ∈ K. When ever

the process is outside of K, it moves according to the Markov transition probabilities P , that is,

P(Xn+1 ∈ A|X0, X1, ..., Xn) = P(Xn, A), n ≤ 0, A ∈ F , Xn /∈ K. (3.3)

When the process is inside of K, it can move arbitrarily, according to an adversary’s wishes, depending

on the time n, or the chain’s history in a nonanticipatory manner (i.e., adapted to {Xn}), subject only to

measurability [i.e.P(Xn+1 ∈ A|X0, X1, ..., Xn) must be well defined for all n ≥ 0 and A ∈ F ], and to the

restriction that it can’t move more than a distance D at each iteration - or more specifically that from

K, it can only move to points within KD. In summary, {Xn} is a stochastic process which is ”mostly”

a Markov chain following the transition probabilities P , except that it is modified by an adversary when

it is within the bounded subset K.

In this paper tries to find conditions that guarantees that such process {Xn} will be bounded in

probability, that is, will satisfy that

lim
L→∞

sup
n∈N

P(η(Xn,0) > L|X0 = x0) = 0 (3.4)

3.1.1 Results

Consider two new assumptions. The first provides an upper bound on the Markov vhain transitions

out of KD:
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(A1) There is M <∞, and a probability measure µ∗ concenetrated on K2D\KD, such that P (x, dz) ≤

Mµ∗(dz) for all x ∈ KD \K and z ∈ K2D \KD

The second assumption bounds an expected hitting time:

(A2) The expected time for a Markov chain following the transitions P to reach the subset KD, when

started from the distribution µ∗ in (A1), is finite.

In terms of the above two assumptions, the following theorem is presented:

Theorem 3.1. In the set up of 3.1, if (A1) and (A2) hold for the same µ∗, then (3.4) holds, that is,

{Xn} is bounded in probability.

To prove Theorem 3.1, we begin by letting {Yn} be a ”cemetery process” which begins in the dis-

tribution µ∗ at time 0, and then follows the fixed transition kernel P , and then dies as soon as it hits

KD. Assumption (A2) then says that this cemetery process {Yn} has finite expected lifetime. For

L > l0 := sup{η(x,0) : x ∈ KD}, let BL = {x ∈ X : η(x,0) ≥ L}, and let NL denote the cemetery

process’s total occupation time of BL (i.e., the number of iterations that {Yn} spends in BL before it

dies). Before proving Theorem 3.1, a Lemma is stated and proved.

Lemma 12. Let {Xn} be the adversarial process as defined previously. Then assuming (A1), for any

n ∈ N, and any L > l0, and any x ∈ K, we have

P(Xn ∈ BL|X0 = x) ≤ME(NL),

where NL is the occupation time of BL fot the cemetery process {Yn} defined above.

Proof. Let σ be the last return time of {Xn} to KD by time n, this exists because X0 ∈ KD. Let µk be

the law of Xk when starting from X0 = x0. Then letting I = KD \K (”inside”) and O = K2D \KD
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(“outside”), then

P(Xn ∈ BL|X0 = x0)

=

n−1∑
k=0

P(Xn ∈ BL, σ = k|X0 = x0)

=

n−1∑
k=0

∫
y∈I

∫
z∈O

P(Xk = dy,Xk+1 = dz,Xn ∈ BL, σ = k|X0 = x0)

=

n−1∑
k=0

∫
y∈I

∫
z∈O

µk(dy)P (y, dz)×P(Xn ∈ BL, σ = k|X0 = x0, Xk = y,Xk+1 = z)

=

n−1∑
k=0

∫
y∈I

∫
z∈O

µk(dy)Mµ∗(dz)×P(Xn ∈ BL, σ = k|X0 = x0, Xk = y,Xk+1 = z)

≤
n−1∑
k=0

∫
y∈I

∫
z∈O

µk(dy)Mµ∗(dz)P(Yn−k−1 ∈ BL|Y0 = z)

≤M
n−1∑
k=0

∫
z∈O

P(Yn−k−1 ∈ BL|Y0 = z)µ∗(dz)

≤M
∞∑
j=0

∫
z∈O

P(Yj ∈ BL|Y0 = z)µ∗(dz)

= M

∞∑
j=0

∫
z∈O

E[1{Yj∈BL}|Y0 = z]µ∗(dz) = M

∫
z∈O

E[

∞∑
j=0

1{Yj∈BL}|Y0 = z]µ∗(dz)

= M

∫
z∈O

E[NL|Y = z]µ∗(dz) = ME[NL]

The result then follows.

We now use this lemma to prove Theorem 3.1.

Proof. For each A ∈ F , let ν(A) be the above cemetery process’s expected occupation measure, which

is the expected number of iterations that the cemetary process {Yn} spends in the subset A. Then the

total measure ν(X ) is the expected liftetime of the cemetery process, and is thus finite by (A2). Hence,

by the continuity of measures,

lim
L→∞

ν(BL) = ν(∩BL) = ν(∅) = 0.

This shows that E(NL)→ 0 as L→∞. Hence, by Lemma 12,

lim
L→∞

sup
n∈N

P(Xn ∈ BL|X0 = x0) ≤M lim
L→∞

E(NL) = 0,

so {Xn} is bounded in probability.

Consider another assumption:
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(A3) The set K2D \KD is small for P ; that is, there is some probability measure ν∗ on X , and some

ε > 0, and some n0 ∈ N, such that pn0(x,A) ≥ εν∗(A) for all states x ∈ K2D \ KD and all subsets

A ∈ F .

The another theorem is as follows:

Theorem 3.2. In the setup of Section 2, if (A1) and (A3) hold where either (a)ν∗ = µ∗ or (b) P is

reversible and µ∗ = π|K2D\KD , then 3.4 holds; that is, {Xn} is bounded in probability.

Before prove this theorem, we first prove two additional probability lemmas:

Lemma 13. Consider a Markov chain with stationary probability distribution π, and let A ∈ F with

π(A) > 0. Then:

1. Eπ|A(τA) = 1/π(A) <∞, where τA is the first return time to A.

2. For all k ∈ N, Eπ|A(τkA) = k/π(A) <∞, where τ
(k)
A is the kth return time to A.

Proof. For Part 1, using Theorem 10.0.1 of [2] with B = X , we obtain

1 = π(X ) =

∫
x∈A

π(dx)Ex

[ τA∑
n=1

1Xn∈X

]
=

∫
x∈A

π(dx)Ex[τA] = π(A)Eπ|A[τA],

giving the result.

For Part 2. Expand the original Markov chain to a new Markov chain on X ×{0, 1, ..., k− 1}, where

the first variable is the original chain, and the second variable is the count (mod k) of the number of

times the chain has returned to A. So each time the original chain visits A, the second variable increases

by 1(mod k). Then the expanded chain has stationary distribution π×Uniform{0, 1, ..., k− 1}. Hence,

by part 1, if we begin in (π|A) × δ0, then the expected return time of the expanded chain to A × {0}

equals 1/[π(A)×(1/k)] = k/π(A). But the first return time of the expanded chain to A×{0} corresponds

precisely to the kth return time of the original chain to A.

Lemma 14. Let {Wn} be a sequence of nonnegative random variables each with finite mean m <∞, and

let {In} be a sequence of indicator variables each with P(In = 1) = p > 0. Assume that the sequence of

pairs {(Wn, In)} is i.i.d. [i.e., the sequence {Zn} is i.i.d where Zn = (Wn, In)]. Let τ = inf{n : In = 1},

and let S =
∑τ
i=1Wi. Then E(S) = m

p <∞.

Proof. We can write S =
∑∞
i=1Wi1τ≥i. Now, the event {τ ≥ i} is equivalent to the event that I1 = I2 =

· · · = Ii−1 = 0. Hence it is contained in σ(Z1, ..., Zi−1) and is thus independent of Wi by assumption.
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Also, τ is distributed as Geometric(p) and hence has mean 1
p . We then compute that

E(S) = E

( ∞∑
i

Wi1τ≥i

)
=

∞∑
i=1

E(Wi1τ≥i)

=

∞∑
i=1

E(Wi)E1τ≥i =

∞∑
i=1

mP(τ ≥ i) = mE(τ) = m/p,

The result then as follows.

Now consider two more Lemmas which helps us prove Theorem.

Lemma 15. Consider a φ-irreducible Markov chain on a state space (X ,F) with transitional kernel P

and stationary probability distribution π. Let B,C ∈ F . Suppose C is a small set for P with minorizing

measure µ; that is, there is ε > 0 and n0 ∈ N such that Pn0(x,A) ≥ εµ(A) for all states x ∈ C and all

subsets A ∈ F . Let τB be the first hitting time of B. Then Eµ(τB) <∞.

Proof. It suffices to consider the case where n0 = 1, since if not we can replace P by Pn0 and note that

the hitting time of B by P is at most n0 times the hitting time of B by Pn0 .

The proof uses the Nummelin [2] splitting technique. Consider the Markov chain on state space

X × {0, 1}, where the second variable is an indicator of whether or not to regenerate according to µ.

Let α = X ×{1}. Then α is a Markov chain atom (i.e., the chain has identical transition probabilities

from every state in α), and it has stationary measure π(α) = επ(C) > 0. So, starting in µ∗( corresponding

to the original chain starting in µ). If the chain arrives in α, then it will return to α in finite expected

time 1/π(α) <∞ by Lemma 13.

Now, let Wn be the number of iterations between the (n− 1)th and nth returns to α, and let In = 1

if the chain visits B during the (n− 1)th and nth visit to alpha , otherwise In = 0. Then P[In = 1] > 0

by the φ-irreducibility of P . Hence, {Wn, In} satisfies the conditions of Lemma 14.

Therefore, by Lemma 14, the expected number of iterations until we complete a tour which includes

a visit to B is finite. Hence, the expected hitting time of B is finite.

Lemma 16. Let P be a Markov chain transition kernel on (X ,F), with stationary probability measure

π. Let C ∈ F such that π(C) > 0. Assume that C is a small set for P ; that is for some n0 ∈ N and

β > 0 and probability measure ν,

Pn0(x,A) ≥ βν(A), A ∈ F , x ∈ C. (3.5)

Then,

Pn0(P ∗)n0 ≥ 1

4
β2π(A ∩ C), A ∈ F , x ∈ C (3.6)
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where P ∗ is the L2(π) adjoint of P . In particular, if P is reversible with respect to π, so that P ∗ = P ,

then

P 2n0(x,A) ≥ 1

4
β2π(A ∩ C), A ∈ F , x ∈ C.

Proof.

D(ε) :=
{
x ∈ X :

dν

dπ
(x) > ε

}
(3.7)

By replacing P by Pn0 and P ∗ by (P ∗)n0 . It suffices to assume that n0 = 1. Now, the Radon-Nikodym

derivative dν
dπ of ν with respect to π satisfies that

∫
X
dν
dπ (x)π(dx) = ν(X ) = 1. For every ε ∈ [0, 1], let

Since ν is absolutely continuous with respect to ν, ν(A) = 0 whenever π(A) = 0. If π(D(ε)) = 0, then

ν(D(ε)) =
∫
D(ε)

επ(dx) > επ(D(ε)) = 0. Contradiction happens. So π(D(ε)) > 0. Then compute

ν(D(ε)c) =

∫
D(ε)c

ν

π
(x)π(dx) ≤ ε

∫
X
π(dx) = ε

hence

ν(D(ε)) ≥ 1− ε. (3.8)

The adjoint P ∗ satisfies

π(dx)P (x, dy) = π(dy)P ∗(y, dx). (3.9)

Now let x ∈ C, and A ∈ F with A ∩ C 6= ∅. Using first 3.5 and then 3.7,

PP ∗(x,A) =

∫
z∈X

P (x, dz)P ∗(z,A) ≥ β
∫
z∈X

P ∗(z,A ∩ C)ν(dz)

≥ β
∫
z∈D(ε)

∫
y∈A∩C

P ∗(z, dy)επ(dz)

To continue, use 3.9, then 3.5 again and finally 3.8 to obtain

PP ∗(x,A) ≥ βε
∫
z∈D(ε)

∫
y∈A∩C

π(dy)P (y, dz)

≥ β2εν(D(ε))π(A ∩ C) ≥ β2ε(1− ε)π(A ∩ C)

.

Setting ε = 1
2 , we have

PP ∗(x,A) ≥ β ∗ π(A ∩ C)/π(C).

where β∗ = 1
4β

2π(C).

Then, we have following corollary.

Corollary 7. (A3) with ν∗ = µ∗ implies (A2).

Proof. This follows immediately by applying Lemma 15 with C = K2D \ KD, and B = KD, and

µ = µ∗ = ν∗.
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Proof of Theorem 5

Proof. Under assumption (a), the result follows by combining Corollary 7 and Theorem 3.1. Under

assumption (b) such that P is reversible and µ∗ = πK2D\KD . It follow from Lemma 16 that (A3) also

holds with ν∗ = πK2D\KD = µ∗. Hence assumption (a) still applies, so 3.4 again follows.
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