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Motivation of MCMC [1]

@ Suppose have complicated and high-dimensional unnormalized
probability density 7 = cg

e Want get samples X1, X, ... ~ 7. (Hard to do Monte Carlo and
Rejection sampler)

@ Define a Markov chain (dependent random process) Xp, X1, Xa, ... in
such a way that for large n, X, =~ .

@ Then we can estimate E(h) = [ h(x)m(x)dx by

where B (burn-in) chosen large enough so Xg ~ 7, and M chosen
large enough to get good Monte Carlo estimates
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Metroplis-Hasting Algorithm [1]

@ Choose some initial value Xp.

@ Then given X,_1, choose a proposal Y, ~ q(X,-1,")

o Let A, = w7(r>(<z,/j)1c)’g\(/;<,n)jn1_,2) and U, ~ Uniform[0, 1].

@ Then if U, < Ay, set X, = Y, ("accept”), otherwise set X, = X,_1
("reject”).

@ Repeat, forn=1,2,3,.... M

@ Proposal density could be not symmetric q(x,y) # q(y, x)

e If g(x,y) >> q(y, x),then Metropolis chain would spend too much
time at y and not enough at x, so need to accept fewer moves x — y.

@ Require g(x,y) > 0 iff g(y,x) >0

e If proposal Y, ~ MVN(X,_1,02l). "RWM". Choose o such that the

accept rate is 0.234. Best Performance. Optimal Scaling (Roberts
and Rosenthal, Stat Sci 2001)
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Independence Sampler [1]

Choose some initial value Xg.

Then given X,_1, choose a proposal Y, ~ q(-)

o Let A, = %) and U, ~ Uniform[0, 1].

@ Then if U, < Ay, set X, = Y, ("accept”), otherwise set X, = X,_1
(" reject”).

@ Repeat, forn=1,2,3,.... M

@ Special case for Metroplis-Hasting Algorithm. Proposal density
independent of X,_1.
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Problem of interest [2]

Probability Kernel P"(x, A): The probability that tart from state x and
move to set A in n step. n € N, A € X(state space). General State
(Unaccountable) space (only cases about set A, P"(x,{y}) =0.)

Definition
The total variation distance between two probability measures v4(-) and
v(+) is:

() = 2 )l = supla(A) = v2(A)]
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Problem of Interest [2]

The concepts to total variance helps us to answer question:
limp—ool|P"(x,-) — m(-)|| = 07 And, given € > 0, how Iarge must n be so
that ||P"(x,-) — m(:)|| < €? Can we get a qualitative bounds for n? Can
we get a quantitative bounds for n?

A chain is ¢-irreducible if there exists a non-zero o-finite measure ¢ on X
such that for all A C X with ¢(A) > 0, and for all x € X, there exists a
positive integer n = n(x, A) such that P"(x, A) > 0.

Definition

A Markov chain with stationary distribution 7(-) is aperiodic if there do
not exist d > 2 and disjoint subsets X7, X5, A3, ..., Xy C X with

P(x,Xiy1) =1forall x € Xi(i <i<d-—1)and P(x,A1) =1 for all

x € Xy, such that 7(X7) > 0(and hence 7(X;) > 0 for all /). Otherwise,
the chain is periodic, with period d, and periodic decomposition X1, ..., Xd)
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Markov Chain Convergence Theorem [2]

Theorem

If a Markov chain on a state space with countably generated o-algebra is
¢-irreducible and aperiodic, and has a stationary distribution 7(-), then for
m-a.e x € X

lim [[P"(x,) = ()| = 0.

In particular, lim,_,o P"(x, A) = m(A) for all measurable A C X.And If
E-(|h]) < 00, limpyoo 2377 | h(X;) = Ex(h). "LLN"

We can use this theorem to justify Metropolis-Hasting Algorithm.
We also call a chain is Ergodic, if it converges.
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Ergodicity [2]

Answer questions: How fast does the chain converge?

Uniform Ergodic

A Markov chain having stationary distribution 7(+) is uniformly ergodic if

1P7(x;-) =7 () < Mp",n=1,2,3,...

for some p < 1 and M < cc.

Geometric Ergodicity

A Markov chain with stationary distribution 7 (-) is geometrically ergodic if

1P7(x;-) =7 ()l < M(x)p", n=1,2,3,...

for some p < 1, where M(x) < oo for m-a.e. x € X
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Useful facts [1], [3]

CLT holds for 2 S"7 h(X;) if chain is geometrically ergodic and
E.(|h])?*? < oo for some > 0.

Can calculate confidence interval. Important.

Fact about Independence sampler

Independence sampler is geometric ergodic, if and only if theres is § > 0
such that g(x) > dm(x) for m-a.e. x € X. If so, then
1P (x,:) — w(:)|| < (1 —9)", for m-a.e. x € X.

Fact about RWM

RWM is geometrically ergodic essentially if and only if m has exponentially
light tails, i.e. there are a, b, ¢ > 0 such that m(x) < ae?l whenever
x| > c.

v
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Adaptive MCMC [4]

"MCMC with learning”

{P,}~yey be a collection of Markov chain kernels on X, each of which has
7(+) as a stationary distribution.

Assuming P, is ¢-irreducible and aperiodic, this implies that P, be ergodic
for 7(+). The choice of v is given by a Y-valued random variable I,

Gn=0(Xo, e, Xn, T0y oo, Th)
be the filtration generated by {(X,,,}. Thus,
P[Xn+1 € B|Xn =x,Tn =7,Gn-1] = Py(x,B), xe€X,yve),

while the conditional distribution of I',;1 given G, is to be specified by the
particular adaptive algorithm being used. We let

A(n)((X”Y)’ B) = IP)[)<n € B|XO =X, I_O = ’7]
T(x,7,n) = [A((x,7).) = 7(-)ll = ;25’:’/\(”)((’(’ "), B) — =(B)|

Is Adaptive MCMC ergodic?
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Adaptive MCMC Convergence Theorem [4]

for € > 0, define the "€ convergence time function” M, : X x Y — N by
Me(x,7) = inf{n > 1 [|P7(x,-) = 7()|| < e}.

If each individual P, is ergodic, then M(x,~) < oco.
Let x, € X and v, € X, if
@ Diminishing Adaptation: Adapt less and less as the algorithm
proceeds.
(i.e., limpoo supyex ||Pr,.. (X, ) = Pr,(x,-)|| = 0 in probability)
o Containment:For all € > 0, the sequence {M(X,, )}, is bounded
in probability: Given Xo = x, and g = 74, i.e. for all § > 0, there is
N € N such that P[M(Xn,[5) < N|Xo = %, To = 74] > 1 — ¢ for all
neN.
Then limp_o0 T (X, 4, n) = 0.
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Adaptive MCMC [1]

Consider RWM on X = RY.
Proposal Density. Y, ~ MVN(X,_1,X) How to choose X7

@ Previousoly, choose o such that the accept rate is 0.234.

e Can do better. Choose ¥ = ((2.38)?/d)%o. X is the covariance
matrix of the target distribution.

@ Y usually unknown, but we can estimate it based on run so far. (Use
generated variables). And for large n, hopefully we have ¥, = ¥¢.(
empirical covariance matrix)

@ Usually also add €ly to proposal covariance, to improve stability.
e = 0.05.

@ Can be justified by previous theorem.
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Figure: Trace plot for a Normal distribution in 200 dimensions
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Adversarial Markov Chain [5]

Assume we have probability kernel P(x,-), such that
limpoool|P7(x,-) —7|| =0, x € X. Ergodic.

there is a constant D < oo such that P never moves more than a
distance D, that is such that

P(x,{y e X :n(x,y)<D})=1, xeX

@ Let K be a bounded set.K, is the set within distance r of K.
o It begins with Xy = xp for some specific initial state xg; assume that

xp € K. When ever the process is outside of K, it moves according to
the Markov transition probabilities P

When the process is inside of K, it can move arbitrarily, according to
an adversary's wishes, in a nonanticipatory manner (i.e., adapted to
{Xn}). And cannot move more than a distance D. i.e. Can only
move to points within Kp.

Theoretically, people are curious about the conditions to ensure X, is
bounded.
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Application in Adaptive MCMC [5]

"Only Adapt in a bounded set”
Consider RWM on Ry. Let K € R? be a bounded set and D be a
constant. Let ¥, be a fix covariance matrix. Start from xg € K. Proposal
Yn ~ MVN(X,-1,X).
o If Xpo1 ¢ K, let X =%,
o If X,—1 € K with dist(X,_1,K) > 1. Use Adaptive MCMC, i.e.
T = ((238)/d)E0s
o If X,—1 € K with dist(X,-1,K) =uand 0 < u < 1. Then
combination. Y, ~ (1 —u)N(X,_1, L)+ uN(X,_1,((2.38)%/d)X,_1)
e Reject if |V, — Xp—1] > D.
@ Can add ely to proposal covariance when adapt.

Always work by related algorithm.

Boyi Li (Uof T) MCMC April 12, 2019 15 / 17



[3
[3

J. Rosenthal, “Lecture notes of sta3431,” , Sep. 2018.

G. O. Roberts and J. Rosenthal, “General state space markov chains
and mcmc algorithms,”  Probability Surveys, vol. 1, Apr. 2004. DOLI:
10.1214/154957804100000024.

S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability.
Jan. 2009, 1sBN: 978-0-521-73182-9.

G. O. Roberts and J. Rosenthal, “Coupling and ergodicity of
adaptive memc,” | Apr. 2019.

R. Craiu, L. Gray, K. Latuszynski, N. Madras, G. O. Roberts, and
J. Rosenthal, “Stability of adversarial markov chains, with an
application to adaptive memc algorithms,” The Annals of Applied
Probability, vol. 25, Mar. 2014. por1: 10.1214/14-AAP1083.

Boyi Li (Uof T) MCMC April 12, 2019 16 / 17


https://doi.org/10.1214/154957804100000024
https://doi.org/10.1214/14-AAP1083

Thank you!

Boyi Li (Uof T) MCMC April 12,2019 17 / 17



