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Motivation of MCMC [1]

Suppose have complicated and high-dimensional unnormalized
probability density π = cg

Want get samples X1,X2, ... ∼ π. (Hard to do Monte Carlo and
Rejection sampler)

Define a Markov chain (dependent random process) X0,X1,X2, ... in
such a way that for large n, Xn ≈ π.

Then we can estimate Eπ(h) ≡
∫
h(x)π(x)dx by

Eπ(h) ≈ 1

M − B

M∑
i=B+1

h(Xi )

where B (burn-in) chosen large enough so XB ≈ π, and M chosen
large enough to get good Monte Carlo estimates
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Metroplis-Hasting Algorithm [1]

Choose some initial value X0.

Then given Xn−1, choose a proposal Yn ∼ q(Xn−1, ·)
Let An = π(Yn)q(Yn,Xn−1)

π(Xn−1)q(Xn−1,Yn) and Un ∼ Uniform[0, 1].

Then if Un < An, set Xn = Yn (”accept”), otherwise set Xn = Xn−1

(”reject”).

Repeat, for n = 1, 2, 3, ...,M

Proposal density could be not symmetric q(x , y) 6= q(y , x)

If q(x , y) >> q(y , x),then Metropolis chain would spend too much
time at y and not enough at x , so need to accept fewer moves x → y .

Require q(x , y) > 0 iff q(y , x) > 0

If proposal Yn ∼ MVN(Xn−1, σ
2I ). ”RWM”. Choose σ such that the

accept rate is 0.234. Best Performance. Optimal Scaling (Roberts
and Rosenthal, Stat Sci 2001)
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Independence Sampler [1]

Choose some initial value X0.

Then given Xn−1, choose a proposal Yn ∼ q(·)
Let An = π(Yn)q(Yn,Xn−1)

π(Xn−1)q(Xn−1,Yn
) and Un ∼ Uniform[0, 1].

Then if Un < An, set Xn = Yn (”accept”), otherwise set Xn = Xn−1

(”reject”).

Repeat, for n = 1, 2, 3, ...,M

Special case for Metroplis-Hasting Algorithm. Proposal density
independent of Xn−1.
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Problem of interest [2]

Probability Kernel Pn(x ,A): The probability that tart from state x and
move to set A in n step. n ∈ N,A ∈ X (state space). General State
(Unaccountable) space (only cases about set A, Pn(x , {y}) = 0.)

Definition

The total variation distance between two probability measures ν1(·) and
ν2(·) is:

‖ν1(·)− ν2(·)‖ = sup
A
|ν1(A)− ν2(A)|
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Problem of Interest [2]

The concepts to total variance helps us to answer question: Is
limn→∞‖Pn(x , ·)− π(·)‖ = 0? And, given ε > 0, how large must n be so
that ‖Pn(x , ·)− π(·)‖ < ε? Can we get a qualitative bounds for n? Can
we get a quantitative bounds for n?

Definition

A chain is φ-irreducible if there exists a non-zero σ-finite measure φ on X
such that for all A ⊆ X with φ(A) > 0, and for all x ∈ X , there exists a
positive integer n = n(x ,A) such that Pn(x ,A) > 0.

Definition

A Markov chain with stationary distribution π(·) is aperiodic if there do
not exist d ≥ 2 and disjoint subsets X1,X2,X3, ...,Xd ⊆ X with
P(x ,Xi+1) = 1 for all x ∈ Xi (i ≤ i ≤ d − 1) and P(x ,X1) = 1 for all
x ∈ Xd , such that π(X1) > 0(and hence π(Xi ) > 0 for all i). Otherwise,
the chain is periodic, with period d, and periodic decomposition X1, ...,Xd
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Markov Chain Convergence Theorem [2]

Theorem

If a Markov chain on a state space with countably generated σ-algebra is
φ-irreducible and aperiodic, and has a stationary distribution π(·), then for
π-a.e. x ∈ X

lim
n→∞
‖Pn(x , ·)− π(·)‖ = 0.

In particular, limn→∞ Pn(x ,A) = π(A) for all measurable A ⊆ X .And If
Eπ(|h|) <∞, limn→∞

1
n

∑n
i=1 h(Xi ) = Eπ(h). ”LLN”

We can use this theorem to justify Metropolis-Hasting Algorithm.
We also call a chain is Ergodic, if it converges.
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Ergodicity [2]

Answer questions: How fast does the chain converge?

Uniform Ergodic

A Markov chain having stationary distribution π(·) is uniformly ergodic if

‖Pn(x , ·)− π(·)‖ ≤ Mρn, n = 1, 2, 3, ...

for some ρ < 1 and M ≤ ∞.

Geometric Ergodicity

A Markov chain with stationary distribution π(·) is geometrically ergodic if

‖Pn(x , ·)− π(·)‖ ≤ M(x)ρn, n = 1, 2, 3, ...

for some ρ < 1, where M(x) <∞ for π-a.e. x ∈ X
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Useful facts [1], [3]

Fact

CLT holds for 1
n

∑n
1 h(Xi ) if chain is geometrically ergodic and

Eπ(|h|)2+δ <∞ for some > 0.

Can calculate confidence interval. Important.

Fact about Independence sampler

Independence sampler is geometric ergodic, if and only if theres is δ > 0
such that q(x) ≥ δπ(x) for π-a.e. x ∈ X . If so, then
‖Pn(x , ·)− π(·)‖ ≤ (1− δ)n, for π-a.e. x ∈ X .

Fact about RWM

RWM is geometrically ergodic essentially if and only if π has exponentially
light tails, i.e. there are a, b, c > 0 such that π(x) ≤ aeb|x | whenever
|x | > c.
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Adaptive MCMC [4]

”MCMC with learning”
{Pγ}γ∈Y be a collection of Markov chain kernels on X , each of which has
π(·) as a stationary distribution.
Assuming Pγ is φ-irreducible and aperiodic, this implies that Pγ be ergodic
for π(·). The choice of γ is given by a Y-valued random variable Γn,

Gn = σ(X0, ...,Xn, Γ0, ..., Γn)

be the filtration generated by {(Xn, Γn}. Thus,

P[Xn+1 ∈ B|Xn = x , Γn = γ,Gn−1] = Pγ(x ,B), x ∈ X , γ ∈ Y,

while the conditional distribution of Γn+1 given Gn is to be specified by the
particular adaptive algorithm being used. We let

A(n)((x , γ),B) = P[Xn ∈ B|X0 = x , Γ0 = γ]

T (x , γ, n) = ‖A(n)((x , γ), ·)− π(·)‖ ≡ sup
B∈F
|A(n)((x , γ),B)− π(B)|

Is Adaptive MCMC ergodic?
Boyi Li (U of T ) MCMC April 12, 2019 10 / 17



Adaptive MCMC Convergence Theorem [4]

for ε > 0, define the ”ε convergence time function” Mε : X × Y → N by

Mε(x , γ) = inf{n ≥ 1 : ‖Pn
γ (x , ·)− π(·)‖ ≤ ε}.

If each individual Pγ is ergodic, then Mε(x , γ) <∞.
Let x∗ ∈ X and γ∗ ∈ X ., if

Diminishing Adaptation: Adapt less and less as the algorithm
proceeds.
(i.e., limn→∞ supx∈X ‖PΓn+1(x , ·)− PΓn(x , ·)‖ = 0 in probability)

Containment:For all ε > 0, the sequence {Mε(Xn, Γn)}∞n=0 is bounded
in probability: Given X0 = x∗ and Γ0 = γ∗, i.e. for all δ > 0, there is
N ∈ N such that P[Mε(Xn, Γn) ≤ N|X0 = x∗, Γ0 = γ∗] ≥ 1− δ for all
n ∈ N.

Then limn→∞ T (x∗, γ∗, n) = 0.
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Adaptive MCMC [1]

Consider RWM on X = Rd .
Proposal Density.Yn ∼ MVN(Xn−1,Σ) How to choose Σ?

PreviousσId , choose σ such that the accept rate is 0.234.

Can do better. Choose Σ = ((2.38)2/d)Σ0. Σ0 is the covariance
matrix of the target distribution.

Σ0 usually unknown, but we can estimate it based on run so far. (Use
generated variables). And for large n, hopefully we have Σn = Σ0.(
empirical covariance matrix)

Usually also add εId to proposal covariance, to improve stability.
ε = 0.05.

Can be justified by previous theorem.
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Graph [1]

Figure: Trace plot for a Normal distribution in 200 dimensions
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Adversarial Markov Chain [5]

Assume we have probability kernel P(x , ·), such that
limn→∞‖Pn(x , ·)− π‖ = 0, x ∈ X . Ergodic.

there is a constant D <∞ such that P never moves more than a
distance D, that is such that

P(x , {y ∈ X : η(x , y) ≤ D}) = 1, x ∈ X

Let K be a bounded set.Kr is the set within distance r of K .

It begins with X0 = x0 for some specific initial state x0; assume that
x0 ∈ K . When ever the process is outside of K , it moves according to
the Markov transition probabilities P

When the process is inside of K , it can move arbitrarily, according to
an adversary’s wishes, in a nonanticipatory manner (i.e., adapted to
{Xn}). And cannot move more than a distance D. i.e. Can only
move to points within KD .

Theoretically, people are curious about the conditions to ensure Xn is
bounded.
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Application in Adaptive MCMC [5]

”Only Adapt in a bounded set”
Consider RWM on Rd . Let K ⊂ Rd be a bounded set and D be a
constant. Let Σ∗ be a fix covariance matrix. Start from x0 ∈ K . Proposal
Yn ∼ MVN(Xn−1,Σ).

If Xn−1 /∈ K , let Σ = Σ∗

If Xn−1 ∈ K with dist(Xn−1,K ) > 1. Use Adaptive MCMC, i.e.
Σ = ((2.38)2/d)Σn−1

If Xn−1 ∈ K with dist(Xn−1,K ) = u and 0 < u < 1. Then
combination. Yn ∼ (1−u)N(Xn−1,Σ∗) +uN(Xn−1, ((2.38)2/d)Σn−1)

Reject if |Yn − Xn−1| > D.

Can add εId to proposal covariance when adapt.

Always work by related algorithm.
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Thank you!
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