Exploration of Markov Chain Monte Carlo Algorithms

Boyi Li

Supervisor: Professor Jeffrey Rosenthal

University of Toronto

boyi.li@mail.utoronto.ca

April 12, 2019

Motivation of MCMC [1]

- Suppose have **complicated** and **high-dimensional** unnormalized probability density $\pi = cg$
- Want get samples $X_1, X_2, ... \sim \pi$. (Hard to do Monte Carlo and Rejection sampler)
- Define a Markov chain (dependent random process) $X_0, X_1, X_2, ...$ in such a way that for large $n, X_n \approx \pi$.
- Then we can estimate ${f E}_\pi(h)\equiv\int h(x)\pi(x)dx$ by

$$\mathbf{E}_{\pi}(h) \approx \frac{1}{M-B} \sum_{i=B+1}^{M} h(X_i)$$

where *B* (burn-in) chosen large enough so $X_B \approx \pi$, and *M* chosen large enough to get good Monte Carlo estimates

Metroplis-Hasting Algorithm [1]

- Choose some initial value X_0 .
- Then given X_{n-1} , choose a proposal $Y_n \sim q(X_{n-1}, \cdot)$
- Let $A_n = \frac{\pi(Y_n)q(Y_n,X_{n-1})}{\pi(X_{n-1})q(X_{n-1},Y_n)}$ and $U_n \sim \text{Uniform}[0,1]$.
- Then if $U_n < A_n$, set $X_n = Y_n$ ("accept"), otherwise set $X_n = X_{n-1}$ ("reject").
- Repeat, for n = 1, 2, 3, ..., M
- Proposal density could be not symmetric $q(x, y) \neq q(y, x)$
- If q(x, y) >> q(y, x), then Metropolis chain would spend too much time at y and not enough at x, so need to accept fewer moves x → y.
- Require q(x, y) > 0 iff q(y, x) > 0
- If proposal Y_n ~ MVN(X_{n-1}, σ²I). "RWM". Choose σ such that the accept rate is 0.234. Best Performance. Optimal Scaling (Roberts and Rosenthal, Stat Sci 2001)

- Choose some initial value X_0 .
- Then given X_{n-1} , choose a proposal $Y_n \sim q(\cdot)$
- Let $A_n = \frac{\pi(Y_n)q(Y_n,X_{n-1})}{\pi(X_{n-1})q(X_{n-1},Y_n)}$ and $U_n \sim \text{Uniform}[0,1]$.
- Then if $U_n < A_n$, set $X_n = Y_n$ ("accept"), otherwise set $X_n = X_{n-1}$ ("reject").
- Repeat, for n = 1, 2, 3, ..., M
- Special case for Metroplis-Hasting Algorithm. Proposal density independent of X_{n-1} .

Probability Kernel $P^n(x, A)$: The probability that tart from state x and move to set A in n step. $n \in \mathbb{N}, A \in \mathcal{X}$ (state space). General State (Unaccountable) space (only cases about set A, $P^n(x, \{y\}) = 0$.)

Definition

The total variation distance between two probability measures $\nu_1(\cdot)$ and $\nu_2(\cdot)$ is:

$$\|\nu_1(\cdot) - \nu_2(\cdot)\| = \sup_A |\nu_1(A) - \nu_2(A)|$$

Problem of Interest [2]

The concepts to total variance helps us to answer question: Is $\lim_{n\to\infty} ||P^n(x,\cdot) - \pi(\cdot)|| = 0$? And, given $\epsilon > 0$, how large must *n* be so that $||P^n(x,\cdot) - \pi(\cdot)|| < \epsilon$? Can we get a qualitative bounds for *n*? Can we get a quantitative bounds for *n*?

Definition

A chain is ϕ -*irreducible* if there exists a non-zero σ -finite measure ϕ on \mathcal{X} such that for all $A \subseteq \mathcal{X}$ with $\phi(A) > 0$, and for all $x \in \mathcal{X}$, there exists a positive integer n = n(x, A) such that $P^n(x, A) > 0$.

Definition

A Markov chain with stationary distribution $\pi(\cdot)$ is *aperiodic* if there do not exist $d \ge 2$ and disjoint subsets $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3, ..., \mathcal{X}_d \subseteq \mathcal{X}$ with $P(x, \mathcal{X}_{i+1}) = 1$ for all $x \in \mathcal{X}_i (i \le i \le d-1)$ and $P(x, \mathcal{X}_1) = 1$ for all $x \in \mathcal{X}_d$, such that $\pi(\mathcal{X}_1) > 0$ (and hence $\pi(\mathcal{X}_i) > 0$ for all i). Otherwise, the chain is *periodic*, with *period* d, and *periodic* decomposition $\mathcal{X}_1, ..., \mathcal{X}_d$

Theorem

If a Markov chain on a state space with countably generated σ -algebra is ϕ -irreducible and aperiodic, and has a stationary distribution $\pi(\cdot)$, then for π -a.e. $x \in \mathcal{X}$

$$\lim_{n\to\infty} \|P^n(x,\cdot)-\pi(\cdot)\|=0.$$

In particular, $\lim_{n\to\infty} P^n(x, A) = \pi(A)$ for all measurable $A \subseteq \mathcal{X}$. And If $\mathbf{E}_{\pi}(|h|) < \infty$, $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} h(X_i) = \mathbf{E}_{\pi}(h)$. "LLN"

We can use this theorem to justify Metropolis-Hasting Algorithm. We also call a chain is **Ergodic**, if it converges.

Answer questions: How fast does the chain converge?

Uniform Ergodic

A Markov chain having stationary distribution $\pi(\cdot)$ is uniformly ergodic if

$$||P^{n}(x, \cdot) - \pi(\cdot)|| \le M\rho^{n}, n = 1, 2, 3, ...$$

for some $\rho < 1$ and $M \leq \infty$.

Geometric Ergodicity

A Markov chain with stationary distribution $\pi(\cdot)$ is geometrically ergodic if

$$\|P^{n}(x,\cdot) - \pi(\cdot)\| \le M(x)\rho^{n}, \quad n = 1, 2, 3, ...$$

for some $\rho < 1$, where $M(x) < \infty$ for π -a.e. $x \in \mathcal{X}$

Useful facts [1], [3]

Fact

CLT holds for $\frac{1}{n} \sum_{i=1}^{n} h(X_i)$ if chain is geometrically ergodic and $E_{\pi}(|h|)^{2+\delta} < \infty$ for some > 0.

Can calculate confidence interval. Important.

Fact about Independence sampler

Independence sampler is geometric ergodic, if and only if theres is $\delta > 0$ such that $q(x) \ge \delta \pi(x)$ for π -a.e. $x \in \mathcal{X}$. If so, then $\|P^n(x, \cdot) - \pi(\cdot)\| \le (1 - \delta)^n$, for π -a.e. $x \in \mathcal{X}$.

Fact about RWM

RWM is geometrically ergodic essentially if and only if π has exponentially light tails, i.e. there are a, b, c > 0 such that $\pi(x) \le ae^{b|x|}$ whenever |x| > c.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Adaptive MCMC [4]

"MCMC with learning"

 $\{P_{\gamma}\}_{\gamma \in \mathcal{Y}}$ be a collection of Markov chain kernels on \mathcal{X} , each of which has $\pi(\cdot)$ as a stationary distribution.

Assuming P_{γ} is ϕ -irreducible and aperiodic, this implies that P_{γ} be ergodic for $\pi(\cdot)$. The choice of γ is given by a \mathcal{Y} -valued random variable Γ_n ,

$$\mathcal{G}_n = \sigma(X_0, ..., X_n, \Gamma_0, ..., \Gamma_n)$$

be the filtration generated by $\{(X_n, \Gamma_n\}$. Thus,

$$\mathbb{P}[X_{n+1} \in B | X_n = x, \Gamma_n = \gamma, \mathcal{G}_{n-1}] = P_{\gamma}(x, B), \quad x \in \mathcal{X}, \gamma \in \mathcal{Y},$$

while the conditional distribution of Γ_{n+1} given \mathcal{G}_n is to be specified by the particular adaptive algorithm being used. We let

$$A^{(n)}((x,\gamma),B) = \mathbb{P}[X_n \in B | X_0 = x, \Gamma_0 = \gamma]$$

$$\Gamma(x,\gamma,n) = \|A^{(n)}((x,\gamma),\cdot) - \pi(\cdot)\| \equiv \sup_{B \in \mathcal{F}} |A^{(n)}((x,\gamma),B) - \pi(B)|$$

Is Adaptive MCMC ergodic?

for $\epsilon > 0$, define the " ϵ convergence time function" $M_{\epsilon} : \mathcal{X} \times \mathcal{Y} \to \mathbf{N}$ by

$$M_{\epsilon}(x,\gamma) = \inf\{n \ge 1 : \|P_{\gamma}^{n}(x,\cdot) - \pi(\cdot)\| \le \epsilon\}.$$

If each individual P_{γ} is ergodic, then $M_{\epsilon}(x, \gamma) < \infty$. Let $x_* \in \mathcal{X}$ and $\gamma_* \in \mathcal{X}$., if

• Diminishing Adaptation: Adapt less and less as the algorithm proceeds.

(i.e., $\lim_{n\to\infty} \sup_{x\in\mathcal{X}} \|P_{\Gamma_{n+1}}(x,\cdot) - P_{\Gamma_n}(x,\cdot)\| = 0$ in probability)

• Containment:For all $\epsilon > 0$, the sequence $\{M_{\epsilon}(X_n, \Gamma_n)\}_{n=0}^{\infty}$ is bounded in probability: Given $X_0 = x_*$ and $\Gamma_0 = \gamma_*$, i.e. for all $\delta > 0$, there is $N \in \mathbb{N}$ such that $\mathbb{P}[M_{\epsilon}(X_n, \Gamma_n) \leq N | X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta$ for all $n \in \mathbb{N}$.

Then $\lim_{n\to\infty} T(x_*, \gamma_*, n) = 0.$

Adaptive MCMC [1]

Consider RWM on $X = R^d$.

Proposal Density. $Y_n \sim MVN(X_{n-1}, \Sigma)$ How to choose Σ ?

- Previous σI_d , choose σ such that the accept rate is 0.234.
- Can do better. Choose $\Sigma = ((2.38)^2/d)\Sigma_0$. Σ_0 is the covariance matrix of the target distribution.
- Σ₀ usually unknown, but we can estimate it based on run so far. (Use generated variables). And for large n, hopefully we have Σ_n = Σ₀.(empirical covariance matrix)
- Usually also add ϵI_d to proposal covariance, to improve stability. $\epsilon = 0.05$.
- Can be justified by previous theorem.

Graph [1]

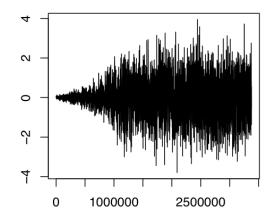


Figure: Trace plot for a Normal distribution in 200 dimensions

Adversarial Markov Chain [5]

- Assume we have probability kernel $P(x, \cdot)$, such that $\lim_{n\to\infty} ||P^n(x, \cdot) \pi|| = 0$, $x \in \mathcal{X}$. Ergodic.
- there is a constant $D < \infty$ such that P never moves more than a distance D, that is such that

$$P(x, \{y \in \mathcal{X} : \eta(x, y) \le D\}) = 1, \quad x \in \mathcal{X}$$

- Let K be a bounded set K_r is the set within distance r of K.
- It begins with X₀ = x₀ for some specific initial state x₀; assume that x₀ ∈ K. When ever the process is outside of K, it moves according to the Markov transition probabilities P
- When the process is inside of K, it can move arbitrarily, according to an adversary's wishes, in a nonanticipatory manner (i.e., adapted to {X_n}). And cannot move more than a distance D. i.e. Can only move to points within K_D.
- Theoretically, people are curious about the conditions to ensure X_n is bounded.

"Only Adapt in a bounded set"

Consider RWM on R_d . Let $K \subset R^d$ be a bounded set and D be a constant. Let Σ_* be a fix covariance matrix. Start from $x_0 \in K$. Proposal $Y_n \sim MVN(X_{n-1}, \Sigma)$.

• If
$$X_{n-1} \notin K$$
, let $\Sigma = \Sigma_*$

- If $X_{n-1} \in K$ with $dist(X_{n-1}, K) > 1$. Use Adaptive MCMC, i.e. $\Sigma = ((2.38)^2/d)\Sigma_{n-1}$
- If $X_{n-1} \in K$ with $dist(X_{n-1}, K) = u$ and 0 < u < 1. Then combination. $Y_n \sim (1-u)N(X_{n-1}, \Sigma_*) + uN(X_{n-1}, ((2.38)^2/d)\Sigma_{n-1})$

• Reject if
$$|Y_n - X_{n-1}| > D$$
.

• Can add ϵI_d to proposal covariance when adapt.

Always work by related algorithm.

- J. Rosenthal, "Lecture notes of sta3431,", Sep. 2018.
- G. O. Roberts and J. Rosenthal, "General state space markov chains and mcmc algorithms," *Probability Surveys*, vol. 1, Apr. 2004. DOI: 10.1214/15495780410000024.
- S. Meyn and R. L. Tweedie, *Markov Chains and Stochastic Stability*. Jan. 2009, ISBN: 978-0-521-73182-9.
 - G. O. Roberts and J. Rosenthal, "Coupling and ergodicity of adaptive mcmc,", Apr. 2019.
 - R. Craiu, L. Gray, K. Latuszynski, N. Madras, G. O. Roberts, and J. Rosenthal, "Stability of adversarial markov chains, with an application to adaptive mcmc algorithms," *The Annals of Applied Probability*, vol. 25, Mar. 2014. DOI: 10.1214/14-AAP1083.

Thank you!

3

Image: A image: A