Optimising and Adapting the Metropolis Algorithm

Jeffrey S. Rosenthal

University of Toronto jeff@math.toronto.edu http://probability.ca/jeff/

23 June 2010 Newton Institute, Cambridge, U.K.

Motivation

Given some complicated, high-dimensional density function $\pi: \mathcal{X} \to [0, \infty)$, for some $\mathcal{X} \subseteq \mathbf{R}^d$ with d large. (e.g. Bayesian posterior distribution)

Want to compute probabilities like:

$$\Pi(A) := \int_A \pi(x) \, dx \,,$$

and/or expected values of functionals like:

$$\mathbf{E}_{\pi}(h) := \int_{\mathcal{X}} h(x) \, \pi(x) \, dx.$$

Calculus? Numerical integration?

Impossible! Typical π is something like . . .

Typical π : Variance Components Model

$$\pi(V, W, \mu, \theta_1, \dots, \theta_K)$$

$$= C e^{-b_1/V} V^{-a_1-1} e^{-b_2/W} W^{-a_2-1}$$

$$\times e^{-(\mu-a_3)^2/2b_3} V^{-K/2} W^{-\frac{1}{2} \sum_{i=1}^K J_i}$$

$$\times \exp \left[-\sum_{i=1}^K (\theta_i - \mu)^2/2V \right]$$

$$-\sum_{i=1}^K \sum_{j=1}^{J_i} (Y_{ij} - \theta_i)^2/2W ,$$

with, say, K = 19, d = 22.

High-dimensional! Complicated! What to do?

Estimation from sampling: Monte Carlo

Can try to sample from π , i.e. generate i.i.d.

$$X_1, X_2, \ldots, X_M \sim \pi$$

(meaning that $\mathbf{P}(X_i \in A) = \int_A \pi(x) dx$).

Then can estimate by e.g.

$$\mathbf{E}_{\pi}(h) \approx \frac{1}{M} \sum_{i=1}^{M} h(X_i).$$

Good. But how to sample? Often infeasible!
Instead ...

Markov chain Monte Carlo (MCMC)

Define a Markov chain $X_0, X_1, X_2, ...$, such that for large n, $\mathbf{P}(X_n \in A) \approx \int_A \pi(x) dx$.

(Just <u>approximate</u> ... and not i.i.d.)

Still, hopefully for $M \gg B \gg 1$,

$$\mathbf{E}_{\pi}(h) \approx \frac{1}{M-B} \sum_{i=B+1}^{M} h(X_i).$$

But how to define a simple Markov chain such that

$$\mathbf{P}(X_n \in A) \to \int_A \pi(x) \, dx$$

The Metropolis Algorithm

 π = target density (important! complicated! high-dim!) Goal: obtain samples from π .

The algorithm : for $n = 1, 2, 3, \ldots$,

- $Y_n := X_{n-1} + Z_n$, where $Z_n \sim Q$ (i.i.d., symmetric)
- $\alpha := \min\left(1, \frac{\pi(Y_n)}{\pi(X_{n-1})}\right)$
- with probability $\alpha, X_n := Y_n$ ("accept")
- else, with probability 1α , $X_n := X_{n-1}$ ("reject")

Assuming "irreducibility", have $\mathbf{P}(X_n \in A) \to \pi(A)$. Good!

Example #1 : Java applet

 $\pi(\cdot)$ simple distribution on $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}.$

[Take $\pi(x) = 0$ for $x \notin \mathcal{X}$.]

$$Q(\cdot) = \text{Uniform}\{-1, 1\}.$$
 [APPLET]

Works.

But what if $Q(\cdot) = \text{Uniform}\{-2, -1, 1, 2\}$.

Or, $Q(\cdot) = \text{Uniform}\{-\gamma, -\gamma + 1, \dots, -1, 1, 2, \dots, \gamma\}.$

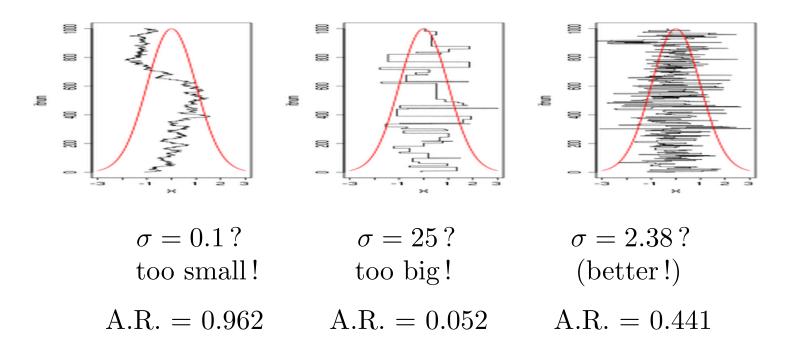
Which γ is best?? ("optimise")

Good γ is <u>between</u> the two extremes, i.e. acceptance rate should be far from 0 and far from 1.

("Goldilocks Principle")

Example #2 : N(0,1)

Target $\pi(\cdot) = N(0,1)$. Proposal $Q(\cdot) = N(0,\sigma^2)$. Which σ ??



What about higher dimensions? (need smaller $\sigma \dots$)

How to make theoretical progress?

Consider diffusion limits!

Analogy: if $\{X_n\}$ is simple random walk, and $Z_t = d^{-1/2}X_{dt}$ (i.e., we speed up time, and shrink space), then as $d \to \infty$, the process $\{Z_t\}$ converges to Brownian motion.

Theorem [Roberts, Gelman, Gilks, AAP 1994]:

If $\{X_n\}$ is a Metropolis algorithm in high dimension d, with $Q(\cdot) = N(0, \frac{\ell^2}{d}I_d)$, and $Z_t = d^{-1/2}X_{dt}^{(1)}$, then under "certain conditions" on $\pi(\cdot)$, the process $\{Z_t\}$ converges to a <u>diffusion</u>.

More precisely, as $d \to \infty$, $Z_t = d^{-1/2} X_{dt}^{(1)}$ converges to a Langevin diffusion which satisfies:

$$dZ_t = h(\ell)^{1/2} dB_t + \frac{1}{2} h(\ell) \nabla \log \pi(Z_t) dt,$$

where

speed =
$$h(\ell) = 2 \ell^2 \Phi(-C_{\pi}\ell/2)$$

and

acceptance rate
$$\equiv A(\ell) = 2\Phi(-C_{\pi}\ell/2)$$
.

(Here
$$C_{\pi}$$
 depends on $\pi(\cdot)$, and $\Phi(x) = \int_{-\infty}^{x} \frac{e^{-u^{2}/2}}{\sqrt{2\pi}} du$.)

<u>Key point</u>: algorithm's speed $h(\ell)$ is <u>explicitly</u> related to its asymptotic acceptance rate $A(\ell)$.

Lots of information here!

- The speed $h(\ell)$ is related to the acceptance rate $A(\ell)$.
- To optimise the algorithm, we should maximize $h(\ell)$.
- The maximization is easy: $\ell_{opt} \doteq 2.38/C_{\pi}$.
- Then we can compute that : $A(\ell_{opt}) \doteq 0.234$.

So, for $Q(\cdot) = N(0, \sigma^2 I_d)$, it is <u>optimal</u> to choose

$$\sigma^2 = \frac{\ell_{opt}^2}{d} = \frac{(2.38)^2}{(C_{\pi})^2 d},$$

which leads to an acceptance rate of 0.234.

Clear, simple rule – good!

(Also shows algorithm's running time is O(d).)

(10/22)

What are these "conditions" on π ?

Original result : $\pi(\mathbf{x}) = \prod_{i=1}^d f(x_i)$ for fixed f (i.i.d.).

Very restrictive, artificial condition.

Some generalizations (Bédard, AAP 2007):

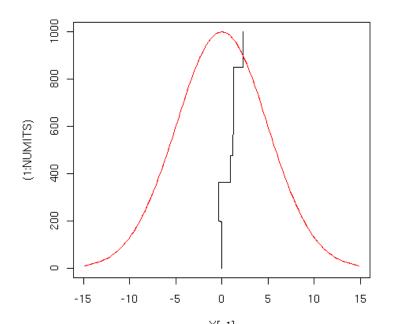
 $\pi(\mathbf{x}) = \prod_{i=1}^{d} \theta_i(d) f(\theta_i(d) x_i)$, where certain $\{\theta_i(d)\}$ repeat more and more as $d \to \infty$. More flexible! (Also, for certain other cases, 0.234 is no longer optimal: Bédard, SPA 2008.)

Anyway, 0.234 is often <u>nearly</u> optimal, even if the theorem conditions are not satisfied. ("robust")

But does acceptance rate tell us everything?

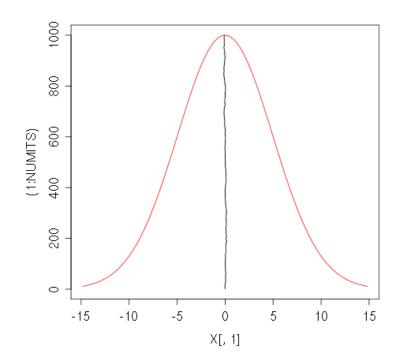
Example #3: $\pi = N(0, \Sigma)$ in dimension 20

First try : $Q(\cdot) = N(0, I_{20})$ (acc rate = 0.006)



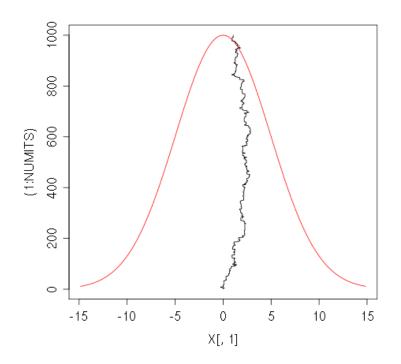
Horrible: $\Sigma_{11} = 24.54$, $E(X_1^2)^{\times [1]} = 1.50$.

Second try :
$$Q(\cdot) = N(0, (0.0001)^2 I_{20})$$
 (acc=0.892)



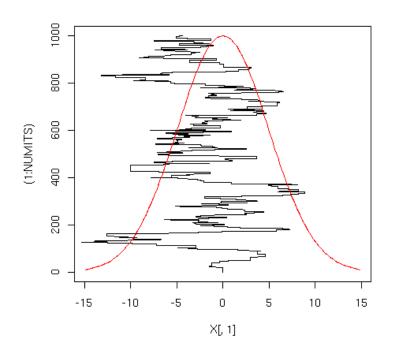
Also horrible: $\Sigma_{11} = 24.54$, $E(X_1^2) = 0.0053$.

Third try:
$$Q(\cdot) = N(0, (0.02)^2 I_{20})$$
 (acc=0.234)



Still poor : $\Sigma_{11} = 24.54$, $E(X_1^2) = 3.63$.

Fourth try :
$$Q(\cdot) = N(0, [(2.38)^2/20] \Sigma)$$
 (acc=0.263)



Much better: $\Sigma_{11} = 24.54$, $E(X_1^2) = 25.82$.

Optimal Proposal Covariance

Theorem [Roberts and R., Stat Sci 2001]:

Under certain conditions on $\pi(\cdot)$, the optimal Metropolis algorithm Gaussian proposal distribution as $d \to \infty$ is

$$Q(\cdot) = N(0, ((2.38)^2/d) \Sigma).$$

(Not $N(0, \sigma^2 I_d)$...) Furthermore, with this choice, the asymptotic acceptance rate is again 0.234.

And, optimal / <u>nearly</u> optimal for many other high-dimensional densities, too.

But this only helps if Σ is known!

What if it isn't??

How to use this result if Σ is unknown?

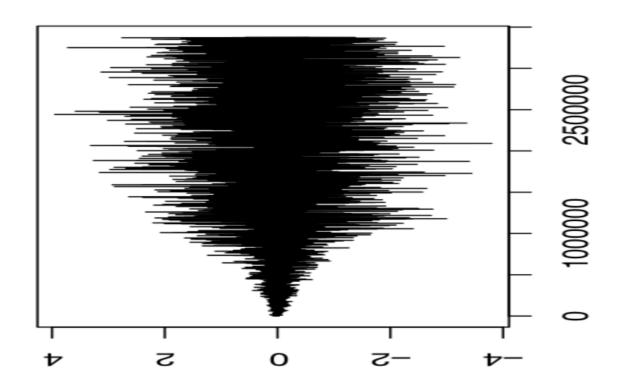
Use <u>adaptive</u> MCMC! (Haario et al., Bernoulli 2001)

- Replace Σ by the empirical estimator Σ_n .
- Hope that for large n, we have $\Sigma_n \approx \Sigma$.
- Then $N(0, ((2.38)^2/d)\Sigma_n) \approx N(0, ((2.38)^2/d)\Sigma)$.
- So, use this proposal instead!

Are we allowed to do this?? (Subtle, because the process is no longer Markovian.)

- In examples, it usually works well ... (next page)
- But not always ... [APPLET]

Good adaptation in dimension 200 ...



Is Adaptive MCMC Valid??

Theorem [Roberts and R., J Appl Prob 2007]: Yes, any adaptive MCMC converges asymptotically to $\pi(\cdot)$, assuming:

- 1. "Diminishing Adaptation": Adaption chosen so that $\lim_{n\to\infty} \sup_{x\in\mathcal{X}} \sup_{A\subseteq\mathcal{X}} |P_{\Gamma_{n+1}}(x,A) P_{\Gamma_n}(x,A)| = 0 \quad \text{(in prob.)}$
- 2. "Containment": Times to stationary from X_n , if we fix $\gamma = \Gamma_n$, remain bounded in probability as $n \to \infty$. [Technical condition. Satisfied e.g. under <u>compactness</u> and <u>continuity</u>.]

Meanwhile, in applications, adaption often leads to significant speed-ups, even in hundreds of dimensions (Roberts and R., JCGS 2009; Richardson, Bottolo, R., Valencia 2010).

Another application: Simulated Tempering

Simulated Tempering: replace π by a family $\{\pi^{\beta_i}\}_{i=1}^m$, with $0 \le \beta_m < \beta_{m-1} < \ldots < \beta_0 = 1$.

Here π^{β_m} is the "hot" distribution (easily sampled).

And $\pi^{\beta_0} = \pi$ is the "cold" distribution (the distribution of interest, but hard to sample).

<u>Hope</u> the algorithm can move efficiently between the different π^{β_i} , so it can "benefit" from π^{β_m} to efficiently explore π^{β_0} .

Question: how to choose the values β_i ?

Often chosen to be "geometric": $\beta_i = a^i$ for 0 < a < 1.

Theorem [Atchadé, Roberts, R., Stat & Comput 2010] : optimal to choose $\{\beta_i\}$ so that the asymptotic acceptance rate for moves $\beta_i \mapsto \beta_{i\pm 1}$ is 0.234. (Not necessarily geometric!)

Langevin Algorithms

If possible, it's more efficient to use a <u>non</u>-symmetric proposal distribution, inspired by Langevin diffusions:

$$Y_n = X_{n-1} + \sigma Z_n + \frac{\sigma^2}{2} \nabla \log \pi (X_{n-1}).$$

<u>Theorem</u> [Roberts and R., JRSSB 1997]:

Optimal choice is now $\sigma = \ell d^{-1/6}$ (not $\sigma = \ell d^{-1/2}$), and $A(\ell_{opt}) \doteq 0.574$ (not $A(\ell_{opt}) \doteq 0.234$).

In this case, the algorithm's running time is $O(d^{1/3})$, not O(d), with optimal acceptance rate 0.574, not 0.234.

Summary

- The Metropolis algorithm is very important.
- The optimisation of the algorithm can be crucial.
- Want acceptance rate far from 0, far from 1.
- Various theorems tell us how to optimise under certain conditions: 0.234, $N(0, (2.38)^2\Sigma/d)$, etc.
- Even if some information is unknown (e.g., Σ), can still <u>adapt</u> towards the optimal choice; valid if the adaption satisfies "Diminishing Adaptation" and "Containment".
 - Can lead to tremendous speed-up in high dimensions.
 - Application to computing rare tail probabilities of $\pi(\cdot)$?

http://probability.ca/jeff/