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Spatial dependence is usually introduced into spatial models us-
ing some measure of physical proximity. When analysing COVID-
19 case counts, this makes sense as regions that are close
together are more likely to have more people moving between
them, spreading the disease. However, using the actual number
of trips between each region may explain COVID-19 case counts
better than physical proximity. In this paper, we investigate the
efficacy of using telecommunications-derived mobility data to
induce spatial dependence in spatial models applied to two Span-
ish communities’ COVID-19 case counts. We do this by extending
Besag York Mollié (BYM) models to include both a physical
adjacency effect, alongside a mobility effect. The mobility effect
is given a Gaussian Markov random field prior, with the number
of trips between regions as edge weights. We leverage modern
parametrizations of BYM models to conclude that the number
of people moving between regions better explains variation in
COVID-19 case counts than physical proximity data. We suggest
that this data should be used in conjunction with physical
proximity data when developing spatial models for COVID-19
case counts.
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1. Introduction

Spatial analyses of COVID-19 case data were first published as early as March of 2020 (Huang
t al., 2020; Arab-Mazar et al., 2020; Giuliani et al., 2020), in an attempt to characterize, predict,
nd attenuate the severity of the pandemic. Subsequent studies have noted substantial spatial
ependence in COVID-19 case counts (Kang et al., 2020; Bilal et al., 2020). This makes sense as
egions that are close to each other likely have more people moving between them, spreading the
isease to nearby regions.
Many groups have attempted to model COVID-19 case counts as a function of climate (Liu et al.,

020; Shi et al., 2020; Briz-Redón and Serrano-Aroca, 2020), healthcare quality (Sugg et al., 2021),
ocioeconomic factors (Baum and Henry, 2020) and more. More recently, mobility data has become
ore abundant and popular for modelling COVID-19 transmission. This makes sense because the
isease spreads through human contact, meaning that case counts are likely to be a function of
he number of people moving around. Such mobility data has been used to model the evolution
f the epidemic in Spain (Aràndiga et al., 2020; Iacus et al., 2020), assess the effectiveness of the
panish lockdown (Orea and Álvarez, 2020), monitoring the epidemic in Switzerland (Persson et al.,
021), identify at-risk populations in France during a lockdown (Pullano et al., 2020), individual-
evel infection tracing in China (Kraemer et al., 2020), assess the timing of stay-home orders (Audirac
t al., 2020), and evaluate the effectiveness of social distancing in the United States (Badr et al.,
020). This data can be found in many forms, but is commonly found in the form of aggregated
real mobility matrices. If we denote a mobility matrix M , [M]ij corresponds to the number of trips

from region i to region j, and M ii represents the number of trips within region i.
These data have been applied in a variety of different models to answer numerous questions,

but lack of available methods makes it difficult for researchers to use this data to its full potential.
In this paper, we demonstrate a novel method for analysing this data, whereby the mobility data
is used as edge weights in a Gaussian Markov random field (network) model. Previous work using
network models have been applied to mobility data in the form of a network compartment model
(Chang et al., 2021) which was used to conduct inference regarding societal inequities, and inform
reopening. This work does not aim to make such claims, but rather demonstrate the efficacy of
mobility data in modern parametrizations of Besag, York, and Mollié (BYM) models (Besag et al.,
1991) and their extensions.

BYMmodels have been used frequently in the spatial analysis literature due to their effectiveness
and computational efficiency. In these models, the spatial component is comprised of Conditional
Autoregressive (CAR) (Besag, 1974) models and conventional random effects. This means that
the spatial effect of region i depends only on its ‘‘neighbours’’. Neighbours could be defined by
any quantity the analyst has access to, but is most often defined by physical adjacency, i.e. if
two regions share a common border, they are considered neighbours. Several ICAR/BYM models
have been applied to COVID-19 data with neighbours defined in this way (DiMaggio et al., 2020;
Huang and Brown, 2021; Brainard et al., 2020). Although these spatial model components based on
physical adjacency are powerful and computationally efficient, it makes more sense to use mobility
between regions to induce spatial dependence in COVID-19 models because the disease spreads via
person-to-person contact.

In this paper, we build a BYM model where mobility data is used to induce spatial dependence
between regions. Using mobility data within two Communities in Spain, Madrid and Castilla-
Leon, we demonstrate the value of mobility data for COVID-19 spatial modelling applications.
Furthermore, we extend modern parametrizations of BYM models to account for both physical
adjacency and mobility simultaneously, and show that mobility data captures spatial variation in
COVID-19 case counts much more accurately than physical adjacency alone.

This is a short focused paper with the following plan. Section 2 presents the data and the
modelling strategy based on particular parametrizations of BYM models. The results come in
Section 3, and the paper ends with a final discussion in Section 4.
2
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Fig. 1. Number of trips greater than 500 metres (a and b) and daily case counts (c and d) in the two Communities of
Spain from March to June 2020.

2. Methods

2.1. Data

This paper is focused on two regions in Spain. Castilla-Leon is the largest Community in Spain by
area and is located in the northwest part of Spain, with a population of 2.5 million. The Community
of Madrid is located in the central part of Spain and has a population of around 6.8 million, and it
is home of the capital of the country, Madrid City, with 3.3 million inhabitants.

The human mobility data was obtained from Barcelona Supercomputing Center Flow-map
dashboard (Valencia, 2021). Trips within Madrid and Castilla-Leon were extracted from over 13
million phone records provided by a Spanish cellphone company. Both passive (GPS) and active
(text messages, calls etc.) data were aggregated to construct daily movement matrices in each of
the Communities, prior to the authors acquisition of the data. Given that trips were only recorded
from one cellphone company, adjustment was made to estimate the number of total trips between
each region. As a result, the entries of the mobility matrices are non-integer values.

Figs. 1(a) and 1(b) show the total daily movement between regions in Madrid, and Castilla-
Leon, respectively. There is a sharp drop in the number of trips around March 14th 2020, which
corresponds to a nation-wide lockdown. Lockdown restrictions began to ease around May 11th,
where the number of trips slowly began to rise. Figs. 1(c) and 1(d) show the number of cases of
COVID-19 cases in both Communities. COVID-19 daily cases data were retrieved from the open
data portal of Castilla-Leon (General Directorate of Information Systems, Quality and Pharmaceutical
3
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Provision, 2021) and from the Epidemiological Surveillance Network of Madrid (Anon, 2021). Notice
that the movement drops as cases rise, because a lockdown was implemented in response to the
increasing severity of the epidemic. In order to avoid this potential ‘‘reverse causality" problem, we
will only use movement data in the first week of March. Our justification for this is that there is a
time lag between when the virus spreads and the resulting COVID cases are confirmed. That is, the
‘‘first wave’’ of the epidemic was likely influenced mostly by the movement that occurred prior to
the peak in cases, and less by the movement that occurred during it.

Fig. 2 shows the spatial distribution of the COVID-19 case rates up until May 31, 2020. The
ases per thousand people range from (approximately) 0–30 in Madrid, and 0–100 for Castilla-Leon.
e can see that there is substantial variation in the case rates within each of these Communities.
ote that the extreme values in these plots are mostly small regions, which makes sense since the
ariance of case rates is higher when population is small. In the north of Madrid, there is a cluster
f municipalities that have very low case rates. In Castilla-Leon, case rates are highest near the
outheast border, which is the border to Madrid.
Fig. 3 shows the number of trips to, from, and within each Municipality of Madrid (there are 179

f these small regions), and Castilla-Leon (there are 245 health zones). Madrid and Castilla-Leon
re considered separately throughout this paper. Although they are adjacent, data on movements
etween the two communities are not available. In Madrid, there is a lot of movement in and around
adrid City, and less movement in the more rural areas. Castilla-Leon shows a less predictable
ovement pattern, as there is not a single capital city that accounts for most of the movement.
his movement data will be used to induce spatial correlation between regions, as described in
ection 2.3.

.2. Spatial autoregressive models

Besag, York, and Mollié (BYM) models (Besag et al., 1991) are widely used in spatial epidemi-
logy and disease mapping due to their simplicity and computational efficiency. They assume the
ncidence of disease in region i follows a Poisson distribution

Yi ∼ Pois(Eiλi)

where Yi is the number of infected cases in region i, and Ei is some form of expected count or offset,
hich could be the at-risk population, exposure time, etc. The log-relative risk, λi, is often modelled
s

log(λi) = µ + βX + φi + θi

φi|φ−i ∼ N

(
1∑
j wij

∑
j

wijφj,
σ 2

φ∑
j wij

)
(1)

θi
i.i.d
∼ N(0, σ 2

θ )

here µ is the overall intercept, β is the effect of spatial covariates, φi is the structured spatial
andom effect, and θi is the unstructured spatial random effect which allows for overdispersion in
he response. In the spatial formulation of the BYM model, wij = 1 when regions i and j share a
ommon border, and 0 otherwise. That is, region i’s structured spatial effect is only conditionally
ependent on its neighbours, given all other regions. The distributions {φi|φ−i}

n
i=1 are known as the

ull conditionals, where φ−i is short hand for the set {φ1, φ2, . . . φi−1, φi+1, . . . φn}. We can see from
1) that E(φi|φ−i) is a weighted average of its neighbours, resulting in spatial smoothing. These full
onditionals correspond to the joint distribution of the φ’s being a Gaussian Markov random field
GMRF) (Rue and Held, 2005), with

φ ∼ MVN (0,Q−1)

Q = σ−2
φ D(I − W )

here W is a matrix of weights such that wij > 0 for i ̸= j and wii = 0, and σ 2
φ is a variance

arameter to be estimated. D is a diagonal matrix such that D =
∑

w . This definition ensures
ii j ij

4
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Fig. 2. COVID-19 cases per thousand, up to May 31 2020 for two communities in Spain. Background map ©Stamen Desi
n.

hat the precision matrix, Q , is both symmetric and positive definite. In addition to the 0–1 weights

based on regions being adjacent, other weighting schemes, such as inverse of Euclidean distance
5
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Fig. 3. Number of trips (incoming, outgoing, and within) the 179 regions of Madrid, and 245 health zones of Castilla-Leon,
for the period March 1 to March 7 2020.

between regions, have been used. For a comparison of common weighting schemes, see Duncan
et al. (2017). When we specify Q in this way, we refer to this as an Intrinsic Autoregressive (ICAR)
6
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model for φ. The joint density function has a computationally convenient form with

p(φ) ∝ exp
[
−

1
2σφ

∑
i<j

wij(φi − φj)2
]

which is sometimes referred to as the pairwise difference formula. Notice that this density is invariant
to the addition of a constant to each φi, leaving the spatial random effects unidentifiable up to a
constant. This is typically remedied by imposing the constraint

∑
i φi = 0 (Duncan et al., 2017). We

will now modify this BYM model to account for movement between regions, in addition to physical
adjacency.

2.3. Movement augmented BYM model

In order to extend the BYM model to allow for spatial correlation based on movement data,
a second ICAR term, γi, with dependence structure governed by the movement data is added to
the model. We also retain an adjacency-determined spatial effect φi in order to infer the relative
importance of mobility-based and adjacency-based spatial dependence in determining COVID-19
case counts. The resulting model is

log(λi) = µ + βXi + φi + γi + θi

φi|φ−i ∼ N

(
1∑
j wij

∑
j

wijφj,
σ 2

φ∑
j wij

)

γi|γ−i ∼ N

(
1∑
j vij

∑
j

vijγj,
σ 2

γ∑
j vij

)
θi ∼ N(0, σ 2

θ )

here φi and γi are the spatial random effects with priors based on the physical data and movement
ata respectively. The geographically-defined process φi has weights wij = 1 if regions i and j share
common border and are 0 otherwise, while the movement-defined process γi has weights vij

epresenting the number of trips between regions i and j. Using mobility as edge weights in network
odels has shown to be effective in the context of infectious diseases (Schrödle et al., 2012; Volkova
t al., 2010; Geilhufe et al., 2014). Schrödle et al. (2012) used mobility weights in an autoregressive
erm, which allowed the weights matrices to be asymmetric. However, given that our mobility data
s being used in a Gaussian prior for a random effect, the precision matrices of φ and γ , Qφ and Qγ ,
ust be symmetric. Therefore we require wij = wji and vij = vji. While the first equality will always

be true, the mobility matrices are not perfectly symmetric, thus symmetry was induced by defining
vij as the sum of the numbers of trips from i to j and from j to i. The GRMF does not account for
the movement within a region, so the movement within a region was included in the model as a
spatial covariate Xi (fixed effect). That is, Xi was computed as

Xi =

vii
Ei

− mean
j

( vjj
Ej
)

sd
j
( vjj
Ej
)

where vii/Ei is the number of trips per person within a region, and mean(vjj/Ej) and sd(vjj/Ej) are
he mean and standard deviations of the trips per person in all other regions. This model was run
n both the Madrid and Castilla-Leon data.
There are two main drawbacks with the formulations of BYM models presented thus far. Firstly,

he interpretation of the parameters σγ and σφ depend on the average number of neighbours and the
otal number of trips for each region, and hence their magnitudes are not comparable (Sørbye and
ue, 2014). Secondly, σφ, σγ , and σθ are hard to estimate without very careful choices of hyperpriors
Leroux et al., 2000). We will now address these shortcoming via reparametrizations.
7
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2.4. Reparametrizations and priors

In order to solve issues with comparability, interpretability, and estimation, we apply a repa-
ameterization of our model that is inspired by Riebler et al. (2016) with

σ 2
≈ Var(φi + γi + θi)

φ∗

i |φ
∗

−i ∼ N

(
1∑
j wij

∑
j

wijφ
∗

j ,
ρφσ 2

sφ
∑

j wij

)

γ ∗

i |γ∗

−i ∼ N

(
1∑
j vij

∑
j

vijγ
∗

j ,
ργ σ 2

sγ
∑

j vij

)
θi ∼ N(0, ρθσ

2)

here ρφ + ργ + ρθ = 1 and 0 < ργ , ρφ, ρθ < 1. The priors for σ and ρ are

σ ∼ N+(0, 1)
ρ ∼ Dirichlet(1, 1, 1)

ote that

φ∗

i = σ

(√
ρφ/sφ

)
φi

γ ∗

i = σ

(√
ργ /sγ

)
γi.

Here, σ 2 is the combined variance of the spatial effects, and the ρ’s are mixing parameters,
interpreted as the proportion of the combined spatial variance explained by each model component.
Note that ρθ = 1 reduces the spatial component to purely overdispersion, ρφ = 1 reduces the spatial
component of the model to an adjacency ICAR model for the spatial effects, and ργ = 1 reduces the
spatial component to a mobility ICAR model. Most importantly, if ργ > ρφ then this means that the
mobility data better explains variation in COVID-19 case counts than the adjacency data. As long as
the spatial weights matrix and the mobility weights matrix are linearly independent, then having
both spatial and mobility terms in our model present no issues with identifiability (Rodrigues and
Assunçao, 2012). Finally, sγ and sφ are scaling factors, such that the geometric means of s−1

γ Var(γi)
nd s−1

φ Var(φi) are both ≈ 1 for each i, meaning that γ ∗

i and φ∗

i are the log relative risk contributions
from the movement data and physical data respectively (Sørbye and Rue, 2014). Scaling is absolutely
necessary in order to conduct inference on the ρ’s. We compute the scaling factors as follows

s = exp
(1
n

n∑
i=1

log[Q−
]ii

)
where Q− is the generalized inverse of the n × n precision matrix (Freni-Sterrantino et al., 2018).
In order to scale the precision matrices of the spatial effects, the generalized inverse for sparse
matrices from (Rue et al., 2017) was used. The diagonal elements, [Q−

]ii, of Q− are referred to as
he marginal variances of the structured spatial effects, i.e var(φi) = [Q−

φ ]ii and var(γi) = [Q−

γ ]ii.
As was the case with the ICAR model in (1), we can derive the full conditionals of the combined

patial effect, τi = φ∗

i + γ ∗

i + θ∗

i , for the model described in Section 2.3

τi|τ−i ∼ N

[ ∑
j(

ρφ

sφ
wij +

ργ

sγ
vij)τj

ρφ

sφ

∑
j wij +

ργ

sγ

∑
j vij + ρθ

,
σ 2

ρφ

sφ

∑
j wij +

ργ

sγ

∑
j vij + ρθ

]
(2)

hese full conditionals can help provide some intuition as to the mechanism by which this model
rovides spatial smoothing. As ργ → 1, τi is simply the weighted sum of the other regions, where
he weights are the proportion of region i’s total movement between each other region. If ρφ → 1,
he conditional mean of τ reduces to the arithmetic average of the spatial effects of its neighbours.
i

8
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If ρθ → 1, then the conditional mean shrinks to 0 (remember that ρφ + ργ + ρθ = 1). Given that
ρθ is positive, the conditional mean is always shrunk towards 0, resulting in spatial smoothing.
In practice, the conditional mean will be a weighted average of the estimates smoothed by the
movement GMRF, the physical GMRF, and 0. It is important to note here that the wij/sφ and vij/sγ
re relative measures due to the scaling factors. That is, doubling the total amount of movement
as no effect on the conditional mean or variance of τi. This is in contrast to the combined spatial
ffects in the commonly used Leroux model (Leroux et al., 2000). Additionally, the variance of τi|τ−i
s lower when region i has a lot of movement or many neighbours, relative to the other regions.

.5. Inference, computation, and validation

Four chains each with 3000 iterations of No U-Turn Sampling were used for parameter estimation
ithin Stan (Stan Development Team, 2021). The first 1500 iterations were used as a warm-up, the
500 remaining iterations from each chain were thinned by a factor of 10, leaving 600 total posterior
amples to perform inference. As mentioned in Section 2.2, we require

∑
i φi = 0. In practice, we

se the soft constraint∑
i

φi ∼ N(0, 0.001)

or computation purposes (as recommended by the Stan team Morris et al., 2019). To complete the
odel, priors for β and µ were N(0, 1). To ensure the robustness of our results, we also ran BYM
odels using the adjacency data and the movement data separately. That is, for both Madrid and
astilla-Leon, we ran a model where we assumed ργ = 0, and a separate model where ρφ = 0. The
esults of these four models are presented in Section 3.2.

Our code and posterior samples are posted at https://github.com/cghr-toronto/public/tree/mast
r/covid/spain_public_code.

. Results

.1. Joint model

Table 1 shows posterior medians and credible intervals for the mixing parameters for the
odel with both movement and adjacency spatial effects. For both Madrid and Castilla-Leon, the
roportion of spatial variation explained by γ is much higher than that of φ and θ. The posterior
robability that ργ > ρφ was 0.997 for Madrid, and 0.998 for Castilla-Leon. However, φ does
eem to account for a non-trivial amount of spatial variation in both Madrid and Castilla-Leon.
his means that although movement data is likely more explanatory, adjacency data can help
ith explaining variation in COVID-19 cases. Additionally, there is a substantial amount of spatial
ariation explained by the unstructured spatial effect for Madrid. This is not the case for Castilla-
eon, as most of the mass of the posterior of ρθ is near 0. This makes sense given that Madrid
as a large metropolitan centre surrounded by a mix of suburbs and rural areas, so there are
robably spatial confounders that our model is missing. For a plot of the posterior densities of ρ,
ee Appendix A.
Figs. 4(a) through 4(d) show the spatial distribution γ∗ and φ∗, plotted using the same colour

cale for comparability. We can see that γ ’s log-relative risks have a lot more spatial variation in
oth Communities. The log-relative risks for φ tend to have smooth spatial gradients, while γ tends
o identify clusters of regions as high-risk areas. As seen in Eq. (2), the expectation of the combined
patial effects are a weighted average of these spatial effects, and 0 (notice that the numerator can
e rewritten as

∑
j(

ρφ

sφ
wij +

ργ

sγ
vij + ρθ · 0)τj where ρθ > 0). Figs. 4(e) and 4(f) show the predicted

ases per 1000 people per region, showing highly similar patterns to the observed values in Fig. 2.
The standard deviation was slightly larger for Castilla-Leon than it was for Madrid. Fig. B.2

hows the spatial distribution of the standard deviation of the cases per thousand people in both
ommunities. Here, we can see that the standard deviation is pretty small in and around Madrid-
ity, because the movement to and from Madrid-city is causing a high-degree of spatial smoothing
9
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p

Fig. 4. Log-relative risk contributions (a–d) from the movement effects (γ∗) and spatial effects (φ∗). The predicted cases
er thousand people are also presented (e–f).
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Table 1
Posterior medians, and 95% credible intervals for ρ in BYM models using movement and physical (adjacency) data in the
ame model.

Parameter Madrid Castilla-Leon
Est (95% CrI) Est (95% CrI)

ρ

Movement 0.76 (0.54, 0.89) 0.88 (0.66, 0.98)
Neighbour 0.13 (0.01, 0.39) 0.09 (0.01, 0.30)
Independent 0.10 (0.02, 0.25) 0.02 (0.00, 0.09)

µ −5.36 (−5.51, −5.24) −3.75 (−3.78, −3.73)
β 0.12 ( 0.05, 0.20) −0.01 (−0.04, 0.02)
σ 0.65 ( 0.55, 0.78) 0.72 ( 0.63, 0.83)

Table 2
Posterior medians, and 95% credible intervals for ρ in BYM models using movement and physical (adjacency) data in
eparate models.

Parameter Madrid Castilla-Leon
Est (95% CrI) Est (95% CrI)

ρ
Movement 0.82 ( 0.66, 0.91) 0.95 ( 0.89, 0.98)
Neighbour 0.56 ( 0.22, 0.83) 0.77 ( 0.58, 0.91)

µ
Movement −5.34 (−5.48, −5.23) −3.75 (−3.78, −3.73)
Neighbour −5.18 (−5.30, −5.09) −3.74 (−3.78, −3.70)

β
Movement 0.12 ( 0.05, 0.18) −0.02 (−0.05, 0.02)
Neighbour 0.13 ( 0.01, 0.24) −0.01 (−0.05, 0.04)

σ
Movement 0.63 ( 0.55, 0.76) 0.74 ( 0.65, 0.83)
Neighbour 0.66 ( 0.56, 0.83) 0.58 ( 0.51, 0.66)

in the surrounding area. The effect of movement within regions, β , is associated with larger case
ounts in Madrid, but this is not the case for Castilla-Leon. This small covariate effect could result
n more variance being attributable to the random effects, potentially contributing to the larger σ
n Castilla-Leon.

.2. Model validation - individual models

Table 2 shows posterior medians and credible intervals for the ρ parameter from the movement
nd physical BYM models described in Section 2.5, fit separately to Madrid and Castilla-Leon
four models total). In both regions, the model where spatial smoothing is induced by population
ovement explains a higher proportion of the variation in the outcome, indicated by the posterior
ensity of ρ having more mass near 1. Additionally, the BYM model that used physical adjacency
s a spatial smoother had a much wider credible interval for ρ, indicating more model uncertainty.
oth models show more uncertainty in the region of Madrid than for Castilla-Leon, likely due to
he fact that Madrid is more heterogeneous in terms of population density and other factors. For
ull posterior densities of the ρ parameter, see Fig. A.2.

. Discussion

In this paper, we have demonstrated that there is much value in using mobility data in
ombination with geographical proximity for defining correlation structures COVID-19 incidence
ata. We showed that even while using only one week of movement data, we were able to explain
he spatial variation in COVID-19 counts better than using the classic BYM model. Additionally, we
howed that the model can be re-parametrized so that the means by which smoothing occurs in
hese mobility models is intuitive.

A key limitation of this work is that the models presented in this paper do not serve as individual-
evel infectious disease models, as correlation is induced by a latent effect rather than direct

ependence between the counts. However, this will be a natural extension of this work and would

11
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Fig. A.1. Posterior Density of the proportion of variance explained by each of the 3 spatial parameters when adjacency
and movement data are included in the same model.

Fig. A.2. Posterior Density of the proportion of variance explained by spatial components when adjacency and movement
ata are used in separate models (model validation).

equire the addition of many more parameters, including multiple mobility network components
t various time points. This will ultimately pose a computational challenge as well.
An additional limitation of this work is that the availability and structure of mobility data will

ary across data sources, and may only be available in higher income countries. Furthermore, there
s selection bias in the movement data, as it only tracks those who actually have a cellphone, which
ay tend to be younger and more economically advantaged individuals. Given potential differences

n quality of these data, its efficacy in spatial models may need to be assessed on a case by case
asis.
Furthermore, the models presented in this paper may suffer from overfitting. A potential remedy

or this would be to put a penalized complexity prior (Simpson et al., 2017) on the mixing parame-
ers, which may improve inference by shrinking ργ (and perhaps ρφ) towards 0. An interesting area
or future work would be to combine Dirichlet and penalized complexity priors to specify a joint
rior for the mixing parameters as described in Fuglstad et al. (2020), which can be implemented
sing the makemyprior R package (Hem et al., 2021). This was deemed unnecessary for this work,

as we were mainly interested in comparing ργ to ρφ , and felt that our prior should not favour either
one of these terms.
12
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Fig. A.3. Traceplots of ρ.

Despite these limitations, this work demonstrates the value of mobility data and provides the
foundation for various extensions and future work. This data is only becoming more abundant
as time passes, and methods that allow for efficient use of this data are essential to model the
current epidemic, and any spatial epidemiological application where population movement is likely
a predictor of disease.
13
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Fig. B.1. Number of trips to and from Madrid City (white).

Fig. B.2. Standard deviations of predicted cases per thousand people.
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Appendix A. Posterior densities of ρ for various models

See Figs. A.1–A.3.
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Appendix B. Additional spatial plots

See Figs. B.1 and B.2.
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