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Abstract

Classical coupling constructions arrange for copies of the same Markov process started at two dif-

ferent initial states to become equal as soon as possible. In this paper, we consider an alternative

coupling framework in which one seeks to arrange for two different Markov (or other stochastic)

processes to remain equal for as long as possible, when started in the same state. We refer to

this “un-coupling” or “maximal agreement” construction as MEXIT, standing for “maximal exit”.

After highlighting the importance of un-coupling arguments in a few key statistical and probabilistic

settings, we develop an explicit MEXIT construction for stochastic processes in discrete time with

countable state-space. This construction is generalized to random processes on general state-space

running in continuous time, and then exemplified by discussion of MEXIT for Brownian motions

with two different constant drifts.
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1. Introduction

Coupling is a device commonly employed in probability theory for learning about distributions of

certain random variables by means of judicious construction in ways which depend on other random

variables (Lindvall [15] and Thorisson [31]). Such coupling constructions are often used to prove

convergence of Markov processes to stationary distributions (Pitman [21]), especially for Markov

chain Monte Carlo (MCMC) algorithms (Roberts and Rosenthal [24, and references therein]), by

seeking to build two different copies of the same Markov process started at two different initial

states in such a way that they become equal at a fast rate. Fastest possible rates are achieved by

the maximal coupling constructions which were introduced and studied in Griffeath [11], Pitman

[21], and Goldstein [10]. Our results and methods are closely related to the work of Goldstein

[10], who deals with rather general discrete-time random processes. Our situation is related to a

time-reversal of the situation studied by Goldstein [10]. However our approach seems more direct.

In the current work, we consider what might be viewed as the dual problem where coupling is

used to try to construct two different Markov (or other stochastic) processes which remain equal for

as long as possible, when they are started in the same state. That is, we move from consideration

of the coupling time to focus on the un-coupling time at which the processes diverge, and try to

make that as large as possible. We refer to this as MEXIT (standing for “maximal exit” time).

While finalizing our current work, it came to our attention that this construction is the same as

the maximal agreement coupling time of the August 2016 work of Völlering [32], who additionally

derives a lower bound on MEXIT . Nonetheless, we believe the current work complements Völlering

[32] well. It offers an explicit treatment of discrete-time countable-state-space, generalizes the

continuous-time case, and discusses a number of significant applications of MEXIT . We note that

the work of Völlering [32] does not consider the continuous-time case.

In addition to being a natural mathematical question, MEXIT has direct applications to many

key statistical and probabilistic settings (see Section 2 below). In particular, couplings which

are Markovian and faithful (Rosenthal [28], i.e. couplings which preserve the marginal update

distributions even when conditioning on both processes; alternatively “co-adapted” or “immersion”,

depending on the extent to which one wishes to emphasize the underlying filtration as in Burdzy and

Kendall [5] and Kendall [13]) are the most straightforward to construct, but often are not maximal,

while more complicated non-Markovian and non-faithful couplings lead to stronger bounds. The

same is true in the context of MEXIT .
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2. Applications

To motivate the natural role of MEXIT in the existing literature, we first consider the role of

un-coupling arguments in a few statistical and probabilistic settings.

2.1. Bounds on accuracy for statistical tests

Un-coupling has an impact on the theory classical statistical testing. In Farrell [9], amongst other

sources, some function of the data (but not the data itself) is assumed to have been observed. A

statistical test is then constructed to enable detection of the distribution from which the observed

data have been sampled. For example, suppose that data X1, X2, . . . are generated as a draw

either from a multivariate probability distribution P1 or from a multivariate probability distribution

P2. The goal is to determine whether the data was generated from P1 or from P2. For some

function h of the data, and some acceptance region A, the statistical test decides in favor of P1 if

h(X1, . . . , Xn) ∈ A and otherwise decides in favor of P2.

Suppose that there exists an un-coupling time T , such that if X1, X2, . . . are generated from P1,

and if Y1, Y2, . . . are generated from P2 then it is exactly the case that Xi = Yi for all 1 ≤ i ≤ T

(so that Xi 6= Yi for all i > T ). We use P to refer to the joint distribution (in fact, the coupling)

of P1 and P2.

The following proposition uses the un-coupling probabilities to recover a lower bound on the

accuracy of such statistical tests related to Farrell [9, Theorem 1].

Proposition 1. Under the above assumptions, the sum of the probabilities of Type-I and Type-II

errors of our statistical test is at least P [T > n].
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Proof. We apply elementary arguments to the sum of the probabilities of Type-I and Type-II errors:

P2[h(Y1, . . . , Yn) ∈ A] + P1[h(X1, . . . , Xn) 6∈ A] =

= P2[h(Y1, . . . , Yn) ∈ A] + 1− P1[h(X1, . . . , Xn) ∈ A]

= 1−
(
P1[h(Y1, . . . , Yn) ∈ A]− P2[h(X1, . . . , Xn) ∈ A]

)
≥ 1− |P1[h(Y1, . . . , Yn] ∈ A]− P2[h(X1, . . . , Xn) ∈ A]|

≥ 1− ‖LP1(X1, . . . , Xn)− LP2(Y1, . . . , Yn)‖ (definition of total variation distance)

≥ 1− P [Xi 6= Yi for some 1 ≤ i ≤ n] (coupling inequality)

= 1− (1− P [Xi = Yi for all 1 ≤ i ≤ n])

= P [Xi = Yi for all 1 ≤ i ≤ n] = P [T > n] .

2.2. Two independent coin flips

We now turn to the classical probabilistic paradigm of coin flips. Let X and Y represent two

different sequences of i.i.d. coin flips, with probabilities of landing on H (heads) to be q and r

respectively, where 0 ≤ r ≤ q ≤ 1/2. Suppose that we wish to maximise the length of the initial

segment for which coin flips agree:

S = max{t : Xi = Yi for all 1 ≤ i ≤ t} .

For concreteness, we will set q = 0.5 and r = 0.4 throughout this section; the generalization to

other values is immediate.

2.2.1. Markovian Faithful Coupling for Independent Coin Flips

The “greedy” (Markovian and faithful) coupling carries out the best “one-step minorization” coup-

ling possible, separately at each iteration. One-step minorization is essentially maximal coupling

for single random variables. In this case, that means that for each flip, P [X = Y = H] = 0.4,

P [X = Y = T ] = 0.5, and P [X = H, Y = T ] = 0.1. This preserves the marginal distributions of

X and Y , and yields P [X = Y ] = 0.9 at each step. Accordingly, the probability of agreement

continuing for at least n steps is given by P [Xi = Yi for 1 ≤ i ≤ n] = (0.9)n.
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2.2.2. A Look-ahead Coupling for Independent Coin Flips

Let a “look-ahead” coupling be a coupling which instead uses an n-step minorization couple on the

entire sequence of n coin tosses, so that for each sequence s of n different Heads and Tails, it sets

P [X = Y = s] = min(P [X = s] , P [Y = s]). Consequently, if s has m Heads and n−m Tails, then

P [X = Y = s] = min{0.5n, 0.4m0.6n−m} .

Elementary events for which X and Y disagree are assigned probabilities which preserve the mar-

ginal distributions of X and of Y . The simplest way to implement this is to use “independent

residuals”, but other choices are also possible.

This look-ahead coupling leads to a larger probability that X = Y . Indeed, even in the case

n = 2, the probability of agreement over two coin flips under the greedy coupling is given by

P [X = Y ] = (0.9)2 = 0.81 .

The look-ahead coupling delivers a strictly larger probability of agreement over two coin flips:

P [X = Y ] = min(0.52, 0.42) + min(0.52, 0.62) + 2 min(0.52, 0.4 · 0.6)

= 0.42 + 0.52 + 2 · 0.4 · 0.6 = 0.16 + 0.25 + 0.48 = 0.89 .

When n = 2, the matrix of joint probabilities for X and Y under the look-ahead coupling is

calculated to be:

X\Y HH HT TH TT SUM

HH 0.16 0 0 0.09 0.25

HT 0 0.24 0 0.01 0.25

TH 0 0 0.24 0.01 0.25

TT 0 0 0 0.25 0.25

SUM 0.16 0.24 0.24 0.36 1

Marginalizing this coupling on the initial coin flip (“projecting back” to the initial flip, with

n = 1), we see that P [X1 = Y1 = H] = 0.16+0.24 = 0.4, and P [X1 = Y1 = T ] = 0.24+0.01+0.25 =

0.5, and P [X1 = H, Y1 = T ] = 0.09 + 0.01 = 0.1. The projection to the initial flip yields the

same agreement probability as would have been attained by maximizing the probability of staying
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together for just one flip (n = 1). That is, the n = 2 look-ahead coupling construction is compatible

with the n = 1 construction.

Finally, it is worth noting that the n = 2 look-ahead coupling is certainly not faithful. For

example, P [X2 = H |X1 = Y1 = H] = 0.4 6= 0.5, and P [X2 = H |X1 = H, Y1 = T ] = 0.9 6= 0.5,

etc.

2.3. A Look-ahead coupling for independent coin flips: the case n = 3

The matrix of joint probabilities for X and Y under the look-ahead coupling for n = 3 is more

complicated, but can be calculated as:

X\Y HHH HHT HTH HTT THH THT TTH TTT SUM

HHH 0.064 0 0 0.0078 0 0.0078 0.0078 0.0375 0.125

HHT 0 0.096 0 0.0037 0 0.0037 0.0037 0.0178 0.125

HTH 0 0 0.096 0.0037 0 0.0037 0.0037 0.0178 0.125

HTT 0 0 0 0.125 0 0 0 0 0.125

THH 0 0 0 0.0037 0.096 0.0037 0.0037 0.0178 0.125

THT 0 0 0 0 0 0.125 0 0 0.125

TTH 0 0 0 0 0 0 0.125 0 0.125

TTT 0 0 0 0 0 0 0 0.125 0.125

SUM 0.064 0.096 0.096 0.144 0.096 0.144 0.144 0.216 1

With these probabilities, we compute that

P [X = Y ] = 0.064 + 3× 0.096 + 4× 0.125 = 0.852 .

This is greater than the agreement probability of 0.93 = 0.729 that would have be achieved via

the greedy coupling. It is natural to wonder whether or not it is possible always to ensure that

such a construction works not just for one fixed time but for all times. We further expound on this

point in Sections 3 and 4, where discussion of a much more general context shows that that such

constructions always exist.
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2.3.1. Optimal Expectation

Until now, this section has focused on maximising P [Xi = Yi for all 1 ≤ i ≤ n], which is to say,

maximizing P [S ≥ n] with S being the time of first disagreement as above. We now consider the

related question of maximizing the expected value E [S] . Using the greedy coupling, clearly

E [S] =
∞∑
j=1

P [S ≥ j] =
∞∑
j=1

0.9j = 0.9/(1− 0.9) = 9 .

If the different look-ahead couplings are chosen to be compatible, then this shows that E [S] is

the sum for r = 1, 2, . . . of the probabilities that the jth look-ahead coupling was successful. The

work of Sections 3 and 4 shows that such a choice is always feasible, even for very general random

processes indeed.

2.4. Adaptive MCMC

Un-coupling arguments play a natural role in the adaptive MCMC (Markov-chain Monte Carlo)

literature, highlighted in particular by the work of Roberts and Rosenthal [25]. Roberts and

Rosenthal [25] prove convergence of adaptive MCMC by comparing an adaptive process to a process

which “stops adapting” at some point, and then by showing that the two processes have a high

probability of remaining equal long enough such that the second process (and hence also the first

process) converge to stationarity. The authors accomplish this by considering a sequence of adaptive

Markov kernels PΓ1 , PΓ2 , . . . on a state space X , where {Pγ : γ ∈ Y} are a collection of Markov

kernels each having the same stationary probability distribution π, and the Γi are Y-valued random

variables which are “adaptive” (i.e., they depend on the previous Markov chain values but not on

future values). Under appropriate assumptions, the authors prove that a Markov chain X which

evolves via the adaptive Markov kernels will still converge to the specified stationary distribution

π. The key step in the proof of the central result Roberts and Rosenthal [25, Theorem 5] is an

un-coupling approach, highlighted below.

Roberts and Rosenthal [25, Theorem 5] assume that, for any ε > 0, there is a non-negative

integer N = N(ε) such that

‖PNγ (x, ·)− π(·)‖TV ≤ ε
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for all x ∈ X and γ ∈ Y (where ‖ · ‖TV denotes total variation norm of a signed measure).

Furthermore, there is a non-negative integer n∗ = n∗(ε) such that with probability at least 1−ε/N ,

sup
x∈X
‖PΓn+1(x, ·)− PΓn(x,·)‖TV ≤ ε/N2

for all n ≥ n∗.

These assumptions are used to prove, for any K ≥ n∗ +N , the existence of a pair of processes

X and X ′ defined for K−N ≤ n ≤ K, such that X evolves via the adaptive transition kernels PΓn ,

while X ′ evolves via the fixed kernel P ′ = PΓK−N
. With probability at least 1−2ε, the two processes

remain equal for all times n with K −N ≤ n ≤ K. Hence, their un-coupling probability over this

time interval is bounded above by 2ε. Consequently, conditional on XK−N and ΓK−N , the law of

XK lies within 2ε (measured in total variation distance) of the law of X ′K , which in turn lies within

ε of the stationary distribution π. Hence, the law of XK is within 3ε of π. Since this holds for any

ε > 0 (for sufficiently large K = K(ε)), it follows that the law of XK converges to π as K → ∞.

Accordingly the adaptive process X is indeed a “valid” Monte Carlo algorithm for approximately

sampling from π; namely it converges asymptotically to π. The proof of a more general result

(Roberts and Rosenthal [25, Theorem 13]), is quite similar, only requiring one additional ε.

3. MEXIT for discrete-time countable state-space

Having motivated the prominence of un-coupling arguments in key statistical and probabilistic

settings, we now turn to an explicit construction of MEXIT . We begin by considering two discrete-

time stochastic processes defined on the same countable discrete state-space, begun at the same

initial state s0. We extend the state-space by keeping track of the past trajectory of each stochastic

process (its “genealogy”). The state of one of these stochastic processes at time n will thus be a

sequence or genealogy s = (s0, s1, . . . , sn) of n + 1 states, and these stochastic processes are then

time-inhomogeneous Markov chains governed at time n by transition probability kernels p(s, b) and

q(s, b), respectively.. Let s ·a denote the sequence or genealogy s = (s0, s1, . . . , sn, a) of n+2 states,

corresponding to the chain moving to state a at time n+ 1. Note that if the original processes were

originally Markov chains then this notation is equivalent to working with path probabilities p(s) =

p(s0, s1)p(s1, s2) . . . p(sn−1, sn), q(s) = q(t0, t1)q(t1, t2) . . . q(tn−1, tn), with p(s · a) = p(s)p(sn, a) et

cetera.

We define a coupling between the two processes as a random process on the Cartesian product

8



of the (extended) state-space with itself, whose marginal distributions are those of the individual

processes.

Definition 2 (Coupling of two discrete-time stochastic processes). A coupling of two discrete-

time stochastic processes on a countable state space with genealogical probabilities p(s) and q(t)

respectively, is a random process (not necessarily Markov) with state (s, t) at time n given by a

pair of genealogies s and t each of length n, such that if the probability of seeing state (s, t) at

time n is equal to r(s, t), then

∑
t

r(s, t) = p(s) (row-marginals) , (1)

∑
s

r(s, t) = q(t) (column-marginals) . (2)

Moreover, probabilities at consecutive times are related by

∑
a

∑
b

r(s · a, t · b) = r(s, t) (inheritance) . (3)

Remark 3. A coupling of two non-genealogical Markov chains can be converted into the above form

simply by keeping track of the genealogies.

Remark 4. We assume that both processes begin at the same fixed starting point s0, so p((s0)) =

q((s0)) = 1, and the processes initially have the same trajectory. MEXIT occurs when first the

trajectories split apart and disagree: the tree-like nature of genealogical state-space means the

genealogical processes will never recombine.

A MEXIT coupling is one which achieves the bound prescribed by the Aldous [1] coupling

inequality (Lemma 3.6 therein), thus (stochastically) maximising the time at which the chains split

apart.

Definition 5 (MEXIT coupling). Suppose that the following equation holds for all genealogical

states s:

r(s, s) = p(s) ∧ q(s) . (4)

Then the coupling is a maximal exit coupling (MEXIT coupling).

We now prove that MEXIT couplings always exist.
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Theorem 6. Consider two discrete-time stochastic processes taking values in a given countable

state-space and started at the same initial state s0. A MEXIT coupling can always be constructed

such that the joint probability r(·, ·) satisfies the properties (1)–(4).

Proof. We claim a MEXIT coupling is given by the following recursive definition

r(s · a, t · b) =



p(s · a) ∧ q(s · a) if t = s, a = b,

π1(s · b)π2(s · a)
∑

c d
−(s · c) if t = s, p(s) ≤ q(s),

π1(s · b)π2(s · a)
∑

c d
+(s · c) if t = s, p(s) > q(s),

π1(t · b)π2(s · a)r(s, t) if t 6= s,

where

d+(s) = (q(s)− p(s)) ∨ 0, d−(s) = (p(s)− q(s)) ∨ 0

π1(t · b) =
d+(t · b)∑
c d

+(t · c)
, π2(s · a) =

d−(s · a)∑
c d
−(s · c)

.

We set π1 (or π2) to zero if the denominator appearing in the definition is zero. The initial joint

probability is given by r(s0, s0) = 1, which clearly satisfies (1)–(4).

Now we verify by induction this construction actually satisfies (1)–(4) at each time n. First,

the MEXIT equation (4) holds by construction. Second, if s 6= t, we immediately have

∑
a

∑
b

r(s · a, t · b) = r(s, t)

since
∑

c π1(t · c) =
∑

c π2(s · c) = 1. Observe that

∑
c

d−(s · c) +
∑
c

(p(s · c) ∧ q(s · c)) =
∑
c

p(s · c) = p(s),

and d+(s · a)d−(s · a) = 0. Hence if p(s) ≤ q(s),

∑
a

∑
b

r(s · a, s · b) =
∑
c

(p(s · c) ∧ q(s · c)) +

(∑
c

d−(s · c)

)∑
b

∑
a6=b

π1(s · b)π2(s · a)

=
∑
c

(p(s · c) ∧ q(s · c)) +

(∑
c

d−(s · c)

) ∑
a

∑
b

d+(s · a)d−(s · b)

(
∑

c d
+(s · c)) (

∑
c d
−(s · c))

=
∑
c

(p(s · c) ∧ q(s · c)) +
∑
c

d−(s · c) = p(s).
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Similarly, if p(s) > q(s),

∑
a

∑
b

r(s · a, s · b) = q(s).

Thus we conclude the inheritance property (3) holds. Intuitively, given r(s, t) at time n, we can

proceed to time n+1 by first filling in the diagonals according to (4); then for each big cell (s, t), the

sum of r(s ·a, t ·b) must be equal to r(s, t) by (3) and we fill in all the remaining cells proportionally

by π1 and π2.

Now it remains to check the row/column marginal conditions. We shall only check that the row

marginal condition holds. If p(s) ≤ q(s), by the induction assumption, we have r(s, s) = p(s) and

r(s, t) = for any t 6= s. Thus,

∑
t

∑
b

r(s · a, t · b) =
∑
b

r(s · a, s · b)

= (p(s · a) ∧ q(s · a)) + π2(s · a)
∑
c

d−(s · c)
∑
b

π1(s · b)

= (p(s · a) ∧ q(s · a)) + d−(s · a) = p(s · a).

If p(s) > q(s), observe that p(s)− q(s) + d+(s · c) = d−(s · c) and thus

∑
t

∑
b

r(s · a, t · b) =
∑
t 6=s

∑
b

π1(t · b)π2(s · a)r(s, t) +
∑
b

r(s · a, s · b)

= π2(s · a)(p(s)− q(s)) + (p(s · a) ∧ q(s · a)) + π2(s · a)
∑
c

d+(s · c)

= d−(s · a) + (p(s · a) ∧ q(s · a)) = p(s · a).

By symmetry, the column marginal condition holds.

Remark 7. Note that the above theorem continues to hold if the common initial state s0 is itself

chosen randomly from some initial probability distribution.

Remark 8. MEXIT coupling is not unique in general. We can (over-)parametrize all possible

MEXIT couplings by replacing the assignations π1 and π2 using copulae (Nelsen [18]) to parametrize

the dependence between changes in the p-chain and the q-chain.

Recall the coin flip example. The table for n = 3 given in Section 2.3 does not satisfy the

inheritance principle. Using the construction provided in the proof above, one MEXIT coupling is
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given by

X\Y HHH HHT HTH HTT THH THT TTH TTT SUM

HHH 0.064 0 0 0 0 0 0.0105 0.0505 0.125

HHT 0 0.096 0 0 0 0 0.0050 0.0240 0.125

HTH 0 0 0.096 0.019 0 0 0.0017 0.0083 0.125

HTT 0 0 0 0.125 0 0 0 0 0.125

THH 0 0 0 0 0.096 0.019 0.0017 0.0083 0.125

THT 0 0 0 0 0 0.125 0 0 0.125

TTH 0 0 0 0 0 0 0.125 0 0.125

TTT 0 0 0 0 0 0 0 0.125 0.125

SUM 0.064 0.096 0.096 0.144 0.096 0.144 0.144 0.216 1

It is easy to see that MEXIT is not unique. Assume all the cells are fixed except the upper-

right four cells, which can be seen as a 2 × 2 table. Then this 2 × 2 table only need satisfy three

constraints: the sum must be 0.9, the sum of the first row must be 0.061, and the sum of the first

column must be 0.0155. Hence there is still one degree of freedom.

Having proven the existence of MEXIT couplings, we now provide calculations of MEXIT rate

bounds (Subsection 3.1) and gain further insight into MEXIT by considering its connection with

the Radon-Nikodym derivative (Subsection 3.2). We finish Section 3 on an applied note with a

discussion of MEXIT times for MCMC algorithms (Subsection 3.3).

3.1. MEXIT rate bound

We now consider MEXIT rate bounds.

Proposition 9. Consider the context of Theorem 6. Suppose we know that there is some δ > 0

such that either:

(a) for all s and a,

p(s · a)/p(s)

q(s · a)/q(s)
≥ 1− δ

or

(b) for all s and a,
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q(s · a)/q(s)

p(s · a)/p(s)
≥ 1− δ.

Then

P[MEXIT at time n+ 1 | no MEXIT by time n] ≤ δ.

Proof. Assume (a) (then (b) follows by symmetry). We obtain

P[no MEXIT by time n+ 1 | no MEXIT by time n]

=

∑
s,a[p(s · a) ∧ q(s · a)]∑

s[p(s) ∧ q(s)]

≥
∑

s,a[(1− δ)q(s · a)p(s)q(s) ∧ q(s · a)]∑
s[p(s) ∧ q(s)]

=

∑
s,a

q(s·a)
q(s) [(1− δ)p(s) ∧ q(s)]∑

s[p(s) ∧ q(s)]

=

∑
s[(1− δ)p(s) ∧ q(s)]∑

s[p(s) ∧ q(s)]

≥ 1− δ .

The above is the discrete state-space version of a bound contained in Völlering [32]. It should

be noted that this bound applies equally well to faithful couplings, which typically degenerate in

continuous time (see Theorem 28 in the present work for an example of this in the context of

suitably regular diffusions.) Two corollaries of Proposition 9 follow immediately:

Corollary 10. Under the conditions of Proposition 9, P[no MEXIT by time n] ≥ (1− δ)n.

Corollary 11. Under the conditions of Proposition 9, E [MEXIT time] ≥ (1/δ).

3.2. A Radon-Nikodym perspective on MEXIT

In this section, we explore a simple and natural connection of MEXIT to the value of the Radon-

Nikodym derivative of q with respect to p.

In our discussion, it will suffice to consider MEXIT when the historical probability of the current
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path under both p and q are close to being equal, rare big jumps excepting. It follows from our

MEXIT construction that the probability of not “MEXITing” by time n is equal to
∑

s(p(s)∧q(s)),

where the sum is over all length-n paths s. Hence, conditional on having followed the path s up to

time n and not “MEXITed,” the conditional probability of not “MEXITing” at time n+ 1 is equal

to ∑
a(p(s · a) ∧ q(s · a))

p(s) ∧ q(s)
.

Thus, the probability of “MEXITing” at time n+ 1 is

1−
∑

a(p(s · a) ∧ q(s · a))

p(s) ∧ q(s)
=

(p(s) ∧ q(s))−
∑

a(p(s · a) ∧ q(s · a))

p(s) ∧ q(s)
.

In particular, if p(s) > q(s) and p(s · a) > q(s · a) for all a, then the numerator is zero, so the

probability of “MEXITing” is zero. That is, “MEXITing” can only happen when the relative

ordering of (p(s), q(s)) and (p(s · a), q(s · a)) are different.

We now rephrase the above arguments in the language of Radon-Nikodym derivatives. Let

q(a|s) = q(s · a)/q(s), and R(s) = p(s)/q(s). Then the non-MEXIT probability is

∑
a(p(s · a) ∧ q(s · a))

p(s) ∧ q(s)
= Eq(a|s)

[
R(s · a) ∧ 1

R(s) ∧ 1

]
= Ep(a|s)

[
R(s · a)−1 ∧ 1

R(s)−1 ∧ 1

]
.

Note that Eq(a|s) [R(s · a)] = R(s). Thus, if we have either R(s) < 1 and R(s · a) < 1 for all a, or

R(s) > 1 and R(s · a) > 1 for all a, then this non-MEXIT probability is one and thus the MEXIT

probability is zero. That is, MEXIT can only occur when the Radon-Nikodym derivative R changes

from more than 1 to less than 1 or vice-versa.

3.2.1. An example: MEXIT for simple random walks

To further elucidate the connection of MEXIT with the Radon-Nikodym derivative, we consider a

concrete example: two simple random walks that both start at 0. Let “p” be simple random walk

with up probability η < 1/2 and down probability 1 − η. Similarly, let “q” be a simple random

walk with up probability 1− η and down probability η. The Radon-Nikodym derivative at time n

can be computed as

R(s) =
p(s)

q(s)
=

(
η

1− η

)xn+yn−n
,
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where xn and yn denote the number of upward moves of chain “p” and “q” respectively. Hence

R(s) = 0 if and only if xn + yn = n. Before MEXIT , the two chains are coupled such that xn = yn,

which further implies that MEXIT only occurs at 0, i.e. xn = yn = n/2. Indeed, the “pre-MEXIT”

process (i.e., the joint process, conditional on MEXIT not having yet occurred) evolves with the

following dynamics (for simplicity, we use P to denote the transition probability of either chain

conditional on that MEXIT has not occurred.)

• For k > 0, P (k, k + 1) = η, and P (k, k − 1) = 1− η.

• For k < 0, P (k, k + 1) = 1− η, and P (k, k − 1) = η.

• P (0, 1) = P (0,−1) = η with MEXIT probability 1− 2η when we are at 0.

For n = 2, the joint distribution of the two chains is given by

q\p ++ +− −+ −− Sum

++ η2 0 0 1− 2η (1− η)2

+− 0 η(1− η) 0 0 η(1− η)

−+ 0 0 η(1− η) 0 η(1− η)

−− 0 0 0 η2 η2

Sum η2 η(1− η) η(1− η) (1− η)2 1

Note that the chain P is defective at 0, but otherwise has a drift towards the MEXIT point 0.

Consider the joint process, with death when MEXIT occurs. Let Qt denote the number of times

this process hits 0 up to and including time t. Then

P[MEXIT by time t | Qt−1] = 1− (2η)Qt−1 . (5)

Hence,

P [no MEXIT by time t | Qt−1] = (2η)Qt−1 .

In particular, since η < 1/2, and the joint process is recurrent conditional on not yet “MEXITing”,

eventual MEXIT is certain.

3.3. An application: noisy MCMC

The purpose of this section is to provide an application of MEXIT for discrete-time countable

state-spaces. We do so by comparing the MEXIT time τ of the penalty method MCMC algorithm
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with the usual Metropolis-Hastings algorithm.

In the usual Metropolis-Hastings algorithm, starting at a state X, we propose a new state

Y , and then accept it with probability 1 ∧ A(X,Y ), where A(X,Y ) is an appropriate acceptance

probability formula in order to make the resulting Markov chain reversible with respect to the target

density π. In noisy MCMC (specifically, the penalty method MCMC, see Ceperley and Dewing [6];

Nicholls et al. [19]; Medina-Aguayo et al. [17]; Alquier et al. [2]) which is similar to but different

from the pseudo-marginal MCMC method of Andrieu and Roberts [3]), we accept with probability

α̂(X,Y ) := 1∧ (Â(X,Y )), where Â(X,Y ) is an estimator of A(X,Y ) obtained from some auxiliary

random experiment.

Noisy Metropolis-Hastings is popular in situations where the target density π is either not

available or its pointwise evaluations are very computationally expensive. However replacing A

by Â interferes with detailed balance and therefore usually the invariant distribution of noisy

Metropolis-Hastings (if it even exists) is biased (ie different from π). Quantifying the bias is

therefore an important theoretical question. It is not our intention to give a full analysis of this

here, as this is well-studied for example Medina-Aguayo et al. [17]. However a crucial component in

the argument used in that paper is the construction of a coupling between a standard and a noisy

Metropolis-Hastings chain in such a way that, with high probability, MEXIT occurs at a time after

both chains have more or less converged to equilibrium. Here therefore we shall just focus on lower

bounds for the MEXIT time.

For this example we shall assume that W = exp(N) where N ∼ Normal(−σ2/2, σ2) for some

fixed σ > 0 (so that E [W ] = E [exp(N)] = 1), i.e. that α̂(X,Y ) := 1 ∧ (A(X,Y ) exp(N)). We now

show that the penalty method MCMC produces a Metropolis-Hastings algorithm with sub-optimal

acceptance probability.

Proposition 12. The penalty method MCMC produces a Metropolis-Hastings algorithm with (sub-

optimal) acceptance probability α̃(X,Y, σ) := E [α̃(X,Y ) |X,Y ] given by

α̃(X,Y, σ) = Φ

[
logA(X,Y )

σ
− σ

2

]
+A(X,Y ) Φ

[
−σ

2
− logA(X,Y )

σ

]
.

Proof. We invoke Proposition 2.4 of Roberts et al. [23], which states that if B ∼ Normal(µ, σ2),

then

E
[
1 ∧ eB

]
= Φ

(µ
σ

)
+ exp(µ+ σ2/2) Φ

[
−σ − µ

σ

]
.

Note
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α̃(X,Y, σ) = E [α̂(X,Y )] = E
[
1 ∧ (A(X,Y )eN )

]
= E

[
1 ∧ eN(−σ2/2+logA(X,Y ), σ2)

]
.

After straightforward algebra, the right-hand side of the last equality simplifies to

Φ

[
logA(X,Y )

σ
− σ

2

]
+A(X,Y ) Φ

[
−σ

2
− logA(X,Y )

σ

]
.

Proposition 13. A(X,Y )φ
[
−σ

2 −
logA(X,Y )

σ

]
= φ

[
logA(X,Y )

σ − σ
2

]
.

Proof. We calculate

A(X,Y )φ

[
−σ

2
− logA(X,Y )

σ

]
=

1√
2π

exp

(
logA(X,Y )− 1

2

(
−σ

2
−
(

logA(X,Y )

σ

)2
))

=
1√
2π

exp

(
−1

2

(
logA(X,Y )

σ
− σ

2

)2
)

= φ

(
logA(X,Y )

σ
− σ

2

)
.

Proposition 14. For any a, s > 0, we have that

1

a
φ

(
log a

s
− s

2

)
≤ 1√

2π
. (6)

Proof. This follows from noting

1

a
φ

(
log a

s
− s

2

)
=

1√
2π

exp

(
− log a− 1

2

(
log a

s
− s

2

)2
)

=
1√
2π

exp

(
−1

2

(
log a

s
+
s

2

)2
)
≤ 1√

2π
.
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Let r(X) and r̃(X) be the probabilities of rejecting the proposal when starting at X for the

original Metropolis-Hastings algorithm and the penalty method MCMC, respectively. We now

proceed with Proposition 15.

Proposition 15. For all X,Y in the state space, and σ ≥ 0, the following seven statements hold

(1) α̃(X,Y ) ≤ α(X,Y ).

(2) r̃(X) ≥ r(X).

(3) limσ↘0 α̃(X,Y, σ) = α(X,Y ).

(4) d
dσ α̃(X,Y, σ) = −φ

[
logA(X,Y )

σ − σ
2

]
.

(5) 0 ≥ d
dσ α̃(X,Y, σ) ≥ −1/

√
2π.

(6) α̃(X,Y, σ) ≥ α(X,Y )− σ/
√

2π.

(7) α̃(X,Y,σ)
α(X,Y ) ≥ 1− σ/

√
2π.

Proof. For statement (1), apply Jensen’s inequality. Note that

E [α̃(X,Y ) |X,Y ] = E
[
1 ∧ (A(X,Y )eN ) |X,Y

]
≤1 ∧ E

[
(A(X,Y )eN )

]
= 1 ∧ (A(X,Y )E

[
eN
]
) =1 ∧A(X,Y ) = α(X,Y ) .

Statement (2) follows immediately from statement (1) by taking the complements of the expecta-

tions of the α(X,Y ) and α̃(X,Y ) with respect to Y .

For statement (3), note that ifA(X,Y ) > 1 then limσ↘0 α̃(X,Y, σ) = Φ[+∞]+A(X,Y ) Φ[−∞] =

1, while if A(X,Y ) < 1 then limσ↘0 α̃(X,Y, σ) = Φ[−∞] + A(X,Y ) Φ[+∞] = 0 + A(X,Y ) 1 =

A(X,Y ). Further, ifA(X,Y ) = 1 then limσ↘0 α̃(X,Y, σ) = Φ[0]+A(X,Y ) Φ[0] = (1/2)+(1)(1/2) =

1. Thus, in all cases, limσ↘0 α̃(X,Y, σ) = 1 ∧A(X,Y ) = α(X,Y ).

For statement (4), we use Proposition 13 to compute

d

dσ
α̃(X,Y, σ)

=
d

dσ

(
Φ

[
logA(X,Y )

σ
− σ

2

]
+A(X,Y ) Φ

[
−σ

2
− logA(X,Y )

σ

])
= φ

[
logA(X,Y )

σ
− σ

2

] (
− logA(X,Y )

σ2
− 1

2

)
+A(X,Y ) φ

[
−σ

2
− logA(X,Y )

σ

]
= −1

2
+

logA(X,Y )

σ2
= −φ

[
logA(X,Y )

σ
− σ

2

]
.
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Since 0 ≤ φ(·) ≤ 1√
2π

, statement (5) follows immediately. Statement (6) then follows by integrating

from 0 to σ. For statement (7), note that if A(X,Y ) ≥ 1 then α(X,Y ) = 1 and the result then

follows from statement (6). If instead A(X,Y ) < 1, then α(X,Y ) = A(X,Y ), and we may invoke

Proposition 14 to obtain

α̃(X,Y, σ)

α(X,Y )
= 1− α(X,Y )− α̃(X,Y, σ)

α(X,Y )

= 1−
∫ σ

u=0

1

α(X,Y )

d

du
α̃(X,Y, u)du

= 1−
∫ σ

u=0

1

A(X,Y )
φ

[
logA(X,Y )

σ
− σ

2

]
du

≥ 1−
∫ σ

u=0

1√
2π

du = 1− σ√
2π

.

This concludes the proof.

Let P be the law of a Metropolis-Hastings algorithm, and P̃ the law of a corresponding noisy

MCMC. We now prove Proposition 16 below, whose Corollary 17 uses MEXIT to control the

discrepancy between the Metropolis-Hastings algorithm and the noisy MCMC algorithm.

Proposition 16.

dP̃ t+1(s · a)

dP t+1(s · a)
≥ dP̃ t(s)

dP t(s)

(
1− σ√

2π

)
.

Proof. Note first that dP̃ t(s)
dP t(s) = γ1γ2 . . . γn where each γi equals either α̃(Xi−1,Xi)

α(Xi−1,Xi)
if the move from

Xi−1 to Xi is accepted and otherwise r̃(X)
r(X) if the move is rejected. Statement (2) of Proposition 15

tells us that, if we reject,

dP̃ t+1(s · a)

dP t+1(s · a)
≥ dP̃ t(s)

dP t(s)
≥ dP̃ t(s)

dP t(s)

(
1− σ√

2π

)
.

However, if we accept, then by statement (7) in Proposition 15, dP̃ t+1(s·a)
dP t+1(s·a)

≥ dP̃ t(s)
dP t(s)(1 − σ√

2π
), as

claimed.

The following Corollary to Proposition 16 now follows immediately.

Corollary 17. dP̃ t(s)
dP t(s) ≥

(
1− σ√

2π

)t
.

Applying Proposition 16 to Proposition 9 in Subsection 3.1, with δ = σ√
2π

, the following Corol-

lary follows immediately.
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Corollary 18. The MEXIT time τ of the above penalty method MCMC algorithm, compared to

the regular Metropolis-Hastings algorithm, satisfies the following two inequalities:

P[τ > n] ≥
(

1− σ√
2π

)n
and

E [τ ] ≥
√

2π/σ.

Of course, unless σ is small, MEXIT will likely occur substantially before Markov chain mixing,

reflecting the fact that successful couplings usually have to bring chains together and not just

stop them from separating. Therefore these results are usually not useful for explicitly estimating

the bias of noisy Metropolis-Hastings. However they are particularly useful for demonstrating

robustness results for both noisy and pseudo-marginal chains as in Medina-Aguayo et al. [17] and

Andrieu and Roberts [3].

4. MEXIT for general random processes

The methods and results of Section 3 generalize to the case when the two processes are general

time-inhomogeneous random processes in discrete time with countable state-space: such processes,

with state augmented to include genealogy, become Markov chains. In fact the methods and results

extend to still more general processes: in this section we deal with the case of random processes

for which the state-space is a general Polish space (a σ-algebra arising from a complete separable

metric space).

4.1. Case of one time-step

To establish notation, we first review the simplest case of just one time-step. We require the state-

space to be Polish (we note that in principle one might be able to generalize a little beyond this,

but the prospective rewards of such a generalization seem to be not very substantial). In the case

of Polish space, the diagonal set ∆ = {(x, x) : x ∈ E} ⊂ E × E belongs to the product σ-algebra

E ∗E (counterexamples for some more general spaces are provided in Stoyanov [29, Subsection 1.6];

in principle one could seek to exploit the fact that ∆ is in general analytic with respect to E ∗ E ,

but some kind of assumption about the state-space would still be required to take care of further
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complications).

Consider two E-valued random variables X+
1 and X−1 , measurable with respect to E on E,

with distributions L
(
X+

1

)
= µ+

1 and L
(
X−1
)

= µ−1 on (E, E). We recall that the meet measure

µ̂1 = µ+
1 ∧ µ

−
1 of the probability measures µ+ and µ− in the lattice of non-negative measures on

(E, E1) can be described explicitly using the Hahn-Jordan decomposition (Halmos [12, §28]) as

µ+
1 − µ

−
1 = ν+

1 − ν
−
1 (7)

for unique non-negative measures ν+
1 and ν−1 of disjoint support. The condition of disjoint support

implies that

µ̂1 = µ+
1 − ν

+
1 = µ−1 − ν

−
1 (8)

is the maximal non-negative measure µ̃ such that

µ̃(D) ≤ min{µ+
1 (D), µ−1 (D)} for all D ∈ E .

Lemma 19. Consider two random variables X+
1 and X−1 taking values in the same measurable

space (E, E) which is required to be Polish. The simplest MEXIT problem is solved by maximal

coupling of the two marginal probability measures µ+
1 = L

(
X+

1

)
and µ−1 = L

(
X−1
)

using a joint

probability measure m1 on the product measure space (E × E, E ∗ E) such that

1. m1 has marginal distributions µ+
1 and µ−1 on the two coordinates,

2. m1 ≥ ı∆∗µ̂1, where the non-negative measure µ̂1 = µ+
1 ∧ µ

−
1 is the meet measure for µ+

1 and

µ−1 , and ı∆∗ is the push-forward map corresponding to the (E : E ∗ E)-measurable “diagonal

injection” ı∆ : E → E × E given by ı∆(x) = (x, x).

Proof. One possible explicit construction for m1 is

m1 = ı∆∗µ̂1 +
1

ν+
1 (E)

ν+
1 ⊗ ν

−
1 , (9)

where ν±1 are defined by the Hahn-Jordan decomposition in (7) and ν+
1 ⊗ν

−
1 is the product measure

on (E × E, E ∗ E). It follows directly from (7) that ν+
1 (E) = ν−1 (E). Maximality of the coupling

(which is to say, maximality of m1(∆) = µ̂1(E) compared to all other probability measures with

these marginals) follows from maximality of the meet measure µ̂. This completes the proof.

Given this construction, we can realize X+
1 and X−1 as the coordinate maps for E × E: the
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probability statements

P
[
X+

1 ∈ D ; X+
1 = X−1

]
= µ̂1(D) for all D ∈ E (10)

hold for any maximal coupling of X+
1 and X−1 .

It is convenient at this point to note a quick way to recognize when a given coupling is maximal.

Lemma 20 (Recognition Lemma for Maximal Coupling). Suppose the measurable space (E, E)

is Polish. Given a coupling probability measure m∗ for (E, E)-valued random variables X+
1 and

X−1 (with distributions L
(
X+

1

)
= µ+

1 and L
(
X−1
)

= µ−1 ), this coupling is maximal if the two

non-negative measures

ν±,∗1 : D 7→ m∗[X±1 ∈ D ; X+
1 6= X−1 ] (11)

(defined for D ∈ E) are supported by two disjoint E-measurable sets. Moreover in this case the meet

measure for the two probability distributions L
(
X+

1

)
and L

(
X−1
)

is given by

µ̂1(D) = m∗[X+
1 ∈ D ; X+

1 = X−1 ] for all D ∈ E . (12)

Proof. This follows immediately from the uniqueness of the non-negative measures ν±1 of disjoint

support appearing in the Hahn-Jordan decomposition, since a sample-wise cancellation of events

shows that

µ+
1 − µ

−
1 = L

(
X+

1

)
− L

(
X−1
)

= ν+,∗
1 − ν−,∗1 .

4.2. Case of n time-steps

The next step is to consider the extent to which Theorem 6 generalizes to the case of discrete-time

random processes taking values in general Polish state-spaces. We first note that the generalization

beyond Polish spaces cannot always hold. Based on the work of Rigo and Thorisson [22], and dating

back to Doob [7, p.624], Halmos [12, p.210], and Billingsley [4, Chapter 33], consider the following

counterexample.

Consider the interval Ω = [0, 1] equipped with Lebesgue measure. There exists a set M ⊂ Ω

with outer measure 1 and inner measure 0, e.g. a Vitali set with outer measure 1. Let B be the Borel

σ-algebra on Ω and consider the σ-algebra σ(B,M). It can be shown that any set A ∈ σ(B,M)
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can be written as

A = (M ∩B1) ∪ (M c ∩B2), B1, B2 ∈ B.

The representation is not unique. However, using the identity Leb∗(M) = Leb∗(M∩B1)+Leb∗(M∩

Bc
1) (since B1 is Lebesgue measurable), we can show Leb∗(M ∩ B1) = Leb(B1) where Leb∗ is

the Lebesgue outer measure. Similarly, Leb∗(M c ∩ B2) = Leb(B2). Hence if there is another

representation A = (M ∩ B3) ∪ (M c ∩ B4) where B3 and B4 are Borel, we must have Leb(B1) =

Leb(B3) and Leb(B2) = Leb(B4). Now we can define the probability measures m± on σ(B,M) by

m+(A) = Leb(B1), m−(A) = Leb(B2).

It is straightforward to verify that they are probability measures. Note that for any Borel set B, we

have m+(B) = m−(B) = Leb(B). Set E1 = B and E2 = σ(B,M). Consider two random sequences

(X+
1 , X

+
2 ) and (X−1 , X

−
2 ). Let X±2 (ω) = ω be random variables defined on (Ω, E2,m

±). Let X±1

be defined on (Ω, E1) and set X±1 = X±2 (this is allowed because the function X(ω) = ω is Borel

measurable). Since for any B ∈ B,

P
[
X+

1 ∈ B
]

= P
[
X+

2 ∈ B
]

= m+(B) = Leb(B),

X±1 have the same law (the Lebesgue measure) and thus any realization of MEXIT would have

to have P
[
X+

1 = X−1
]

= 1, which further implies P
[
X+

2 = X−2
]

= 1. On the other hand, since

m+(M) = 1 and m−(M) = 0, we have ||m+ − m−||TV = 1 w.r.t E2. So for any coupling of

X±2 , denoted by (Ω2, E2,µ), where E2 denotes the completion of E2 × E2 w.r.t. µ, we must have

µ({(ω, ω) : ω ∈ Ω}) = 0. This gives a contradiction.

However the existence of MEXIT follows easily in the case of Polish spaces, as also noted by

Völlering [32]. Here follows a proof by induction.

Theorem 21. Consider two discrete-time random processes X+ and X−, begun at the same fixed

initial point, taking values in a measurable state-space (E, E) which is Polish, and run up to a finite

time n. Maximal MEXIT couplings exist.

Proof. The case n = 1 follows directly from the general state-space arguments of Lemma 19. The

countable product of Polish spaces is again Polish, so an inductive argument completes the proof

if we can establish the following.
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Suppose X± are two random variables taking values in a measurable space (E, E2) which is

Polish, with laws µ±2 . Suppose E1 ⊆ E2 is a sub-σ-algebra such that (E, E1) is also Polish, and

let µ±1 be the laws of X± viewed as random variables taking values in the Polish space (E, E1).

Suppose m1 is a maximal coupling with marginals µ±1 on (E ×E, E1 ∗ E1). The claim is that there

then exists a maximal coupling m2 with marginals µ±2 on (E × E, E2 ∗ E2) which equals m1 when

restricted to E1 ∗ E1.

To see this, first note from Lemma 19 that m1|∆ = ı∆∗µ̂1, where µ̂1 is the sub-probability

measure given by µ̂1 = µ+
1 ∧ µ

−
1 . Moreover, if µ̂2 is the sub-probability measure given by µ̂2 =

µ+
2 ∧ µ

−
2 , then we can use the infimum characterization following (8) to show that µ̂2 satisfies

µ̂2(A) ≤ µ̂1(A) for all A ∈ E1. Write (1 − π1) dµ̂1 = d(µ̂2|E1) to define the E1-measurable random

variable π1 (with 0 ≤ π1 ≤ 1) as the conditional probability of MEXIT immediately after time 1.

Because (1− π1) dµ̂1 and dµ̂2 agree on E1, and because we are working with Polish spaces, we can

construct a regular conditional probability kernel k̂12(x,B) (a probability measure on E2 for each

fixed x, and E1-measurable in x) such that

dµ̂2 = (1− π1)k̂12 ∗ dµ̂1 . (13)

Similarly we can construct regular conditional probability kernels k±12(x,B) such that

dµ±2 = k±12 ∗ dµ±1 . (14)

Now (1 − π1)ı∆∗(k̂12 ∗ dµ̂1) = ı∆∗ dµ̂2 defines a sub-probability measure on (E × E, E2 ∗ E2) with

marginals equal to each other and given by µ̂2 (as a consequence of (13)). The proof of the claim

will be completed if we can establish the existence of a sub-probability measure Γ2 on (E×E, E2∗E2)

with marginals defined by µ±2 − µ̂2, and agreeing on E1 ∗ E1 with the measure defined by dm1 −

(1− π1)ı∆∗ dµ̂1. Consider

dΓ2 = (k+
12 ⊗ k

−
12) ∗ ( dm1 − (1− π1)ı∆∗ dµ̂1) ,

where (k+
12⊗k

−
12)((x+, x−), B+×B−) = k+

12(x+, B+)×k−12(x−, B−) and we use the theory of product

measure to extend to a kernel of product measures k+
12(x+, ·)⊗k−12(x−, ·). Exactly because (k+

12⊗k
−
12)

is itself a regular conditional probability kernel, it follows that Γ2 agrees on E1∗E1 with the measure

defined by dm1 − (1 − π1) dµ̂1. On the other hand, because Γ2 is built from appropriate product
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regular conditional probabilities, Γ2 has marginals defined by k±12 dµ±1 − (1− π1) dµ̂ = dµ±2 − dµ̂2

as required.

In summary, the required maximal coupling at the level of E2 ∗ E2 is defined by

ı∆∗ dµ̂2 + dΓ2 = (1− π1)ı∆∗(k̂12 ∗ dµ̂1) + (k+
12 ⊗ k

−
12) ∗ ( dm1 − (1− π1)ı∆∗ dµ̂1) . (15)

Remark 22. As in the n = 1 case of Lemma 19, we can generate a whole class of maximal couplings

by using measurable selections from Fréchet classes to replace the product regular conditional

probability kernel (k+
12 ⊗ k

−
12) ∗ ( dm1 − (1 − π1)ı∆∗ dµ̂1). Equally, as in the n = 1 case of Lemma

19, this clearly does not exhaust all the possibilities.

4.3. Unbounded and/or continuous time

MEXIT for all times (with no upper bound on time) follows easily so long as the Kolmogorov

Extension Theorem (Doob [8, §V.6]) can be applied. This is certainly the case if the state-space is

Polish; we state this formally as a corollary to Theorem 21 of the previous section. (For an example

of what can go wrong in a more general measure-theoretic context for the Kolmogorov Extension

Theorem, see Stoyanov [29, §2.3].)

Corollary 23. Consider two discrete-time random processes X+ and X−, begun at the same fixed

initial point, taking values in a measurable state-space (E, E) which is Polish. MEXIT couplings

exist through all time.

Under the requirement of Polish state-space, it is also straightforward to establish a continuous-

time version of the MEXIT result for càdlàg processes. The result requires this preliminary ele-

mentary properties about joint laws with given marginals.

Lemma 24. Suppose that {X+
i } and {X−i } are two collections of random variables on the probab-

ility space (Ω,F ,P) taking values on a metric space (E, d). Suppose that {L
(
X+
i

)
} and {L

(
X−i
)
}

are both tight. Then {L
(
X+
i , X

−
i

)
} is tight on (E × E, d̃) where d̃ denotes the Euclidean product

measure d× d.

Proof. For any ε > 0, we can find compact sets S+, S− such that P(X+
i ∈ S+) > 1 − ε/2 and

P(X−i ∈ S−) > 1− ε/2 for all i. But S+×S− is d̃−compact and clearly P((X+
i , X

−
i ) ∈ S+×S−) >

1− ε, so that {L
(
X+
i , X

−
i

)
} is tight on (E × E, d̃).
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Theorem 25. Consider two continuous-time random processes X+ and X−, begun at the same

fixed initial point, with càdlàg paths in a given complete separable metric state-space E (with Borel

σ-algebra). MEXIT couplings exist through all time.

Proof. We work first up to a fixed time T .

The space of càdlàg paths in a complete separable metric state-space over a fixed time interval

[0, T ] can be considered as a Polish space (Maisonneuve [16, Théorème 1]), using a slight modi-

fication of the Skorokhod metric, namely the following Maisonneuve distance: if τ(t) : [0, T ] →

[0, T ] is a non-decreasing function determining a change of time, and if |τ | = supt |τ(t) − t| +

sups 6=t log
(
τ(t)−τ(s)

t−s

)
, then the Maisonneuve distance is given by

distM (ω, ω̃) = inf
τ
{|τ |+ distE((ω ◦ τ)− ω̃)} , (16)

where ω and ω̃ are two càdlàg paths [0, T ]→ E.

Consider a sequence of discretizations σn (n = 1, 2, . . .) of time-space [0, T ] whose meshes tend

to zero, each discretization being a refinement of its predecessor. Note that by “discretization” we

mean an ordered sequence σ = (t1, t2, ...) where 0 < t1 < t2 < . . .. Let X±,n(t) = X±(inf{s ∈ σn :

s ≥ t}) define discretized approximations of X± with respect to the discretization σn. Invoking

Theorem 21, we require X+,n, X−,n to be maximally coupled as discrete-time random processes

sampled only at the discretization σn: since they are constant off σn, this extends to a maximal

coupling of X+,n, X−,n viewed as piecewise-constant processes defined over all continuous time.

For a given càdlàg path ω, the discretization of ω by σn converges to ω in Maisonneuve distance.

This follows by observing that, for each fixed ε > 0, the time interval [0, T ] can be covered by pointed

open intervals t ∈ (t−, t+) such that |ω(s) − ω(t−)| < ε/2 if s ∈ (s−, t) and |ω(s) − ω(t)| < ε/2 if

s ∈ (t, s+). By compactness we can select a finite sub-cover. For sufficiently fine discretizations σ

we can then ensure the Maisonneuve distance between ω and the resulting discretization is smaller

than ε. Consequently, both sequences {L (X+,n) : n = 1, 2, . . .}, {L (X−,n) : n = 1, 2, . . .} are tight,

and therefore by Lemma 24 we know that the sequence of joint distributions {L (X+,n, X−,n) : n =

1, 2, . . .} is also tight.

Therefore (selecting a weakly convergent subsequence if necessary) we may suppose the joint

distribution (X+,n, Y +,n) converges weakly to a limit which we denote by (X̃+, X̃−). Note that

the marginal laws of (X̃+, X̃−) are the laws of X+, X−; however the joint distribution (which is

to say, the specific coupling described by (X̃+, X̃−)) may well be affected by the exact choice of

26



weakly convergent subsequence.

Suppose time t belongs to one of the discretizations in the sub-sequence, and thus eventually

to all (since each discretization is a refinement of its predecessor). Consider the subspace of the

Cartesian square of Skorokhod space given by At = [MEXIT ≥ t]. This is a closed subset of the

Cartesian square of Skorokhod space. Hence, by the Portmanteau Theorem of weak convergence

(Billingsley [4, Theorem 2.1]),

lim sup
n→∞

P
[
(X+,n, X−,n) ∈ At

]
≤ P

[
(X̃+, X̃−) ∈ At

]
.

If n is large enough so that t ∈ σn, then P [(X+,n, X−,n) ∈ At] is equal to the probability that

MEXIT happens at t or later. By maximality of MEXIT for the discretized processes at time

t ∈ σn, it follows for such n that P
[
(X̃+, X̃−) ∈ At

]
= P [(X+,n, Y +,n) ∈ At] is itself maximal. The

càdlàg property then implies maximality of the limiting coupling for all times t ≤ T . The result on

MEXIT for all time follows by application of the Kolmogorov Extension theorem as in Corollary

23. This concludes the proof.

Remark 26. Sverchkov and Smirnov [30] prove a similar result for maximal couplings by means of

general martingale theory.

Remark 27. Note that Théorème 1 of Maisonneuve [16] can be viewed as justifying the notion

of the space of càdlàg paths: this space is the completion of the space of step functions under

the Maisonneuve distance distM . Thus in some sense Theorem 25 is a maximally practical result

concerning MEXIT !

5. MEXIT for diffusions

The results of Section 4 apply directly to diffusions, which therefore exhibit MEXIT . This section

discusses the solution of a MEXIT problem for Brownian motions, which can be viewed as the

limiting case for random walk MEXIT problems.

It is straightforward to show that MEXIT will generally have to involve constructions not

adapted to the shared filtration of the two diffusion in question. By “faithful” MEXIT we mean

a MEXIT construction which generates a coupling between the diffusions which is Markovian

with respect to the joint and individual filtrations (see Rosenthal [28] and Kendall [13] for further

background). We consider the case of elliptic diffusions X+ and X− with continuous coefficients.
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Theorem 28. Suppose X+ and X− are coupled elliptic diffusions, thus with continuous semi-

martingale characteristics given by their drift vectors and volatility (infinitesimal quadratic vari-

ation) matrices, begun at the same point, with this initial point lying in the open set where either or

both of the drift and volatility characteristics disagree. Faithful MEXIT must happen immediately.

Proof. Let T be the MEXIT time, which by faithfulness will be a stopping time with respect to

the common filtration. If X+ and X− are semimartingales agreeing up to the random time T ,

then the localization theorems of stochastic calculus tell us that the integrated drifts and quadratic

variations of X+ and X− must also agree up to time T . It follows that X+ and X− agree as

diffusions up to time T . Were the faithful MEXIT stopping time to have positive chance of being

positive then the diffusions would have to agree on the range of the common diffusion up to faithful

MEXIT ; this would contradict our assertion that the initial point lies in the open set where either

or both of the drift and volatility characteristics disagree.

By way of contrast, MEXIT can be described explicitly in the case of two real Brownian motions

X+ and X− with constant but differing drifts. Because of re-scaling arguments in time and space,

there is no loss of generality in supposing that both X+ and X− begin at 0, with X+ having drift

+1 and X− having drift −1.

Theorem 29. If X± is Brownian motion begun at 0 with drift ±1, then MEXIT between X+ and

X− exists and is almost surely positive.

Proof. The existence of MEXIT directly follows from Theorem 27. The almost surely positiveness

will be shown in Subsection 5.2 below, through a limiting version of the random walk argument in

Subsection 3.2.1. Alternatively one can argue succinctly and directly using the excursion-theoretic

arguments of Williams’ [1974] celebrated path-decomposition of Brownian motion with constant

drift (an exposition in book form is given in Rogers and Williams [27]).

Calculation shows that the bounded positive excursions of X+ (respectively −X−) from 0 are

those of the positive excursions of a Brownian motion of negative drift −1, while the bounded

negative excursions of X+ (respectively −X−) from 0 are those of the negative excursions of a

Brownian motion of positive drift +1. (The unbounded excursion of X+ follows the law of the

distance from its starting point of Brownian motion in hyperbolic 3-space, while the unbounded

excursion of X− has the distribution of the mirror image of the unbounded excursion of X+.)

Viewing X± as generated by Poisson point processes of excursions indexed by local time, it

follows that we may couple X+ and X− to share the same bounded excursions, with unbounded
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excursions being the reflection of each other in 0. Moreover the processes have disjoint support

once they become different. So the Recognition Lemma for Maximal Coupling (Lemma 20) applies,

and hence this is a MEXIT coupling.

5.1. Explicit calculations for Brownian MEXIT

Let X+ and X− begin at 0, with X+ having drift +θ and X− having drift −θ with θ > 0. The

purpose of this section is to offer explicit calculations of MEXIT and MEXIT means.

Calculation 1. The meet of the distributions of X+
t and X−t is the meet of N(θt, t) and N(−θt, t),

and the probability of MEXIT happening after time t is given by the total mass of this meet sub-

probability distribution. Therefore:

P [MEXIT ≥ t] = P [N(0, t) < −θt] + P [N(0, t) > θt]

= 2P [N(0, t) > θt]

=
2√
2π

∫ ∞
θ
√
t
e−u

2/2du.

Thus,

E [MEXIT] =
2√
2π

∫ ∞
0

∫ ∞
θ
√
t
e−u

2/2dudt = θ−2.

Remark 30. Excursion theoretic arguments can be used to confirm this is mean time to MEXIT

for the specific construction given in Theorem 29.

Calculation 2. We now consider the expected amount of time T during which processes agree

before MEXIT happens.

E [T ] =

∫ ∞
0

EW
[
min{eθWt−θ2t/2, e−θWt−θ2t/2}

]
dt

= 2

∫ ∞
0

EW
[
e−θWt−θ2t/2;Wt > 0

]
dt

= 2

∫ ∞
0

∫ ∞
0

1√
2πt

exp

(
−(w + θt)2

2t

)
dwdt

= θ−2.

29



5.2. An explicit construction for MEXIT for Brownian motions with drift

In this section, we continue the scenario of Calculation 2 above. We see that MEXIT should have

the complementary cumulative distribution function

P [MEXIT ≥ t] = 2Φ(−θ
√
t), (17)

where Φ(y) =
∫ y
−∞(2π)−1/2e−u

2/2du. A natural question to ask is as follows: how can one explicitly

construct and understand this MEXIT time in a way that relates to the random walk constructions

of Subsection 3.2.1? In this section we first deduce a candidate coupling and EXIT time, and then

we proceed to show by direct calculation that our construction indeed gives the correct MEXIT

time distribution above.

We note from the discrete constructions of Section 3 (in particular Subsection 3.2) that MEXIT

is only possible when the Radon-Nikodym derivative between the “p” and “q” processes moves

from being below 1 to above 1 or moves from being above 1 to below 1. Let P+, P− denote the

probability laws of X+, X− respectively. We have that

dP+

dP−
(W[0,T ]) = exp{2θWT },

which is continuous in time with probability 1 under both P+ and P−. By analogy to the discrete

case, the region in which MEXIT could possibly occur corresponds to the interface dP+

dP− (W[0,T ]) = 1

(that is, where WT = 0).

Now we shall focus on the random walk example at the end of Subsection 3.2. We note that

the MEXIT distribution given in (5) can be constructed as the first time the occupation time of 0

exceeds a geometric random variable with “success” probability 1 − 2η. We aim to give a similar

interpretation for the Brownian motion case. To do this, we shall use a sequence of random walks

converging to the appropriate Brownian motions. To this end, let

ηn =
1

2

(
1− θ

n

)
,

and set Xn+ and Xn− to be the respective simple random walks with up probability 1 − ηn and

ηn and sped up by factor n2. We assume (unless otherwise stated) that all processes begin at 0 so
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that we have that

Xn+(t) =

bn2tc∑
i=1

Zn+
i ,

where {Xn+
i } denote dichotomous random variable taking the value +1 with probability 1−ηn and

−1 with probability ηn. We define Xn− analogously.

Given this setup, we have the classical weak convergence results that the law of Xn+ converges

weakly to that of X+, and similarly Xn− converges weakly to X−. Moreover the joint pre-MEXIT

process described in Subsection 3.2 will have drift −sgn(Xt)θ. The following holds for the MEXIT

probability in (5)

P [MEXIT > t] =

(
1− θ

n

)n`nt
−→ e−θ`

n
t ,

where `nt is the Local Time at 0 of the pre-MEXIT process for the nth approximation random walk.

In the (formal) limit as n → ∞, this recovers the construction in Theorem 29 of Brownian

motion MEXIT time, as follows. Let X be the diffusion with drift − sgn(X)θ and unit diffusion

coefficient started at 0 and let `t denote its local time at level 0 and time t. Then set E to be an

exponential random variable with mean θ−1. Then the pre-MEXIT dynamics are described by X

until `t > E at which time MEXIT occurs. E > 0 w.p. 1 and hence MEXIT is positive a.s. since

the local time is a continuous process.

We shall now verify that this construction does indeed achieve the valid MEXIT probability

given in (17). By integrating out E we are required to show that

E
[
e−θ`t

]
= 2Φ(−θ

√
t) .

We proceed to do so. Firstly, we note that by symmetry, we may set `t to be the local time

at level 0 of Brownian motion with drift −θ reflected at 0. Note that by an extension of Lévy’s

Theorem (see Peskir [20]) that the law of `t is the same as that of the maximum of Brownian motion

with drift θ, i.e. that of X+. Now this law is well-known as the Bachelier-Lévy formula (see for

example Lerche [14]):

P [`t < a] = Φ

(
a√
t
− θ
√
t

)
− e2aθΦ

(
−a√
t
− θ
√
t

)
,
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with density

f`t(a) =
1√
t

(
φ

(
a√
t
− θ
√
t

)
+ e2aθφ

(
−a√
t
− θ
√
t

)
− 2
√
tθe2aθΦ

(
−a√
t
− θ
√
t

))
,

where φ is the standard normal density function φ(y) = (2π)−1/2e−y
2/2. By direct manipulation of

the exponential quadratic in the second of the three terms above, it can readily be shown to equal

the first term. Thus

f`t(a) =
1√
t

(
2φ

(
a√
t
− θ
√
t

)
− 2
√
tθe2aθΦ

(
−a√
t
− θ
√
t

))
.

We now directly calculate the Laplace transform of this distribution to obtain (17).

E
[
e−θ`t

]
=

2√
t

∫ ∞
0

e−θa
(
φ

(
a√
t
− θ
√
t

)
−
√
tθe2aθΦ

(
−a√
t
− θ
√
t

))
da

=:
2√
t
(T1 − T2) .

Using integration by parts, we easily work with T2 to obtain

T2 = T1 −
√
tΦ(−θ

√
t),

which implies the assertion in (17), as required.

6. Conclusion

In this paper, we have studied an alternative coupling framework in which one seeks to arrange

for two different Markov processes to remain equal for as long as possible, when started in the

same state. We call this “un-coupling” or “maximal agreement” construction MEXIT, standing

for “maximal exit” time. MEXIT sharply differs from the more traditional maximal coupling

constructions studied in Griffeath [11], Pitman [21], and Goldstein [10] in which one seeks to build

two different copies of the same Markov process started at two different initial states in such a way

that they become equal as soon as possible.

This work begins with practical motivation for MEXIT by highlighting the importance of un-

coupling/maximal agreement arguments in a few key statistical and probabilistic settings. With

this motivation established, we develop an explicit MEXIT construction for Markov chains in dis-
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crete time with countable state-space. We then generalize the construction of MEXIT to random

processes on Polish state-space in continuous time. We conclude with the solution of a MEXIT

problem for Brownian motions.

As noted in Remark 8, the approach that we have followed in the construction of MEXIT

introduces the role of copula theory in parametrising varieties of maximal couplings for random

processes. Our future work will aim to establish a definitive role for MEXIT (as well as for prob-

abilistic coupling theory in general) in copula theory.
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