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Abstract

We present a Bayesian inference approach to estimating the cumulative mass profile and mean-squared velocity
profile of a globular cluster (GC) given the spatial and kinematic information of its stars. Mock GCs with a range of
sizes and concentrations are generated from lowered-isothermal dynamical models, from which we test the
reliability of the Bayesian method to estimate model parameters through repeated statistical simulation. We find
that given unbiased star samples, we are able to reconstruct the cluster parameters used to generate the mock cluster
and the cluster’s cumulative mass and mean-squared velocity profiles with good accuracy. We further explore how
strongly biased sampling, which could be the result of observing constraints, might affect this approach. Our tests
indicate that if we instead have biased samples, then our estimates can be off in certain ways that are dependent on
cluster morphology. Overall, our findings motivate obtaining samples of stars that are as unbiased as possible. This
may be achieved by combining information from multiple telescopes (e.g., Hubble and Gaia), but will require
careful modeling of the measurement uncertainties through a hierarchical model, which we plan to pursue in
future work.

Unified Astronomy Thesaurus concepts: Globular star clusters (656); Astrostatistics (1882); Interdisciplinary
astronomy (804); Star clusters (1567); Bayesian statistics (1900); Astrostatistics strategies (1885); Bayes’ Theorem
(1924); Posterior distribution (1926); Astrostatistics techniques (1886); Markov chain Monte Carlo (1889);
Astrostatistics distributions (1884); Computational methods (1965)

1. Introduction

Globular clusters (GCs) are nearly spherical, massive collec-
tions of stars that are found in every type of galaxy. Upon
formation, their early evolution is governed by stellar evolution in
the sense that massive stars quickly lose mass, which causes the
cluster’s potential to weaken. However, over the majority of their
lifetimes, two-body relaxation and the external tidal field of their
host galaxy are the dominant mechanisms that govern a cluster’s
evolution (e.g., Heggie & Hut 2003). These two mechanisms lead
to clusters becoming spherically symmetric, isotropic, and mass
segregated over time as they evolve toward a state of partial
energy equipartition while playing host to stellar collisions and
mergers (Meylan & Heggie 1997; Spitzer 1987; Heggie &
Hut 2003). Dynamically old clusters are even capable of having
their core energetically decouple from the rest of the cluster, a
process known as core collapse (Hénon 1961; Lynden-Bell &
Wood 1968).

Given the bevy of dynamical processes that occur within GCs,
the ability to accurately measure the current distribution of stars
within a given cluster leads to a deeper understanding of how
these processes work and shape cluster evolution. Reverse
engineering the evolution of a system of clusters can then lead
to constraining the conditions under which they form and
therefore the formation and evolution of their host galaxy. A
large number of distribution functions (DFs) have been proposed
to represent the observed distribution of stellar positions and
velocities in GCs (e.g., Woolley 1954; Michie 1963; King 1966;
Wilson 1975; Gunn & Griffin 1979; Bertin & Varri 2008; Gieles
& Zocchi 2015; Claydon et al. 2019). The general picture that

emerges out of the models that best represent observations of
Galactic GCs is that clusters are isotropic in their center with
density and velocity dispersion profiles that decrease to zero out to
a truncation radius. The treatment of how the DF drops to zero out
to the truncation radius varies from model to model, with
additional treatments being necessary to address the presence of
radial anisotropy (Michie 1963) and GC rotation (Varri &
Bertin 2012).
Complicating the situation slightly is that stars within GCs

have a large range of masses, while most DFs assume all stars
have the same mass. Hence mass segregation, which is a
natural outcome of clusters evolving toward a state of partial
energy equipartition, is not considered in the models. Failing to
account for the presence of mass segregation has been shown to
incur strong biases when fitting models to the surface-
brightness profile or number-density profile of a cluster
(Shanahan & Gieles 2015; Sollima et al. 2015). One solution
is to treat a GC system as the combination of several single-
mass models (Da Costa & Freeman 1976).
Historically, the application of the aforementioned models to

observed GCs has been in the fitting of their observed number-
density or surface-brightness profiles. From a given DF, it is
possible to derive how the number of stars per unit area on the sky
or volume decreases with cluster-centric distance. Assuming a
mass spectrum and mass-to-light ratio, a surface-brightness profile
can also be derived. Several different DF-based models have been
successfully fit to Galactic (e.g., McLaughlin & van der
Marel 2005; Miocchi et al. 2013; de Boer et al. 2019, e.g) and
extragalactic GCs (Woodley & Gómez 2010; Usher et al. 2013;
Webb et al. 2013; Puzia et al. 2014).
Alternatives to fitting clusters with DF-based models include

comparing observations to large suites of N-body star-cluster
simulations (Heggie & Giersz 2014; Baumgardt & Hilker 2018)
and Jeans modeling (Cappellari 2008; Watkins et al. 2013). Direct
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N-body simulations can also be used to test and rule out different
DF-based models, as completeness, contamination, and measure-
ment errors will not contribute to the uncertainty in the fit. For
example, Zocchi et al. (2016) successfully demonstrated that
direct N-body simulations of star clusters could be well fit by the
lowered-isothermal models of Gieles & Zocchi (2015).

In addition to the issues associated with assuming what model
best represents GCs in general, the process of finding the exact
model parameters (or N-body simulation) that best represent a
specific GC is also challenging. Historically, GCs were fit with
models by comparing observed and theoretical surface-brightness
profiles or density profiles (e.g., McLaughlin & van der
Marel 2005). A typical approach to fitting observational data
with models would be to radially bin the observed stars and then
minimize the χ2 between the observed surface-brightness or
density profile and the model profile. Such an approach will result
in systematic error due to binning the data, with the completeness
of the data set, contamination from noncluster stars, and
measurement errors introducing additional uncertainty into the
fit, as well. Binning data is also undesirable as information is lost
about each individual star. Furthermore, as previously mentioned,
multimass models require either a mass-to-light ratio be added as a
free parameter when fitting surface-brightness profiles or a mass-
to-light ratio be assumed for the observational data (Hénault-
Brunet et al. 2019).

Gaia Data Release 2 (DR2; Gaia Collaboration et al.
2016, 2018) and the Hubble Space Telescope Proper Motion
(HSTPROMO) Survey (Bellini et al. 2014) have helped usher in a
new era of GC studies, with spatial and kinematic information
now available for a large number of cluster stars. Knowing the
kinematic properties of individual stars can mitigate uncertainties
related to contamination, as kinematics make it easier to determine
which stars in the observed field of view are truly members of the
cluster or are simply foreground or background stars. Combining
membership constraints with spatial and photometric information
of core stars in high-resolution images of cluster centers also
allows for the radial coverage across a cluster to be improved (de
Boer et al. 2019).

Kinematic information can also be taken into consideration
when fitting clusters with models, as the cluster’s density profile
and velocity dispersion can be simultaneously fit by minimizing
the combined χ2 (Baumgardt & Hilker 2018). Extending the
method even further, Zocchi et al. (2017) has fit lowered-
isothermal models to the Galactic GC Omega Centauri by
simultaneously fitting its surface-brightness profile, line-of-sight
velocity dispersion profile, radial proper-motion dispersion profile,
and tangential proper-motion dispersion profile. Unfortunately,
even with kinematic information, issues related to binning data,
completeness, and measurement uncertainties remain when fitting
data with models. Furthermore, when trying to simultaneously fit
surface-brightness profiles and kinematic profiles, one must
assume how to weight the importance of each fit. For example,
when fitting through the minimization of χ2 between model and
observed data, it must be decided whether the total χ2 is simply
the sum of the individual χ2 values calculated for the density and
kinematic profile fits or if they should be weighted differently.
The advantages and disadvantages of fitting each of the models
discussed above to observed cluster data sets are summarized by
Hénault-Brunet et al. (2019).

The purpose of this study is to investigate and potentially
improve the method in which DF-based models can be fit to
observed star-cluster data sets by avoiding systematic errors

and loss of information associated with radially binning the
data, contamination, and completeness. We instead estimate the
model parameters, cumulative mass profile (CMP), and mean-
square velocity profile of a GC using the positions and
velocities of individual stars and assuming a physical model for
the GC through a DF and Bayesian method.
A Bayesian framework has at least four main advantages for

this type of analysis. First, we wish to incorporate useful prior
information about GCs to help constrain parameter estimates.
Second, since kinematic data for GCs is often incomplete,
using a Bayesian framework allows one to include both
incomplete and complete data simultaneously. Third, astro-
nomical data are also subject to measurement uncertainties that
are well understood by astronomers, and that we can
incorporate via a hierarchical Bayesian framework. Fourth,
our ultimate goal is to infer the CMP without having to make
assumptions about the mass-to-light ratio of the GC, and this
should be achievable given samples from the posterior
distribution of model parameters.
For the current study, we work with simulated data generated

using limepy (Gieles & Zocchi 2015) of lowered-isothermal
models for GCs and test the ability of a Bayesian framework to
recover a cluster’s true total mass, CMP, mean-square velocity
profile, and other parameters of interest. A related study was
completed by Hénault-Brunet et al. (2019), where they used a
single snapshot from a direct N-body simulation of the Galactic
GC M4 (Heggie & Giersz 2014) to compare the ability of
multiple methods to recover the simulated cluster’s mass and
mass profile. In the current paper, rather than comparing and
contrasting the pros and cons of different methodological
approaches on a single snapshot, we study the pros and cons of
a single method to recover the mass profile of different types of
GCs (e.g., “average”, “compact”, and “extended” GCs). This
approach is especially important, as Hénault-Brunet et al.
(2019) suggested that single-mass DF methods could lead to
biases in the mass and mass profile. We would like to
concretely quantify any possible biases, and identify whether
they are dependent on certain types of GCs (e.g., average,
compact, and extended).
The paper is structured as follows. In Section 2, we introduce

the suite of simulated data used to test our approach, with the
fitting routine and methods described in Section 3. In Section 4,
we examine the estimated coverage probabilities of the
Bayesian credible intervals for the model parameters, and
discuss situations in which inference from the posterior
distribution is (and is not) able to reproduce the true CMP
and mean-square velocity profile of the simulated GCs. Future
applications of this work, including the use of observational
data, are also discussed. Finally, we summarize our findings in
Section 5.

2. Simulated Data

We develop and test our method for GC parameter inference
with simulated kinematic data d= (r, v) of stars in a GC-centric
reference frame, where r x y zi i i i

2 2 2= + + and v v v vi x i y i z i,
2

,
2

,
2= + +

are the distance and speed of the ith star. The data are generated
using the Python code limepy (Gieles & Zocchi 2015), which
uses a four-parameter model for the phase-space DF f (r, v) of
stars in the cluster (see Section 3). The limepy parameters are

g M r, , , , 1hlimepy 0 total( ) ( )q = F

2
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where g (dimensionless) is a truncation parameter, Φ0

(dimensionless) determines the central potential, Mtotal (in
Me) is the total mass, and rh (in parsecs, pc) is the half-light
radius. Overall, g and Φ0 impact the shape of the GC profile,
while Mtotal and rh are scale parameters. In the case of isotropic
GCs, a value of g= 0 in the limepy model is equivalent to the
Woolley (1954) model, and a value of g= 1 is equivalent to the
King models (Michie 1963; King 1966; see also Gieles &
Zocchi 2015). The value of g is not only a truncation parameter
but also plays a role in determining the spatial distribution of
stars. The parameter Φ0, which determines the central
gravitational potential, helps set the concentration of stars.

GCs with the same Mtotal, g, and Φ0, but with different half-
light radii, rh, have relatively different levels of compactness.
That is, a GC with a small half-light radius is much more
compact than a GC with a large half-light radius. At the same
time, GCs with the same Mtotal, g, and rh, but different Φ0

values have relatively different concentrations. Lower (higher)
Φ0 values lead to a larger (smaller) concentrated region of stars
at the GC center.

Figure 1 shows examples of GCs with different levels of
compactness and concentrations; the figure shows examples of
the cluster-centric x and y positions of GC stars (first and third
rows) and the magnitude of the stars’ velocities as a function of
distance, r, from the center of the cluster (second and fourth
rows). The three GCs shown in the top two panels of Figure 1
have the sameMtotal, g, and Φ0 values, but have increasing half-
light radii, rh, from left to right. In the bottom two panels of
Figure 1, the GCs have the same g, Mtotal, and rh, but have
increasing Φ0 values from left to right. Note that the “average”
GC is shown in the center of all rows of Figure 1, to show the
transition from low rh to high rh and from low Φ0 to high Φ0.
From Figure 1, we see that either a low (high) rh or a low (high)
Φ0 leads to subtle differences in positional space but noticeably
different distributions in velocity.

In this work, we explore different GC morphologies based
on the parameter values listed in Table 1 (i.e., the types shown
in Figure 1). Every simulated GC has the same total mass
(Mtotal= 105 Me) and truncation parameter g= 1.5, but has a
different level of compactness (different rh) or different
concentration (different Φ0). To simplify our terminology, we
refer to the five scenarios in Table 1 as compact (small rh),
average, extended (large rh), low Φ0, and high Φ0. We create 50
GCs of each type in order to repeat our analysis many times.

Each simulated GC contains N= 105 stars. In real data sets,
we do not have kinematic information for all n stars due to
limited observations and observational-selection effects. Thus,
we study the effects of our mass profile estimates when
selecting stars (a) randomly, (b) only in the outer regions
(thereby mimicking Gaia data), and (c) only in the inner
regions (thereby mimicking Hubble Space Telescope (HST)
data). In each case, we use a subsample of 500 stars from each
GC. Moreover, these three different tests, combined with the
five different morphological GCs (Table 1), leads to fifteen
different scenarios.

For this initial study and for the development and testing of
our code, we use complete data in both position and velocity
and assume there is no measurement uncertainty. We also work
in the reference frame of the GC, where positions and velocities
of individual stars are given with respect to the GC center. Of
course, real data are collected in a heliocentric reference frame,

might be incomplete (e.g., only projected distances and line-of-
sight velocities are known), and are subject to measurement
uncertainty. However, it is worthwhile to investigate the ability
of this method in an idealized case where we have complete
data. Ultimately, our goal is to work in projected space on the
plane of the sky (i.e., the reference frame in which actual data
are measured), account for incomplete data (e.g., only one
component of the velocity is known), and incorporate
measurement uncertainty through a hierarchical model.

3. Methods

Using the simulated spatial and kinematic data of stars from
each GC mentioned in Section 2, we take a Bayesian approach
to infer the model parameters of each GC. From Bayes’
theorem (Bayes 1763), the posterior probability of a vector of
model parameters θ= (g, Φ0, Mtotal, rh), given data d, is

d
d

d
p

p p

p
, 2( ∣ ) ( ∣ ) ( )

( )
( )q q q

=

where p(d|θ) is the probability of the data conditional on the
model parameters, p(θ) is the prior distribution on the model
parameters, and p(d) is the “evidence” or prior predictive
density. The latter is a constant, leaving us with a target
distribution proportional to the posterior distribution p(θ|d),
which we will estimate through sampling in order to perform
parameter inference (Section 3.3). Our simulated data, d,
described in Section 2, are the six Cartesian phase-space
components (x, y, z, vx, vy, vz) of each star, which we treat as
perfectly measured. An individual star’s phase-space compo-
nents di= (xi, yi, zi, vx,i, vy,i, vz,i) provide its cluster-centric
distance, ri, and speed, vi, which are needed for the calculation
of the DF f (θ; di).
In practice, p(d|θ) is often taken to be the likelihood, a

function of model parameters for fixed data d;( )q , which we
define using the DF in Section 3.1. The prior distributions for
the model parameters θ= (g, Φ0, Mtotal, rh) in the limepy
model are described in Section 3.2.

3.1. Likelihood

In this study, we define the likelihood using a physical DF,
f (θ; di), of the limepy lowered-isothermal model. Given a
fixed set of data, d, of N stars, the likelihood is a function of the
model parameters, θ, and the total mass, Mtotal, of the GC:

d
f d

M
;

;
3

i

N
i

1 total
( ) ( ) ( )q q

=
=

Table 1
Summary of limepy Parameter Values Used to Simulate Different GC Types

Analyzed in this Study

GC TYPE
PARAMETER VALUES

g Φ0 Mtotal (10
5 Me) rh (pc)

Average 1.5 5.0 1.0 3.0
Compact 1.5 5.0 1.0 1.0
Extended 1.5 5.0 1.0 9.0
High-Φ0 GC 1.5 8.0 1.0 3.0
Low-Φ0 GC 1.5 2.0 1.0 3.0

3
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Figure 1. First row: the x and y coordinates of 10,000 randomly selected stars in three different simulated GCs: a compact (left), average (middle), and extended (right)
GC with 105 stars and limepy parameters g = 1.5, Φ0 = 5.0, M = 105, and rh = 1.0, 3.0, and 9.0, respectively. Second row: the magnitude of each star’s velocity
(semitransparent circles) as a function of total distance r, using the same stars as in the top row. Third and fourth rows: the same as the top two rows, except for a GC
with parameters g = 1.5, M = 105, and rh = 3.0, and changing the Φ0 parameter: Φ0 = 2.0 (left), average (middle, same as top two rows), and Φ0 = 8.0.
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f g M r r v

M

, , , ; ,
, 4

i

N
h i i

1

0 total

total

( ) ( )=
F

=

where the stars are assumed to be independent.
For lowered-isothermal models, the DF f is calculated

numerically via the limepy software (Gieles & Zocchi 2015),
and thus the likelihood must be calculated numerically, too.

As mentioned in Section 2, we simulate the position and
kinematic data of stars following a limepy model DF with
parameters, θ, shown in Table 1, assume the likelihood defined
in Equation (4), and define physically motivated informative
priors on the model parameters.

Given that the likelihood is defined by the DF that was used
to generate the data, we expect to obtain reasonable parameter
estimates through inference made from the posterior distribu-
tion using Markov Chain Monte Carlo (MCMC) sampling.
However, we are also going to impose prior distributions that
are at least weakly informative, and so it is good practice to test
whether the posterior can still be used to reliably infer the
model parameters. Moreover, in the cases where the sampling
of stars from the cluster is biased to inside the core or outside

the core, we aim to understand how this sampling bias affects
parameter inference.

3.2. Prior Distributions

Two advantages of Bayesian inference are the necessity to
incorporate meaningful prior information and the requirement
to state this explicitly. In order for the DF to correspond to a
physically realistic collection of stars in a GC, all model
parameters must be greater than zero. Negative parameter
values are not allowed by the likelihood, but we also disallow
negative parameter values via the priors (this increases
efficiency and keeps the limepy model from returning errors).
One reason to use informative priors is that images and

studies both within the the Milky Way and around other
galaxies provide prior information on quantities like the mass
and half-light radius of GCs. For example, GC masses span
about an order of magnitude, and most astronomers would be
comfortable setting the prior p M Nlog ,M M10 total( ) ( )m s~ ,
where the hyperparameters μM and σM are defined in

Mlog10 total. This is the prior we choose, and it is also supported

Figure 2. The parameter estimates and 95% credible intervals for 50 simulated “average” GCs. Each panel shows 50 credible intervals (error bars), the corresponding
mean (points), and the true parameter value (vertical blue line). Each row of points across the four panels corresponds to the parameter estimates for the GC with ID
given on the vertical axis. The fraction at the top of each panel indicates the number of times the 95% credible interval overlaps the true parameter value. The fractions
are very large, as they should be for 95% intervals.
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by the near-universal GC mass function (Brodie & Strader
2006; Harris 2010, 1996).

The limepy model works in Mtotal space, so we need to do
a change of variables to obtain the prior, p(Mtotal). Using a
change of variables, the prior on Mtotal is

p M
N

M

,

ln 10
. 5M M

total
total

( )
( )

( )
m s

=

The half-light radius is another quantity of GCs for which we
have considerable prior information. Images of GCs give an
independent estimate of rh, with a conservative measurement
uncertainty of roughly 0.4 pc (e.g., de Boer et al. 2019). In this
simulation study, we assume the observer has this prior
information and set a truncated normal prior on rh.

We have considerably less prior information on the values of g
and Φ0, aside from the physically allowable, positive values. For
these parameters, we use truncated uniform distributions. In
summary, we assume the parameters for the limepy model are
distributed as

g unif 0.001, 3.5 , 6( ) ( )~

unif 1.5, 14 , 70 ( ) ( )F ~

M
N

M

,

ln 10
, 8M M

total
total

( )
( )

( )
m s

~

r N a band , , , , 9h r rh h( ) ( )m s~

where μM= 5.85 and σM= 0.6 (defined in Mlog10 total), and the
hyperparameters for the lower and upper bounds of rh are a= 0
and b= 30, respectively. The mean and standard deviation for
the rh parameter ( rh

m and rhs ) are chosen to reflect plausible
information an observer would have for a given GC. Thus, for
the average GCs in our analysis, we try different means, such
as 3.4rh

m = , 3.1rh
m = , etc., with 0.4rhs = pc. Our results are

insensitive to the choice of the mean, as long as it is not too
many standard deviations away from the true value.

3.3. Sampling the Target Distribution

Given the limepy model, we have a likelihood function
dg M r, , , ;h0( )F for the four unknown parameters, depend-

ing on the observed star data, d. Combining the above prior
distributions with this limepy likelihood function leads to a
posterior distribution, or target posterior density, via Bayes’
theorem (Equation (2)),

d dp g M r p g M r
p g p p M p r

, , , , , ,
,

h h

h

0 total 0 total

0 total

( ∣ ) ( ∣ )
( ) ( ) ( ) ( )

F µ F
´ F

Figure 3. The parameter estimates and 95% credible intervals for 50 simulated “extended” GCs, when stars are randomly sampled at all radii. The fractions are again
very large, as they should be.
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where we assume independent priors. Our goal is to sample
from the target distribution p(g, Φ0, Mtotal, rh|d), and perform
inference of the parameter values, the CMP, and the mean-
square velocity profile of the GC.

Ultimately, we explore and collect samples of this posterior
density using a MCMC algorithm, specifically a version of the
standard Metropolis algorithm (Metropolis et al. 1953) that

includes automated, finite adaptive tuning (to be discussed
later). First, however, we find optimal starting values; we use
the differential-evolution optimizer function DEopt from the
NMOF package (Schumann 2021; Gilli et al. 2019) in R (R Core
Team 2019) to find modal (i.e., argmax) values of the four
parameters, and then use these values as the initial state of our
MCMC algorithm. Differential evolution was first introduced
by Storn & Price (1997), and we refer the reader to this paper
for details on the algorithm. This initial step allows an
automated selection of good starting values, which helps to
overcome the complicated structure of the posterior distribu-
tion, thereby making sampling more efficient. Once the starting
values are obtained, we run an automated, finite adaptive-
tuning method during the burn-in of the Markov chain. To
describe the finite adaptive-tuning method, we first provide a
brief review of proposal distributions and sampling efficiency.
Sampling a target or posterior distribution using the standard

Metropolis algorithm requires a choice of proposal or
“jumping” distribution. The latter is used to randomly suggest
a new place in parameter space, θ

*

, based on the current
location, θi. Often, this suggestion is done using a normal
distribution such that

* Z, 10i ( )q q= +

Figure 4. The parameter estimates and 95% credible intervals for 50 simulated high-Φ0 GCs, when stars are randomly sampled at all radii. The fractions are again very
large, as they should be.

Table 2
Estimated Coverage Probabilities Under the Random Sampling Case, for

Different GC Morphologies

GC TYPE C.I. COVERAGE PROB. FOR MTOTAL

Average 0.50
Compact 0.42
Extended 50% 0.52
High Φ0 0.48
Low Φ0 0.38

Average 0.94
Compact 0.90
Extended 95% 1.00
High Φ0 0.94
Low Φ0 0.92

Note. In the table heading, C.I. stands for credible interval.

7
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where Z∼N(0, Σ). Here, N(0, Σ) is the jumping distribution
with a covariance matrix, Σ, set by the user. The value of Σ
determines whether, on average, “big jumps” or “small jumps”
are attempted from the current location of θi. These proposed
jumps are either accepted or rejected according to the standard
formula in the Metropolis algorithm. The efficiency of the
sampling is dependent on the choice of this covariance matrix.
For example, if the variance is too small then the algorithm will
make jumps that are too small. If the variance is too large, then
the algorithm will make jumps that are too large.

Finding a Σ that enables the most efficient sampling is
sometimes accomplished through manual tuning: adjusting Σ
until the appropriate acceptance rate is achieved. Obviously,
this can be a tedious and time-consuming process, especially in
the case of multiple parameters. Thankfully, there are methods
which automate this task and that are founded in statistical
theory.

In this paper, we use an automated, finite adaptive-tuning
method during the burn-in of the Markov chain. This adaptive-
tuning method is one in which the proposal step sizes are
adjusted automatically and iteratively. We obtain a good

covariance matrix for the proposal distribution using an
adaptive Metropolis algorithm (Haario et al. 2001; Roberts &
Rosenthal 2009), which repeatedly updates the Metropolis
proposal distribution (i.e., the proposal covariance matrix)
based on the empirical covariance of the run so far, in an effort
to obtain a proposal covariance matrix equal to about (2.38)2

times the target covariance matrix divided by the Markov
chain’s dimension, which has been shown to be optimal under
appropriate assumptions (Roberts & Rosenthal 1997, 2001).
Foundational works on the subject of adaptive Metropolis and
convergence are found in the statistics literature (Roberts et al.
1997; Haario et al. 2001; Roberts & Rosenthal 2009).
The practice of using the adaptive Metropolis algorithm for

an initial run and then fixing the proposal variance for the final
run corresponds to “finite adaptation”, as in Proposition 3 of
Roberts & Rosenthal (2007). We require a minimum of five
initial runs to update the proposal variance, but also
automatically allow for further iterations as needed to achieve
efficient sampling. Almost all of the GCs we analyze take no
more than five iterations of the finite adaptive tuning, which
takes one to five minutes per cluster on a simple laptop
computer.

Figure 5. Example cumulative mass profiles calculated from the posterior samples (black curves) for the five GC types (Table 1), in the case of random sampling.
Each plot shows the posterior samples for a single GC, with the type of GC (average, compact, extended, high Φ0, or low Φ0) indicated above each figure. The red
solid curves show the true mass profile from the limepy model, showing excellent agreement.
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Once the finite adaptive step is complete, we run a standard
Metropolis algorithm using the final (hopefully approximately
optimal) proposal distribution found by the adaptive Metropolis
step. The final sampling takes less than 15 minutes per cluster
to complete. At the end, we discard an initial burn-in period,

and take the remaining chain values as a sample from the
posterior density.
The above procedure allows us to approximately sample

from p(g, Φ0, Mtotal, rh|d), and hence (a) approximately
compute the posterior means and other statistics of the four
unknown parameters (g, Φ0, Mtotal, rh), including Bayesian
credible intervals; and (b) calculate a CMP of the GC for every
sample from the target distribution.

3.4. Different Cluster and Sampling Cases

Very generally, GCs may be classified as having an average,
compact, or extended morphology based on their radius, rh, or
may be considered to have high or low concentration based on
the value of Φ0. Additionally, the spatial and kinematic data
from stars may be a random sample from everywhere in the
cluster, a random sample beyond some radius, or a random
sample within some radius. We expect the ability of our
method to recover the true mass, CMP, and mean-square
velocity profile to depend on both GC morphology and the type
of sampling of its stars. Understanding the bias in parameter
inference that can occur as a result of biased sampling is

Figure 6. The cumulative mass profile (CMP) 50%, 75%, and 95% Bayesian credible regions (dark to light teal-shaded regions, respectively) for the examples shown
in Figure 5. Comparing these inferred CMPs to the empirical cumulative distribution function of the 500 stars’ distances, r (black curves), could act as a check that the
Bayesian inference is reasonable given the data, when the true CMP is unknown.

Table 3
Reliability of Cumulative Mass Profile Credible Regions (c.r.) for the Average

GCs, Under Random Sampling of Stars

Average GCs, stars randomly sampled

r (pc) within 95% c.r.

1.00 49/50
1.39 49/50
1.95 50/50
2.71 50/50
3.79 50/50
5.28 46/50
7.37 46/50
10.28 46/50
14.34 47/50
20.00 47/50
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important, since in reality we sometimes lack position and
kinematic data from the inner or outer regions of the cluster.
Thus, we investigate multiple combinations of the aforemen-
tioned cases to understand any possible bias.

Table 1 summarize the types of GCs we investigate. In our
simulated GCs, all stars have the same brightness and mass,
and so the half-light radius corresponds to the half-mass–
radius. For each case, we simulate 50 GCs using the parameter
values listed in Table 1, and subsample 500 stars either (1)
randomly, (2) outside rcut, or (3) inside rcut. We choose an rcut
value of 1.5pc mostly for simplicity but also partly because
recent work by the HSTPROMO Team indicates that proper
motions are most often available for stars within the half-mass–
radius (Watkins et al. 2013) but not beyond. Our conservative
choice for rcut is therefore half of the average effective radius of
Galactic clusters (excluding very extended clusters with
effective radii greater than 10 pc) (Baumgardt & Hilker 2018).
We use this same cut-off radius when sampling outer stars (i.e.,
situation (2) above) as well. In this way, we investigate what
happens when data are only available for outer stars (e.g., when
Gaia kinematic data are used).

By repeating the analysis on 50 randomly generated GCs, we
estimate and examine the coverage probabilities for the
Bayesian credible regions for all sampling scenarios, for all
GCs listed in Table 1 (Section 4).

For example, for the average cluster, we generate 50
simulated GCs with parameter values g= 1.5, Φ0= 5,
Mtotal= 105 Me, and rh= 3.0 pc, and randomly sample 500
stars from each GC. For each GC, we run the analysis on the
subsample of stars, obtaining samples of the target distribution
as described in the previous section. Next, we estimate the
mean, interquartile range, and 95% credible interval of the
posterior distribution using our MCMC samples from the target
distribution. After doing this for all 50 average GCs, we count
how many times the interquartile ranges and 95% credible
intervals cover the true parameter value to estimate the
coverage probability. If the Bayesian credible regions are
reliable, then the interquartile ranges should cover the true
parameter values 50% of the time, and the 95% credible
intervals should cover the true parameter values 95% of
the time.
The same procedure is repeated for all GC types listed in

Table 1. For example, we look at GCs with different half-light
radii, reflecting extended and compact clusters. For these
clusters we use parameter values of g= 1.5, Φ0= 5,
Mtotal= 105 Me, and rh= 9.0 pc and g= 1.5, Φ0= 5,
Mtotal= 105 Me, and rh= 1.0 pc, respectively. To further
explore the parameter space believed to be covered by Galactic
GCs, and specifically to explore GCs that are more (less)
concentrated, we also look at GCs with a high (low) Φ0.

Figure 7. Example mean-square velocity profiles calculated from the posterior samples (black curves) for the case of random sampling. Each plot title indicates the
type of GC (average, compact, extended, high Φ0, or low Φ0). The red solid curves show the true mean-square velocity profile from the limepy model, again
showing good agreement. The semitransparent vertical dashes along the bottom of each plot show the exact location, r, of the randomly sampled stars in the GC.
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Using our estimate of the posterior distribution for a single
GC, we can also estimate that GC’s CMP. The CMP is an
estimate of the mass contained within some distance, r, of the
GC. To estimate the CMP, we follow the same procedure as
described in Eadie & Jurić (2019), who used this approach to
estimate the Milky Way’s CMP. For every set of model
parameters (g, Φ0, Mtotal, rh) sampled by our algorithm (i.e.,
every row of parameter values in the Markov chain), we
calculate the CMP determined by the limepy model. Because
we have thousands of rows in our Markov chain, we obtain
thousands of CMP estimates. These CMPs provide us with a
visual and quantitative estimate that can be used to calculate
Bayesian credible regions and that can be compared directly to
the true CMP of the cluster.

Another quantity of interest that we can estimate using the
posterior distribution for a single GC is the mean-square
velocity. The mean-square velocity is equal to the sum of the
velocity dispersion squared (or the variance) and the square of
the mean velocity. The limepy code can calculate the mean-
square velocity as a function of radius from the center of
the cluster, given a specific set of model parameters. Thus, the
estimate of the GC’s mean-square velocity profile can
be calculated in much the same way as the CMP, using the
parameter samples from the posterior distribution.

In all of the GC examples, we assume that we know the
complete position and velocity components of the stars.
However, in reality we often have incomplete data. For
example, we might only have projected measurements on the
plane of the sky (i.e., projected distances in the x–y plane, and
proper motions). This missing data might influence our mass
and mass profile estimates in unexpected ways, and is
important to study. In a Bayesian analysis one can treat the
missing components as parameters in the model, but this also
means that further prior distributions must be set. Given the
complexity of the problem, we leave this to future work.

4. Results and Discussion

4.1. Random Sampling

For the cases in which we randomly sample stars from
everywhere in the cluster, we find the Bayesian credible
regions to be reliable for all five GC types.
As an example, Figure 2 shows the 95% credible intervals

(error bars) for each model parameter, for 50 realizations of an
average cluster. The true parameter values are shown as vertical
blue lines, and the number of times out of 50 that the 95%
credible interval of the target distribution overlaps the true
value is shown at the top of each panel. We can see that the

Figure 8. The mean estimate and 95% credible intervals for average GCs whose stars were sampled outside the core. Due to the biased sampling, most of the intervals
miss the true value.
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credible intervals for each parameter reliably contains the true
parameter approximately 95% of the time (Figure 2).

As a second example, we show a similar plot for the case of
the extended GCs (Figure 3). Here too, we find the 95%

credible intervals to be reliable for the most part. The credible
intervals for g and Φ0 are slightly overconfident, since the true
parameter value lies within the 95% credible intervals only
90% and 92% of the time, respectively.
As a final and third example, Figure 4 shows the same type

of plot for a more concentrated cluster with Φ0= 8. Again, the
credible intervals are reliable, showing good coverage
probabilities.
Table 2 shows the estimated coverage probabilities for the

Mtotal parameter in the case of random sampling, for all five
types of clusters, found by calculating the fraction of times that
the true Mtotal is contained within the Bayesian credible
interval. We can see that both the 50% and 95% credible
intervals for Mtotal are reliable when the stars are randomly
sampled throughout the cluster, despite cluster type.
The MCMC samples can also be used to infer the CMP of

the cluster under the limepy model. Figure 5 shows the CMP
inferred for one example of an average, compact, extended,
low-Φ0, and high-Φ0 cluster in the random sampling case. The
posterior distribution samples of g, Φ0, Mtotal, and rh from the
Markov chains are used to calculate the posterior estimate of
the CMP, shown as transparent black curves. The red curve
shows the true CMP given by the limepy model with the
correct parameters.
The CMPs provide not only a visual inspection of our

method but also a quantitative one. The posterior curves for a

Figure 9. Same as Figure 2, but for extended GCs whose stars are sampled only from the outer regions.

Table 4
Estimated Coverage Probabilities and Bias in Mass Estimates

GC TYPE C.I.
COVERAGE PROB. FOR MTOTAL

outside core inside core

Average 0.02*, + 0.00*, −
Compact 0.00*, + 0.14*, −
Extended 50% 0.60, − 0.00*, −
High Φ0 0.00, + 0.00, −
Low Φ0 0.12, + 0.00*, −

Average 0.08*, + 0.00*, −
Compact 0.00*, + 0.62*, −
Extended 95% 0.96, − 0.00*, −
High Φ0 0.00, + 0.00*, −
Low Φ0 0.48, + 0.00*, −

Note. Also shown is whether the mass parameters are on average overestimated
(+) or underestimated (−), or unbiased (no symbol). A * indicates the chains
had trouble converging and/or the estimates are at the lower or upper end of
the prior distribution(s).
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given GC (e.g., the collection of black curves for the average
GC in Figure 5) can be used to construct Bayesian credible
intervals at all radii (e.g., the teal regions for the average GC in
Figure 6). After constructing these credible regions for each
GC, we can ask: “How often does the true CMP lie within these
credible regions, at different radii?”.

As an example of this quantitative comparison, we use the
results of all 50 realizations of average GCs to calculate the
reliability of the CMP 95% credible regions. Table 3 shows
how often the true M(r< R) fell within the 95% credible region
at 10 logarithmically spaced distances, r, for the average GCs.
The results show that the credible regions are reliable, with the
true M(r< R) being recovered approximately 95% of the time
at all radii.

In general, we find that the credible regions and CMPs are
reliable for all types of GCs when the stars are sampled
randomly throughout the cluster. It is reassuring that we can
recover the true parameter values and the CMPs reliably from a
random sample of only 500 stars.

In the case of real data, we will not know the true CMP of a
GC. Thus, one might like to check whether the CMP inference
is reasonable given the observed data. One way to compare the
Bayesian-inferred CMP to the observed data is shown in
Figure 6. Here, the 50%, 75%, and 95% credible regions are
compared to the empirical cumulative distribution function
(ECDF) of the 500 stars’ positions, r. Another way to do this

kind of comparison or check, which is not done here, would be
to perform posterior predictive checks: to simulate data from
the posterior distribution, and compare these simulated data to
the real data (e.g., see Shen et al. 2022, where Bayesian
posterior predictive checks are used to check inferences about
the CMP of the Milky Way).
Additionally, we can inspect other physical quantities

provided by the limepy model fit. For example, Figure 7
shows the mean-square velocity v2 profiles as a function of
radius for one GC in each of the five morphologies. Under
random sampling of the stars, we observe that the true mean-
square velocity profile is well recovered by the MCMC
samples. Similarly to the CMPs discussed above, Bayesian
credible regions for velocity profiles could also be calculated,
and posterior predictive checks could be performed to compare
simulated data from the posterior to the observed data.

4.2. Biased Sampling

In general, we find that biased sampling of stars from only
inside or outside the cluster core results in model parameter
estimates that are biased and in Bayesian credible intervals that
are unreliable. While obtaining biased estimates from a biased
data sample is not surprising, the reality is that this type of
sampling mimics the data from some telescopes. Investigating
these cases can illuminate the kind of biases we should expect

Figure 10. Same as Figure 2, but for high-Φ0 GCs sampled inside the core.
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Figure 11. Example cumulative mass profile estimates (black curve) when stars are subject to selection bias either outside or inside the core of the GC. The black
semitransparent curves show the mass profiles predicted by the MCMC samples, and the solid red curves show the true mass profiles. Each row corresponds to the
type of GC, and each column corresponds to the type of biased sampling: stars sampled outside or inside the core of the GC. The biased samples lead to very poor
estimates in most cases, with the exception of the morphology-sampling combinations of extended cluster–outside core, the compact cluster–inside core, and low-Φ0–

inside core.
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and possibly correct for. Indeed, through our investigations of
biased sampling, we find the success of the parameter inference
and CMP inference is a combination of both the cluster’s
morphology and the type of biased sampling.

As an example, Figure 8 shows the 95% credible intervals
for an average GC when only the outer stars’ data are sampled.
We can see that the credible intervals are unreliable, and that
parameter estimates are biased. In particular, Mtotal, g, and rh
are consistently overestimated, while Φ0 is underestimated.

In contrast, biased sampling of outer stars of an extended
cluster result in parameter estimates that are much more reliable
(Figure 9). In this case, the extended GC’s mass, Mtotal, and
half-light radius, rh, can actually be estimated reliably.

In Table 4, we summarize how reliably we can recover Mtotal

in the biased sampling cases. Only the extended cluster with
sampling in the outer regions is reliable. Also note the *ʼs in the
table, which indicate when the MCMC algorithm had trouble
finding a stationary distribution with good mixing, leading to
biased estimates of the total mass (Table 2). In these particular
cases, the behavior of the Markov chain would be a clue to the
observer that the model is having trouble describing the data.

For GCs with high Φ0, biased sampling of stars in the inner
regions also leads to poor parameter estimates and unreliable
credible regions (Figure 10). For some of the GCs in the
scenario, the Markov chains become stuck in one location. The
estimates of the mean from these bad chains are shown as the
open circles with a small dot in the middle (i.e., the “estimates”
have a variance of zero because the chains became stuck at a
single place in parameter space). The exact estimated parameter
values in these bad cases are rather meaningless and random.
Moreover, if a scientist were to see this behavior in a Markov
chain from a real data analysis, then they would know not to
trust the solution. However, in many cases of randomly
generated GCs with high Φ0 and biased sampling in the inner
regions, the Markov chains do look reasonable even when their
estimates are not. Thus, a scientist could mistakenly assume the
convergence is giving reliable parameter estimates. We will
return to this scenario shortly.

As mentioned in the previous section,the CMPs provide
more insight than simply looking at the parameter estimates
and their credible intervals, both visually and quantitatively.
Figure 11 shows example CMPs for each GC morphology
when the stars in these GCs are sampled only in their outer or
inner regions (first and second column, respectively). Looking
at the first column in Figure 11, we see that when stars are
sampled outside the core, the inner region of the cluster’s

profile tends to be underestimated, regardless of the GC
morphology. The opposite is true for sampling inside the core
(the second column). At the same time, sampling outside the
core tends to lead to an overestimate of the total mass, while
sampling inside the core leads to a (sometimes severe)
underestimate.
There are two exceptions to the observation that biased

samples lead to biased CMPs, namely (i) when extended and
low-Φ0 clusters are sampled in the outer regions, and (ii) when
compact clusters are sampled in the inner regions. For the
extended and low-Φ0 GC, our method is able to recover the true
CMP reasonably well when stars outside the core are sampled,
whereas this is certainly not the case when stars inside the core
are sampled. For the compact GC, we see the opposite case: the
CMP is reasonably well estimated when the sample contains
stars inside the core versus outside the core.
These cases where biased samples still lead to unbiased

estimates are not surprising: sampling stars in the outer region
of an extended or less-concentrated cluster will provide a better
representation of the true stellar distribution than sampling stars
in its core, because these types of GCs are less dense in their
inner regions (Figure 1). Likewise, sampling stars in the inner
region of a compact cluster will be a better representation of the
true stellar distribution than a sample from the outer region
because compact GCs are more dense toward their centers.
Next, we test the reliability of the CMP Bayesian credible

regions. As an example, we show the results for low-Φ0 GCs
when stars are sampled outside the core (Table 5). It is clear
that the 95% c.r. at all radii are unreliable, with the inner
regions being the most unreliable.
Next, we use the MCMC samples to estimate the mean-

square velocity v2 profile as a function of radius. In Figure 12,
each row corresponds to a specific GC type, and the columns
indicate whether stars were sampled outside (left) or inside
(right) the core of the GC. The light-blue dashed line shows the
rcut value, and along the bottom are semitransparent marks
showing the exact positions of the stars in the sample.
In the left-hand column of Figure 12, the estimated v2

profiles are reasonably well matched to the true profiles for
three morphologies (average, extended, and low-Φ0 GCs).
Notably, the corresponding mass profile CMPs in Figure 11 are
also some of better estimates of the entire set. For the other two
types of GCs, it is the inner part of the profiles that do not
match; the true mean-square velocity profile (red curve) in the
center of the GC is much higher than the predicted profiles
(black curves). Our findings suggest that a reasonable estimate
of the v2 profile might be possible for outer regions of the GC
when stars are sampled outside the core, but that it would be ill-
advised to extrapolate the model fit to the inner regions when
only stars outside of the core are available.
In the right-hand column of Figure 12, we see that for every

type of GC the true mean-square velocity profile is poorly
matched by the predictions at all radii, r. Within the rcut value,
the true profile is generally lower than the black curves,
whereas it is much higher than the black curves outside rcut.
Thus, the kinematic information from inner-GC stars alone is
not enough to constrain the model at any radii.
One aspect that we have not explored in the biased sampling

cases is whether the rcut value plays a significant role in
determining parameter estimates, especially if that rcut value
was more directly linked to GC morphology. Here, we have
used a fixed rcut value mostly for simplicity, but in future work

Table 5
Reliability of CMPs for Low-Φ0 GCs, in the Case of Biased Sampling

Low-Φ0 GCs, stars sampled outside core

r (pc) within 95% c.r.

1.00 0/50
1.36 0/50
1.85 0/50
2.52 0/50
3.43 6/50
4.67 39/50
6.35 39/50
8.64 28/50
11.76 23/50
16.00 23/50
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Figure 12. Example mean-square velocity profile estimates (black curves) from the MCMC samples when stars are subject to selection bias. The solid red curves show
the true v2 profiles. Each row corresponds to the type of GC, and each column corresponds to the type of biased sampling: stars sampled outside or inside the core of
the GC. The vertical, light-blue dashed line indicates the rcut = 1.5 pc, and the semitransparent vertical dashes along the bottom of each plot show the individual
positions of each star in the (biased) sample. The biased samples lead to very poor estimates in most cases, with the exception of the morphology-sampling
combinations of average–outside core, extended cluster–outside core, and low-Φ0–outside core.
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it would be worth exploring the impact of rcut more fully. For
example, the rcut value for an extended or less-concentrated GC
might be relatively smaller than that for the rcut value for a
compact or highly concentrated GC.

It is also worth mentioning that for the fits in the right-hand
column of Figure 12, the Markov chains had trouble
converging and/or the estimates of the parameter were at the
lower or upper ends of the prior distributions (see Table 4).
Both of these issues are red flags; the model has not been fit
well to the data and any inference would be imprudent.

5. Conclusion

This paper has investigated the estimation of GC properties
based upon a sample of their constituent stars. We have
developed a MCMC algorithm to compute the four parameters
of a lowered-isothermal model that is used to represent a GC
system. Our algorithm uses a version of the Metropolis
algorithm, together with a numerical optimization to find good
starting values, and a finite-adaptation tuning phase to find a
good proposal covariance matrix. We then applied our
algorithm to simulated data generated using the limepy
package (Gieles & Zocchi 2015), and examined the extent to
which the parameters, mass profile, and mean-square velocity
profile of the original cluster are recovered by our algorithm.

A major goal for this study was to investigate what types of
bias can occur when the GC’s stars are sampled (a) randomly,
(b) from the outer regions of the cluster, and (c) from the inner
regions of the cluster. In summary, our findings are as follows:

1. Using all spatial and kinematic information and sampling
stars randomly from throughout the cluster, our method
gives reliable credible intervals for the parameter values,
as well as reliable CMPs and mean-squared velocity
profiles.

2. Using a biased sample of stars (i.e., within/outside rh)
gives unreliable credible intervals, leads to biased
parameter estimates, and provides poor inference of the
CMP and mean-square velocity profile.

3. There are two possible exceptions where even biased
samples still tend to be reliable: (i) extended and low-Φ0

clusters that are sampled in the outer regions, and (ii)
compact clusters that are sampled in the inner regions. In
these cases, we believe the credible intervals for the
parameters and CMPs are more reliable because the
distribution of the sampled data is more similar t0 the true
distribution of stars in the cluster.

These results are quite promising. If the stellar data is
sampled randomly in an unbiased fashion, then our algorithm’s
estimates are quite accurate. The mass profiles correspond
closely to the theoretical curves, and the parameter estimates
are close to the true parameters. We are also able to accurately
estimate our error range, so that our 50% and 95% credible
regions for the parameters have very close to the correct
coverage probabilities.

If the stars are instead sampled in a biased fashion, then the
results are more mixed. Biased sampling of outer stars only for
an extended and low-Φ0 cluster still works well, since the
essential information is preserved. However, in other cases,
biased samples lead to biased estimates with poor coverage
probabilities. This is not surprising, since our model assumes
that the star sample is truly random (i.e., unbiased).

As we have seen, the biases in parameter estimates and
profiles can be quite pronounced and consistent among the
simulations when the data sample is biased. We could propose
a “calibration” to correct for these parameter and profile biases,
and such a calibration would allow us to rescale the parameters
and profiles to better match the truth. However, this calibration
would only be valid for the specific analysis of full six-
dimensional phase-space information that we have presented
here. Ultimately, we plan to expand our method in future work
to deal with projected position data and missing velocity
components (i.e., a more realistic data scenario). At that stage,
the biases in the mass and velocity profile estimates could
change substantially. Thus, we leave any calibration to future
work, when its application will be most useful.
There are many avenues to pursue for future work. We are

currently investigating how to modify the model to give more
accurate estimates in the face of biased samples, and similarly
when only projected values of the star positions and velocities
are known.
Both biased samples and missing data are an astronomer’s

reality. For example, kinematic data of stars measured by the
HST typically sample only a portion of the cluster, whereas the
Gaia satellite mostly provides kinematic data from stars in a
GC’s outer regions, with the inner regions being incomplete.
Without accounting for a biased sample, parameter inference is
less reliable.
Real kinematic data from the HST and Gaia also have well-

understood measurement uncertainties. We have not included
measurement uncertainties in our simulation study, but a
valuable next step would be to generate noisy measurements
and then include a measurement model for each star that takes
into account the sampling distribution of the measured
kinematic components. This step could be accomplished
through a hierarchical model. Additionally, one could use this
framework as a way to combine data from different telescopes
that have different measurement properties (e.g., HST and
Gaia), and thus obtain a less biased sample of the stars in the
cluster. As we have shown in this work, an unbiased sample of
stars is key to reliable parameter inference and recovering a
good estimate of the CMP.
Ultimately, astronomers are not only interested in the

intrinsic properties of GCs, but are also interested in
comparison and selection of GC models. The latter will help
our understanding of internal GC dynamics and the larger story
of GC evolution as GCs traverse the Galactic potential. For
example, the recently developed SPES model (Claydon et al.
2019) allows some of the stars in a GC to be “potential
escapers”. The existence of energetically unbound stars within
clusters is, again, an astronomer’s reality and could strongly
affect how well a given DF is fit to observations. In fact, de
Boer et al. (2019) found that the SPES models were a better
representation of Galactic GCs than limepy models when
fitting to GC density profiles. We are currently investigating
some preliminary model comparison tests with simulated data
from the limepy and spes models (Z. Lou et al 2021, in
preparation).
It is also important to compare the method presented here to

traditional methods in the literature that use the projected
distances of stars to estimate density and mass profiles, and that
combine data sets from different telescopes to use stars at all
radii (e.g., de Boer et al. 2019). However, at this stage of our
research we have assumed an “ideal” scenario in which we
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have the full six-dimensional phase-space information of stars:
a comparison of our results to other methods which use only
projected distances of the stars will unfairly favor our method
simply because we have more positional information. In a
follow-up study, we plan to improve our Bayesian approach so
that it can be applied to the measurements of projected
distances, and at this stage a more fair comparison of methods
could be made.

The ability to attribute a given dynamical model to an
observed GC is a key step toward unravelling a GC’s current
properties as well as its evolutionary history. Understanding the
underlying DF of stars within a cluster allows for more
complex GC features, such as its dark remnant population,
binary population, degree of mass segregation, and its tidal
history, to be more thoroughly explored. Using a model that
incorporates all these components—while also improving the
statistical framework to account for sampling bias in observa-
tions—will allow us to better understand the dynamical state of
GCs. Knowing a cluster’s dynamical state also places
constraints on the cluster’s properties at birth and how it has
evolved over time. Hence, being able to fit a dynamical model
to an observed GC strengthens the cluster’s utility as a tool to
study the universe around it.
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