
The Mathematics of MCMC Algorithms

Jeffrey S. Rosenthal
University of Toronto

jeff@math.toronto.edu
http://probability.ca/jeff/

(IWAP Workshop, Toronto, June 20, 2016)

(1/41)

Background / Motivation

Often have complicated, high-dimensional density functions
π : X → [0,∞), for some X ⊆ Rd with d large.

(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

Π(A) :=

∫
A
π(x) dx ,

and/or expected values of functionals like:

Eπ(h) :=

∫
X
h(x)π(x) dx .

Calculus? Numerical integration?

Impossible, if π is something like . . .

(2/41)

Typical π: Variance Components Model

State space X = (0,∞)2 × RK+1, so d = K + 3, with

π(V ,W , µ, θ1, . . . , θK)

= C e−b1/VV−a1−1e−b2/WW−a2−1

× e−(µ−a3)2/2b3V−K/2W− 1
2

∑K
i=1 Ji

× exp
[
−

K∑
i=1

(θi − µ)2/2V −
K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W
]
,

where ai and bi are fixed constants (prior), and {Yij} are the data.

In the application: K = 19, so d = 22.

Integrate? Well, no problems mathematically, but . . .

High-dimensional! Complicated! How to compute?

Try Monte Carlo!

(3/41)

Monte Carlo, Monaco

(4/41)

Nice Place for a Conference!

(5/41)

Estimation from sampling: Monte Carlo

Can try to sample from π, i.e. generate on a computer

X1,X2, . . . ,XM ∼ π (i .i .d .)

(meaning that P(Xi ∈ A) =
∫
A

π(x) dx).

Then can estimate by e.g.

Eπ(h) ≈ 1

M

M∑
i=1

h(Xi) .

(Like taking an opinion poll. As M →∞, the estimate gets more
and more accurate. Just like how the gambling house always wins.)

Good. But how to sample from π?

Often infeasible! (e.g. above example!)

Instead . . .

(6/41)

Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional target distribution π(·):

Find an ergodic Markov chain (random process) X0,X1,X2, . . .,
which is easy to run on a computer, and which converges in
distribution to π as n→∞.

Then for “large enough” B, L(XB) ≈ π, so XB , XB+1, . . . are
approximate samples from π, and e.g.

Eπ(h) ≈ 1

M

B+M∑
i=B+1

h(Xi) , etc.

Extremely popular: Bayesian inference, computer science,
statistical genetics, statistical physics, finance, . . .

But how to create such a Markov chain?

(7/41)

Ex.: Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain X0,X1,X2, . . . as follows.

Given Xn−1:

• Propose a new state Yn ∼ Q(Xn−1, ·), e.g. Yn ∼ N(Xn−1, Σp).

• Let α = min
[
1, π(Yn)

π(Xn−1)

]
.

• With probability α, accept the proposal (set Xn = Yn).

• Else, with prob. 1− α, reject the proposal (set Xn = Xn−1).

Try it: [APPLET] Converges to π!

Why? α is chosen just right so this Markov chain is reversible with
respect to π, i.e. π(dx)P(x , dy) = π(dy)P(y , dx). Hence, π is a
stationary distribution.

Also, chain will be aperiodic and (usually) irreducible. So, it
converges by general Markov chain theory.

More complicated example?
(8/41)

Example: Particle Systems

Suppose have n independent particles, each uniform on a region.

What is, say, the average “diameter” (maximal distance)?

Sample and see! [pointproc.java] Works! Monte Carlo!

Now suppose instead that the particles are not independent, but
rather interact with each other, with the configuration probability
proportional to e−H , where H is an energy function, e.g.

H =
∑
i<j

A
∣∣∣(xi , yi)− (xj , yj)

∣∣∣+
∑
i<j

B∣∣∣(xi , yi)− (xj , yj)
∣∣∣ +

∑
i

C xi

A large: particles like to be close together.
B large: particles like to be far apart.
C large: particles like to be towards the left.

Can’t directly sample, but can use Metropolis! [pointproc.java]

(9/41)

Okay, but Where’s the Math?

MCMC’s greatest successes have been in . . . applications!

• Medical Statistics

• Statistical Genetics

• Bayesian Inference

• Chemical Physics

• Computer Science

• Mathematical Finance

So, what is MCMC mathematical theory good for?

• Informs and justifies the basic algorithms.

• Suggests new modifications of the algorithms.

• Determines which algorithm choices are best.

• Develops new MCMC directions (e.g. adaptive MCMC).

I’ll discuss various Mathematical Research Questions (MRQ).

(10/41)

MRQ#1: How to Optimise MCMC Choices?

The theorem says that we can use essentially any update rules, as
long as they leave π stationary.

• Any symmetric proposal distribution Q. (Choices!)

• Non-symmetric proposals, with a suitably modified acceptance
probability. (“Metropolis-Hastings”) (e.g. Independent, Langevin)

• Update one coordinate at a time. (“Componentwise”)

• Update from full conditional distributions. (“Gibbs Sampler”)

So what choice works best? e.g. What γ in [APPLET]?

• If γ too small (say, γ = 1), then usually accept, but move very
slowly. (Bad.)

• If γ too large (say, γ = 50), then usually π(Yn+1) = 0, i.e.
hardly ever accept. (Bad.)

• Best γ is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1. (“Goldilocks Principle”)

(11/41)

Example: Metropolis for N(0,1)

Target π = N(0, 1). Proposal Q(x , ·) = N(x , σ2).

How to choose σ? Big? Small? What acceptance rate (A.R.)?

σ = 0.1? σ = 25? σ = 2.38?
too small! too big! just right!

A.R. = 0.962 A.R. = 0.052 A.R. = 0.441

The Goldilocks Principle in action!

What about higher-dimensional examples? If d increases, then σ
should: decrease. But how quickly? On what scale? Theory?

(12/41)

Theoretical Progress: Diffusion Limits

Recall: if {Xn} is simple random walk, and Zt = d−1/2Xdt (i.e., we
speed up time, and shrink space), then as d →∞, the process
{Zt} converges to Brownian motion (i.e., a diffusion).

Do similar limits hold for a Metropolis algorithm, in dimension d ,
as d →∞? Yes!

(13/41)

Diffusion Limits for the Metropolis Algorithm

Theorem [Roberts, Gelman, Gilks, AAP 1997]: If {Xn} is a
Metropolis algorithm in dimension d , as d →∞, with

Q(x , ·) = N(x , `
2

d Id), then if Zt = d−1/2X
(1)
bdtc, then under “certain

conditions”, the process {Zt} converges to a diffusion, whose speed
h(`) is explicitly related to its asymptotic acceptance rate A(`).

• So, to optimize the algorithm, we should maximize h(`).

• The maximization gives: `opt
.

= 2.38/Cπ. (unknown)

• Then we compute that: A(`opt)
.

= 0.234. (explicit!)

So, for Q(x , ·) = N(x , σ2Id), it is optimal to choose a scaling σ2

which corresponds to an optimal acceptance rate of 0.234.

• Clear, simple “0.234” rule. Good! Useful! (Used in BUGS!)

Later generalizations to Langevin diffusions, other targets, etc.
(Roberts & R., JRSSB 1998, Stat Sci 2001; Bédard, AAP 2007;
Bédard & R., CJS 2008; Sherlock, JAP 2013; Stuart et al.; . . .)

What about further optimality, beyond “0.234”?
(14/41)

Example: π = N(0,Σ) in dimension 20

First try: Q(x , ·) = N(x , I20) (A.R. = 0.006)

Horrible: Σ11 = 24.54, E (X 2
1) = 1.50. Need smaller proposal! (15/41)

Second try: Q(x , ·) = N
(
x , (0.0001)2I20

)
(A.R.=0.9996)

Also horrible: Σ11 = 24.54, E (X 2
1) = 0.0053.

Need bigger proposal!
(16/41)

Third try: Q(x , ·) = N
(
x , (0.02)2I20

)
(A.R.=0.234)

Still terrible: Σ11 = 24.54, E (X 2
1) = 3.63.

But acceptance rate is “just right”. What gives?
(17/41)

Fourth try: Q(x , ·) = N
(
x , [(2.38)2/20] Σ

)
(A.R.=0.263)

Much better: Σ11 = 24.54, E (X 2
1) = 25.82.

Not perfect, but fairly good. Why?
(18/41)

Theory about the Proposal Covariance (Shape)

Theorem [Roberts and R., Stat Sci 2001]:
Under “certain conditions” on π, the optimal Metropolis algorithm
Gaussian proposal distribution as d →∞ is:

Q(x , ·) = N
(
x , ((2.38)2/d) Σ

)
not N(x , σ2Id), where Σ is target covariance.

The corresponding asymptotic acceptance rate is again 0.234.

• And, this turns out to be nearly optimal for many other
high-dimensional densities, too.

This gives very useful advice . . . if Σ is known!

But what if the target covariance Σ is unknown?

Can we make use of this optimality result anyway?

(Adaptive MCMC – later.) But first . . .

(19/41)

MRQ#2: Quantitative Convergence Bounds?

What about quantitative bounds, i.e. a specific number n∗ such
that, say, P(Xn∗ ∈ A)− π(A)| < 0.01 ∀ A?

(Not just “as n→∞”.)

One method: coupling. (Other methods: drifts, eigenvalues, . . .)

Consider two chain copies, {Xn} and {X ′n}.

Assume that X ′0 ∼ π (so X ′n ∼ π ∀n).

If can “make” the two copies become equal for n ≥ T , while
respecting their marginal update probabilities, then Xn ≈ π too.

Specifically, the coupling inequality says:

|P(Xn ∈ A)− π(A)| ≡ |P(Xn ∈ A)− P(X ′n ∈ A)| ≤ P(T > n) .

But how to apply this to a complicated MCMC algorithm?

(20/41)

Quantitative Bounds: Minorisation

Simplest version:

Suppose there is ε > 0, and a probability measure ν, such that
P(x , y) ≥ ε ν(y) for all x , y ∈ X .

This “minorisation condition” gives an ε-sized “overlap” between
the transition distributions P(x , ·) and P(x ′, ·).

That means at each iteration, we can give the two copies
probability ε of becoming equal. Hence, P(T > n) = (1− ε)n.

Therefore, |P(Xn ∈ A)− π(A)| ≤ (1− ε)n, ∀A.

e.g. [APPLET], with γ = 3 (say): check that P(x , y) ≥ ε ν(y) for
all x , y , where ε = 0.2, and ν(3) = ν(4) = 1/2.

• So |Pn(x ,A)− π(A)| ≤ (1− ε)n = (1− 0.2)n = (0.8)n.

• Hence, |Pn(x ,A)− π(A)| < 0.01 whenever n ≥ 21.

• “The chain converges in 21 iterations.” Good!

What about a harder example?? (21/41)

Example: Baseball Data Model

Hierarchical model for baseball hitting percentages (J. Liu):
observed hitting percentages satisfy Yi ∼ N(θi , c) for 1 ≤ i ≤ K ,
where θ1, . . . , θk ∼ N(µ,V), c is empirically estimated, with
µ,V , θ1, . . . , θK to be estimated. Priors: µ ∼ flat, V ∼ IG (a, b).

Diagram:

µ
↙ ↓ ↘

θ1 θK θi ∼ N(µ,V)
↓ ↓
Y1 YK Yi ∼ N(θi , c)

For our data, K = 18, so d = 20.

High dimensional! How to estimate?

(22/41)

Baseball Data Model (cont’d)

MCMC solution: Run a Gibbs sampler for π.

Markov chain is Xk = (A(k), µ(k), θ
(k)
1 , . . . θ

(k)
K), updated by:

A(n) ∼ IG

(
a +

K − 1

2
, b +

1

2

∑
(θ

(n−1)
i − θ(n−1)

)2

)
;

µ(n) ∼ N(θ
(n−1)

, A(n)/K) ;

θ
(n)
i ∼ N

(
µ(n)V + YiA

(n)

V + A(n)
,

A(n)V

V + A(n)

)
(1 ≤ i ≤ K) ;

where θ
(n)

= 1
K

∑
θ

(n)
i .

Recall that K = 18, so d = 20.

Complicated! How to analyze convergence?

(23/41)

Example: Baseball Data Model (cont’d)

Here we can find a minorisation P(x , y) ≥ εν(y), but only when
x ∈ C for a subset C ⊆ X .

But also have a “drift condition” E[f (X1) |X0 = x] ≤ λf (x) + Λ,
for some λ < 1 and Λ <∞, where f (x) =

∑K
i=1(θi − Y)2; this

“forces” returns to C .

Can compute (R., Stat & Comput. 1996):

• a drift condition towards C =
{∑

i (θi − Y)2 ≤ 1
}

, with
λ = 0.000289 and Λ = 0.161;

• a minorization with ε = 0.0656, at least for x ∈ C ⊆ X .

Then can use coupling to prove (R., JASA 1995) that

|P(Xn ∈ A)− π(A)| ≤ (0.967)n + (1.17)(0.935)n , n ∈ N ,

so e.g. |P(Xn ∈ A)− π(A)| < 0.01 if n ≥ 140.
“The chain converges in 140 iterations.” Good!

Realistic models/bounds!
(cf. Jones & Hobert, Stat Sci 2001)

(24/41)

MRQ#3: Qualitative Convergence Bounds

Quantitative bounds too tricky for everyday use . . . what else?

DEFN: Say the chain is geometrically ergodic if

sup
A
|P(Xn ∈ A)− π(A)| ≤ Bx ρ

n , n = 1, 2, 3, . . .

for some ρ < 1, where Bx <∞ for π-a.e. x = X0.

i.e., convergence is exponentially quick (at some exponential rate).

This property always holds on finite state spaces.

• (e.g. must hold for [APPLET] example)

But on unbounded state spaces, it may or may not hold.

It says something about quick convergence (good).

But not too much, since ρ and Bx are unspecified (bad).

Easier. But does this qualitative property actually matter??

(25/41)

Example: Metropolis for N(0,1), again

Run random-walk Metropolis algorithm for π = N(0, 1), with
Q(x , ·) = N(x , σ2), where σ is chosen to make A.R.

.
= 0.234.

P(|X | > 2)
.

= 0.0455; estimate = 0.0453. Great!

Does it always work so well? (26/41)

Example: Metropolis for Cauchy

Random-walk Metropolis for π(x) = c
1+x2 (Cauchy), with

Q(x , ·) = N(x , σ2), with σ again chosen to make A.R.
.

= 0.234.

Much worse!

P(|X | > 10)
.

= 0.0635; estimate = 0.0469. Way too small!

(27/41)

Example: Metropolis for Cauchy, second try

P(|X | > 10)
.

= 0.0635; estimate = 0.0746. Way too big!

• So, MCMC is performing very badly here. Why??

Theorem (Mengersen-Tweedie-Roberts, 1996): Metropolis is
geometrically ergodic iff π(·) has exponentially-small tails.

N(0,1): yes. Cauchy: no. Makes a big difference!
(28/41)

MRQ#4: Case Study – Independence sampler

Consider Metropolis-Hastings where π(x) = e−x , and proposals are
chosen i.i.d. ∼ Exp(k) with density ke−ky , for some k > 0.

• k = 1 (i.i.d. sampling)

E(X) = 1; estimate = 1.001. Excellent! Other k? (29/41)

Independence sampler (cont’d)

• k = 0.01

E(X) = 1; estimate = 0.993. Quite good.

(30/41)

Independence sampler (cont’d)

• k = 5

E(X) = 1; estimate = 0.687. Terrible: way too small!

What happened? Maybe we just got unlucky? Try again!
(31/41)

• Another try with k = 5:

E(X) = 1; estimate = 1.696. Terrible: way too big!

In fact, we can prove (Roberts and R., MCAP, 2011) that with
k = 5, the chain takes between 4,000,000 and 14,000,000
iterations to converge to within 0.01 of π! But why??

(32/41)

Independence Sampler: Theory

What’s going on in this example?

Why is k = 0.01 pretty good, and k = 5 so terrible?

Theorem [Mengersen & Tweedie, Ann Stat 1996]:
Independence samplers are geometrically ergodic if and only if
there is δ > 0 for which Q(x) ≥ δ π(x) for all x ∈ X .

If there is, then |Pn(x ,A)− π(A)| ≤ (1− δ)n. (Quantitative!)

In above example, π(x) = e−x and Q(x) = ke−kx , so:

• k = 1: yes, δ = 1; converges immediately (of course).

• k = 0.01: yes, δ = 0.01; and (1− 0.01)459 < 0.01, so the
chain “converges within 459 iterations”. (Pretty good.)

• k = 5: no such δ. Not geometrically ergodic. (Bad.)

So, geometric ergodicity makes a big difference!

(33/41)

MRQ#5: Validity of Adaptive MCMC?

Recall:

• MCMC is really really really important.

• Some MCMC algorithms converge much faster than others.

• Can find optimality results from diffusion limits.

• e.g. Gaussian Random-Walk Metropolis: optimal choice has
acceptance rate around 0.234 (how?), and proposal covariance
(2.38)2 d−1 Σt where Σt is the target covariance (unknown).

• So, we have guidance about optimising MCMC in terms of
acceptance rate, target covariance matrix Σt , etc.

• But we don’t know what proposal will lead to a desired
acceptance rate, nor how to compute Σt .

• What to do? Trial and error? (difficult, especially in high
dimension) Or . . .

(34/41)

Adaptive MCMC

• Suppose have a family {Pγ}γ∈Y of possible Markov chains,
each with stationary distribution π.

• How to choose among them?

• Let the computer decide, on the fly!

• At iteration n, use Markov chain PΓn , where Γn ∈ Y chosen
according to some adaptive rules (depending on history, etc.).

• Simple example: [APPLET]

• e.g. Estimate true target covariance Σt by the empirical
estimate, Σn, based on the observations so far (X1,X2, . . . ,Xn).

• Can this help us to find better Markov chains? (Yes!)

• On the other hand, the Markov property, stationarity, etc. are
all destroyed by using an adaptive scheme.

• Is the resulting algorithm still ergodic? (Sometimes!)

(35/41)

Example: 100-Dimensional Adaptive Metropolis

Plot of first coord. Takes about 300,000 iterations, then “finds”
good proposal covariance and starts mixing well. Good!

• Similarly Adaptive Componentwise Metropolis, Gibbs, etc.

(36/41)

But What About the Theory?

• So, adaptive MCMC seems to work well in practice.

• But will it be ergodic, i.e. converge to π? (Converge at all . . .
never mind how quickly . . .)

• Ordinary MCMC algorithms, with fixed choice γ, are
automatically ergodic by standard Markov chain theory (since
they’re irreducible and aperiodic and leave π stationary). But
adaptive algorithms are more subtle, since the Markov property
and stationarity are destroyed by using an adaptive scheme.
• e.g. if the adaption of Γn is such that PΓn usually moves slower

when x is in a certain subset X0 ⊆ X , then the algorithm will tend
to spend much more than π(X0) of the time inside X0, even if
each update on its own preserves stationarity. [APPLET]

• Some previous results, but they require limiting / hard-to-verify
conditions, like bounded state space, or existence of simultaneous
geometric drift conditions, or Doeblin condition, or . . .

• Need more general, easily-verified theorems . . . (37/41)

One Particular Convergence Theorem

• Theorem [Roberts and R., J.A.P. 2007]: Adaptive MCMC will
converge, i.e. limn→∞ supA⊆X ‖P(Xn ∈ A)− π(A)‖ = 0, if:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, supx∈X ‖PΓn+1(x , ·)− PΓn(x , ·)‖ → 0 in prob.
[Can always be made to hold, since adaption is user controlled.]

(b) [Containment] Times to stationary from Xn, if fix γ = Γn,
remain bounded in probability as n→∞. [Technical condition, to
avoid “escape to infinity”. Holds if e.g. X and Y finite, or
compact, or . . . And always seems to hold in practice.]

(Also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)

Good, but . . . Containment condition is a pain.

Can we eliminate it?

(38/41)

What about that “Containment” Condition?

• Recall: adaptive MCMC is ergodic if it satisfied Diminishing
Adaptation (easy: user-controlled) and Containment (technical).

• Is Containment just an annoying artifact of the proof? No!

• Theorem (Latuszynski and R., 2014): If an adaptive algorithm
does not satisfy Containment, then for all ε > 0,

lim
K→∞

lim sup
n→∞

P(Mε(Xn, γn) > K) > 0 ,

where Mε(x , γ) = inf{n ≥ 1 : ‖Pn
γ (x , ·)− π(·)‖ < ε} is the time to

converge to within ε of stationarity.

That is, an adaptive algorithm without Containment will take
arbitrarily large numbers of steps (K) to converge. Bad!

• Conclusion: Yay Containment!?!?

• But how to verify it??

(39/41)

Verifying Containment: “For Everyone”

• Proved general theorems about stability of “adversarial”
Markov chains under various conditions (Craiu, Gray, Latuszynski,
Madras, Roberts, and R., A.A.P. 2015).

• Then applied them to adaptive MCMC, to get a list of
directly-verifiable conditions which guarantee Containment:
⇒ Never move more than some (big) distance D.
⇒ Outside (big) rectangle K , use fixed kernel (no adapting).
⇒ The transition or proposal kernels have continuous densities

wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)
⇒ The fixed kernel is bounded, above and below (on compact

regions, for jumps ≤ δ), by constants times Lebesgue measure.
(Easily verified under continuity assumptions.)

• Can directly verify these conditions in practice.

• So, this can be used by applied MCMC users.

• “Adaptive MCMC for everyone!”

(40/41)

Summary

• MCMC has tremendous application to many areas.

• MCMC mathematical theory plays a crucial supporting role.

• Theory can help verify and extend the algorithms, optimise
proposal scaling / shape, bound convergence times with
minorization conditions etc., show geometric ergodicity, and more.

• Theory also allows for adaption (if done carefully), to get the
computer to “learn” good MCMC algorithms and run faster.

• Adaptive MCMC works very well, even in high-dimensional
examples (good). But it must be done carefully, or it will destroy
stationarity (bad). Suffices to have stationarity of each Pγ , plus
Diminishing Adaptation (important), and Containment (technical
condition, usually satisfied, necessary). “Adversarial Markov chain”
theorems provide simple sufficient conditions.

• All my papers, applets, software: www.probability.ca

(41/41)

