The Mathematics of MCMC Algorithms

Jeffrey S. Rosenthal
University of Toronto

jeff@math.toronto.edu
http://probability.ca/jeff/

(IWAP Workshop, Toronto, June 20, 2016)

(1/41)

Background / Motivation

Often have complicated, high-dimensional density functions
71 X = [0,00), for some X C RY with d large.

(e.g. Bayesian posterior distribution)

Want to compute probabilities like:

M(A) = /Qﬂ(x)dx,

and/or expected values of functionals like:
E.(h) =]//mx)ﬂ(x)dx.
X

Calculus? Numerical integration?

Impossible, if 7 is something like . ..

(2/41)

Typical 7: Variance Components Model

State space X = (0,00)? x RK*! so d = K + 3, with
7T(V, W,,LL,Ql,...,eK)
C e—bl/V V—al—le—bz/W W—32—1

« e (n—a3)?/2bs\/=K/2 /=3 211 Ji

K K J;
X exp | = D(0; - w2V = DS (Vg 022w |

where a; and b; are fixed constants (prior), and {Yj;} are the data.

In the application: K =19, so d = 22.
Integrate? Well, no problems mathematically, but . ..

High-dimensional! Complicated! How to compute?

Try Monte Carlo!

(3/41)

Monte Carlo, Monaco

(4/41)

Nice Place for a Conference!

e o
= === ===
5 lLﬁ@gi =]

(5/41)

Estimation from sampling: Monte Carlo

Can try to sample from 7, i.e. generate on a computer
Xl,XQ,...,XMNﬂ' (Ild)

(meaning that P(X; € A) = [m(x) dx).
A

Then can estimate by e.g.
1M
E.(h) ~ Rijzjf()ﬁ).
i=1

(Like taking an opinion poll. As M — oo, the estimate gets more
and more accurate. Just like how the gambling house always wins.)

Good. But how to sample from 77
Often infeasible! (e.g. above example!)

Instead . ..

(6/41)

Markov Chain Monte Carlo (MCMC)

Given a complicated, high-dimensional target distribution 7 (-):

Find an ergodic Markov chain (random process) Xp, X1, Xo, . ..
which is easy to run on a computer, and which converges in
distribution to m as n — oo.

Then for “large enough” B, L(Xg) ~ 7, so Xg, Xg41, ... are
approximate samples from 7, and e.g.

Extremely popular: Bayesian inference, computer science,
statistical genetics, statistical physics, finance, ...

But how to create such a Markov chain?

(7/41)

Ex.: Random-Walk Metropolis Algorithm (1953)

This algorithm defines the chain Xg, X1, X5, ... as follows.
Given X,_1:

e Propose a new state Y, ~ Q(Xp—_1,-), e.g. Yo ~ N(Xp—1, Xp).

k|

e Let @ = min {1
e With probability a, accept the proposal (set X, = Y},).
e Else, with prob. 1 — «, reject the proposal (set X, = X,_1).
Try it: [APPLET] Converges to !
Why? « is chosen just right so this Markov chain is reversible with

respect to 7, i.e. w(dx) P(x, dy) = w(dy) P(y, dx). Hence, 7 is a
stationary distribution.

Also, chain will be aperiodic and (usually) irreducible. So, it
converges by general Markov chain theory.

More complicated example? (8/41)

Example: Particle Systems

Suppose have n independent particles, each uniform on a region.
What is, say, the average “diameter” (maximal distance)?
Sample and see! [pointproc.java] Works! Monte Carlo!
Now suppose instead that the particles are not independent, but

rather interact with each other, with the configuration probability
proportional to e, where H is an energy function, e.g.

H = ZA‘(X,',M)—(%YJ)‘?LZ = +_ Cxi

i<j i<j ‘(Xia)/i) — (deﬁ)’ i

A large: particles like to be close together.
B large: particles like to be far apart.
C large: particles like to be towards the left.

Can't directly sample, but can use Metropolis! [pointproc.javal

(9/41)

Okay, but Where's the Math?

MCMC's greatest successes have been in ... applications!
e Medical Statistics
Statistical Genetics

Bayesian Inference

Chemical Physics

Computer Science
e Mathematical Finance

So, what is MCMC mathematical theory good for?
e Informs and justifies the basic algorithms.

e Suggests new modifications of the algorithms.
e Determines which algorithm choices are best.
e Develops new MCMC directions (e.g. adaptive MCMC),

I'll discuss various Mathematical Research Questions (MRQ).

(10/41)

MRQ+#1: How to Optimise MCMC Choices?

The theorem says that we can use essentially any update rules, as
long as they leave 7 stationary.

e Any symmetric proposal distribution Q. (Choices!)

e Non-symmetric proposals, with a suitably modified acceptance
probability. (“Metropolis-Hastings”) (e.g. Independent, Langevin)

e Update one coordinate at a time. (“Componentwise”)

e Update from full conditional distributions. (“Gibbs Sampler")

So what choice works best? e.g. What ~ in [APPLET]?

e If v too small (say, v = 1), then usually accept, but move very
slowly. (Bad.)

e If v too large (say, v = 50), then usually 7(Y,+1) =0, i.e.
hardly ever accept. (Bad.)

e Best v is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1. (“Goldilocks Principle”)

(11/41)
Example: Metropolis for N(0,1)

Target © = N(0,1). Proposal Q(x,-) = N(x, c?).
How to choose o? Big? Small? What acceptance rate (A.R.)?
=_l /& | =2] =] =2l | =

oc=0.17 o =257 o =2.387

too small! too big! just right!

A.R. = 0.962 A.R. = 0.052 A.R. = 0.441

The Goldilocks Principle in action!

What about higher-dimensional examples? If d increases, then o
should: decrease. But how quickly? On what scale? Theory?

(12/41)

Theoretical Progress: Diffusion Limits

Recall: if {X,} is simple random walk, and Z; = d= /2 Xy, (i.e., we
speed up time, and shrink space), then as d — oo, the process
{Z;} converges to Brownian motion (i.e., a diffusion).

Z
4

Rl

}
1 2 3 5]
0 3 7 7 d

5
d d

Do similar limits hold for a Metropolis algorithm, in dimension d,
as d — oco? Yes!

(13/41)

Diffusion Limits for the Metropolis Algorithm

Theorem [Roberts, Gelman, Gilks, AAP 1997]: If {X,} is a

Metropolis algorithm in dimension d, as d — oo, with
Q(x,) = N(x, §14), then if Z; = d~Y/2X[}) . then under “certain
conditions”, the process {Z;} converges to a diffusion, whose speed

h(¢) is explicitly related to its asymptotic acceptance rate A(¥).
e So, to optimize the algorithm, we should maximize h(¢).
e The maximization gives: /(o5 = 2.38/C,. (unknown)
e Then we compute that: A({op:) = 0.234. (explicit!)

So, for Q(x,-) = N(x,02ly), it is optimal to choose a scaling o2
which corresponds to an optimal acceptance rate of 0.234.

e Clear, simple “0.234" rule. Good! Useful! (Used in BUGS!)

Later generalizations to Langevin diffusions, other targets, etc.
(Roberts & R., JRSSB 1998, Stat Sci 2001; Bédard, AAP 2007;
Bédard & R., CJS 2008; Sherlock, JAP 2013; Stuart et al.; ...)

. . I3 11?
What about further optimality, beyond “0.234" " (14/41)

Example: 7 = N(0,Y) in dimension 20

First try: Q(x,-) = N(x, ko) (A.R. = 0.006)

(TMURITS)
FO0 800 1000
| |

400
|

200
|

1]

Horrible: 17 = 24.54, E(X12) = 1.50. Need smaller proposal! (15/41)

Second try: Q(x,-) = /v(x, (0.0001)2/20) (A.R.=0.9996)

=]
=)
= /]
= ﬁ
E:J —
o0 |
[
|
—_
L o
Eow
E l
-
Z o
— 1
— =F
/|
<Y ‘
. y
T T T T T T
15 10 5 0 5 10 15

Also horrible: 11 = 24.54, E(X?) = 0.0053.

Need bigger proposal! (16/41)

Third try: Q(x,-) = N(x, (0.02)2/20> (A.R.=0.234)

1000

400
|

(TNUMITS)
GO0 200
1 |

200
|
"

Still terrible: Y17 = 24.54, E(X?) = 3.63.

But acceptance rate is “just right”. What gives? (17/41)

Fourth try: Q(x,-) = N(x, [(2.38)2/20] z) (A.R.=0.263)

[1HURAITS)
GO0 300 1000
| |

400
|

200
|

AL 1]

Much better: Y17 = 24.54, E(X?) = 25.82.

Not perfect, but fairly good. Why? (18/41)

Theory about the Proposal Covariance (Shape)

Theorem [Roberts and R., Stat Sci 2001]:
Under “certain conditions” on 7, the optimal Metropolis algorithm
Gaussian proposal distribution as d — oo is:

Qx,-) = /v(x, ((2.38)2/d) z)

not N(x, 0?l4), where ¥ is target covariance.

The corresponding asymptotic acceptance rate is again 0.234.

e And, this turns out to be nearly optimal for many other
high-dimensional densities, too.

This gives very useful advice ... if X is known!
But what if the target covariance X is unknown?
Can we make use of this optimality result anyway?

(Adaptive MCMC — later.) But first ...
(19/41)

MRQ#2: Quantitative Convergence Bounds?

What about quantitative bounds, i.e. a specific number n, such
that, say, P(X,, € A) — 7(A)| < 0.01 V A?

(Not just “as n — o0".)

One method: coupling. (Other methods: drifts, eigenvalues, ...)

Consider two chain copies, {X,} and {X]}.
Assume that X} ~ m (so X}, ~ 7 Vn).

If can “make” the two copies become equal for n > T, while
respecting their marginal update probabilities, then X, =~ 7 too.

Specifically, the coupling inequality says:

IP(X, € A) —n(A)] = |[P(X,€A) —P(X,€A)| < P(T>n).

But how to apply this to a complicated MCMC algorithm?
(20/41)

Quantitative Bounds: Minorisation

Simplest version:

Suppose there is € > 0, and a probability measure v, such that
P(x,y) > ev(y) for all x,y € X.

This “minorisation condition” gives an e-sized “overlap” between
the transition distributions P(x,-) and P(x’,-).

That means at each iteration, we can give the two copies
probability € of becoming equal. Hence, P(T > n) = (1 —¢)".

Therefore, |[P(X, € A) —7(A)| < (1 —¢€)", VA
e.g. [APPLET], with v = 3 (say): check that P(x,y) > e v(y) for
all x,y, where ¢ = 0.2, and (3) = v(4) = 1/2.

e So |P"(x,A) —7w(A)] <(1—¢€)"=(1-10.2)"=(0.8)".

e Hence, |P"(x,A) — 7(A)| < 0.01 whenever n > 21.

e “The chain converges in 21 iterations.” Good!

What about a harder example?? (21/41)

Example: Baseball Data Model

Hierarchical model for baseball hitting percentages (J. Liu):
observed hitting percentages satisfy Y; ~ N(6;,c) for 1 < i < K,
where 01,...,0, ~ N(u, V), c is empirically estimated, with
p, V,01,...,0k to be estimated. Priors: u ~ flat, V ~ IG(a, b).

Diagram:
v
YR TN
91 ‘9K Q;NN(,LL,\/)
+ +
Yl YK Y,'NN(@,‘,C)

For our data, K = 18, so d = 20.

High dimensional! How to estimate?

(22/41)

Baseball Data Model (cont’d)

MCMC solution: Run a Gibbs sampler for .

Markov chain is X; = (A, p (k). 0§k), . 9%()), updated by:
(n) K (n=1) _ g(n=1)y2
AN G (a+ —— Z(e A E

u™ < N@ETY A K)

(n) . A(n) (n)
8(,7) N MV + YiA | AWMV (1<i<K):
' V + Al V + Al

where 91" = > 0,(”).
Recall that K = 18, so d = 20.

Complicated! How to analyze convergence?

(23/41)

Example: Baseball Data Model (cont’d)

Here we can find a minorisation P(x,y) > ev(y), but only when
x € C for a subset C C X.

But also have a “drift condition” E[f(X1) | Xp
for some A < 1 and A < oo, where f(x) =
“forces” returns to C.

Can compute (R., Stat & Comput. 1996):

e a drift condition towards C = { >,(6; — Y)? < 1}, with
A = 0.000289 and A = 0.161;

e a minorization with € = 0.0656, at least for x € C C X,
Then can use coupling to prove (R., JASA 1995) that
P(X, € A) — n(A)] < (0.967)" + (1.17)(0.935)", ne N,

so e.g. |P(X, € A) — n(A)| < 0.01 if n > 140.
“The chain converges in 140 iterations.” Good!

Realistic models/bounds!

(cf. Jones & Hobert, Stat Sci 2001) (24/41)

MRQ#3: Qualitative Convergence Bounds

Quantitative bounds too tricky for everyday use ... what else?

DEFN: Say the chain is geometrically ergodic if
sup |[P(X, € A) —w(A)| < Byp", n=12,3,...
A

for some p < 1, where By, < oo for m-a.e. x = Xp.
i.e., convergence is exponentially quick (at some exponential rate).

This property always holds on finite state spaces.
e (e.g. must hold for [APPLET] example)

But on unbounded state spaces, it may or may not hold.

It says something about quick convergence (good).

But not too much, since p and By are unspecified (bad).

Easier. But does this qualitative property actually matter??

(25/41)

Example: Metropolis for N(0,1), again

Run random-walk Metropolis algorithm for = = N(0, 1), with
Q(x,-) = N(x,02), where o is chosen to make A.R. = 0.234.

15000 20000

10000

lteration Number

5000

P(|X]| > 2) = 0.0455; estimate = 0.0453. Great!
Does it always work so well? (26/41)

Example: Metropolis for Cauchy

Random-walk Metropolis for m(x) = 175z (Cauchy), with

Q(x,-) = N(x,0?), with o again chosen to make A.R. = 0.234.

Much worse!

20000

Iteration Number
15000

10000

5000

-50 1] 50

P(|X| > 10) = 0.0635; estimate = 0.0469. Way too small!
(27/41)

Example: Metropolis for Cauchy, second try

15000 20000

ltzration Number

10000

5000

-200 -150 -100 -50 0 50

X

P(|X| > 10) = 0.0635; estimate = 0.0746. Way too big!
e So, MCMC is performing very badly here. Why??

Theorem (Mengersen-Tweedie-Roberts, 1996): Metropolis is
geometrically ergodic iff 7(-) has exponentially-small tails.

N(0,1): yes. Cauchy: no. Makes a big difference!
(0,1):y y g (28/41)

MRQ+#4: Case Study — Independence sampler

Consider Metropolis-Hastings where 7(x) = e™*, and proposals are
chosen i.i.d. ~ Exp(k) with density ke=%, for some k > 0.

e k=1 (i.id. sampling)

10000 15000 20000

lteration Number

5000

E(X) = 1, estimate = 1.001. Excellent!

Other k? (29/41)

Independence sampler (cont’d)

e k=0.01

20000
l .

15000

lteration Number
10000
L

5000
[
1
|

E(X) = 1; estimate = 0.993. Quite good.

(30/41)

Independence sampler (cont’d)

Iteration Number
15000 20000

10000

5000

E(X) = 1; estimate = 0.687. Terrible: way too small!

What happened? Maybe we just got unlucky? Try again!
(31/41)

e Another try with kK = 5:

10000 15000 20000

lteration Number

5000

E(X) =1, estimate = 1.696. Terrible: way too big!

In fact, we can prove (Roberts and R., MCAP, 2011) that with
k = 5, the chain takes between 4,000,000 and 14,000,000
iterations to converge to within 0.01 of 7! But why??

(32/41)

Independence Sampler: Theory

What's going on in this example?
Why is kK = 0.01 pretty good, and kK = 5 so terrible?
Theorem [Mengersen & Tweedie, Ann Stat 1996]:

Independence samplers are geometrically ergodic if and only if
there is § > 0 for which Q(x) > d 7(x) for all x € X,

If there is, then |P"(x,A) — w(A)| < (1 —9)". (Quantitative!)

In above example, 7(x) = e and Q(x) = ke~ so:
e k=1: yes, § = 1; converges immediately (of course).

e k=0.01: yes, 6 = 0.01; and (1 — 0.01)**° < 0.01, so the
chain “converges within 459 iterations”. (Pretty good.)

e k =5: nosuch §. Not geometrically ergodic. (Bad.)

So, geometric ergodicity makes a big difference!

(33/41)

MRQ+#5: Validity of Adaptive MCMC?

Recall:
e MCMC is really really really important.

e Some MCMC algorithms converge much faster than others.

e Can find optimality results from diffusion limits.

e e.g. Gaussian Random-Walk Metropolis: optimal choice has
acceptance rate around 0.234 (how?), and proposal covariance
(2.38)2d~1 ¥, where ¥; is the target covariance (unknown).

e So, we have guidance about optimising MCMC in terms of
acceptance rate, target covariance matrix ¢, etc.

e But we don't know what proposal will lead to a desired
acceptance rate, nor how to compute 2 ;.

e What to do? Trial and error? (difficult, especially in high
dimension) Or ...

(34/41)

Adaptive MCMC

e Suppose have a family {P, },cy of possible Markov chains,
each with stationary distribution 7.

e How to choose among them?
e Let the computer decide, on the fly!

e At iteration n, use Markov chain Pr,, where [', € Y chosen
according to some adaptive rules (depending on history, etc.).

e Simple example: [APPLET]

e e.g. Estimate true target covariance 2; by the empirical
estimate, ¥ ,, based on the observations so far (X1, Xo, ..., Xp).

e Can this help us to find better Markov chains? (Yes!)

e On the other hand, the Markov property, stationarity, etc. are
all destroyed by using an adaptive scheme.

e |s the resulting algorithm still ergodic? (Sometimes!)

(35/41)

Example: 100-Dimensional Adaptive Metropolis

| I I ! I I
0e+00 4e+05 8e+05

Plot of first coord. Takes about 300,000 iterations, then “finds”
good proposal covariance and starts mixing well. Good!

e Similarly Adaptive Componentwise Metropolis, Gibbs, etc.

(36/41)

But What About the Theory?

e So, adaptive MCMC seems to work well in practice.

e But will it be ergodic, i.e. converge to 77 (Converge at all . ..
never mind how quickly ...)

e Ordinary MCMC algorithms, with fixed choice ~, are
automatically ergodic by standard Markov chain theory (since
they're irreducible and aperiodic and leave 7 stationary). But
adaptive algorithms are more subtle, since the Markov property
and stationarity are destroyed by using an adaptive scheme.

e e.g. if the adaption of I, is such that Pr_ usually moves slower
when x is in a certain subset Xy C X, then the algorithm will tend
to spend much more than 7(AXp) of the time inside Ay, even if
each update on its own preserves stationarity. [APPLET]

e Some previous results, but they require limiting / hard-to-verify
conditions, like bounded state space, or existence of simultaneous
geometric drift conditions, or Doeblin condition, or ...

e Need more general, easily-verified theorems ... (37/41)

One Particular Convergence Theorem

e Theorem [Roberts and R., J.A.P. 2007]: Adaptive MCMC will
converge, i.e. lim, oo supacy ||P(Xn € A) — w(A)]| =0, if:

(a) [Diminishing Adaptation] Adapt less and less as the algorithm
proceeds. Formally, sup,cy || Pr,.,(x,-) — Pr,(x,-)|| = 0 in prob.
[Can always be made to hold, since adaption is user controlled.]

(b) [Containment] Times to stationary from X, if fix v =T,
remain bounded in probability as n — oo. [Technical condition, to
avoid “escape to infinity”. Holds if e.g. X and) finite, or
compact, or ... And always seems to hold in practice.]

(Also guarantees WLLN for bounded functionals. Various other
results about LLN / CLT under stronger assumptions.)

Good, but ... Containment condition is a pain.

Can we eliminate it?

(38/41)

What about that “Containment” Condition?

e Recall: adaptive MCMC is ergodic if it satisfied Diminishing
Adaptation (easy: user-controlled) and Containment (technical).

e |s Containment just an annoying artifact of the proof? No!

e Theorem (Latuszynski and R., 2014): If an adaptive algorithm
does not satisfy Containment, then for all € > O,

lim limsup P(M(X,,72) > K) > 0,

K—oo pn—soo

where Mc(x,v) = inf{n > 1:[|P](x,-) — 7(-)|| < €} is the time to
converge to within € of stationarity.

That is, an adaptive algorithm without Containment will take
arbitrarily large numbers of steps (K) to converge. Bad!

e Conclusion: Yay Containment!?!?

e But how to verify it??
(39/41)

Verifying Containment: “For Everyone”

e Proved general theorems about stability of “adversarial”
Markov chains under various conditions (Craiu, Gray, Latuszynski,

Madras, Roberts, and R., A.A.P. 2015).

e Then applied them to adaptive MCMC, to get a list of
directly-verifiable conditions which guarantee Containment:

= Never move more than some (big) distance D.

= Outside (big) rectangle K, use fixed kernel (no adapting).

= The transition or proposal kernels have continuous densities
wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)

= The fixed kernel is bounded, above and below (on compact
regions, for jumps < §), by constants times Lebesgue measure.
(Easily verified under continuity assumptions.)

e Can directly verify these conditions in practice.
e So, this can be used by applied MCMC users.
e “Adaptive MCMC for everyone!”
(40/41)

Summary

e MCMC has tremendous application to many areas.

e MCMC mathematical theory plays a crucial supporting role.

e Theory can help verify and extend the algorithms, optimise
proposal scaling / shape, bound convergence times with
minorization conditions etc., show geometric ergodicity, and more.

e Theory also allows for adaption (if done carefully), to get the
computer to “learn” good MCMC algorithms and run faster.

e Adaptive MCMC works very well, even in high-dimensional
examples (good). But it must be done carefully, or it will destroy
stationarity (bad). Suffices to have stationarity of each P,, plus
Diminishing Adaptation (important), and Containment (technical
condition, usually satisfied, necessary). “Adversarial Markov chain”
theorems provide simple sufficient conditions.

e All my papers, applets, software: www.probability.ca
(41/41)

