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1 MCMC Basics

Markov Chain Monte Carlo methods are a set of common algorithms used for sam-
pling from complex and high-dimensional target distributions that are intractable.
There is a wide range of literature surrounding this topic, and numerous algorithms
used, including Metropolis-Hastings (many variations), Gibbs Sampler, slice sam-
pler, etc. The premise is that we sample a Markov Chain X1, X2, ... that is eventu-
ally distributed approximately equal to the target distribution. In this section we
will introduce some basic stochastic theory then formalize convergence properties of
MCMC methods that justify its use. For a more detailed intro to Markov chains and
stochastic theory, read A First look at Stochastic Processes by Jeffrey Rosenthal.

Definition 1.1 (Markov Chain). Let X1, X2, ... be a time-indexed stochastic process
in Rd. We call this process a time-homogeneous Markov chain (Markov process) if
∀t ∈ N and y ∈ Rd

P(Xt ∈ dy|Xi = xi ∀i = 1, ..., t−1) = P(Xt ∈ dy|Xt−1 = xt−1) = P(X1 ∈ dy|X0 = x0)

Denote this transition probability as

P (x, dy) = P(Xt ∈ dy|Xt−1 = x)

The first equality satisfies the Markov property, meaning each time-step of the
chain is only dependent on the previous time-step. The second equality satisfies
time-homogeneity, meaning each time-step Xt of the chain is not dependent on the
time t.

For simplicity, in the rest of this report, we assume that the given transition proba-
bility admits a valid density. This is because the transition kernels we will introduce
are probability densities. We can write

P (x, y) = P(Xt = y|Xt−1 = x)

1



Definition 1.2 (Stationary Distribution). Let X1, X2, ... be Markov Chain with
transition probability density P . We say that a probability distribution with den-
sity π is stationary for P if for some t ∈ N Xt ∼ π =⇒ Xt+1 ∼ π. That is
∀y ∈ Rd ∫

Rd

π(x)P (x, y)dx = π(y)

The condition requires that the total probability density entering state y at time
t+1 (the LHS) is the same as the original probability density of y at time t (RHS).
This implies that if somewhere along the chain, the stationarity condition holds for
π, every subsequent step will also have distribution π. In discrete cases, we get the
simple representation πP = π.

Definition 1.3 (Irreducibility). Let X1, X2, ... be Markov Chain with transition
probability density P and stationary distribution with density π. This chain is π-
irreducible if ∀x, y ∈ Rd

π(y) > 0 =⇒ ∃n ∈ N, P (x, y)n > 0

This condition ensures that every state A that has positive density is reachable from
every point x. This is essential for MCMC sampling as it ensures the entire support
can be reached.

Definition 1.4 (Reversibility). Let X1, X2, ... be Markov Chain. It is reversible if
for any sequence of times t1 < ... < tn < T ∈ N. The random vectors (Xt1 , ..., Xtn)
and (XT−t1 , ..., XT−tn) have the same distribution.

Definition 1.5 (Detailed Balance Condition). Let X1, X2, ... be Markov Chain with
transition probability density P . Let π be some density function. We say that it
satisfies the detailed balance equation w.r.t. π if ∀x ̸= y ∈ Rd

π(x)P (x, y) = π(y)P (y, x)

Proposition 1.6. If a Markov chain X1, X2, ... satisfies detailed balance w.r.t. to
the distribution of X0 then it is reversible.

Proof. Assume that detailed balance is satisfied and say X0 has density π. Consider
the chain (X0, X1, ..., XT ). Let x0, ..., xT be sequence of in Rd. For any j = 0, ..., T−1

π(xj+1)P(X1 = xj|X0 = xj+1) = π(xj)P(X1 = xj+1|X0 = xj)

=⇒ P(X1 = xj|X0 = xj+1) =
π(xj)P(X1 = xj+1|X0 = xj)

π(xj+1)
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Then by iterative application of Markov property, time homogeneity and conditional
probability

P(XT = xT , ..., X0 = x0) = π(x0)
T∏
i=1

P(Xi = xi|Xi−1 = xi−1, ..., X0 = x0)

= π(x0)
T∏
i=1

P(Xi = xi|Xi−1 = xi−1)

= π(x0)
T∏
i=1

P(X1 = xi|X0 = xi−1)

P(XT = x0, ..., X0 = xT ) = π(xT )
T∏
i=1

P(Xi = xT−i|Xi−1 = xT−i+1, ..., X0 = xT )

= π(xT )
T∏
i=1

P(X1 = xT−i|X0 = xT−i+1)

= π(xT )
T∏
i=1

P(X1 = xT−i+1|X0 = xT−i)π(xT−i)

π(xT−i+1)

= π(xT )
T∏

j=1

P(X1 = xj|X0 = xj−1)π(xj−1)

π(xj)

= π(x0)
T∏
i=1

P(X1 = xj|X0 = xi−1)

In the second last line, all the π(xj) terms cancel by a telescoping argument. Here,
we apply detailed balance in the 7th line, which can also be seen as Bayes law. In
the 8th line, we substitute j = T − i+ 1. Since these distribution are the same for
any T ∈ N, we conclude the chain is reversible.

Proposition 1.7. If a Markov chain X1, X2, ... is reversible then it has a stationary
distribution with density π.

Proof. Assume the Markov chain is reversible and that Xt ∼ π for some distribution
with density π. Then for some x ∈ Rd, using detailed balance condition and the
fact conditional probability integrates to 1

P(Xt+1 = dx) =

∫
Rd

P(Xt+1 = x|Xt = y)π(y)dy

=

∫
Rd

P(Xt+1 = y|Xt = x)π(x)dy

= π(x)

∫
Rd

P(Xt+1 = y|Xt = x)dy

= π(x)
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Hence Xt+1 ∼ π as well, and so π is stationary distribution.

These propositions show that whenever a Markov chain satisfies detailed balance
(equivalently, it is reversible), then a stationary distribution exists. This allows us
to show convergence of MCMC algorithms (more later).

Definition 1.8 (Monte Carlo Estimation). Let Xi ∼ F be i.i.d. random variables
with E(X1) = µ,Var(X1) = σ2. Let h be an integrable function w.r.t. F , that is
EF (|h(X)|) < ∞. Then

lim
n→∞

1

n

n∑
i=1

h(Xi) = EF (h(X)) =

∫
Rd

h(x)dF (x)

This shows that we can estimate the expectation of h, and hence the Lebesgue inte-
gral of h with realizations of h(Xi). This limiting behaviour holds as a consequence
of the weak law of large numbers.
A Markov Chain Monte Carlo method combines the concepts of Monte Carlo es-
timation with Markov chains. In this case, our samples {Xi}∞i=1 are not i.i.d. but
rather a Markov chain, We can still show the convergence of MCMC estimates.

Theorem 1.9 (Convergence of MCMC). Let X1, X2, ... be a Markov Chain with
transition probability P and stationary distribution π. Suppose it is π-irreducible.
Let h be a function with Eπ(|h|) < ∞. Then ∀b > 0

lim
n→∞

1

n− b

n∑
i=b

h(Xi) = Eπ(h)

This holds for all initial values X0 = x π-a.e. That is, for all values x in the state
space except for a measure 0 set w.r.t. π. The value b is known as the burn-in point.

The Markov chain achieves stationarity at a burn-in point b, and hence realizations
Xi for i > b are from the target distribution. This does not effect the limiting
behaviour of the expectation as the points X1, ..., Xb−1 have no effect on the mean
as n goes to infinity. In practice, there’s extensive literature on how to determine the
burn-in point. This theorem shows that for large n, the Markov chain sample will
allow us to determine properties of the target distribution π. There are many other
conditions that can ensure the convergence of Markov chains. We will introduce one
more (stronger) convergence property of MCMC algorithms, based on the property
of geometric ergodicity.

Definition 1.10 (Geometric Ergodicity). Let X1, X2, ... be a Markov Chain with
transition probability P and stationary distribution π. We say it is geometrically
ergodic if there exists some function M : Rd → R and constant ρ < 1 so that for
x ∈ Rd π-a.e. and n ∈ N

sup
y∈Rd

|P n(x, dy)− π(dy)| = ||P n(x, ·)− π|| ≤ M(x)ρn
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Here, the distance metric used is the total variation distance.

Theorem 1.11 (Convergence of MCMC 2). Let X1, X2, ... be a geometrically ergodic
Markov Chain with transition probability P and stationary distribution π.Let h be
a function with Eπ(|h|2+δ) < ∞ for some δ > 0. Then the Central Limit Theorem
holds. That is, 1

n

∑n
i=1 h(Xi) converges to a (multivariate) normal in distribution.

Proofs of these convergence properties will be omitted, but can be found in Gen-
eral State Space Markov Chains and MCMC Algorithms by Rosenthal and Roberts.
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2 Sampling Algorithms

Now that we have a basic understanding of what MCMC methods are and why
they can be used for sampling, we will introduce some algorithms that allow us
to generate Markov chains that converge to a desired target distribution. We start
with a frequently used algorithm in Metropolis-Hastings, and then touch on rejection
sampling and slice sampling.

Definition 2.1 (Metropolis Hastings). Let π be the target probability density known
up to a normalizing constant. We sample a Markov chain {Xt} from π. Let g be a
proposal distribution that is easily sampled from. Choose an initial value X0. For
time t = 1, 2, ..., given the value of Xt−1 the algorithm iterates as follows:

1. Sample a point Y ∼ g(·|Xt−1)

2. Set P (Xt−1, Y ) = min{ π(Y )g(Xt−1|Y )
π(Xt−1)g(Y |Xt−1)

, 1}. This is called the Metropolis Hast-
ings acceptance probability.

3. Sample U ∼ Uniform(0, 1)

4. Set Xt = Y if U < P (Xt−1, Y ), otherwise set Xt = Xt−1

As we can see, this is algorithm will generate a Markov chain by construction (i.e. xt

only depend on xt−1). We have irreducibility provided that for all x with π(x) > 0,
there is some n with g(x|xt−1)

n > 0, meaning there is some sequence of iterations
xt−1 = x1, x2, ..., xn = x where each g(xi|xi−1) > 0 . We show that this chain
{Xt} satisfies the detailed balance condition (which implies reversibility and hence
stationarity) with respect to the transition kernel K. Though this is a density, we
should note the the probability of staying in the same state, P(Xt = x|Xt−1 = x) is
positive on support since the acceptance probabilities P (x, x) are non-zero.

K(x′|x) = g(x′|x)P (x, x′) + δx(x
′)

∫
Rd

q(y|x)(1− P (x, y)dy

Proposition 2.2 (Metropolis Hastings satisfies detailed balance). The MH algo-
rithm from definition 2.1 satisfies the detailed balance condition in 1.5

Proof. We will show that both terms of the kernel K satisfy detailed balance.
Let r(x) =

∫
Rd q(y|x)(1− P (x, y)dy. We have that

(δx(x
′) = δx′(x) ̸= 0 =⇒ x = x′ =⇒ π(x)r(x)δx(x

′) = π(x′)r(x′)δx′(x)
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For the first term of K, we will show LHS and RHS have the same value.

π(x)g(x′|x)P (x|x′) = π(x)g(x′|x)min

{
π(x′)g(x|x′)

g(x′|x)π(x)
, 1

}
=

{
π(x′)g(x|x′) π(x′)g(x|x′) > g(x′|x)π(x)
π(x)g(x′|x) π(x′)g(x|x′) ≤ g(x′|x)π(x)

π(x′)g(x|x′)P (x′|x) = π(x′)g(x|x′)min

{
π(x)g(x′|x)
g(x|x′)π(x′)

, 1

}
=

{
π(x′)g(x|x′) π(x′)g(x|x′) > g(x′|x)π(x)
π(x)g(x′|x) π(x′)g(x|x′) ≤ g(x′|x)π(x)

We conclude that π(x)g(x′|x)P (x|x′) = π(x′)g(x|x′)P (x′|x) and thus detailed bal-
ance is sataisfied.

If detailed balance is satisfied then π is the stationary density of {Xt} from propo-
sitions 1.6 and 1.7 and the nice convergence properties stated in section 1) will
hold.

Definition 2.3 (Rejection Sampling). Let π be the target probability density known
up to a normalizing constant. Choose another probability density f and a constant
K ∈ R with Kf(x) ≥ π(x) π-a.e. on Rd. Then we sample Xt as follows

1. Sample a point Y ∼ f

2. Sample U ∼ Uniform(0, 1)

3. Set Xt = Y if U ≤ π(Y )
Kf(Y )

, otherwise reject Y and return to step 1

Rejection sampling is part of a family of accept-reject algorithms. The resulting
chain {Xt} is composed of independent samples Xt. We now prove that the resulting
chain in fact comes from the distirbution π.

Proposition 2.4 (Validity of Rejetion Sampler). Conditional on acceptance criteria

U ≤ π(Y )
Kf(Y )

being satisfied, the sampled point Xt = Y ∼ π.

Proof.

P
(
Y ≤ x|U ≤ π(Y )

Kf(Y )

)
=

∫
Rd P(Y ≤ x, U ≤ π(Y )

Kf(Y )
|Y = y)P(Y = y)dy

P(U ≤ π(Y )
Kf(Y )

)

=

∫
Rd

π(y)
Kf(y)

1y≤xf(y)dy
1
K

=

1
K

∫
{y∈Rd:y≤x} π(y)dy

1
K

=

∫
{y∈Rd:y≤x}

π(y)dy

So indeed we have Xt ∼ π and our sampling algorithm will recover π
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Assuming π to be a normalized density, the acceptance probability of each draw
from Y ∼ f is

P
(
U ≤ π(Y )

Kf(Y )

)
=

∫
Rd

P
(
U ≤ π(Y )

Kf(Y )
|Y = y

)
P(Y = y)dy

=

∫
Rd

π(y)

Kf(y)
f(y)dy

=
1

K

We can see from this, that as K decreases, the acceptance probability increases, so
it is computationally efficient to find a density f that is somewhat close to π so that
the constant K would be smaller. However, we must have K ≥ 1 for the condition
to hold.

Definition 2.5 (Slice Sampling). Let π be the target probability density known up
to a normalizing constant. Decompose π as

π(x) = f0(x)f1(x)

Choose an initial value X0. For time t = 1, 2, ..., given the value of Xt−1 the algo-
rithm iterates as follows:

1. Yt ∼ Uniform(0, f1(Xt−1))

2. Xt ∼ f0(x)1{0≤Yt≤f1(x)}(x)

In the case that f0 is a constant, we call the algorithm the uniform slice sampler.
Let g be the density of Xt|Yt and h be the density of Yt|Xt−1. The transition kernel
for this chain is defined as

P (x′|x) =
∫
Rd

g(x′|y)h(y|x)dy

=

∫
Rd

f0(x
′)

Q(y)
1{0≤y≤f1(x′)}

1

f1(x)
1{0≤y≤f1(x)}dy

=
1

f1(x)

∫ f1(x)

0

f0(x
′)1{f1(z)≥y}

Q(y)
dy

where Q is the normalizing constant for f0(x
′)1{0≤Yt≤f1(x)}|Y +t = y. Another view is

that Q is the stationary (unnormazlized) marginal density of Yt for the distribution
f(x, y) = f0(x)1{0≤Yt≤f1(x)}

Qf0,f1(y) =

∫
Rd

f0(z)1{f1(z)≥y}dz (2.1)

Proposition 2.6 (Slice Sampling satisfies detailed balance). The slice sampling
algorithm, as defined in 2.5 satisfies the detailed balance condition.
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Proof. We show the LHS and RHS in the detailed balance equation 1.5 are equal.

π(x)P (x′|x) = f0(x)f1(x)
1

f1(x)

∫ f1(x)

0

f0(x
′)1{f1(x′)≥y}

Q(y)
dy

= f0(x)f0(x
′)

∫ f1(x)

0

1{f1(x′)≥y}

Q(y)
dy

= f0(x)f0(x
′)

∫ min{f1(x),f1(x′)}

0

1

Q(y)
dy

π(x′)P (x|x′) = f0(x
′)f1(x

′)
1

f1(x′)

∫ f1(x′)

0

f0(x)1{f1(x)≥y}

Q(y)
dy

= f0(x)f0(x
′)

∫ f1(x′)

0

1{f1(x)≥y}

Q(y)
dy

= f0(x)f0(x
′)

∫ min{f1(x),f1(x′)}

0

1

Q(y)
dy

From propositions 1.6 and 1.7 we know that the slice sampler admits a stationary
distribution, and hence the resulting chain converges.

In particular, if we have the uniform slice sampler, i.e. f0 is constant, the stationary
distribution of (Xt, Yt) in Rd×R is the uniform distribution of the region under the
graph of π. Step 2 in the algorithm can still be somewhat difficult to perform based
on the difficulty of sampling from f0 (not a problem for uniform), and computing
the region that is above the graph of f1. There are many ways to do this including
with rejection sampling with f0 as the proposal distribution and K = 1. The
acceptance probability will not be 1 as we discussed earlier since f0(x)1{0≤Yt≤f1(x)}(x)
is unnormalized. More details can be found in the paper Slice Sampler by Radford
Neal. We will construct a specific sub-method of the slice sampler (with rejection
sampling) in the next section. For a direct use case of the slice sampler, we give a
specific condition for when it is guaranteed to converge.

Proposition 2.7. Consider the slice sampling algorithm on any target density
π(x) = f0(x)f1(x) in Rd. If yQ′(y) is non-increasing on y ≤ Y for some 0 ≤ Y ≤ 1
and Q in equation 2.1, then the slice sampler converges. That is

∀ϵ > 0, ∃NY s.t. ∀n ≥ NY ||P(Xn ∈ ·|X0 = x)− νπ(·)|| < ϵ

Here, we use total variation distance defined in the first section. The proof is
omitted but can be found in the original Polar Slice Sampling paper by Rosenthal
and Roberts. Moreover, they determine the exact value Ny needed for various
Y ∈ [0, 1] at level ϵ = 0.01. As Y decreases to 0, the number of iterations needed
to converge at level ϵ = 0.01 increases rapidly, since our ’nice’ property of yQ′(y)
non-increasing fails to hold for increasing proportion of points.
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3 Polar Slice Sampler

The previous section explored some basic sampling algorithms, which we can now
use to define the polar slice sampler. The (uniform) slice sampler is seen to perform
poorly in high dimensions, due to high autocorrelation, which makes convergence
incredibly slow (or impossible). The polar slice sampler is a version of slice sam-
pling with a specific choice of functions f0, f1 that allow for better performance in
higher dimensions, especially with spherically symmetrical distributions. Where the
standard slice sampler takes a horizontal slice of the support at Yt and samples from
those points, the polar slice sampler takes a spherical slice of radius Rt and samples
on the surface. We first introduce the algorithm. We will use the euclidean norm

|x| =
√

x2
1 + ...+ x2

d

Definition 3.1 (Polar Slice Sampler). Let π be the target probability density known
up to a normalizing constant. Decompose π(x) = f0(x)f1(x) where

f0(x) = |x|−(d−1), f1(x) = |x|d−1π(x)

Choose an initial value X0. For time t = 1, 2, ..., given the value of Xt−1 the algo-
rithm will iterate just as in the standard slice sampler (def 2.5)

1. Yt ∼ Uniform(0, |Xt−1|d−1π(Xt−1))

2. Xt ∼ |x|−(d−1)1{Yt≤|x|d−1π(x)}(x)

We can define the transition probability kernel (w.r.t function Q) as in 2.1 for
a general slice sampler. This choice of the function f0 allows us to show fast con-
vergence of the Markov chain for (more later) through nice properties of Q. It also
allows gives us a trick to sample from the density in step 2) of the algorithm, based
on rejection sampling 2.3

Proposition 3.2 (Sampling from f0(x)1f1(x)≥y(x)). Assume we have sample Yt from
step 1 of the polar slice sampler algorithm, and wish to sample from the density
in part 2 using polar coordinates. To that end, we wish to define Xt = Rtθt for
magnitude Rt ≥ 0 and |θt| = 1 on the unit sphere. We then perform the following
steps

1. Sample Rt ∼ Uniform(0, R∗
t ) where R∗

t ≥ sup{|x|||x|d−1π(x) ≥ Yt}

2. Sample Z1, ..., Zd ∼ N(0, 1) independently. Denote Z = (Z1, ..., Zd)

3. Set θt =
Z
|Z| and let Xt = Rtθt

4. If |Xt|d−1π(Xt) ≥ Yt, accept this choice of Xt, otherwise restart from step 1
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Here we are defining R∗
t such that a ball of radius R∗

t is fully outside the truncated
distribution of f1 (equivalent to the function Kf(x) in rejection sampling 2.3). We
then uniformly sample a radius Rt less than R∗

t . Next, we randomly select an angle
θt, and define Xt to be the point on the ball of radius Rt with angle θt. The closer
the ball of radius R∗

t comes to touching the distribution f1, the smaller the radius
Rt and less likely we are to reject. Since the choice of θt is completely random, we
can see that polar slice sampling would be less efficient for asymmetric distributions,
since entire ’quadrants’ may have magnitude less than Rt under the distribution.

We now aim to present a convergence property for the polar slice sampler.

Definition 3.3 (Asymmetry Parameter). Given a density π(x) = f0(x)f1(x) in Rd,
we define the asymmetry parameter as

A(f1) =
infθ M(f1, θ)

supθ M(f1, θ)

where M(f1, θ) = sup{f1(tθ); t ≥ 0}

Lemma 3.4 (Condition for yQ′(y)). Consider the polar factorization π(x) = f0(x)f1(x)
in Rd with f0(x) = |x|−(d−1), f1(x) = |x|(d−1)π(x). Suppose π(x) is log-concave, then
yQ′(y) is non-increasing for y ≤ A(f1)

Proof. Recall, the definition of log-concavity is that

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ ∀x, y,∈ Rd, 0 < λ < 1

Since |x|d−1 is also log-concave (polynomial), we know that f1 is log-concave. More-
over, this implies f1 is also continuous. We start by transforming Q to polar coor-
dinates (x1, ..., xd) → (r, θ1, ..., θd). From calculus we have

r = |x| =
√

x2
1 + ...+ x2

d =⇒ dx = rd−1drdθ =⇒ |x|−(d−1)dx = drdθ

where dr is Lebesgue measure on R and dθ is Lebesgue measure on surface of unit
sphere in Rd. Then we get that

Q(y) =

∫
Rd

|x|−(d−1)1f1(x)dx

=

∫
Rd

1f1(r,θ)drdθ

=

∫
Rd

(R+(y, θ)−R−(y, θ))dθ

where R−(y, θ) = inf{r : f1(r, θ) ≥ y}, R+(y, θ) = sup{r : f1(r, θ) ≥ y}. Note
of course that f1(r, θ) ∈ R. For a fixed θ, R−, R+ are functions of y. Since f1 is
continuous by log-concavity, the inf, sup respectively are attained, and R−, R+ are
continuous. Moreover, we have R+(y, θ) = f−1

1 (r, θ) = R−(y, θ), which is possible
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since f1 is (generally) not a bijective function, this is possible even though R− ̸= R+

(if it was bijective, we would have R− = R+). By the inverse function theorem we
know

Q′(y) =

∫
Rd

∂

∂r
(R+(y, θ)−R−(y, θ))dθ

=

∫
Rd

(
1

f ′
1(f

−1
1 (r, θ), θ)

− 1

f ′
1(f

−1
1 (r, θ), θ)

)
dθ

=

∫
Rd

(
1

f ′
1(R

+(y, θ), θ)
− 1

f ′
1(R

−(y, θ), θ)

)
dθ

yQ′(y) =

∫
Rd

(
y

f ′
1(R

+(y, θ), θ)
− y

f ′
1(R

−(y, θ), θ)

)
dθ

=

∫
Rd

(
f1(R

+(y, θ), θ)

f ′
1(R

+(y, θ), θ)
− f1(R

−(y, θ), θ)

f ′
1(R

−(y, θ), θ)

)
dθ

=

∫
Rd

(
1

∂
∂r

log f1(R+(y, θ), θ)
− 1

∂
∂r

log f1(R−(y, θ), θ)

)
dθ

Consider a fixed θ. Since the set {r : f1(r, θ) ≥ y} is non-increasing as y in-
creases, we have by definition that R+ is a non-increasing function and R− a
non-decreasing function. Since f1(x) is log-concave, we know that log f1(x) is a
concave function, and hence its derivative is always non-increasing. These facts im-
ply that ∂

∂r
log f1(R

+(y, θ), θ) and ∂
∂r

log f1(R
−(y, θ), θ) are non-decreasing and non-

increasing functions respectively. Taking reciprocals, we get that 1
∂
∂r

log f1(R+(y,θ),θ)
is

a non-increasing function in y and 1
∂
∂r

log f1(R−(y,θ),θ)
is a non-decreasing function in

y, which implies − 1
∂
∂r

log f1(R−(y,θ),θ)
is a non-increasing function in y. Hence the inte-

grand of yQ′(y) is a non-increasing function, meaning that yQ′(y) is non-increasing
as desired.

Theorem 3.5 (Convergence of Polar Slice Sampler). Consider the polar factoriza-
tion π(x) = f0(x)f1(x) in Rd with f0(x) = |x|−(d−1), f1(x) = |x|(d−1)π(x). Suppose

π(x) is log-concave. Then for any initial value x with f1(x)
sup

w∈Rd f1(w)
and Y = A(f1)

the polar slice sampler converges. That is

∀ϵ > 0, ∃NY s.t.∀n ≥ NY ||P(Xn ∈ ·|X0 = x)− νπ(·)|| < ϵ

Proof. From Lemma 3.4 we know that yQ′(y) is non-increasing for y ≤ A(f1). It
follows immediately by Proposition 2.7 that the polar slice sampler converges.

Corollary 3.6 (Polar Slice Sample for Spherically Symmetrical Distributions). Sup-
pose target density π(x) in Rd is spherically symmetrical (and log concave). Then
3.5 holds with Y = A(f1) = 1

This is immediate because norm is spherically symmetric as well, hence f1 is spher-
ically symmetric. Then M(f1, θ) is constant for every θ, i.e. every ray from origin

12



has the same maximum value so that A(f1) = 1. From previous observations, this
means that the polar slice sampler will converge very quickly for spherically sym-
metrical distributions.

13



4 Examples

In this section we will now look at a couple simulated examples using the polar slice
sampler. These will be used to compare against the uniform slice sampler to see if
it does indeed perform better in higher dimensions with respect to computational
efficiency, and in what cases they perform best.

4.1 A simple symmetrical example

We start by running the polar slice sampler on e−|x| for different dimensions. n =
1000 time-steps are used. Figure 4.1 shows the norm of the MCMC chain as a
stochastic process and the autocorrelation between time-steps for various dimen-
sions.
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Figure 4.1: ACF (left) and Norm process (right) of
polar slice sampler for π(x) = e−|x|

Here, we can see that the autocorrelation is low for all dimensions. Though the
plots use n = 1000 step chain, we get similar results for larger values of n. We can
also see in Figure 4.2 that the number of rejected samples increases linearly with
dimension, and is not very high. This preserves efficiency of the algorithm in higher
dimensions. Of course, since the number of accepted samples is fixed at 1000, the
rejection ratio increases rather quickly. In fact, here we used a rather naive (loose)
choice of r∗, chosen through a numerical computation (using a ’trick’ with δ being
a free variable we choose).

y ≤ δ−(d−1)(δ|x|)d−1e−|x| ≤ δ−(d−1)e(d−1)δ|x|e−|x| = δ−(d−1)e((d−1)δ−1)|x|

=⇒ |x| ≥ log yδd−1

(d− 1)δ − 1
= r∗

14
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Figure 4.2: Number of Rejections (left) and acceptance
ratio (right) during running of polar slice sampler for
π(x) = e−|x|

We need (d−1)δ−1 < 0 for the RHS to converge to 0. It turns out that δ = 1
d2

gives
the tightest bound of |x|d−1e−|x|. In this simple example, we could of actually found
the roots of f1(x)−y and used that as a tighter r∗, which would decrease number of
rejections. From a rejection sampling lens, the ball of radius r∗ is our scaled ’proposal
density’ g(x) scaled by factor K. As d increases, r∗ rapidly increases, and so the
volume in the ball increases. This means that our theoretical K value increases
rapidly (since the proposal density always integrates to 1). This is evidenced by
our rejection ratio increasing to 1. We proceed to compare polar slice sampling
with the uniform slice sampler in Figure 4.3. We immediately see in , even at lower
dimensions, that autocorrelation spikes, meaning that the uniform slice sampler is
not going through the entire support very well.
In our toy example, e−|x| is spherically symmetrical since it is a function of the
norm. Each slice at y will partition the points π(x) ≥ y as being inside the ball
of radius y. Intuitively, uniform slice sampler is poor because in high dimensions,
a large proportion of points will be close to the boundary of the ball of radius r
(which is the value |x| so that f(x) = y). For example the ratio of points within a
ball of ratio r

2
and ball of ratio r is 1

2d
. So in high dimensions, uniformly sampling

in this ball drastically oversamples points away from the mode, i.e. the origin (from
below image there are no the entire range (−r, r), leading to poor efficiency and
convergence results. On the other hand, the polar slice sampler will sample a radius
uniformly within the ball, and so each distance from origin has equal chance of

15
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Figure 4.3: ACF (left) and Norm process (right) of
uniform slice sampler for π(x) = e−|x|

being chosen (in polar sampling, we actually consider f1(x) = |x|d−1π(x), which is
different than π(x) but the same idea holds). This means the chain will mix faster
leading to better convergence properties. However, to get a complete comparison,
we must also account for the CPU time, measured as the time to run the process
between polar and uniform slice samplers. In Table 4.4 we take the product of
autocorrelation time and CPU time as a metric to evaluate algorithmic efficiency.
Using this metric, polar slice sampler is far more efficient because the benefit in
reduced autocorrelation exceeds the longer runtime (which is due to rejections).
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Figure 4.4: Comparison of CPU and autocorrelation
time for π(x) = e−|x|
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4.2 An asymmetrical Example

Next, we will consider another example, with the function π2(x) = e−
∑d

i=1 ix
2
i . In

this example (similar to previous), we have the r∗ value

y ≤ |x|d−1e−
∑d

i=1 ix
2
i ≤ |x|d−1e−|x|2 ≤ δ−

d−1
2 e(

d−1
2

δ−1)|x|2 =⇒ |x| ≥

√
log yδ

d−1
2

d−1
2
δ − 1

= r∗

Again, we want d−1
2
δ − 1 < 0 for convergence, and we choose δ = 2d−

3
2 . In Figure

4.5 and 4.6 we again display the ACF, norm process and rejection ratios.
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Figure 4.5: ACF (left) and Norm process (right) of

polar slice sampler for π2(x) = e−
∑d

i=1 ix
2
i

Compared to the previous example, the number of rejections has drastically in-
creased for all d, and increases exponentially as a function of d. The rejection
percentage immediately shoots up to around 1. In fact, for d = 15 the algorithm
failed to run and got stuck at around 61 million rejections and 150 iterations (for
a single run). Intuitively, this is because π2 is not spherically symmetrical and our
chosen r∗ value is dependent on the norm of x (which of course is spherically sym-
metrical). This means that for large choices of y, r∗ will increase (as a function of

y). However, for large d, |x|, we have
∑d

i=1 ix
2
i > |x|2 =⇒ e−

∑d
i=1 ix

2
i << e−|x|2 .

Thus most values of r ∼ Uniform(0, r∗) will be too large and not satisfy constraint
|x|d−1π2(x) ≥ y. For a visualization, consider π2 as having ’elliptical’ cross-sections
of the form

∑m
i=1 ix

2
i = − log y

(r∗)d−1 . Taking 2 dimensional cross-sections for d = 20,

since each xi is independent, we can model the (1,20) marginal as proportional to
the below ellipse (r∗ = |x20|)

x2
1 + 20x2

20 = − log k =⇒ x1 = ±
√
− log y − 20x2

20
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Figure 4.6: Number of Rejections (left) and acceptance
ratio (right) during running of polar slice sampler for

π2(x) = e−
∑d

i=1 ix
2
i

Here, we use y
(r∗)d−1 = 10−10, which is reasonable for large y and corresponding

r∗. The plot is in Figure 4.7a. We are examining the function π2, but π2|x|d−1 will
also be elliptical since |x|d−1 is itself spherical. From these cross-sections, we can see
that the norm is maximized on the axes (i.e. when x20 = 0) for both the ellipse and
circle. Extrapolating to the function π2, the norm will be maximized when xi = 0
for i = 2, 3, ..., d for π2 but the norm value is actually the same for both ’shapes’.
In our first example, any radius within the ball radius r∗ satisfied |x|d−1π(x) ≥ y,
but for this example many choices for r will not satisfy |x|d−1π2(x) ≥ y, as the area
of the ellipse around 3 times smaller (and in d dimensions, the ratio of volumes is

taken to dth power). Note that e−|x|2 is a poor approximation of e
∑d

i=1 ix
2
i , which we

then approximate again (w.r.t. the norm) to determine r∗, multiplying the issue.
In the language of rejection sampling, the constant K is very large in order to have
g(x) ≥ |x|d−1π2(x) where g is the surface of a d dimensional ball (scaled to have
density 1), leading to a small acceptance probability. For this reason, we also see
higher autocorrelation in the Markov chains.

We can try using a tighter r∗, using an exact root finding method for |x|d−1π2(x)−
y = 0, but the algorithm still fails to converge for high dimensional d, showing the is-
sue is in the lack of spherical symmetry. Of course, computing sup{|x|||x|d−1π2(x) ≥
y} exactly will help, but there will still be far higher rejections than for π(x). For
visualization, and to see the polar sampler does work, we will show the 1, 3, 5, 10
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Figure 4.7: (left) Visualization of elliptical cross-
sections for π2. (right) Empirical marginal distributions
of the resulting Markov chain

marginals of π2 for d = 10 in 4.7b . We also again compare with the uniform slice
sampler in Figure 4.8 and see that it also exhibits high autocorrelation and does a
poor job of convergence.

4.3 Comparing CPU time for Varying levels of Symmetry

From our first 2 examples, it seems reasonable to look at what degree of symmetry
leads to better results for the polar slice sampler as oppopsed to the uniform slice
sampler w.r.t. out CPU time and ACT metrics. We consider the family of functions
’in-between’ π(x) and π2(x), denoted πj(x) = e−

∑d
i=1 i

jx2
i . For j = 0 this is simply

the function π(x) from our first example and for j = 1 this is the function π2(x)
from our second example. We choose j = 0, 0.25, 0.5, 0.75, 1 and compare the ACT
and CPU times of the polar and uniform samplers for d = 5, 10. Note that the slice
samplers will produce different results depending on the specific chain (randomly)
sampled and so we run each sampler 6 times and average results for stability. Re-
sults are in Table 4.9 and 4.10.

For d = 5 the polar slice sampler still outperforms the uniform slice sampler in
efficiency for all values of j, however when we move up to d = 10 the results start
shifting. For j < 0.5 we still see polar slice sampler performing well but for j ≥ 0.5
the CPU time increases rapidly, while the change in ACT is minimal, meaning that
the the product of the two is greater for the polar slice sampler. This is directly
caused by the larger number of rejections we see (as in example 2 Figure 4.6).
Moreover, the ACT actually decreases for the uniform slice sampler as j increases
to 1 since the relative non-symmetry will allow for better mixing in this case. This
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Figure 4.8: ACF (left) and Norm process (right) of

uniform slice sampler for π(x) = e−
∑d

i=1 ix
2
i

is because the norm, which we are measuring is more restricted on the ellipses.
From this we can draw the conclusion that in very high dimensions, polar slice
sampling in the given form is a poor algorithm for non-symmetrical distributions as
the CPU time is too high. On the other hand, it performs quite well on symmetrical
distributions and for medium dimensions.
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Figure 4.9: Comparison of CPU and autocorrelation

time for πj(x) = e−
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i for dimension d = 5

4.4 Example on subset of Rd

For another example, we will use π3(x) = e−|x|]1x1,...,xd
2
≥0. That is, the function

π(x) from our first example, restricted to the first d
2
components being positive. For

simplicity, we will assume d to be even. Clearly, this is a non-symmetric function.
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i for dimension d = 10

We will use the same r∗ function. Same plots as before will be in Figures 4.11 and
4.12.
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Figure 4.11: ACF (left) and Norm process (right) of
polar slice sampler for π3(x) = e−|x|]1x1,...,xd

2
≥0

The polar sampler still mixes very well, but we notice the number of rejected samples
is significantly higher than the first example (which would be worse if increased chain
length or dimension). In fact, the rate of increase is increasing so that for higher
values of d, the computational power needed drastically increases. This would in
turn increase the CPU time making the uniform slice sampler more efficient using
our previous metrics. Of course, the chain still converges nicely. This shows it could
be beneficial to sample the ’angle’ in our polar-rejection sample not completely at
random. In this case, it would be easy to simply ensure a positive θi value for each
i = 1, ..., 1

2
. But oftentimes, it is not so easy to sample r, θi in a more efficient
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Figure 4.12: Number of Rejections (left) and accep-
tance ratio (right) during running of polar slice sampler
for π3(x) = e−|x|]1x1,...,xd
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manner.
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