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0 Background Knowledge

0.1 Basic Measure Theory and Notations

Definition 0.1. σ-algebra

A non-empty subset A of Ω is a σ-algebra if: for E ∈ Ω

1. E ∈ A =⇒ Ec ∈ A

2. ∀E1, E2, ... ∈ A =⇒
⋃∞
i=1Ei ∈ A

Remarks

1. Ω ∈ A & ∅ ∈ A

2. ∀E1, E2, ... ∈ A =⇒
⋂∞
i=1Ei ∈ A

Definition 0.2. measure

A measure µ on Ω with σ algebra A is a function µ : A → [0,∞)if:

1. µ(∅) = 0

2. µ(
⋃∞
i=1Ei) = Σ∞i=1µ(Ei)

Additionally, a measure P is a probability measure if P(Ω) = 1
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Definition 0.3. Random Variable

Given (Ω,A,P), a random variable is a function X : Ω→ R s.t. ∀x ∈ R {ω ∈ Ω : X(ω) ≤ x} ∈ A

Remarks

1. A random variable X that satisfy ∀x ∈ R {ω ∈ Ω : X(ω) ≤ x} ∈ A is called measurable by A

Definition 0.4. Filtration

If X1, X2.... is a sequence of random variables, then the associated filtration is the collection Fn where

Fn denote the information in X1, X2....Xn

To illustrate by an example: let’s go with a simple coin flipping, and we are interested in the re-

sults of two flips. Then Ω = {HH,TT,HT, TH} At time 0, we know nothing about the outcome

after two flips, therefore the information contained in F0 = {∅,Ω} At time 1, after 1 flip, we can

observe the result of first flip and know more about the experiment. Hence, we know these events:

F1 = {∅,Ω, {HT,HH}, {TT, TH}} ⊃ F0 could happen. At time 2, after 2 flips, we observe the fi-

nal result of the experiment and know everything about the outcome. Hence we know these events:

F2 = {∅,Ω, {HT,HH}, {TT, TH}, {TT}, {TH}, {HH}, {HT}} ⊃ F1 could happen.

1 Martingales in Discrete Time

1.1 Conditional Expectation

Given probability space (Ω,A,P), and integrable random variable X. Let G be a sub σ-algebra of A.

Then E[X | G] is defined to be the unique G measurable random variable such that if A ∈ G,

E[X1A] = E[E[X | G]1A] (1)

Proposition 1.1. Properties of conditional expectation

Suppose X1, X2, ... is a sequence of random variable and Fn be the corresponding filtration at time n.

Then for a random variable Y :

• Give Y is Fn measurable, then E[Y | Fn] = Y

• Given A is an Fn measurable event, then E[E[Y | Fn]1A] = E[Y 1A]

• Given {Xi} is independent from Y , then E[Y | Fn] = E[Y ]

• Given random variable Y, Z, and constants a, b ∈ R, then

E[aY + bZ] = aE[Y ] + bE[Z]

• Given m,n ∈ N and m < n, then E[E[Y | Fn] | Fm] = E[Y | Fm]

• Given Fn measurable random variable Z, then E[Y Z | Fn] = ZE[Y | Fn]
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1.2 Martingales

Definition 1.1. A sequence of random variables M0,M1, ... is called a martingale with respect to

the filtration Fn if:

• ∀N ∈ N, Mn is Fn measurable with E[|Mn|] <∞

• If m,n ∈ N and m < n, then

E[Mn | Fm] = Mm or E[Mn −Mm | Fm] = 0

1.3 Optional Sampling(Stopping) Theorem

This section focuses on a new concept, stopping time. Motivated by studying the behavior of a

martingale up-to a certain time.

Definition 1.2. Stopping time

A non-negative integer-valued random variable T is a stopping time with respect to filtration {Fn}

if ∀n ∈ N, the event {T = n} is Fn-measurable.

For convenience, the following notes will use a new notation, Mn∧T , to indicate

M0 + Σnj=1Bj [Mj −Mj−1]

where n ∧ T means min{n, T}, and Bj = 1 for j ≤ T and Bj = 0 otherwise.

The following three theorems will yield the same result, yet the precondition will be less strict as we

progress.

Theorem 1.1. Optional Sampling Theorem I

(Named Option Stopping Lemma in STA447) Suppose T is a stopping time and Mn is a mar-

tingale with respect to {Fn}. Then Yn = Mn∧T is a martingale. If T is bounded, or if there exists a

K ∈ R,K ≤ ∞, such that, P{T ≤ K} = 1, then

E[MT ] = E[M0] (2)

First, we should note that even without the final precondition, as long as Mn is a martingale with

respect to Fn, then

E[Mn∧T ] = E[M0] (3)

Proof. (3)

∀n ∈ N,WLOG, assume n > T

E[Mn∧T ] = E[M0 + Σnj=1Bj [Mj −Mj−1]]

= E[M0] + Σnj=1BjE[Mj −Mj−1]

= E[M0] + ΣTj=11 ∗ E[Mj −Mj−1] + Σnj=T 0 ∗ E[Mj −Mj−1]

= E[M0] ≤ ∞
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∀m,n ∈ N and m < n

E[Mn∧T −Mn−1∧T | Fm] = E[Bn[Mn −Mn−1]

= E[Mn −Mn−1] = 0 if Bn = 1

= 0 if Bn = 0

The proof of Theorem 1.1 is relatively straight forward: since T is bounded, E[MT ] − E[M0] can be

separated into sums of finite steps. (i.e. Finitely many E[Mi]− E[Mi−1]) We have showed each step

is equal to 0, therefore the sum is still 0.

However, if we were to change the last precondition of Theorem 1.1 to something less restrictive. Say

instead of bounding T by K for some K ∈ R, we only require P{T <∞} = 1. Then (3) will still hold,

and

E[M0] = E[Mn∧T ] = E[MT ] + E[Mn∧T −MT ].

If the latter term of the right hand equals to 0 for large n, then we will have (2). Mn∧T −MT is

obviously 0 if n ∧ T = T . If n > T , then we have

Mn∧T −MT = 1{T > n}[Mn −MT ].

Since MT 1{T > n} is a random variable converging to MT and bounded by the random variable

|MT | < ∞, hence by the dominated convergence theorem, limn→∞E[MT 1{T > n}] = 0. Therefore,

we just need the other term to behave nicely.

Theorem 1.2. Optional Sampling Theorem II

(Named Option Stopping Theorem in STA447) Suppose T is a stopping time and Mn is a

martingale with respect to {Fn}. Suppose that P{T <∞} = 1, and

lim
n→∞

E[|Mn|1{T > n}] = 0, (4)

then,

E[MT ] = E[M0]

Let us go a step further and examine (4). Start by separating (4) into two parts base on the value of
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each Mn, let b ∈ R:

E[|Mn|1{T > n}] = E[|Mn|1{|Mn| ≥ b, T > n}] + E[|Mn|1{|Mn| < b, T > n}]

≤
1
b

E[|Mn|21{|Mn| ≥ b, T > n}] + E[|Mn|1{|Mn| < b, T > n}]

≤
1
b

(E[|Mn|21{|Mn| ≥ b, T > n}] + E[|Mn|21{|Mn| < b, T > n}]

+E[|MT |21{T < n}]) +E[|Mn|1{|Mn| < b, T > n}]

≤
1
b

(E[|Mn|21{T > n}] + E[|MT |21{T < n}])

+ E[|Mn|1{|Mn| < b, T > n}]

≤ E[|Mn∧T |2]
b

+ bP{T > n}

Now, let’s bound E[|Mn∧T |2] < C, for some C ∈ R. Then we have

E[|Mn|1{T > n}] ≤ C
b + bP{T > n}.

Continue with the inequality we just proved. First note that E[|Mn|1{T > n}] and C
b + bP{T > n}

are sequences with respect to n. Moreover, C
b + bP{T > n} is monotonically decreasing. Since

E[|Mn|1{T > n}] is bounded by a monotonically decreasing sequence, we have

lim sup
n→∞

E[|Mn|1{T > n}] ≤ lim sup
n→∞

C

b
+ P{T > n}

lim sup
n→∞

E[|Mn|1{T > n}] ≤ C

b
+ lim
n→∞

P{T > n}

lim sup
n→∞

E[|Mn|1{T > n}] ≤ C

b

and,

0 ≤ limn→∞E[|Mn|1{T > n}] ≤ lim supn→∞E[|Mn|1{T > n}] ≤ C
b

Since the above inequality holds for all b, we have (4). This results in the final Optional Sampling

Theorem.

Theorem 1.3. Optional Sampling Theorem III

Suppose T is a stopping time and Mn is a martingale with respect to {Fn}. Suppose that P{T <∞} =

1, and there exists C <∞ such that for each n,

E[|Mn∧T |2] ≤ C (5)

Then,

E[MT ] = E[M0]

1.4 Martingale Convergence Theorem

Theorem 1.4. Martingale Convergence Theorem

Suppose Mn is a martingale with respect to {Fn} and there exists some C ∈ R such that E[|Mn|] ≤ C

for all n ∈ N. Then there exists a random variable M such that with probability one

5



limn→∞Mn = M .

Proof. This proof of martingale convergence theorem will show that a bounded martingale will fluctu-

ate finitely many times outside of any interval. i.e. for any a, b ∈ R and a < b, then there exist K ∈ R

such that

|{n : Mn ≤ a,Mn−1 > a} ∪ {n : Mn ≥ b,Mn−1 < b}| < K

Therefore, lim inf Mn = lim supMn and hence the limit of limMn exists.

Start by define a sequence of stopping times: for any a, b ∈ R and a < b,

S1 = {n : Mn ≤ a}, T1 = {n : Mn ≥ b, n > S1}

and for i > 1,

Si = {n : Mn ≤ a, n > Ti−1}, Ti = {n : Mn ≥ b, n > Si}

Simply speaking, S1 is the first time Mn goes below a, T1 is the first time Mn goes above b after

S1. Then S2 is the first time Mn goes below a after T1, and so on and so forth. Now define another

martingale:

Wn = Σni=1Bi[Mi+1 −Mi]

where,

Bi = 0 If n < S1

Bi = 1 If for some j, Sj ≤ i < Tj

Bi = 0 If for some j, Tj ≤ i < Sj+1

In other words, Wn records the change of Mn between each time Mn goes below a and the next time

it goes above b.

It can be shown that Wn is also a martingale, which means E[Wn] = E[W0] = 0. Now define Un to

be the count of the total number of "interval" recorded by Wn up to time n. i.e.

Un = j, for Tj ≤ n < Tj+1

Then, WLOG assume n > TN , where TN represents the last time Mn ≥ b,

Wn ≥ Un(b− a) + (Mn − a)

Using the property of margingale,

E[Un](b− a)− E[a−Mn] ≤ E[Wn] = 0

E[Un](b− a) ≤ E[a−Mn]

E[Un](b− a) ≤ |a|+ E[|Mn|] = |a|+ C

E[Un] ≤ |a|+ C

b− a
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Since this inequality holds for any a, b ∈ R we have lim inf Mn = lim supMn and hence the limit of

limMn = M exists. (Note, M can not be ±∞ with a positive probability, as if it is, then E[|Mn|]

cannot be bounded by C

1.5 Square Integrable Martingales

Definition 1.3. Square Integrable Martingale A martingale Mn that is, for each n, E[M2
n] ≤ ∞

Definition 1.4. Orthogonality Two random variables are considered to be orthogonal if E[XY ] =

E[X]E[Y ].

An important property is associated with martingales, that is the orthogonality between any two

martingale increment.

Proposition 1.2. Suppose that Mn is a martingale with respect to {Fn}. Then if m < n,

E[(Mn+1 −Mn)(Mm+1 −Mm)] = 0 (6)

Proof. Given that m < n, then Mm+1 −Mm is Fn-measurable, and hence

E[(Mn+1 −Mn)(Mm+1 −Mm)|Fn]

= (Mm+1 −Mm)E[(Mn+1 −Mn)|Fn] = 0

Taking expectation of Fn again,

E[(Mn+1 −Mn)(Mm+1 −Mm)]

= E[(Mm+1 −Mm)E[(Mn+1 −Mn)|Fn]] = 0

1.6 Integrals with respect to random walk

This section introduces discrete integral of martingales.

Definition 1.5. Predictable A sequence of random variables, Xn, is called predictable with respect to

{Fn}, if for each n, Xn is Fn−1-measurable.

Suppose that {Xn} is a set of identical independently distributed random variable with mean zero

and variance σ2. Let Sn = Σni=1Xi, and {Fn} be the filtration generated by {Xn}. Now define Jn to

be predictable sequence with E[J2
n] <∞ for each n. The integral of Jn with respect to Sn is defined

by

Zn = Σni=1JiXi = Σni=1Ji∆Si (7)

Three important properties immediately presents themselves.

1. Martingale property. The integral Zn is a martingale with respect to {Fn}
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2. Linearity. If Jn, Kn are predictable sequences and a, b ∈ R, then aJn + bKn is a predictable

sequence and

Σni=1aJi + bKi = aΣni=1Ji∆Si + bΣni=1Ki∆Si

3. Variance Rule.

V ar[Σni=1Ji∆Si] = E[(Σni=1Ji∆Si)2] = σ2Σni=1[Ji]2

Proof. Properties

1. Given {Jn} and {Sn} are {Fn}-measurable, Zn, as a finite sum of products of {Fn}-measurable

random variable, is {Fn}-measurable. Also,

E[Zn − Zn−1|Fn] = E[JnXn|Fn] = JnE[Xn|Fn] = 0

2. This property is immediate

3. First note Zn has mean 0, so the first part of equality holds. Then due to the orthogonality of

martingale increments

E[(Σni=1Ji∆Si)2] = Σni=1E[J2
i X

2
i ]

Then using the double expectation property over Fi−1 for each i

Σni=1E[J2
i X

2
i ] = Σni=1E[E[J2

i X
2
i |Fi−1]]

= Σni=1E[J2
i E[X2

i |Fi−1]]

= Σni=1E[J2
i E[X2

i ]]

= Σni=1σ
2E[J2

i ]

= σ2Σni=1E[J2
i ]

1.7 A maximal inequality

I believe this is the Doob’s martingale inequality?

Definition 1.6. Submartingale

A sequence of random variables M0,M1, ... is called a submartingale with respect to the filtration Fn
if:

• ∀N ∈ N, Mn is FN measurable with E[|Mn|] <∞

• If m,n ∈ N and m < n, then

E[Mn | Fm] ≥Mm
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Theorem 1.5. Suppose Mn is a non-negative submartingale with respect to {Fn}, and let

Mn = max({Mi}ni=0)

Then for every a ∈ R, a > 0,

P{Mn ≥ a} ≤
1
a
E[Mn]

Proof. First define τa to be inf{i ≥ 1 : Mi ≥ a}, then

P (Mn ≥ a) = Σni=1P (τa = i).

Note E[1{Mi ≥ a}] ≤ E[Mi

a ], and {τa = i} is Fi measurable. Then for each i, such that 1 ≤ i ≤ n,

P (τa = i) = E[1{τa = i}]

≤ E[Mi

a
1{τa = i}]

≤ 1
a
E[Mi1{τa = i}]

≤ 1
a
E[1{τa = i}E[Mn|Fi]]]

= 1
a
E[1{τa = i}Mn]

Summing over 1 ≤ i ≤ n we have.

Σni=1P (τa = i) ≤ 1
a

Σni=1E[1{τa = i}Mn]

≤ 1
a
E[1{Mn ≥ a}Mn]

≤ 1
a
E[Mn]

which is the desired statement.

2 Brownian Motion

2.1 Limit of Sum of Independent Variables

2.2 Multivariate Normal

The first section of this chapter covers basic properties of limit of sums such as CLT and binomial

converge to Poisson. The second part covers multivariate normal distribution properties such as the

role of covariance matrix and independence between the sum and difference of two normal variables.

2.3 Limit of Random Walks

This section discusses the limit of a simple symmetric random walk and how it approaches something

continuous (intuitively) as the length of each time interval decreases.

Suppose X1, X2... are independent random variables with
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P{Xi = 1} = P{Xi = −1} = 1
2

Then define,

Sn = Σni=0Xi

be the corresponding SSRW. As in the discrete case, this SSRW have time increment ∆t = 1 and

space increment ∆x = 1. Suppose define ∆t = 1/N for large natural number N, and observe the new

process at times ∆t, 2∆t, 3∆t, ..... Then with space increment being ∆x, at time 1 = N∆t, the value

of the process is

W
(N)
1 = ∆xΣNi=0Xi

In order to preserve the fluctuation/variance of the process to be 1, then

V ar[∆xΣNi=0Xi] = (∆x)2ΣNi=0V ar[Xi]

consequentially, ∆x =
√

∆t. Note by the central limit theorem

ΣNi=0Xi√
N

is approximately the standard normal distribution.

As we increase N , one can see that the process shifts from discrete to continuous space. The resulting

process (the limit of random walk) is called Brownian motion or Wiener Process.

2.4 Brownian Motion

First let’s introduce a few definition and theorems.

Definition 2.1. Stochastic Process Let Bt = B(T ) be the value at a time T. For each t, Bt is a

random variable. A collection of random variable indexed by time is called a stochastic process.

There are three major assumptions about the random variable Bt

• Stationary Increments. If s < t, then the distribution of Bt −Bs is the same as Bt−s −B0

• Independent Increments. If s < t, then the random variable Bt − Bs is independent of any

value Br for any r < s

• Continuous Path. The function that maps t→ Bt is a continuous function of t.

Lemma 2.1. Borel-Cantelli lemma Let {Ei} be a sequence of events in some probability space Ω, then

if

Σ∞i=1P (Ei) <∞

then,

P (lim sup
i→∞

Ei) = 0

The lim sup denotes the limit supremum of the sequence of events, that is the set of outcomes that

occur infinitely many times within the infinite sequence. Explicitly,

lim sup
i→∞

∞⋂
i=1

∞⋃
k≥i

Ei
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Proof. First note,

P (Σ∞i 1[Ei] <∞) = 1 =⇒ P (lim sup
i→∞

Ei) = 0

Then

E[Σ∞i 1[Ei]] = Σ∞i E[1[Ei]] = Σ∞i P (Ei) <∞

Then

P (Σ∞i 1[Ei] <∞) = 1

If not, then

E[Σ∞i 1[Ei]] ≥
∫

Σ∞
i
1[Ei]=∞

(Σ∞i 1[Ei])dP =∞

Proposition 2.1. Basic properties of Brownian motion For s < t

• E[Bt] = E[Bs] + E[Bt−s]

• V ar[Bt] = V ar[Bs] + V ar[Bt−s]

Definition 2.2. Brownian Motion A stochastic process Bt or B(t) is called Brownian Motion with

drift m, variance σ2 starting at the origin if it satisfies:

• B0 = 0.

• For s < t, the distribution of Bt −Bs is follows N (m(t− s), σ2(t− s)).

• If s < t, the random variable Bt −Bs is independent of any Br for r < s.

• With probability one, the function t→ Bt is a continuous function of t.

Proposition 2.2. Scaling properties Suppose Bt is a standard Brownian motion (drift 0 and variance

1) and a > 0. Then Yt = Bat√
a

is also a standard Brownian motion

Proof. The properties of Brownian motion are still satisfied and is easy to see.

Expectation of Yt is still 0 and the variance:

V ar[Yt] = V ar[Bat/
√
a] = V ar[Bat]

a
= at

a
= t

2.5 Existence of Brownian Motion

This section is a bit hard for me to understand fully. The flow of the proof is as follows:

• Proof Brownian Motion exists on discrete time.

• Proof Brownian Motion exists on countable infinite time.

• Proof Brownian Motion exists on a countable infinite time that is dense in real numbers

• Proof Brownian Motion exists on all real numbers
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2.6 Understanding Brownian Motion

This section studies Brownian motion in depth, focuses on its differential, Hölder continuity, and

Brownian motion as a martingale, Markov process, Gaussian process and self-similar process.

Theorem 2.1. For any t, with probability one, the function t→ Bt is not differentiable.

Proof. First note, for any ε

Bt+ε = Bt +
√
εN

where N is a standard normal random variable. Then

lim
ε→0

Bt+ε −Bt
ε

= lim
ε→0

√
εN

ε

Therefore, with probability one, said limit goes to infinity as ε goes to 0. Hence the function is not

differentiable for any t.

In fact, a stronger statement is also true:

Theorem 2.2. With probability one, the function t→ Bt is nowhere differentiable.

The logic of the proof is as follows:

• Assume the function is differentiable at some point t which falls in one of the 2n intervals.

• Observe the behavior of the three intervals near t if the function is differentiable at t.

• Show that the probability of the intervals behaving that way has probability 0.

• Sum over all possible intervals that t can fall in, and show no matter where t is, the probability

is still 0.

• Sum over all possible n, and show the sum of probability is finite.

• By Borel-Cantelli Lemma, the probability of the function being differentiable at some point has

probability 0.

Proof. It is enough to show the function is not differentiable in [0,1].

Suppose Bt is differentiable at some point t ∈ [0, 1], then its local rate of change is bounded by some

finite constant M ,

sup
ε∈[0,1]

|B(t+ ε)−B(t)|
ε

< M

Fix M . Let t ∈ [(k − 1)/2n, k/2n] for some large n and k ∈ [0, 2n]. If B(t) is differentiable at t, then

for all j ∈ [1, 2n − k]:

|B((k + j)/2n)−B((k + j − 1)/2n)|

≤ |B((k + j)/2n)−B(t)|+ |B(t)−B((k + j − 1)/2n)|

≤M(j/2n) +M((j + 1)/2n)

= M(2j + 1)/2n
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Define a set of events:

An,k = {|B((k + j)/2n)−B((k + j − 1)/2n)| < M(2j + 1)/2n for j = 1, 2, 3}

Note P (Bt is differentiable at t) ≤ P (An,k). Hence,

P (An,k) ≤ Π3
j=1P (|B((k + j)/2n)−B((k + j − 1)/2n)| < M(2j + 1)/2n)

= Π3
j=1P (|B(1/2n)| < M(2j + 1)/2n)

= Π3
j=1P ( |B(1)|√

2n
< M(2j + 1)/2n)

= Π3
j=1P (|B(1)| < M(2j + 1)/

√
2n)

≤ P (|B(1)| < 7M/
√

2n)3

≤ (7M/
√

2n)3

The last inequality holds as standard normal is bounded by 0.5. As n increases, the probability goes

to 0. Now summing over all possible intervals:

P (Bt is differentiable somewhere) ≤ P (
2n⋃
k=1

An,k)

≤ 2n(7M/
√

2n)3

= (7M)3/
√

2n

The sequence goes to 0 drastically as we increase n, therefore the summation Σ∞n P (
⋃2n
k=1An,k) will

be finite. Then by the Borel-Cantelli Lemma,

P (Bt is differentiable somewhere) < P (lim sup
n→∞

2n⋃
k=1

An,k) = 0

which is the probability of function B(t) having a point that is differentiable.

2.6.1 Brownian Motion as Martingale

The martingale property is the consistency of expected value with respect to a filtration {Fn}. i.e. for

s < t

E[Mt|Fs] = Ms

For a Brownian Motion Bt, let {Fn} be the martingale that Bt adapted to, then

E[Bt|Fs] = E[Bs|Fs] + E[Bt −Bs|Fs]]

= Bs + E[Bt −Bs]

= Bs

To rigorously state a Brownian motion adapts some filtration {Fs}, we often change the second

condition for Brownian motion to:

If s < t, the random variable Bt −Bs is independent of Fs
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The idea is even if we have more information at time s, they won’t help us predicting the future

increments. It is also worth noting that not all martingales that are defined on continuous time are

continuous i.e. f : t→Mt is continuous. The most common example will be a Poisson Process which

is a kind of jumping process and will be discussed later.

2.6.2 Brownian Motion as a Markov Process

The Markov Process is about the memoryless of the random variable. i.e. let s ≥ t and let A = {Xi}t0

P (Xs < C|A) = P (Xs < C|Xt)

Brownian Motion satisfies such property as:

Ys = Bt+s −Bt

is independent from {Ft}.

2.6.3 Brownian Motion as a Gaussian Process

A process {Xt} is called a Gaussian Process if each subset of sequence of random variables

(Xi, ....Xi+n)

has a joint normal distribution which is defined by its mean and covariance matrix. Let Bt be a

standard Brownian Motion, and ti < ti+1 < ... < ti+n, then the corresponding (Bi, ....Bi+n) can be

expressed as a linear combinations of independent standard normal random variables:

Zj =
Btj −Btj−1√
tj − tj−1

for j ∈ 1, .., n. Then Bt is a Gaussian Process with mean zero, and if s < t

Cov(Bs, Bt) = E[BsBt] = E[Bs(Bs +Bt −Bt)]

= E[B2
s ] + E[Bs(Bt −Bs)]

= s+ 0 = s

which gives us Cov(Bs, Bt) = mins, t

2.6.4 Brownian Motion as a self-similar process

The idea of self-similar process comes from the fact that if one were to (properly) scale up a small

portion of Brownian Motion, then the small piece looks like another ordinary Brownian Motion.

Theorem 2.3. Suppose Bt is a standard Brownian Motion and a > 0. Let Yt = Bat√
a
,

then, Yt is a standard Brownian Motion. The variance is preserved by the scaling factor a1/2
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2.7 Computations for Brownian Motion

This section introduces a few quantities about Brownian Motion and their calculations; as well as the

Reflection Principle.

1

E[|Bt|] = E[t1/2|B1|] = t1/2(2π)−1/2
∫ ∞
−∞
|x|e−0.5x2

dx

= t1/2(2π)−1/2 ∗ 2
∫ ∞

0
xe−0.5x2

dx

=
√

2tπ−1

The last equality uses the property of half-normal distribution

A random variable is said to follow half-normal distribution if its PDF takes form
√

2
σ
√
π

exp
(
− x2

2σ2

)
(8)

for x > 0. It has expected value of σ
√

2√
π
. In this case, the last integral is almost the expected value of

a half normal random variable with σ = 1, hence the integral takes value 1

2

P (Bt ≥ r) = P (
√
tB1 ≥ 1) = P (B1 ≥ rt−0.5)

= 1− Φ(rt−0.5)

Φ represents the distribution function of standard normal, and the last equality uses the fact that B1

follows standard normal

3 For any t > s,

P (Bt > 0, Bs > 0) =
∫ ∞

0
P (Bt > 0|Bs = x)P (Bs = x)dx

=
∫ ∞

0
P (Bt −Bs > −x) 1√

2(s)π
e−

x2
2(s)) dx

=
∫ ∞

0

∫ ∞
−x

1√
2(t− s)π

e−
y2

2(t−s))
1√

2(s)π
e−

x2
2(s)) dydx

In the case of t = 2, s = 1, one can use polar coordinates to compute the result to be 3
8 . Immediately,

we have

P (B2 > 0|B1 > 0) = 3
4

Theorem 2.4. Strong Markov Property If T is a stopping time with p(T <∞) = 1 and let

Yt = BT+t −BT ,

then Yt is a standard Brownian Motion. Also, Y is independent of

{Bt : 0 ≤ t ≤ T}

15



We will use this property to prove the famous Reflection Principle

Theorem 2.5. Let Bt be a standard Brownian motion starting at the origin, then for any a > 0,

P

(
max
0≤s≤t

Bs ≥ a
)

= 2P (Bt > a) = 2[1− Φ(a/
√
t)]

The intuition behind the proof is that: In order for the motion to be greater than a at time t, the

motion needs to first reach a some time before t (no matter where) which is equivalent to say the max

value of the motion before time t is greater or equal to a. Then after it touches t, it has a 50% to not

drop below a. So the probability is twice as much.

Proof. First define Ta = min{s : Bs ≥ a} = min{s : Bs = a}. Note Ta qualifies as a stopping time.

Then,

P

(
max
0≤s≤t

Bs ≥ a
)

= P (Ta ≤ t) = P (Ta < t)

The the second inequality holds automatically due to continuity of Brownian Motion. Now,

P (Bt > a) = P (Ta < t,Bt > a)

= P (Ta < t)P (Bt −BTa > 0|Ta < t)

Since it is given that t > Ta, we can use the Strong Markov Property:

P (Bt −BTa > 0|T < t) = 1/2

due to independence. The numerical value is immediate.

We will introduce one example as an application of the Reflection Principle. Let

q(r, t) = P (Bs = 0 : r ≤ s ≤ t).

The scaling property of Brownian Motion shows that q(r, t) can be scaled to q(1, t/r), which is equiv-

alent to q(1, 1 + s) for some s ∈ R. Then we redefine q(s) = q(1, 1 + s), and let A be the event that

Bt touch 0 in (1, 1 + s):

q(s) =
∫ ∞
−∞

P (A|B1 = x)P (B1 = x)dx

Note:

P (A|B1 = x) = P

(
min

1≤k≤1+s
Bk ≤ 0|B1 = t

)
= P

(
max

0≤k≤s
Bk ≥ x

)
= 2P (Bs ≥ x)

= 2[1− Φ(x/
√
s)]

Then the integral becoms: ∫ ∞
−∞

2[1− Φ(x/
√
s)]P (B1 = x)dx

Once again, using polar coordinates, we have:

q(s) = 1− 2
π

arctan 1√
s

16



2.8 Quadratic Variation

This section studies the sum of the squares small increment changes in time. i.e

Qn =
n∑
i=1

[
B

(
i

n

)
−B

(
i− 1
n

)]2

Note we can rewrite Qn as
1
n

=
n∑
i=1

Yi

where

Yi = Yi,n =
[
B
(
i
n

)
−B

(
i−1
n

)
1/
√
n

]2

which follows chi-square distribution. Consequentially,

E[Yi] = E[Z2] = 1, E[Y 2
i ] = E[Z4] = 3

Then we have:

E[Qn] = 1
n

n∑
i=1

E[Yi] = 1, V ar[Qn] 1
n2

n∑
i=1

V ar[Yi] = 2
n

As n → ∞, the variance goes to 0 and the random variable goes to a constant random variable.

Extending the concept:

Qn(t) =
∑
i≤tn

[
B

(
i

n

)
−B

(
i− 1
n

)]2

As n →∞, the random variable approaches a constant random variable with value t. The quadratic

variation is the limit of the above expression.

Definition 2.3. Let Bt be a process, the quadratic variation is

〈B〉t = lim
n→∞

∑
j≤tn

[
B

(
i

n

)
−B

(
i− 1
n

)]2

As computed above, we see that 〈B〉t = t.

Now let Wt = σBt +mt, then 〈W 〉t is equal to∑
i≤tn

[
B

(
i

n

)
−B

(
i− 1
n

)]2
+ 2σm

n

∑
i≤tn

[
B

(
i

n

)
−B

(
i− 1
n

)]
+
∑
i≤tn

m2

n2

Simplify we have,

σ2〈B〉t + 2σm
n

Bt + tm2

n

As n approaches infinity, it is just σ2t.

Theorem 2.6. If Wt is a Brownian Motion with drift m and variance σ2, then 〈W 〉t = σ2t

Above computations have been based on ’nice’ partitions, now we observe the behavior of the quadratic

variation when the partitions are not as ordered.

For a partition Π = {ti}, 0 = t0 < t1 < ... < tn = t, we define

||Π|| = max
1≤i≤n

ti − ti−1;

17



and the corresponding quadratic variation

Q(t; Π) =
n∑
i=1

[B(ti)−B(ti−1)]2

Recall each increment between Bti and Bti−1 follows N (0, ti − ti−1)

E[Q(t; Π)] =
n∑
i=1

E[(B(ti)−B(ti−1))2]

=
n∑
i=1

ti − ti−1 = t

V ar[Q(t; Π)] =
n∑
i=1

V ar[(B(ti)−B(ti−1))2]

=
n∑
i=1

(ti − ti−1)2

≤ 2||Π||
n∑
i=1

(ti − ti−1) = 2||Π||t

Theorem 2.7. Suppose Bt is a standard Brownian Motion with t > 0 and Πn is a sequence of

partitions of the form

0 = t0,n < t1,n < ... < tln,n = t,

with ||Πn|| → 0. Then Q(t; Πn)→ t in probability. Moreover, if
∞∑
n=1
||Πn|| <∞ (9)

then with probability one Q(t; Πn)→ t

Proof. Using Chebyshev’s inequality, for any integer k:

P

(
|Q(t; Πn)− t| > 1

k

)
≤ V ar[Q(t; Πn)]

(1/k)2 ≤ 2k2||Πn||t

As n→∞, the right hand side goes to 0, which gives convergence in probability. If (8) holds, then
∞∑
n=1

P

(
|Q(t; Πn)− t| > 1

k

)
≤ 2k2t

∑
||Πn|| <∞

By the Borel-Cantelli lemma, with probability one, for large enough n, we have

|Q(t; ||Πn||)− t| ≤
1
k
.

3 Stochastic Integration

3.1 Introduction

This section provides a very general idea and motivation for stochastic calculus. Normally, as we

learned in Riemann integrals, we have ODE (ordinary differential equation) as

df(t) = C(t, f(t))dt

18



or
df

dt
= f ′(t) = C(t, f(t))

where function C represents the differentiation operator. For SDE( stochastic differential equation),

we have

dXt = m(t,Xt)dt+ σ(t,Xt)dBt

where m and σ are the drift and variance of a process Xt. The first part of the right hand side is a

normal ODE with respect to time with a random integrand m(s,Xs); the second part is the tricky

one. To solve it we will use Itô integral

3.2 Stochastic Integral

In this section we will introduce stochastic as follows:

1. Discuss the integration with respect to simple processes

2. Extend the idea to bounded continuous paths by using limit and sum

3. Extend the idea to all continuous paths with the help of stopping time

3.2.1 Integration on Simple Process

To start off let’s think Zt, which is defined as

Zt =
∫ t

0
AsdBs

to be a Brownian motion that have variance A2
s at time s, which changes as time goes on. First, let

At be a simple process, which means it has constant value over pre-defined intervals. (Similar to step

function in Riemann integrals). Formally,

Definition 3.1. Simple Process A process At is a simple process if there exist times

0 = t0 < t1 < ... < tn <∞

and random variables Yj j = 0, 1, .., n that are Ftj -measurable such that

At = Yj , for tj ≤ t < tj+1

Now define

Zt =
∫ t

0
AsdBs =

j−1∑
i=0

Yi[Bti+1 −Bti ] + Yj [Bt −Btj ]

for tj ≤ t ≤ tj+1. Note ∫ t

r

AsdBs = Zt − Zr

Proposition 3.1. Let Bt be a standard Brownian Motion with respect to filtration {Ft}, and At, Ct
be simple processes.
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• Linearity If a,b are constants, then aAt + bCt is also a simple process and∫ t

0
(aAs + bCs) dBs = a

∫ t

0
AsdBs + b

∫ t

0
CsdBs

If 0<r<t, ∫ t

0
Asds =

∫ r

0
AsdBs +

∫ t

r

AsdBs

• Martingale Property The process

Zt =
∫ t

0
AsdBs

is a martingale with respect to {Ft}

• Variance rule Zt is square integrable and

Var [Zt] = E
[
Z2
t

]
=
∫ t

0
E
[
A2
s

]
ds

• Continuity With probability one, the function t→ Zt is a continuous function.

Proof. Linearity and continuity are immediate (from definition and the fact that Brownian motions

are continuous).

• Martingale Property We need to show that E (Zt|Fs) = Zs, ∀s < t. This proof will show the

case when r = tj , s = tk for some j > k, the other cases are similar. (Just add a few terms here

and there) By definition

Zs =
k−1∑
i=0

Yi
[
Bti+1 −Bti

]
Zr = Zs +

j−1∑
i=k

Yi
[
Bti+1 −Bti

]
We know that E(Zs|Fs) = Zs, then

E (Zr|Fs) = Zs +
j−1∑
i=k

E
[
Yi
[
Bti+1 −Bti

]
|Fs
]

For i ∈ {k, j − 1}, we have ti ≥ s, since Fs ⊂ Ftithen

E
[
Yi
[
Bti+1 −Bti

]
|Fs
]

= E
[
E
(
Yi
[
Bti+1 −Bti

]
|Fti

)
|Fs
]

Since Yi is Fti-measurable and Bti+1 −Bti is independent of Fti , we have

E
(
Yi
[
Bti+1 −Bti

]
|Fti

)
= YiE

(
Bti+1 −Bti |Fti

)
= YiE

[
Bti+1 −Bti

]
= 0

If t, s are not chosen to be one of the increments, i.e.

r 6= tj and s 6= tk ∀j, k

Then then ∃j, k such that

k = min {i|ti > s} j = max{i|ti < r}
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Hence we have

Zs =
k−1∑
i=0

Yi
[
Bti+1 −Bti

]
+ Yk+1[Bs −Btk ]

Zr = Zs + Yk+1[Btk+1 −Bs] +
j−1∑
i=k

Yi
[
Bti+1 −Bti

]
+ Yj+1[Br −Btj ]

The expected value of the additional terms are all 0, the above proof’s logic still works

• Variance Rule We will show for s = tj , the other case is similar as well (just add one extra

term), then

Z2
s =

j−1∑
i=0

j−1∑
k=0

Yi
[
Bti+1 −Bti

]
Yk
[
Btk+1 −Btk

]
For any i 6= k (assume i < k), then (Bti+1 −Bti), Yi, Yk are Ftk measurable and (Btk+1 −Bki) is

not.

E
[
Yi
[
Bti+1 −Bti

]
Yk
[
Btk+1 −Btk

]]
=E

[
E
(
Yi [Bti+1 −Bti ]Yk

[
Btk+1 −Btk

]
|Ftk

)]
=Yi[Bti+1 −Bti ]YkE

[
Btk+1 −Btk |Ftk

]
=0

Therefore any two term with different increment will have expectation 0. For the rest,

E[Z2
s ] =

j−1∑
i=0

E[Y 2
i (Bti+1 −Bti)2]

=
j−1∑
i=0

E[E(Y 2
i (Bti+1 −Bti)2|Fti)]

=
j−1∑
i=0

E[Y 2
i E((Bti+1 −Bti)2|Fti)]

=
j−1∑
i=0

E[Y 2
i (ti+1 − ti)]

=
j−1∑
i=0

(ti+1 − ti)E[Y 2
i ]

By definition, As is a step function with values from Yi, therefore we have

E
[
Z2
s

]
=

j−1∑
i=0

E
[
Y 2
i

]
(ti+1 − ti) =

∫ s

0
E
[
A2
r

]
dr

Similar to the Martingale Property proof, if s are not incremental points, then Zs have

an additional term, Yj+1[Bs − Btj ]. The interaction terms with these additional terms all have

expectation 0, therefore the only additional terms remaining in E[Z2
s ] is (Yj+1[Bs−Btj ])2, which

equals to
∫ s
tj
E[A2

r]dr

21



3.2.2 Integration on Continuous Processes

In this section we discuss the integration on continuous processes, At.

Lemma 3.1. Suppose At is a process with continuous paths, adapted to the filtration {Ft}. Suppose

also that there exists C < ∞ such that with probability one |At| ≤ C for all t. then there exists a

sequence of simple processes A(n)
t such that for all t,

lim
n→∞

∫ t

0
E
[∣∣∣As −A(n)

s

∣∣∣2] ds = 0 (10)

Moreover, for all n, t, |A(n)
t | ≤ C.

Proof. The proof is rather simple. We will show for t = 1. Define the sequence of simple processes as

,

A
(n)
t = A i

n
where i

n
≤ t < i+ 1

n
.

One can easily see that A(n)
t converges point-wise to At, and is bounded by C as well. Therefore by

the dominated convergence theorem,

lim
n→∞

∫ 1

0

[
A

(n)
t −At

]2
dt = 0

Since the integral is a bounded random variable, the expectation of the integral is also 0, i.e.

lim
n→∞

E
[∫ 1

0

[
A

(n)
t −At

]2
dt

]
= 0

Given this lemma, we can define integration on a bounded, continuous paths as a limit of integral on

the simple paths that satisfies (9). i.e.

Zt =
∫ b

a

Asds = lim
n→∞

∫ b

a

A(n)
s dBs = lim

n→∞

k−1∑
i=m

A i
n

[
B i+1

n
−B i

n

]
where k

n = b, and m
n = a Lemma 3.1 gives us the tool to approximate an integration with respect to

a continuous Stochastic process. So for an bounded continuous process At, we can find sequence of

simple processes A(n)
t described in lemma 3.1. Then for any given t, we can define∫ t

0
AsdBs = lim

n→∞

∫ t

0
A(n)
s dBs. (11)

We can call the integral, which is a random variable, Zt. Immediately, Zt presents four nice properties:

Proposition 3.2. Let Bt be a standard Brownian Motion respect to filtration {Ft}, At and Ct be

bounded, adapted process with continuous paths, then

• Linearity. If a, b are constants, then∫ t

0
(aAs + bCs) dBs = a

∫ t

0
AsdBs + b

∫ t

0
CsdBs

In addition, if r<t, then ∫ t

0
(aAs) dBs = a

∫ t

0
AsdBs + b

∫ t

r

AsdBs
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• Martingale property. The random variable/process

Zt

∫ t

0
AsdBs

is a martingale with respect to the filtration {Ft}.

• Variance rule. Zt is square integrable and

Var [Zt] = E
[
Z2
t

]
=
∫ t

0
E
[
A2
s

]
ds

• Continuity. The function Z : t→ Zt is a continuous function with probability one.

The above proposition and lemma deals with bounded continuous processes, for unbounded processes,

we can approximate them using bounded ones incremented by natural numbers. Let At be a continuous

process, not necessarily bounded, we define Tn = min{t : |An| = n} (i.e. the first time At hits n, and

redefine Ant = As∧Tn . Then each

Z
(n)
t =

∫ t

0
A(n)
s dBs

is well defined as Ant are bounded for every n. Then define

Zt = lim
n→∞

Z
(n)
t

The implied assumption here is that At is not bounded when t can take all real value, but bounded

when t is finite.

Under this construction, the Zt will saticify linearity and continuity. If At is square-integralable, then

Zt will also saticify the variance rule, if At is not, then Var [Zt] = E
[
Z2
t

]
=
∫ t

0 E
[
A2
s

]
ds = ∞. The

martingale property, which we will study more in depth later in the report, may not be satisfied.

Also, because we are dealing with a probability space here, the requirement of the paths can be relaxed

to piece-wise continuous except a set of points of measure 0.

To incorporate stopping time into the integration (with respect to the same {Ft}, we can add the

stopping time restriction into the integrand.

Let At be a continuous process and we wish to integrate At from 0 to some stopping time T , then

Zt∧T =
∫ t∧T

0
AsdBs =

∫ t

0
As,T dBs

In other words, stopping the integral is equal to adjusting At to 0 after a certain time.

From our definition of stochastic integral, we can now attempt to define stochastic differential equations

(SDE).

Let Xt be a process that satisfies

Xt = X0 +
∫ t

0
AsdBs

where At is a continuous process. We can intemperate the equations as describing Xt to be a process

that has a shift of X0 and variation of A2
t then we can define dXt to be

dXt = φ (Xt) dBt
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where φ represents the differentiation operator. Our goal will be to derive the expression for said φ.

However, note that stochastic calculus differs from the classic calculus in many ways. Take the most

simple example, integrating a Brownian motion against a Brownian motin.

Zt =
∫ t

0
BsdBs.

Note Zt have finite expectation. The traditional approach would be to apply integrating rules and

assume that

Zt = 1
2[B2

t −B2
0 ] = B2

t

2
However, from our previous calculations, we know that E[Zt] = 0 and E[B2

t /2] = t/2. The two values

clearly do not agree, hence we need to explore for another method.

3.3 Itô’s formula

Before we start to derive the Itô’s formula, recall quadratic variation of a process.

〈B〉t = lim
n→∞

∑
j≤tn

[
B

(
i

n

)
−B

(
i− 1
n

)]2
= t (12)

Now we extend the idea to any stochastic process, let Zt be defined as

Zt =
∫ t

0
AsdBs = t

Then

〈Z〉t = lim
n→∞

∑
j≤tn

[
Z

(
i

n

)
− Z

(
i− 1
n

)]2

=
∫ t

0
A2
sds

Now suppose f is a C1 function, then we may expand the function f using Taylor approximation

f(t+ s) = f(t) + s ∗ f ′(t) + o(s)

where o(s) approaches 0 as s2 approaches 0. Itô’s formula is derived using similar ideology.

Theorem 3.1. (Itô’s formula I). Suppose f is a C2 function and Bt is a standard Brownian motion,

then for every t,

f (Bt) = f (Bs) +
∫ t

s

f ′ (Bs) dBs + 1
2

∫ t

s

f ′′ (Bs) ds

which yields

df (Bt) = f ′ (Bt) dBt + 1
2f
′′ (Bt) dt

We can interpolate this result as the process Xt = f(Bt) at a certain time, t, behaves like a Brownian

motion with drift f ′′(Bt)/2 and variance f(Bt)2.

Proof. The logic of the proof goes as follows (roughly):

1. We will prove the case for t = 1 and s = 0, the general case is easily salable.
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2. Separate the whole interval into finite sub-intervals, and label them using natural numbers.

3. Approximate each sub-interval using Taylor approximation.

4. Study each component of the approximation.

5. Let the number of sub-intervals go to infinity and observe the final limit.

6. The differential form can be attained by taking t infinitely close to s.

First separate the interval into n sub-intervals,

f (B1)− f (B0) =
n∑
i=1

[
f
(
Bj/n

)
− f

(
B(j−1)/n

)]
Now expand the sub-intervals using Taylor approximation

f
(
Bj/n

)
− f

(
B(j−1)/n

)
= f ′

(
B(j−1)/n

)
∗ [Bj/n −B(j−1)/n]

+ 1
2f
′′ (B(j−1)/n

)
∗ [Bj/n −B(j−1)/n]2

+ o
(
[Bj/n −B(j−1)/n]2

)
Now let the number of sub-intervals go to infinity. Then we can see that difference between f(B1) and

f(B0) contains three components:

lim
n→∞

n∑
j=1

f ′
(
B(j−1)/n

) [
Bj/n −B(j−1)/n

]
(13)

lim
n→∞

1
2

n∑
j=1

f ′′
(
B(j−1)/n

) [
Bj/n −B(j−1)/n

]2 (14)

lim
n→∞

n∑
j=1

o
([
Bj/n −B(j−1)/n

]2) (15)

By equation (14) we see that [Bj/n −B(j−1)/n] = 1/n, which makes the last term goes to 0 quickly as

we let n go to infinity. In addition, equation (12) is the approximation of the stochastic integration of

f ′(Bt) through simple processes. Therefore equals to∫ 1

0
f ′(Bt)dBt

For the second term, equation (13), we can see that a part of the limit is the quadratic variation of

Bt, if we can extract that part, then we can reduce the limit to something simple. Since we assumed

f to be C2, then we can define h(t) = f ′′(Bt) and h is continuous. Hence we can find step functions

to approximate h. i.e. for every ε given, we can find hε such that |h(t)− hε(t)| < ε, then we have∣∣∣∣∣∣
n∑
j=1

[h(t)− hε(t)]
[
Bj/n −B(j−1)/n

]2∣∣∣∣∣∣ < ε

n∑
j=1

[
Bj/n −B(j−1)/n

]2 → ε

Now take the limit of the term replacing h with hε

lim
n→∞

n∑
j=1

hε(t)
[
Bj/n −B(j−1)/n

]2 =
∫ 1

0
hε(t)dt
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Note here hε is a function of real number t rather than a Brownian motion. Since ε is arbitrary, we

have the following

lim
ε→0

1
2

∫ 1

0
hε(t)dt = 1

2

∫ 1

0
h(t)dt = 1

2

∫ 1

0
f ′′ (Bt) dt

Hence,

f (Bt)− f (B0) =
∫ t

0
f ′ (Bs) dBs + 1

2

∫ t

0
f ′′ (Bs) ds

The proof given is somewhat a simplification of full the rigorous proof, difference being the application

Taylor approximation to stochastic processes. As we know, Taylor approximation relies on approxi-

mating the value of a function by using the rate of change, or derivative, near that point. However,

the intuition is slightly different when we replace the input variable with a Brownian motion.

We will outline the proof for the validity of Taylor approximation on Brownian motions

1. Choose a sequence of partition between (in this case) 0 and 1 with restrictions on their limiting

sum of max norm being finite.

2. Proof for each partition in the sequence, given bounded second derivative, the upper and lower

second order term of the approximation agrees as the partition becomes infinitely fine.

3. Conclude that we can approximate the Taylor approximation of f by simple processes base on

the chosen partition.

4. Let the partition go to infinite.

3.4 More versions of Itô’s formula

We have studied the integration of a process solely depending on time, next we look at a more general

case involving the position (Brownian motion) as well.

Theorem 3.2. (Itô’s Formula II). Suppose f(t, x) is a function that is C1 in t and C2 in x. If Bt is

a standard Brownian motion, then

f (t, Bt) = f (0, B0) +
∫ t

0
∂xf (s,Bs) dBs +

∫ t

0

[
∂sf (s,Bs) + 1

2∂xxf (s,Bs)
]
ds

Or equivalently

df (t, Bt) = ∂xf (t, Bt) dBt +
[
∂tf (t, Bt) + 1

2∂xxf (t, Bt)
]
dt

The logic of deriving this formula is similar to the one dimensional case. The expansion of Taylor

approximation around (t, x) is

f(t+ ∆t, Bt + ∆Bt)− f(t, Bt) =

∂tf(t, Bt)∆t+ o(∆t) + ∂Btf(t, Bt)∆x+ 1
2∂BtBtf(t, Bt)(∆Bt)2 + o

(
(∆Bt)2)

The second order term for Bt survives because of quadratic variation, while the rest of the term quickly

vanishes as the increment becomes smaller.
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3.4.1 Geometric Brownian motion

Definition 3.2. A process Xt is a geometric Brownian motion with drift m and volatility σ if it

satisfies the SDE

dXt = mXtdt+ σXtdBt = Xt [mdt+ σdBt]

where Bt is the standard Brownian motion

Example 3.1. Let f(t, x) = eat+bx, where a, b ∈ R, then

∂tf(t, x) = af(t, x), ∂xf(t, x) = bf(t, x), ∂xxf(t, x) = b2f(t, x)

and we have

dXt =
[
∂tf (t, Bt) + 1

2∂xxf (t, Bt)
]
dt+ ∂xf (t, Bt) dBt

=
(
a+ b2

2

)
Xtdt+ bXtdBt

The format the above example has is worth exploring.

Definition 3.3. A process Xt is a geometric Brownian motion with drift m and volatility σ if it

satisfies the SDE

dXt = mXtdt+ σXtdBt = Xt [mdt+ σdBt]

where Bt is the standard Brownian motion

The solution to geometric Brownian motions is

Xt = X0 exp
{(

m− σ2

2

)
t+ σBt

}
The intuition behind geometric Brownian motions is that the change between each increment is no

longer normally distributed, but the change in percentage between each increment is. The above

solution to the geometric Brownian motion SDE is called a ’strong’ solution.

Now suppose that Xt satisfies the following form:

dXt = Rtdt+AtdBt (16)

or equivalently,

Xt = X0 +
∫ t

0
Rsds+

∫ t

0
AsdBs
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Then the quadratic variation of Xt only depends on the drift term.

〈X〉t = lim
n→∞

∑
j<tn

(
X j

n
−X j−1

n

)2

= lim
n→∞

∑
j<tn

(∫ j
n

0
Rsds+

∫ j
n

0
AsdBs −

∫ j−1
n

0
Rsds−

∫ j−1
n

0
AsdBs

)2

= lim
n→∞

∑
j<tn

([
j∑
1
Rmi
n
· 1
n
−
j−1∑

1
Rmi
n
· 1
n

]
]

+
[

j∑
1
Ami
n

∆Bti −
j−1∑

1
Ami
n

∆Bti

])2

= lim
n→∞

∑
j<tn

([
Rmj
n

· 1
n

+Amj
n

·∆Btj )2
])2

= lim
n→∞

∑
j<tn

([
1
m2 ·

(
Rmj
n

)2
]

+
[
∆B2

tj ·
(
Amj
n

)2
]

+ 2 · 1
n
·∆Btj ·Amj

n

·Rmj
n

)
where Amt and Rmt are simple processes used to approximate At and Rt. In the end, if we take m to

go to infinity and n to go to infinity, the first and third term of the inner summation vanishes, and we

are left with

lim
n→∞

∑
j<tn

[(
Amj
n

)2
·∆B2

tj

]

=
∑
j<tn

[(
A j
n

)2
· dt
]

=
∫ t

0
Asdt

2

If for another adapted process Ht, we can define the integration of Ht with respect to Xt as the

following ∫ t

0
HsdXs =

∫ t

0
HsRsds+

∫ t

0
HsAsdBs

To approximate the integral, one can simulate using the following discrete form

Ht∆Xt = Ht [Xt+∆t −Xt] = Ht

[
Rt∆t+At

√
∆tN

]
Proceeding from this example, we have our final form of Itô’s formula

Theorem 3.3. Suppose Xt satisfies equation (15), and f(t, x) is C1 in t and C2 in x, then

df (t,Xt) =∂tf (t,Xt) dt+ ∂xf (t,Xt) dXt + 1
2∂xxf (t,Xt) d〈X〉t

=
[
∂tf (t,Xt) +Rt∂xf (t,Xt) + A2

t

2 ∂xxf (t,Xt)
]
dt

+At∂xf (t,Xt) dBt

Notice the function involved in theorem is a map for time and a stochastic process (not a standard

Brownian motion).

Example 3.2. Let Xt be an SDE satisfying

dXt = AtXtdBt, X0 = x0
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Then Xt is an exponential SDE, and the solution is:

Xt = x0 exp
{∫ t

0
AsdBs −

1
2

∫ t

0
A2
sds

}
To verify, observe the exponential term first,

Yt =
∫ t

0
AsdBs −

1
2

∫ t

0
A2
sds

By Itô’s lemma, we have

dYt = −A
2
t

2 dt+AtdBt,

and d〈Y 〉t = A2
tdt.

Then Xt = x0exp(Yt), and by chain rule, we obtain the following,

dXt = XtdYt + 1
2Xtd〈Yt〉 = Xt(−

A2
t

2 dt+A)tdBt + 1
2Xtd〈Yt〉 = AtXtdBt

The requirement regarding the smoothness of Itô’s formula is sometime too strict. To allow ourselves

to work with a partial smooth function, we have the following local form of the formula. This form just

restricts a the time (and hence the location) in the desirable range before it escapes to bad behaved

section of the function.

Theorem 3.4. Suppose Xt satisfies (15) with a < X0 < b, and f(t, x) is C1 in t and C2 in x ∈ (a, b).

Then define T = inf{t : Xt = aorXt = b}, then for t<T

f (t,Xt) = f (0, X0) +
∫ t

0 As∂xf (s,Xs) dBs
+
∫ t

0

[
∂sf (s,Xs) +Rs∂xf (s,Xs) + A2

s

2 ∂xxf (s,Xs)
]
ds

The theorem is a simple extension of the previous ones, and the proof is not as enlightening. The

idea is to approximate T by restricting it to a slightly tighter interval, and then using the denseness

of smooth functions to approximate the original function, and finally take the limit.

3.5 Diffusion

Definition 3.4. A process is a diffusion process if it is a solution to an SDE of the form

dXt = m(t,Xt)dt+ σ(t,Xt)dBt (17)

where m,σ are functions. When the two functions does not depend on t, the solution is considered to

be time-homogeneous. An example we have already encountered is the geometric Brownian motion.

Diffusion processes are Markov processes. To recap, the special property of Markov processes is the

only valuable information needed to evaluate Xs is Xt for any s > t.

In this section, we will study the concept of generator of a Markov process.

Definition 3.5. The generator L = L0 of a Markov process Xt is

Lf(x) = lim
t→0+

E[f(Xt)]− f(x)
t
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We may rewrite it as

E[f(Xt)] = t ∗ Lf(x) + f(x)

Intuitively, the generator contains the information of the behavior of the process Xt on an infinitesimal

small interval.

To study it more precisely, we will use Itô’s formula to understand the generator of the diffusion Xt.

For now, assume function m,σ are bounded smooth functions. Then by Itô’s formula we have

df (Xt) =f ′ (Xt) dXt + 1
2f
′′ (Xt) d〈X〉t

=
[
m (t,Xt) f ′ (Xt) + σ2 (t,Xt)

2 f ′′ (Xt)
]
dt

+ f ′ (Xt)σ (t,Xt) dBt

in other words,

f(Xt)− f(X0) =
∫ t

0

[
m (s,Xs) f ′ (Xs) + σ2 (s,Xs)

2 f ′′ (Xs)
]
ds+

∫ t

0
f ′ (Xs)σ (s,Xs) dBs

Now take expectation on both sides, realize the second term on the right side is a martingale as the

intergand is bounded, and it can be expressed as a sum of Brownian motion increments. Then let tYt
be the first integral on the righthand side, we have

E[f(Xt)− f(X0)]
t

= E[Yt]

Rewriting it slightly,

lim
t→0+

Yt = m(0, X0)f ′(X0) + σ2(0, X0)
2 f ′′(X0) (18)

Since the integrand is bounded, we can apply Monotone Convergence Theorem (in Lebesgue or Rie-

mann) to take limit of expectation

Lf(x) = lim
t→0+

E[f(Xt)]− f(x)
t

= m(0, x)f ′(x) + σ2(0, x)
2 f ′′(x)

We can extend the idea to other time intervals by replacing t and 0 with t + s and t, given Xt = x

and we can obtain

m(t, x)f ′(x) + σ2(t, x)
2 f ′′(x)

The above computations shows how the generator is computed for a diffusion process and how the

generator can help generate the process on small intervals. So far, we have assumed the diffusion

process does in fact have a solution. The proof is not as trivial as one might think.

Theorem 3.5. Itô’s existence and uniqueness theorem

The outline of the proof is as follows:

1. Prove the general existence of a solution to a function with Lipschitz derivative.

(a) Iteratively approximate the function by taking integral over small region.
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(b) Show each step integral is bounded, and the sum of integral is bounded as well

(c) Conclude the existence of solution

2. Consider process Xt as a function of time

3. Validate the process still satisfies boundedness when taking step integrals/expectations

4. Conclude the convergence of approximate

5. Conclude the existence of solution

Consider equation

y′(t) = F (t, y(t)), y(0) = y0 (19)

We will assume F is uniform Lipschitz, meaning, there exists L <∞ such that for all s, t, x, y

|F (s, x)− F (t, y)| ≤ L|(s− t) + (x− y)| (20)

We will now leverage the Picard iteration and construct a solution to (18) upto some point t0, therefore

all t below satisfies t ≤ t0. Start with the initial function

y0(t) = y0

then

yk(t) = y0 +
∫ t

0
F (s, yk−1(s))ds

Let, K = maxs∈[0,t0] |F (s, y0)|By construction we have

|yk(t)− y0(t)| ≤
∫ t

0
|F (s, y0)|ds ≤ K ∗ t

For k ≥ 1 we have

|yk+1(t)− yk(t)| ≤
∫ t

0
|F (s, yk(s))− F (s, yk−1(s))| ds

≤ L
∫ t

0
|yk(s)− yk−1(s)| ds

Applying induction we have

|yk+1(t)− yk(t)| ≤ LkCtk+1

(k + 1)! (21)

Since each yk(t) is essentially small steps to approximate y(t), the limit of yk(t) agrees with y(t), and

hence exists, then

|yk+1(t)− yk(t)| ≤ K
∞∑
i=k

Liti+1

(i+ 1)!

Then consequence, yk(t) approaches

y0 +
∫ t

0
F (s, y(s))ds

which satisfies the original ODE, it is easy to check y(t) agrees with this expression. The involvement

of t0 is to eliminate cases where time is near 0 and x, y are close to y0. We will not delve into the

details on this topic.
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Now lets relate what we just proved to the diffusion process, suppose m,σ both satisfy (18). For ease,

choose t0 = 1 and define the iteration for t ∈ [0, 1]

X0
t = y0

Xk+1
t = y0 +

∫ t

0
m(s,Xk

s )ds+
∫ t

0
σ(s,Xk

s )dBs

Take expectation on both sides

E
[
|X(k+1)

t − Xk
t

∣∣2] ≤ 2E
[(∫ t

0
L
∣∣∣X(k)

s −X(k−1)
s

∣∣∣ ds)2]

+ 2E
[(∫ t

0

[
σ
(
s,X(k)

s

)
− σ

(
s,X(k−1)

s

)]
dBs

)2]
Applying Hölder inequality on the first integral we have

E

[(∫ t

0
L|Xk

s −Xk−1
s |ds

)2]
≤ E

[
L2t

∫ t

0

∣∣Xk
s −Xk−1

s

∣∣2 ds]
≤ L2

∫ t

0
E
[∣∣Xk

s −Xk−1
s

∣∣2] ds
The second integral can be bounded by applying the variance rule

E

[(∫ t

0

[
σ
(
s,Xk

s

)
− σ

(
s,Xk−1

s

)]
dBs

)2]
=
∫ t

0
E
([
σ
(
s,Xk

s

)
− σ

(
s,Xk−1

s

)]2)
ds

≤ β2
∫ t

0
E
[∣∣Xk

s −Xk−1
s

∣∣2] ds
Since E[|Xk

t −Xk+1
t |] is bounded, then (20) suggests the existence of λ satisfying∣∣Xk+1

t (t)−Xk
t (t)

∣∣ ≤ λktk+1

(k + 1)! (22)

The above proof can be extended to all rational numbers due to countability, then leveraging the

denseness of rationals, the result can be extended to t continuous cases. It is also worth noting the

Lipschitz is stronger than we need. We can still bound or restrict our case on a locally Lipschitz region

like we did for Theorem 3.4.

3.6 Covariation and the product rule

Let Xt, Yt saticify

dXt = Htdt+AtdBt, dYt = Ktdt+ CtdBt

Then the covariation process is defined by

〈X,Y 〉t = lim
n→∞

∑
j≤tn

[
X j

n
)−X j−1

n
)
] [
Y j
n

)− Y j−1
n

)
]

Note Xt, Yt are independent, then

[dXt][dYt] =[Htdt+AtdBt][Ktdt+DtdBt]

= AtCtdt+O(dt2) +O(dtdBt)

=
∫ t

0
AsCsds

32



Equivalently

d〈X,Y 〉t = AtCtdt

If we look at the traditional product rule in calculus, for functions f, g

d(fg) = f(x+ dx)g(x+ dx)− f(x)g(x)

= [f(x+ dx)− t]g(x+ dx) + f(x)[g(x+ dx)− g(x)]

= (df)g + (dg)f + (df)(dg)

= gf ′dt+ fg′dt+ f ′g′dt2

and the last term vanishes in traditional calculus. In stochastic calculus, if we replace f, g withXt, Yt as

functions of t, then the last term, (dXt)(dYt), does not vanish, instead becomes d〈X,Y 〉t. Combining

all of the above we have

d(XtYt) = XtdYt + YtdXt + d〈X,Y 〉t

in other words.

Theorem 3.6. Let Xt, Yt be defined as above, then

XtYt = X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs +

∫ t

0
d〈XY 〉s

= X0Y0 +
∫ t

0
[XsKs + YsHs +AsCs]ds+

∫ t

0
[XsCs + YsAs]dBs

4 More on Stochastic Calculus

4.1 Martingales and local martingales

Recall a square integrable process Zt =
∫ t

0 Atdt satisfies∫ t

0
E[A2

s]ds <∞

This section will introduce the optional sampling theorem by first showing an example where the

the process is not square integrable and not a martingale. The example is a continuous extension

of previously introduced martingale betting strategy where an individual bets twice of what was lost

until victory. The game allowed the player to have infinite amount of money and was allowed to bet

infinitely large amounts, the following example carries the same idea but in a limited time interval

which forced the frequency of betting to increase dramatically.

Example 4.1. Let Zt be the outcome of a continuous betting strategy At, i.e.

Zt =
∫ t

0
AsdBs

where As takes constant value across [ti, ti+1], and

ti = 1− 2−i
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the value of At is defined as the following.

Let At = 1 for t ∈ [0, 1/2], then

P (Z1/2 > 1) = P (B1/2 > 1) > 0

The process stops if the outcome exceeds 1, which means At = 0 for t ∈ [0.5, 1] if B1/2 > 1.

If B1/2 < 1, then define At = α for t ∈ [0.5, 0.75] where α satisfies

P (α[B3/4 −B1/2] ≥ 1− Z1/2) = P (Z1/2 > 1)

Realize α is FP 1/2 measurable. Then observe Z3/4

Z3/4 =
∫ 3/4

0
AsdBs = Z1/2 + α[B3/4 −B1/2] ≥ 1

So by construction

P (Z3/4 > 1|Z1/2<1) = 1

Now repeat the process for tn =
∑n
i=1 2−i. Then by simple induction one can check

P (Ztn > 1|Ztn−1 < 1) = q

and hence,

P (Ztn < 1) < (1− q)n

which goes to 0 as n tends to infinity. So E[Zt] ≥ 1 almost surely. Yet Z0 = 0, so Zt fails to be a

martingale. By the denseness of piece-wise continuous processes, there exists a continuous processes

that is equal to At (almost) everywhere with the same result.

Even though this betting strategy fails to be a martingale, if one were to restrict the allowed betting

amount, it will become a martingale.

Definition 4.1. Local Martingale A continuous process Mt adapted to the filtration {Ft} is a local

martingale on [0, T ) if there exists an increasing sequence of stopping times {τn} such {τn} → T

almost surely, and Mt∧τi is a martingale for each i.

For stochastic integrals, we can define {τn} to be

τi = inf

{
t : 〈Z〉t =

∫ t

0
AsdBs = i

}
Then Zt∧τi is square integrable for each i and hence on [0, T ). T is consequently defined as

τi = inf

{
t : 〈Z〉t =

∫ t

0
AsdBs =∞

}
Note for general Zt satisfying

dZt = Rtdt+AtdBt

to be a martingale, Rt needs to be 0. However, as we just saw, stronger conditions are needed to

guarantee martingale property.

34



Theorem 4.1. Optional Sampling Theorem Suppose Zt is a continuous martingale and T is a stopping

time, with respect to same filtration {Ft}. Then

1. If Zt∧T is a continuous martingale with respect to the filtration. Also, E[Zt∧T ] = E[Z0]

2. If there exists C <∞ such that for all t, Z2
t∧T ≤ C. Then if P [T <∞] = 1, E[ZT ] = E[Z0]

Proof. The proofs are analogous to the discrete version of optional sampling theorem stated earlier in

the notes.

For 1, ∀t ∈ N,WLOG, assume t > T

E[Zt∧T ] = E[A0 +
∫ t

0
AsdBs

= A0 + E[
∫ t

1
AsdBs]

= E[Z0] + E[
∫ T

1
AsdBs] + E[

∫ t

T

0dBs]

= E[Z0]

The second term in the second last equality has value 0, this can be calculated by approximating As
upto finite time T using simple processes and take expectation of each increment.

The proof for 2 is nearly identical with the discrete case. We start by observing

lim
t→∞

E[|Mt|1{T > t}]

E[|Zt|1{T > t}] = E[|Zt|1{|Zt| ≥ b, T > t}] + E[|Zt|1{|Zt| < b, T > t}]

≤
1
b

E[|Zt|21{|Zt| ≥ b, T > t}] + E[|Zt|1{|Zt| < b, T > t}]

≤
1
b

(E[|Zt|21{|Zt| ≥ b, T > t}] + E[|Zt|21{|Zt| < b, T > t}]

+E[|ZT |21{T < t}]) +E[|Zt|1{|Zt| < b, T > t}]

≤
1
b

(E[|Zt|21{T > t}] + E[|ZT |21{T < t}])

+ E[|Zt|1{|Zt| < b, T > t}]

≤ E[|Zt∧T |2]
b

+ bP{T > t}

Then we have

E[|Zt|1{T > t}] ≤ C
b + bP{T > t}.

Observe for each n,

lim sup
n→∞

E[|Zt|1{T > t}] ≤ lim sup
n→∞

C

b
+ P{T > t}

lim sup
n→∞

E[|Zt|1{T > t}] ≤ C

b
+ lim
n→∞

P{T > t}

lim sup
n→∞

E[|Zt|1{T > t}] ≤ C

b

and hence
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0 ≤ limt→∞E[|Zt|1{T > n}] ≤ lim supt→∞E[|Zt|1{T > t}] ≤ C
b

holds for all b, take b to infinity we have

lim
t→∞

E[|Mt|1{T > t}] = 0,

Combining above we have

E[M0] = E[Mt∧T ]

= E[MT ] + E[Mt∧T −MT ]

= E[MT ] + E[1{T > t}[Mt −MT ]]

= E[MT ] + E[1{T > t}[Mt]]− E[1{T > t}MT ]]

As n approaches infinity, the second term goes to 0 as 1{T > t} goes to 0, and the third term, as we

just proved, goes to 0 as well. Hence we have the result.

After obtaining the tools needed, we will be looking at a few examples of stochastic processes.

4.2 Bessel Process

Definition 4.2. Bessel Process A Bessel process with parameter α is the solution to the SDE

dXt = α

Xt
dt+ dBt, X0 = x0 > 0

The process constantly swings away and back towards the axis due to the inverse drift parameter.

The main motivation of this section is to observe how α influences the processes’ behavior near the

x-axis.

The deriving process using the following ideology,

1. Realize Xt has solution on any interval away from 0.

2. Observe the behavior of the process with in (r,R)

3. Reduce the problem to an ODE

4. Take limit of both r and R to get final result

First note the process starts above the axis, therefore for any ε, and Tε = inf{t : Xt ≤ ε}, the process

is well defined. Moreover, the process is Lipschitz on the interval [ε,∞), so by the Itô’s existence and

uniqueness theorem, the equation has a unique solution. Then only time we need to worry about the

well-definiteness of the process is at time T , where

T = inf{t : Xt = 0}

Now suppose 0 < r < x < R <∞, and φ(x) be the probability of the process, starting at x, to reach

R before r. Now consider

Mt = E[χ{Xτ=R}|Ft]
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So Mt is the expectation of the process reaching R before r. Due to the Markov property of diffusion

processes:

Mt = φ(Xt∧τ )

and by the tower property, Mt satisfies a martingale:

E [Mt|Fs] = E [E (J |Ft) |Fs] = E [J |Fs] = Ms

Then by Itô’s formula we have

dφ (Xt) = φ′ (Xt) dXt + 1
2φ
′′ (Xt) d〈X〉t

=
[
αφ′ (Xt)
Xt

+ φ′′ (Xt)
2

]
dt+ φ′ (Xt) dBt

Since we have showed the process is a martingale, then the dt term must vanish. So we have obtained

the standard one dimensional differential equation

xφ′′(x) + 2αφ′(x) = 0

with solutions
φ(x) = c1 + c2x

1−2a, a 6= 1
2

φ(x) = c1 + c2 log x, a = 1
2

Applying boundary conditions of φ(r) = 0, φ(R) = 1

φ(x) = x1−2a − r1−2a

R1−2a − r1−2a , a 6= 1
2

φ(x) = log x− log r
logR− log r , a = 1

2

Now fix any R > x, consider all r ∈ (0, x) and observe φ(x). Recall φ(x) is the probability of x

reaching R before r, then P (Xτ = r) = 1− φ(x). Now take r to be infinitely small

lim
r→0

P {Xτ = r} =

 0 if a ≥ 1/2

1− (x/R)1−2a if a < 1/2

This result is proposition 4.2.1 in the book.

4.3 Feynman-Kac Formula

This section we take a look at at popular model for evaluating an option price. Suppose the price of

a stock follows a geometric Brownian motion

dXt = m(t,Xt)dt+ σ(t,Xt)dB + t

An option is an arrangement between two parties that will be executed if the price of the stock at

time T , XT is above a certain threshold, S. Then the option’s present value of the option is

F (XT ) = max{XT − S, 0}
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Normally, we assume there is a inflation rate r (typically the saving interest rate at the banks). Then

the present value of the option will be ertF (XT ), now we define the function for the expected value of

the option value at a certain point in time,

φ(t, x) = E[e−(T−t)F (XT )|Xt = x] (23)

and the function for inflation/interest rate

dRt = r(t,Xt)Rtdt

Note Rt denotes the value at time t0.

Rt = R0exp{
∫ t

0
r(s,Xs)ds}

The Feynman-Kac formula provides some insight to this value. Putting this into φ,

φ(t, x) = E

[
exp

{
−
∫ T

t

r (s,Xs) ds
}
F (XT ) |Xt = x

]

We will assume φ is twice differentiable in x, and differntiable in t. Now let

Mt = E[R−1
T F (XT )|Ft]

Note Mt is a martingale, take any s < t,

E [Mt|Fs] =E
[
E
(
E[R−1

T F (XT )|FT ]|Ft
)
|Fs
]

=E [E (MT |Ft) |Fs]

=E [MT |Fs]

=E
[
R−1
T F (XT )|Fs

]
=Ms

putting Rt into Mt we have

Mt = R−1
t E

[
exp

{
−
∫ T

t

r (s,Xs) ds
}
F (XT ) |Ft

]

Since Xt is a Markov process, we have the result

Mt = R−1
t φ(t,X)t

Then apply Itô’s formula we have

dφ (t,Xt) = ∂tφ (t,Xt) dt+ ∂xφ (t,Xt) dXt + 1
2∂xxφ (t,Xt) d〈X〉t

=
(
∂tφ (t,Xt) +m (t,Xt) ∂xφ (t,Xt) + 1

2σ (t,Xt)2
∂xxφ (t,Xt)

)
dt+ σ(t,Xt)∂xφ(t,Xt)

Now return to Mt, since 〈R〉t = 0, we can apply the product rule,

d
[
R−1
t φ (t,Xt)

]
= R−1

t dφ (t,Xt) + φ (t,Xt) d
[
R−1
t

]
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Then we have the drift term to be

R−1
t (−r (t,Xt)φ (t,Xt) +∂tφ (t,Xt) +m (t,Xt) ∂xφ (t,Xt)

+ 1
2σ (t,Xt)2

∂xxφ (t,Xt))

As Mt is a martingale, the above must equal to 0, and hence we have,

−r (t,Xt)φ (t,Xt) + ∂tφ (t,Xt) +m (t,Xt) ∂xφ (t,Xt) + 1
2σ (t,Xt)2

∂xxφ (t,Xt) = 0

We have the following theorem.

Theorem 4.2. Feynman-Kac Formula Suppose Xt is a geometric Brownian motion with driftm(t,Xt),

variance σ(t,Xt), r(t, x) ≥ 0 is a discounting rate. Then a payoff FT with E[|F (XT )|] < ∞ for an

option with strike price S, if φ(t, x) for t < T is C1 in t, and C2 in x, then φ(t, x) satisfies the PDE

φt(t, x) = −m(t, x)∂xφ(t, x)− 1
2σ(t, x)2∂xxφ(t, x) + r(t, x)φ(t, x)

with terminal condition φ(T, x) = F (x)

4.4 Binomial Approximations

So far, we have been approximating SDEs using the Euler method. This section wishes to introduce

sampling methods where each X(t+ ∆t) takes one of two values. Let Xt be a Brownian motion with

zero drift and constant variance σ2. Then binomial scheme is approximation by a random walk where

P (Xt+∆t −Xt = ±σ
√

∆t) = 1/2

Then the value of Xk∆t takes value in the lattice of points{
....− σ

√
∆t, 0, σ

√
∆t....

}
Suppose the variance is constant, but the drift depends on time and location, then we have two

methods to approximate. One is to use Euler’s method

P (Xt+∆t −Xt = m(t,Xt)∆t± σ
√

∆t) = 1/2

The other method is to adjust the probability base on the drift,

P{Xt+∆t −Xt = ±σ
√

∆t|Xt} = 1
2

[
1± m (t,Xt)

σ

√
∆t
]

Note the expectation of difference between Xt and Xt+∆t is still m(t,Xt)∆t, same as the first method.

Example 4.2. We will use the second rule to simulate a Brownian motion with constant nonnegative

drift and constant variance of 1.

Suppose ∆t = 1/N for large N, and we are interested in X1. If we denote each upward/downward

moment by ai = ±1, then the behavior of the motion is dictated by

ω = (a1, a2...aN )
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Note if we let J = J(ω) be the number of +1’s and define r = 1√
N

(J − (N/2)), then

X1 =
√

∆t [a1 + · · ·+ aN ]

= J
√

∆t− (N − J)
√

∆t

= 2r
√
N
√

∆t = 2r

And for each ω, the corresponding probability is

q(ω) =
(

1
2

)N
[1 +m

√
∆t]J [1−m

√
∆t]N−J

=
[
1 + m√

N

]J [
1− m√

N

]N−J
=
[
1− m2

N

]N/2 [
1 + m√

N

]r√N [
1− m√

N

]−r√N
Using the approximation for e, we have

e−m
2/2e2rm = emX1e−m

2/2

This result essentially shows we can simulate this motion by a Brownian motion without drift and

scale it proportionally. This leads to our final theorem.

Theorem 4.3. Suppose

dXt = m(Xt)dt+ σdBt

where m is continuously differntiable, let p(t, x) denote the density of Xt, then

∂tp(t, x) = L∗xp(t, x)

where

L∗f(x) =[m(x)f(x)]′ + σ2

2 f ′′(x)

=−m′(x)f(x)−m(x)f ′(x) + σ2

2 f ′′(x)

Note if m is constant, it resort to the expression we saw for generators earlier. For non constant m,

we will derive the expression by using the second binomial approximation,

P{X(t+ ∆t)−X(t) = ±σ
√

∆t|X(t)} = 1
2

[
1± m (Xt)

σ

√
∆t
]

Then for the motion to be at position x = k
√

∆t at time t+ ∆t, it must be at x±σx = k
√

∆t at time

t, then

p
(
t+ ε2, x

)
=p(t, x− σε)1

2

[
1 + m(x− σε)

σ
ε

]
+ p(t, x+ σε)1

2

[
1− m(x+ σε)

σ
ε

] (24)

We also know

p (t+ ∆t, x) = p(t, x) + ∂tp(t, x)∆t+ o (∆t)
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and
p(t, x+ σε) + p(t, x− σε) =p(t, x) + σ2ε2

2 ∂xxp(t, x) + o
(
ε2
)

p(t, x± σε) =p(t, x)± ∂xp(t, x)σε+ o(ε)

m(x± σε) =m(x)±m′(x)σε+ o(ε)

Plugging the above into (23), we have the result.

4.5 Continuous martingales

In this section, we will prove that Brownian motion is the only type of continuous martingale.

Proposition 4.1. SupposeMt is a continuous martingale with respect to a filtration {F} withM0 = 0,

and suppose that the quadratic variation of Mt is the same as that of standard Brownian motion,

〈M〉t = lim
n→∞

∑
j<2nt

[
M

(
j + 1

2n

)
−M

(
j

2n

)]2
= t

Then for all λ ∈ R

E[exp{iλMt}] = eλ
2t/2

This proposition shows the form of the characteristic function of any continuous martingale is in the

above form, hence the distribution is is normal. Recall the first term of the Itô Integral is a martingale,

then,

f (Mt)− f (M0) = Nt + 1
2

∫ t

0
f ′′ (Ms) ds = Nt −

λ2

2

∫ t

0
f (Ms) ds

where Nt is a martingale. Then for r < t we have

E [f (Mt)− f (Mr)] = 1
2E
[∫ t

r

f ′′ (Ms) ds
]

= −λ
2

2

∫ t

r

E [f (Ms)] ds

Take G(t) = E[F (Mt)], we have

G′(t) = −λ
2

2 G(t)

and the solution of G(t) is the result.

Theorem 4.4. Let Mt saticify the above proposition, then Mt is a standard Brownian motion.

All that is left to show is the independent, normal increment. Since the process is adapted to filtration

Ft, then the independence is obvious, and the normality follows from the characteristic function.

5 Change of Measure and Girsanov Theorem

5.1 Absolutely continuous measures

This section we will be introducing measures into the play, as well as measure spaces.

Definition 5.1. Suppose µ, ν are measures on space Ω with sigma-algebra F , then

• ν is absolutely continuous with respect to µ, ν << µ, if for all E ∈ F , µ(E) = 0→ ν(E) = 0
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• µ and ν are mutually absolutely continuous if ν << µ, µ << ν

• µ and ν are singular measures, µ ⊥ ν, if Ω = E ∪ F , and µ(E) = 0, ν(F ) = 0

The fundamental theorem we will be using is the Radon-Nikodym Theorem, we will now prove the

theorem rigorously. First we introduce a lemma we will be using,

Lemma 5.1. Suppose that ν and µ are finite measures on (X,M). Then either ν ⊥ µ or there exists

ε > 0 and E ∈M such that µ(E) > 0 and ν ≥ εµ on E.

Theorem 5.1. Radon-Nikodym Theorem Let ν be a σ-finite signed measure and µ a σ-finite positive

measure on a measure space (X,M) with corresponding sigma algebra. Then there exists a unique

σ-finite signed measures λ, ρ such that

λ ⊥ µ, ρ << µ, andν = λ+ ρ

More over, there exists an extended µ-integrable function f such that dρ = fdµ.

Since we are only dealing with probability spaces, we can assume the two measures on the space are

finite, positive measures. We also ignore the λ measure and assume ν << µ

Proof. Define set

F =
{
f : X → [0,∞] :

∫
E

fdµ ≤ ν(E)for allE ∈M]
}

Then F is nonempty as the zero function is in it. If, f, g ∈ F, then hmax(f, g) ∈ F.∫
E

hdµ =
∫
E∩A

fdµ+
∫
E\A

gdµ ≤ ν(E ∩A) + ν(E\A) = ν(E)

Let a = sup{
∫
fdµ : f ∈ F}, then by above, a < ν(X) <∞. Then we can find a sequence {fn}in F that

increasingly converge to a, by monotone convergence theorem, let f = sup{fn} we have
∫
fn =

∫
f ,

so f ∈ F Now we check f satisfies the requirement in the theorem. Observe dλ = dν + fdµ is singular

with respect to dµ, assume not, by lemma, there exists E and ε > 0 such that µ(E) > 0 and λ ≥ εµ

on E. Then εχEdµ < dλ, then we found a new function f + εχE that has integral value greater than

a. So we reached a contradiction.

On a rough sense, the above theorem gives us a ’derivative’ of measures. Later in the chapter, when

we want to switch the base measure from one to another, we can do so using this method, and take

expectation of a random variable with respect to another setting.

Earlier in the book, we touched on the notion of conditional probability as the following. Suppose

(Ω,F , P ) is a probability space and G ∈ F is a sub σ-algebra. Then E[X|G] is the conditional

probability given G. More precisely, Q(A) = E[1AX], for A ∈ G defines a measure that satisfies

Q << P . There is a G measurable random variable Y such that Q(A) = E[1AY ], for A ∈ G, and Y is

the conditional expectation of X given G.

Example 5.1. Let Ω be the set of continuous function from [0, 1] → R. Let Bt be the standard

Brownian motion with 0 drift and σ variance, then there is a measure Pσ as the distribution of the
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"function-valued" random variable t → Bt. If V is a subset of Ω, then Pσ(V ) is the probability that

the Brownian motion lies in V . Furthermore, if σ 6= λ, then Pσ ⊥ Pλ. Certainly, define

Er =

f : lim
n→∞

2n∑
j=1

[
f

(
j

2n

)
− f

(
j − 1

2n

)]2
= r2


Then Pσ(Eσ) = 1, and Pλ(Eλ) = 1, and Eσ ∩ Eλ = ∅

5.2 Give drift to a Brownian motion

This section we will be studying the different behavior of Brownian motion under different measures.

Keep in mind expectation in probability is essentially just a integral. Suppose Bt is defined on the

probability space (Ω,F , P ), now consider

Mt = exp{mBt −
m2t

2 } (25)

Then Mt is a martingale, by Itô’s formula we have

dMt = mMtdBt

Now define Qt(V ) = e[1VMt] for F measurable event V . Equivalently for each t we have

dP = MtdQt (26)

For s < t, by the towering property, we have Qs(V ) = E[1V E(Mt|FS)] = Qt(V ). Now we write Q for

the measure. and we claim

• For standard Bt in the P measure is a Brownian motion with drift m and variance 1 under the

Q measure.

We can, of course, alter the variance as well, but that will be the topic for another day. The continuity

of path is immediate, so we need to show the increments over period t are independent and normal

with mean mt, variance t. To do so we will show the moment generating function is of the normal

form, i.e.

EQ (exp {λ (Bt+s −Bs)} |Fs) = eλmteλ
2t/2 (27)

Since we are now dealing with more than one measure, the subscript Q denotes which measure we are

taking expctation over. To establish the above, by the definition of conditional probability, we need

to show for every Fs measurable set V

EQ [1V exp {λ (Bt+s −Bs)}] = EQ
[
1V eλmteλ

2t/2
]

= eλmteλ
2t/2Q(V )

Equivalently,

E [1V exp {λ (Bt+s −Bs)}Mt+s] = eλmteλ
2t/2E [1VMs]
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Since Y = Bt+s −Bs is independent of Fs, we have

EQ (1V exp {λ (Bt+s −Bs)} |Fs) = E(1V E
(
eλYMt+s|Fs

)
)

= E(1V E
(
eλY emBt+se−m

2(t+s)/2|Fs
)

)

= E(1V e−m
2t/2E

(
eλY emY emBse−m

2(s)/2|Fs
)

)

= E(1VMse
−m2t/2E

(
eλY emY |Fs

)
)

= E(1VMse
−m2t/2E

[
e(λ+m)Y

]
)

= E(1VMs)e−m
2t/2e(λ+m)2t/2

= E(1VMs)eλ
2t/2eλmt

The proof is completed. As a result of the above theorem, suppose Xt is a geometric Brownian motion

with drift m, and variance σ, then we can find a new probability measure q such that

dBt = rdt+ dWt

where Wt is a Brownian motion with respect to Q, hence Xt is

dXt = Xt[(m+ σr]dt+ σdWt

With respect to Q, Xt is a Brownian motion with same variance but new drift.

Example 5.2. Suppose we have Bt the standard Brownian motion, and Mt, the martingale defined

in (25). Then for a > 0, let Ta = inf{t : Bt = a}. Then under measure Q as defined in (26), Bt is a

Brownian motion with drift m.

First note since P{Ta <∞} = 1, we have

Q {Ta <∞} = E [MTa1 {Ta <∞}] = E [MTa ]

also,

Q {Ta <∞} = E
[
exp

{
mBTa −

m2Ta
2

}]
= eamE

[
exp

{
−m

2Ta
2

}]
Since we know P{Ta <∞} = 1, we have

Q{Ta <∞} =
∫
Ta<∞

MtdP = 1

Then,

E
[
exp

{
−m

2Ta
2

}]
= e−am

5.3 Girsanov Theorem

Girsanov Theorem establishes a way to observe a Brownian motion from the prospective of another

measure. The Mt defined in the previous section, is one example, in this section, we generalize it to a

family of (local) martingales. Suppose Bt is the standard Brownian motion, and Mt satisfies

dMt = AtMtdBt (28)
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Then we have seen before this is a exponential SDE, and has solution

Mt = exp

{∫ t

0
AsdBs −

1
2A

2
sds

}
Now we define probability measure P∗ to be

P ∗(V ) = E[1VMt] (29)

equivalently,
dP ∗

dP
= Mt (30)

All the findings from the previous section still holds. One thing to keep in mind is for all Ft measurable

X.

E∗[X] = E[XMt]

Theorem 5.2. (Girsanov Theorem) Suppose Mt is a nonnegative martingale satisfying () and let P ∗

be the probability measure defined in.If

Wt = Bt −
∫ t

0
Asds

then with respect to the measure P ∗, Wt is a standard Brownian motion. In other words

dBt = Atdt+ dWt

where Wt is a P ∗ Brownian motion.

Proof. The proof will use notations Bt and B(t) interchangeably.

Here we will provide a derivation using binomial approximation. Suppose δt is give, by binomial

approximation,

P{B(t+ ∆t)−B(t) = ±
√

∆t|B(t)} = 1
2

Then the approximation for (28) is

P{M(t+ ∆t) = M(t)[1±A(t)
√

∆t]|B(t)} = 1
2

In other words, the probability to jump one increment for P∗ is scaled by M(t), then

P∗{B(t+ ∆t)−B(t) = ±
√

∆t|B(t)} = 1
2[1±A(t)

√
∆t]

As we showed in section 4.4, this implies,

E∗[B(t+ ∆t)−B(t)|B(t)] = A(t)∆t

In other words, in P∗, the process obtained a drift of A(t).

45


