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Abstract

Markov Chain Monte Carlo (MCMC) sampling from a posterior distribution

corresponding to a massive data set can be computationally prohibitive since pro-

ducing one sample requires a number of operations that is linear in the data size.

In this paper, we introduce a new communication-free parallel method, the Likeli-

hood Inflating Sampling Algorithm (LISA), that significantly reduces computational

costs by randomly splitting the dataset into smaller subsets and running MCMC

methods independently in parallel on each subset using different processors. Each

processor will be used to run an MCMC chain that samples sub-posterior distri-

butions which are defined using an “inflated” likelihood function. We develop a

strategy for combining the draws from different sub-posteriors to study the full pos-

terior of the Bayesian Additive Regression Trees (BART) model. The performance

of the method is tested using simulated data and a large socio-economic study.
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1 Introduction

Markov Chain Monte Carlo (MCMC) methods are essential for sampling highly complex

distributions. They are of paramount importance in Bayesian inference as posterior distri-

butions are generally difficult to characterize analytically (e.g., Brooks et al., 2011; Craiu

and Rosenthal, 2014). When the posterior distribution is based on a massive sample of

size N , posterior sampling can be computationally prohibitive since for some widely-used

samplers at least O(N) operations are needed to draw one MCMC sample. Additional

issues include memory and storage bottlenecks where datasets are too large to be stored

on one computer.

A common solution relies on parallelizing the computation task, i.e. dividing the load

among a number of parallel workers, where a worker can be a processing unit, a computer,

etc. Given the abundant availability of processing units, such strategies can be extremely

efficient as long as there is no need for frequent communication between workers. Some

have discussed parallel MCMC methods (Wilkinson, 2006; Rosenthal, 2000; Laskey and

Myers, 2003) such that each worker runs on the full dataset. However, these methods do

not resolve memory overload, and also face difficulties in assessing the number of burn-in

iterations for each processor.

A truly parallel approach is to divide the dataset into smaller groups and run parallel

MCMC methods on each subset using different workers. Such techniques benefit from not

demanding space on each computer to store the full dataset. Generally, one needs to avoid

frequent communication between workers, as it is time consuming. In a typical divide and

conquer strategy the data is partitioned into non-overlapping sub-sets, called shards, and

each shard is analyzed by a different worker. For such strategies some essential MCMC-

related questions are: 1) how to define the sub-posterior distributions for each shard,

and 2) how to combine the MCMC samples obtained from each sub-posterior so that we

can recover the same information that would have been obtained by sampling the full
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posterior distribution. Existing communication-free parallel methods proposed by Scott

et al. (2013), Neiswanger et al. (2013) and Wang and Dunson (2013) have in common

the fact that the product of the unnormalized sub-posteriors is equal to the unnormal-

ized full posterior distribution, but differ in the strategies used to combine the samples.

Specifically, Neiswanger et al. (2013) approximate each sub-posterior using kernel den-

sity estimators, while Wang and Dunson (2013) use the Weierstrass transformation. The

popular Consensus Monte Carlo (CMC) method (Scott et al., 2013) relies on a weighted

averaging approach to combine sub-posterior samples. The CMC relies on theoretical

derivations that guarantee its validity when the full-data posterior and all sub-posteriors

are Gaussian or mixtures of Gaussian.

We introduce a new communication-free parallel method, the Likelihood Inflating Sam-

pling Algorithm (LISA), that also relies on independent and parallel processing of the

shards by different workers to sample the sub-posterior distributions. The latter are de-

fined differently than in the competing approaches described above. In this paper, we

develop techniques to combine the sub-posterior draws obtained for LISA in the case of

Bayesian Additive Regression Trees (BART) (Chipman et al., 1998, 2010; Kapelner and

Bleich, 2013) and compare the performance of our method with CMC.

Sections 2 and 3 contain a brief review of the CMC algorithm and the detailed descrip-

tion of LISA, respectively. Section 4 illustrates the potential difference brought by LISA

over CMC in a simple Bernoulli example, and includes a simple application of LISA to

linear regression models. Section 5 contains the justification for a modified and improved

version of LISA for BART. Numerical experiments and the analysis of socio-economic

data presented in Section 6 examine the computational performance of the algorithms

proposed here and compare it with CMC. We end the paper with some ideas for future

work. The Appendix contains theoretical derivations and descriptions of the steps used

when running BART.
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2 Review of Consensus Monte Carlo

In this paper we assume that of interest is to generate samples from π(θ|~YN), the posterior

distribution θ given the iid sample ~YN = {Y1, . . . , YN} of size N . The assumption is that

N is large enough to prohibit running a standard MCMC algorithm in which draws from

π are obtained on a single computer. We use the notation π(θ|~YN) ∝ f(~YN |θ)p(θ), where

f(~YN |θ) is the likelihood function corresponding to the observed data ~YN and p(θ) is the

prior. Major issues with MCMC posterior sampling for big data can be triggered because

a) the data sample is too large to be stored on a single computer, or b) each chain update

is too costly, e.g. if π is sampled via a Metropolis-Hastings type of algorithm each update

requires N likelihood calculations.

In order to reduce the computational costs, the CMC method of Scott et al. (2013)

partitions the sample into K batches (i.e. ~YN = ∪Kj=1Y
(j)) and uses the workers inde-

pendently and in parallel to sample each sub-posterior. More precisely, the j-th worker

(j = 1, ..., K) will generate samples from the j-th sub-posterior distribution defined as:

πj,CMC(θ|Y (j)) ∝ f(Y (j)|θ)p(θ)1/K .

Note that the prior for each batch is considered to be pj(θ) = [p(θ)]1/K such that p(θ) =∏K
j=1 pj(θ) and thus the overall full-data unnormalized posterior distribution which we

denote as πFull(θ|~YN) is equal to the product of unnormalized sub-posterior distributions,

i.e.

πFull(θ|~YN) ∝
K∏
j=1

πj,CMC(θ|Y (j)).

When the full posterior is Gaussian, the weighted averages of the sub-samples from all

batches can be used as full-data posterior draws. That is, assuming θ
(k)
1 , ..., θ

(k)
S are S
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sub-samples from the kth worker then the s-th approximate full posterior draw will be:

θs = (
∑
k

wk)
−1
∑
k

wkθ
(k)
s

where the weights wk = Σ−1k are optimal for Gaussian models with Σk = Var(θ|y(k)).

In the next section we introduce an alternative method to define the sub-posteriors in

each batch.

3 Likelihood Inflating Sampling Algorithm (LISA)

LISA is an alternative to CMC that also benefits from the random partition of the dataset

followed by independently processing each batch on a different worker. Assuming that

the data have been divided into K batches of approximately equal size n, we define the

sub-posterior distributions for each machine by adjusting the likelihood function without

making changes to the prior. Thus the j-th sub-posterior distribution will be:

πj,LISA(θ|Y (j)) ∝
[
f(Y (j)|θ)

]K
p(θ).

Since the data are assumed to be iid, inflating the likelihood function K-times is intuitive

because the sub-posterior from each batch of data will be a closer representation of the

whole data posterior. We expect that sub-posteriors sampled by each worker will be closer

to the full posterior thus improving the computational efficiency.

We indeed prove in a theorem below that under mild conditions, LISA’s sub-posterior

distributions are asymptotically closer to the full posterior than those produced by the

CMC-type approach.

The Taylor’s series expansion for a log-posterior density log π(θ|~YN) around its poste-
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rior mode θ̂N yields the approximation

log π(θ|~YN) ≈ log π(θ̂N |~YN)− 1

2
(θ − θ̂N)T ÎN(θ − θ̂N)

where ÎN = −∂2 log(π(θ|~YN ))
∂θ∂θT

|θ=θ̂N . Exponentiating both sides will result in

π(θ|~YN) ≈ π(θ̂N |~YN) exp

[
−1

2
(θ − θ̂N)T ÎN(θ − θ̂N)

]

which shows asymptotic normality, i.e. Î
1/2
N (Θ − θ̂N)

D−→ N(0, I) as N → ∞ where

Θ ∼ π(.|~YN). Let θ̂
(j)
n,L and θ̂

(j)
n,C denote the j-th sub-posterior modes in LISA and CMC,

respectively. Similarly, Î
(j)
n,L and Î

(j)
n,C denote the negative second derivative of the j-th

log sub-posterior for LISA and CMC, respectively, when calculated at the mode. Then

consider the assumptions,

A1: There exist θL, θC such that if we define ε
(j)
n,L = |θ̂(j)n,L − θL| and ε

(j)
n,C = |θ̂(j)n,C − θC |,

then max
1≤j≤K

ε
(j)
n,L → 0 and max

1≤j≤K
ε
(j)
n,C → 0 w.p. 1 as n→∞.

A2: |Î(i)n,L − Î
(j)
n,L| −→ 0 and |Î(i)n,C − Î

(j)
n,C | → 0 w.p. 1 ∀ i 6= j as n→∞.

A3: πFull, πj,LISA, and πj,CMC are unimodal distributions that have continuous deriva-

tives of order 2.

Theorem 1. Assume that assumptions A1 through A3 hold and if ΘFull ∼ πFull(.|~YN)

we also assume Î
1/2
N (ΘFull − θ̂N)

D−→ N(0, I) as N →∞. If Θj,LISA ∼ πj,LISA(.|Y (j)) and

Θj,CMC ∼ πj,CMC(.|Y (j)) then as N →∞

Î
1/2
N (Θj,LISA− θ̂N)

D−→ N(0, I) and Î
1/2
N (Θj,CMC− θ̂N)

D−→ N(0, KI) ∀ j ∈ {1, . . . , K}.

Proof. See Appendix.
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Theorem 1 shows the difference between sub-posterior distributions for CMC and

LISA, with LISA’s sub-posterior distributions being asymptotically similar to the full

posterior distribution. This suggests that draws from LISA sub-posteriors can be com-

bined using uniform weights.

Remarks:

1. When data are iid we expect the shards to become more and more similar as N

(and thus n = N/K) increases and assumption A1 is expected to hold for general

models.

2. Assumption A2 in Theorem 1 holds due to the structural form of sub-posteriors in

LISA and CMC.

3. The validity of using uniform weights with LISA’s sub-posterior draws is justified

asymptotically, but we will see that this approximation can be exact in some ex-

amples, e.g. for a Bernoulli model with balanced batch samples, while in others

modified weights can improve the performance of the sampler. In this respect LISA

is similar to other embarrassing parallel strategies where one must carefully consider

the model of interest in order to find the best way to combine the sub-posterior sam-

ples.

In the next section we will illustrate LISA in some simple examples and compare its

performance to the full-data posterior sampling as well as CMC.

4 Motivating Examples

In this section we examine some simple examples where theoretical derivations can be

carried out in detail. We emphasize the difference between LISA and CMC.
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4.1 Bernoulli Random Variables

Consider y1, ..., yN to be N i.i.d. Bernoulli random variables with parameter θ. Hence,

we consider a prior p(θ) = Beta(a, b). Assuming that we know little about the size of θ

we set a = b = 1 which corresponds to a U(0, 1) prior. The resulting full-data posterior

πFull(θ|~YN) is Beta(S + a,N − S + b) where S =
∑N

i=1 yi is the total number of ones.

Suppose we divide the data into K batches with Sj number of ones in batch j, such that

Sj = S
K
∀ j ∈ {1, .., K}, i.e. the number of 1’s are divided equally between batches. Then

the jth sub-posterior based on batch-data of size n = N
K

for each method will be:

• CMC:

πj,CMC(θ|Y (j)) = Beta

(
Sj +

a− 1

K
+ 1, n− Sj +

b− 1

K
+ 1

)
= Beta

(
S

K
+
a− 1

K
+ 1,

N − S
K

+
b− 1

K
+ 1

)

• LISA:

πj,LISA(θ|Y (j)) = Beta(SjK + a, (n− Sj)K + b)

= Beta(S + a,N − S + b)

which implies

πj,LISA(θ|Y (j)) = πFull(θ|~YN) ∀ j ∈ {1, ..., K}.

In this simple case any one of LISA ’s sub-posterior distributions is equal to the full

posterior distribution if the batches are balanced, i.e. the number of 1’s are equally split

across all batches. Thus, LISA’s sub-samples from any batch will represent correctly the

full posterior. On the other hand, the draws from the CMC sub-posterior distributions
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will need to be recombined to obtain a representative sample from the true full posterior

πFull(θ|~YN).

However, when the number of ones is unequally distributed among the batches it is

not easy to pick the winner between CMC and LISA as both require a careful weighting

of each batch sub-posterior samples.

In the remaining part of this paper, we will mainly focus on the performance of LISA

when it is applied to the Bayesian Additive Regression Trees (BART) model. Interestingly,

we discover that using a minor modification inspired by running LISA on the simpler

Bayesian Linear Regression model we can approximate the full posterior. The idea behind

the modification is described in the next section.

4.2 Bayesian Linear Regression

Consider a standard linear regression model

Y = Xβ + ε (1)

where β ∈ Rp, X ∈ RN×p and Y, ε ∈ RN with ε ∼ NN(0, σ2IN). To simplify the

presentation we consider the improper prior

p(β, σ2) ∝ σ−2. (2)

Straightforward calculations show that the conditional posterior distributions for the

full data are

πFull(σ
2|Y,X) = Inv-Gamma

(
N − p

2
,
s2(N − p)

2

)
(3)

πFull(β|σ2, Y,X) = N
(
β̂, σ2(XTX)−1

)
(4)
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where β̂ = (XTX)−1XTY and s2 = (Y−Xβ̂)T (Y−Xβ̂)
N−p .

An MCMC sampler designed to sample from πFull(β, σ
2|Y,X) will iteratively sample

σ2 using (3) and then β via (4). If we denote βFull the r.v. with density πFull(β|Y,X)

then, using the iterative formulas for conditional mean and variance we obtain

E[βFull|Y,X] = (XTX)−1XTY

and

Var(βFull|Y,X) = (XTX)−1
(N − p)/2

(N − p)/2−1
s2 = (XTX)−1s2 +O(N−1). (5)

We examine below the statistical properties of the samples produced by LISA. If the

data are divided into K equal batches of size n = N/K, let us denote Y (j) and X(j) the

response vector and model matrix from the jth batch, respectively.

With the prior given in (2), the sub-posteriors produced by LISA have the following

conditional densities

πj(σ
2|Y (j), X(j)) = Inv-Gamma

(
N − p

2
,
Ks2j(n− p)

2

)
(6)

πj(β|σ2, Y (j), X(j)) = N
(
β̂j,

σ2

K
(X(j) TX(j))−1

)
, (7)

where β̂j = (X(j) TX(j))−1X(j) TY (j) and s2j =
(Y (j)−X(j)β̂j)

T (Y (j)−X(j)β̂j)

n−p for all 1 ≤ j ≤ K.

A simple Gibbs sampler designed to sample from πj(β, σ
2|Y (j), X(j)) will iteratively

sample σ2 from (6) and then β from (7).

It can be shown using the iterative formulas for conditional means and variances that

E[β|Y (j), X(j)] = β̂j
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and

Var(β|Y (j), X(j)) = (X(j) TX(j))−1
s2j(n− p)/2

(N − p)/2− 1
= (X(j) TX(j))−1

s2j(n− p)
(N − p)

+O(N−1).

In order to combine the sub-posterior samples we propose using the weighted average

βLISA = (
K∑
j=1

Wj)
−1

K∑
j=1

Wjβj, (8)

where βj ∼ πj(β|Y (j), X(j)) and Wj = X(j) TX(j)

σ2 . Since
∑K

j=1X
(j) TX(j) = XTX we get

E[βLISA|Y,X] = β̂ = (XTX)−1XTY (9)

and

Var(βLISA|Y,X) = (XTX)−1
n− p
N − p

[
K∑
j=1

s2j(X
(j) TX(j))

]
(XTX)−1 ≈ (XTX)−1

n− p
N − p

s2,

(10)

where the last approximation in (10) is based on the assumption that s2j ≈ s2 as both are

unbiased estimators for σ2 based on n and, respectively, N observations. It is apparent

that the variance computed in (10) is roughly K times smaller than the target given in (5).

In order to avoid underestimating the variance of the posterior distribution we propose a

modified LISA sampling algorithm which consists of the following steps:

σ2 ∼ Inv-Gamma

(
N − p

2
,
Ks2j(n− p)

2

)
σ̃ =

√
Kσ

β̃ ∼ N(β̂j,
σ̃2

K
(X(j) TX(j))−1) = N(β̂j, σ

2(X(j) TX(j))−1).
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The intermediate step simply adjusts the variance samples so that

Var(β̃|Y (j), X(j)) = (X(j) TX(j))−1
s2jK(n− p)/2
(N − p)/2− 1

= (X(j) TX(j))−1
s2jK(n− p)

(N − p)
+O(N−1).

In turn, if we define

βmodLISA = (
K∑
j=1

Wj)
−1

K∑
j=1

Wjβ̃j, (11)

then E[βmodLISA|Y,X] = (XTX)−1XTY and

Var(βmodLISA|Y,X) = (XTX)−1
K(n− p)
N − p

[
K∑
j=1

s2j(X
(j) TX(j))

]
(XTX)−1 ≈ (XTX)−1

K(n− p)
N − p

s2.

(12)

Note that when the regression has only an intercept, i.e. X consists of a column of 1’s,

the weights Wj ∝ (σ2)−1.

While both (11) and (8) produce samples that have the correct mean, from equations

(5), (10) and (12) we can see that the weighted average of the modified LISA samples

have the variance closer to the desired target.

In the next section, we will examine LISA’s performance on a more complex model,

the Bayesian Additive Regression Trees (BART). The discussion above will guide our

construction of a modified version of LISA for BART.

5 Bayesian Additive Regression Trees (BART)

Consider the nonparametric regression model:

yi = f(xi) + εi, εi ∼ N (0, σ2) i.i.d.
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where xi = (xi1, ..., xip) is a p-dimensional vector of inputs and f is approximated by a

sum of m regression trees:

f(x) ≈
m∑
j=1

g(x;Tj,Mj)

where Tj denotes a binary tree consisting of a set of interior node decision rules and a set

of terminal nodes. Mj = {µ1j, ..., µbj} is the set of parameter values associated with the

b terminal nodes of Tj. In addition, g(x;Tj,Mj) is the function that maps each x to a

µij ∈Mj. Thus the regression model is approximated by a sum-of-trees model

yi =
m∑
j=1

g(xi;Tj,Mj) + εi , εi
iid∼ N (0, σ2)

Let θ := ((T1,M1), ..., (Tm,Mm), σ2) denote the vector of model parameters. Below, we

briefly describe the prior specifications stated in Chipman et al. (2010) and Chipman

et al. (1998).

Prior Specifications:

• Prior Independence and Symmetry:

p((T1,M1), ..., (Tm,Mm), σ) =
[∏

j

p(Mj|Tj)p(Tj)
]
p(σ)

where p(Mj|Tj) =
∏

i p(µij|Tj).

• Recommended number of trees: m=200 (Chipman et al., 2010) and m=50 (Kapelner

and Bleich, 2013)

• Tree prior p(Tj), is characterised by three aspects:

1. The probability that a node at depth d = 0, 1, ... is non-terminal, which is
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assumed to have the form α(1 + d)−β, where α ∈ (0, 1) and β ≥ 0. (recom-

mended values are α = 0.95 and β = 2)

2. The distribution on the splitting variable assignments at each interior node

which is recommended to have a uniform distribution.

3. The distribution on the splitting rule assignment in each interior node, condi-

tional on the splitting variable which is also recommended to have a uniform

distribution.

• The conditional prior for µij is N (µµ, σ
2
µ) such that:

 mµµ − k
√
mσµ = ymin

mµµ + k
√
mσµ = ymax

with k = 2 recommended.

• The prior for σ2 is Inv-Gamma(ν
2
, νλ

2
) where ν = 3 is recommended and λ is chosen

such that p(σ < σ̂) = q with recommended q = 0.9 and sample variance σ̂.

Hence the posterior distribution will have the form:

π(θ) = π(θ|Y,X) ∝
{

(σ2)
−n

2 e−
1

2σ2

∑n
i=1 (yi−

∑m
j=1 g(xi;Mj ,Tj))

2

}
︸ ︷︷ ︸

Likelihood

×

{
(σ2)

− ν
2
−1
e−

νλ
2σ2︸ ︷︷ ︸

Prior of σ2

[ m∏
j=1

σ−bjµ (2π)−
bj
2 e
− 1

2σ2µ

∑bj
k=1 (µkj−µµ)

2

p(Tj)
]}

︸ ︷︷ ︸
Prior

. (13)

Gibbs Sampling is used to sample from this posterior distribution. The algorithm iterates

between the following steps:

• σ2 | (T1,M1), ..., (Tm,Mm), Y,X ∝ Inv-Gamma(ρ, γ)

where ρ = ν+n
2

and γ = 1
2

[
∑n

i=1 (yi −
∑m

j=1 g(xi;Mj, Tj))
2

+ λν ].
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• (Tj,Mj) | T(j),M(j), σ, Y,X which is the same as drawing from the conditional

(Tj,Mj) | Rj, σ where T(j) denotes all trees except the j-th tree, and residual Rj is

defined as:

Rj = g(x; ,Mj, Tj) + ε = y −
∑
k 6=j

g(x;Mk, Tk).

The sampling of (Tj,Mj) is performed in two steps:

1. Tj | Rj, σ and

2. Mj | Tj, Rj, σ.

Step 2 involves sampling from each component of Mj using

µij | Tj, Rj, σ ∼ N

 σ2

σ2
µ
µµ + niR̄j(i)

σ2

σ2
µ

+ ni
,

σ2

σ2

σ2
µ

+ ni


where R̄j(i) denotes the average residual (computed without tree j) at terminal node

i with total number of observations ni. The conditional density of Tj in step 1 can

be expressed as:

p(Tj | Rj, σ) ∝ p(Tj)

∫
p(Rj | Mj, Tj, σ) p(Mj | Tj, σ) dMj. (14)

The Metropolis-Hastings (MH) algorithm is then applied to draw Tj from (14) with four

different proposal moves on trees:

• GROW: growing a terminal node (with probability 0.25);

• PRUNE: pruning a pair of terminal nodes (with probability 0.25);

• CHANGE: changing a non-terminal rule (with probability 0.4) (Kapelner and

Bleich, 2013, change rules only for parent nodes with terminal children);
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• SWAP: swapping a rule between parent and child (with probability 0.1) (This

proposal move was removed by Kapelner and Bleich, 2013).

Detailed derivations involving the Metropolis-Hastings acceptance ratios are described in

the Appendix.

Two existing packages in R, ”BayesTree” and ”bartMachine”, can be used to run

BART on any dataset, but as the sample size increases, these packages tend to run slower.

In these situations we expect methods such as LISA or CMC to become useful, and for

a fair illustration of the advantages gained we have used our own R implementation of

BART and applied the same structure to implement LISA and CMC algorithm for BART.

The Metropolis-Hastings acceptance ratios for LISA and CMC are also reported in the

Appendix.

As discussed by Scott et al. (2013), the approximation to the posterior produced by

the CMC algorithm can be poor. Thus, for comparison reasons, we applied both LISA

and CMC to BART using a simulated dataset (described further) with K = 30 batches.

Given Theorem 1, since LISA’s sub-posterior distributions are asymptotically equivalent

to the full posterior distribution, we examined its performance by uniformly taking sub-

samples from all its batches as an approximation to full posterior samples. We will see

further that LISA with uniform weights produces higher prediction accuracy compared

to CMC. However, they both perform poorly in approximating the posterior samples as

they generate larger trees and under-estimate σ2, which results in over-dispersed posterior

distributions.

The following sub-section discusses a modified version of LISA for BART which will

have significant improvement in performance.
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5.1 Modified LISA for BART

The under estimation of σ2 when applying LISA to BART is similar to the problem

encountered when using LISA for the linear regression model discussed in Section 4.2.

This is not a coincidence since BART is also a linear regression model, albeit one where

the set of independent variables is determined through a highly sophisticated process. We

will show below that when applying a similar variance adjustment to the one discussed in

Section 4.2, the Modified LISA (modLISA) for BART will exhibit superior computational

and statistical efficiency compared to either LISA or CMC.

Just like in the regression model we “correct” the sampling algorithm by adjusting

the residual variance. We start with the conditional distribution of tree j from expression

(14) which takes the form

p(Tj | Rj, σ) ∝ p(Tj)

∫
p(Rj | Mj, Tj, σ) p(Mj | Tj, σ) dMj.

Note that only the conditional distribution of the residuals, Rj | Mj, Tj, σ is affected

by the modifications brought by LISA. The Metropolis-Hastings acceptance ratios for

tree proposals contain three parts: the transition ratio, the likelihood ratio and the tree

structure ratio. The modifications brought by LISA will influence only the likelihood

ratio which is constructed from the conditional distributions of residuals. Consider the

likelihood ratio for GROW proposal in LISA (full details are presented in the Appendix)

P (R | T∗, σ2)

P (R | T, σ2)
=

√
σ2(σ2 +Knlσ2

µ)

(σ2 +KnlLσ
2
µ)(σ2 +KnlRσ

2
µ)
×

exp

{
K2σ2

µ

2σ2

[
(
∑nlL

i=1RlL,i)
2

σ2 +KnlLσ
2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2 +KnlRσ
2
µ

− (
∑nl

i=1Rl,i)
2

σ2 +Knlσ2
µ

]}
(15)

where nl is the total number of observations from batch-data that end up in terminal node
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l. The newly grown tree, T∗, splits terminal node l into two terminal nodes (children) lL

and lR, which will also divide nl to nlL and nlR which are the corresponding number of

observations in each new terminal node. By factoring out K in (15), we can rewrite it as

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√ σ2

K
(σ

2

K
+ nlσ2

µ)

(σ
2

K
+ nlLσ

2
µ)(σ

2

K
+ nlRσ

2
µ)
×

exp

{
σ2
µ

2σ
2

K

[
(
∑nlL

i=1RlL,i)
2

σ2

K
+ nlLσ

2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2

K
+ nlRσ

2
µ

− (
∑nl

i=1Rl,i)
2

σ2

K
+ nlσ2

µ

]}
. (16)

Expression (16) shows a similar residual variance that is K times smaller in each batch,

and hence following the discussion in Section 4.2, to achieve similar variance, we need to

modify LISA for BART by adding the intermediate step σ̃2 = Kσ2 when updating trees

in each batch, and then taking a weighted average combination of sub-samples (similar to

Bayesian linear regression). As in Section 4.2, we don’t apply any changes when updating

σ2. All our numerical experiments show that modLISA also generates accurate predictions

in BART, since the modification corrects the bias in the posterior draws of σ2 and properly

calibrates the size of the trees.

The BART algorithm will split the covariate space into disjoint subsets and on each

subset a regression with only an intercept is fitted. Therefore, as suggested by the discus-

sion in 4.2 the weight assigned to each batch will be proportional to the estimate of σ2 in

that batch. In the following sections we examine the improvement brought by modLISA

when compared to LISA and CMC.
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6 Numerical Experiments

6.1 The Friedman’s function

We have simulated data of size N = 20, 000 from Friedman’s test function (Friedman,

1991)

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

where the covariates x = (x1, . . . , x10) are simulated independently from a U(0, 1) and

y ∼ N (f(x), σ2) with σ2 = 9. Note that five of the ten covariates are unrelated to the

response variable. We have also generated test data containing 5000 cases. We apply

BART to this simulated dataset using the default hyperparameters stated in Section 5

with m = 50 to generate posterior draws of (T,M, σ2) that, in turn, yield posterior draws

for f(x) using the approximation f̂(x) ≈
∑m

j=1 g(x; T̂j, M̂j) for each x = (x1, . . . , x10).

Since in this case the true f is known, one can compute the root mean squared error

(RMSE) using average posterior draws of f̂(x) for each x (i.e. f̂(x)), as an estimate

to measure its performance, i.e. RMSE =

√
1
N

∑N
i=1 (f(xi)− f̂(xi))2. It is known that

SingleMachine BART may mix poorly when it is run on an extremely large dataset with

small residual variance. However since the data simulated is of reasonable size and σ is not

very small the SingleMachine BART is expected to be a good benchmark for comparison

(see discussion in Pratola et al., 2016).

6.1.1 Comparison of modLISA with Competing Methods

We have implemented modLISA, LISA, and CMC for BART with K = 30 batches on the

simulated data for 5000 iterations with a total of 1000 posterior draws. Table 1 shows

results from all methods including the SingleMachine which runs BART on the full dataset

using only one machine. Results are averaged over three different realizations of train and

test data, and include the Train and Test RMSE for each method, along with tree sizes,
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σ2 estimates and their 95% Credible Intervals (CI). The summaries presented in Table 1

show that although LISA has better prediction performance than CMC, it does a terrible

job at estimating σ2, its estimate being orders of magnitude smaller than the one produced

by CMC. CMC and LISA both generate larger trees compared to SingleMachine, with

CMC generating trees that are ten times larger than LISA’s. One can see that modLISA

with weighted averages dominates both CMC and LISA across all performance indicators

since it yields the smallest RMSE, the smallest tree size, and less biased σ2 estimates.

Generally, modLISA generates results that are by far the closest to the ones produced by

SingleMachine.

Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 2.73 2.94 602 1.91 [1.45 , 2.88]
LISA (unif wgh) 1.18 1.19 55 0.001 [0.0009 , 0.0011]

modLISA (wgh avg) 0.57 0.59 7 7.97 [7.87 , 8.08]
SingleMachine 0.55 0.56 7 9.04 [8.85 , 9.21]

Table 1: Comparing Train & Test RMSE, tree sizes, and average post burn-in σ̂2 with
95% CI in each method for K = 30 to SingleMachine BART (all results are averaged over
three different realizations of data).

Method GROW PRUNE CHANGE

CMC 21% 0.03% 34%
LISA 1.8% 0.5% 1.6%

modLISA 20% 26% 19%
SingleMachine 9% 10% 6%

Table 2: Average acceptance rates of tree proposal moves.

The size of trees produced by each method is in sync with the average acceptance

rates of each tree proposal move shown in Table 2. It is noticeable the difference between

CMC and LISA ’s average acceptance rates between growing a tree and pruning one. On

the other hand, modLISA has overall larger acceptance rates with the smallest relative

absolute difference between growing and pruning probabilities compared to LISA and
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CMC (6/20 = 23.1% for modLISA, 98.6% for CMC, and 72.2% for LISA) and is closest

to SingleMachine (10%). Overall, modLISA induced a significant reduction in tree sizes

by preserving a balance between growing and pruning trees which also improves exploring

the posterior distribution.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 45.71 % 47.83 % 81.95 % 99.99 %
LISA (unif wgh) 1.54 % 1.54 % 100 % 100 %

modLISA (wgh avg) 92.93 % 92.91 % 60.88 % 58.45 %
SingleMachine 94.67 % 94.65 % 71.58 % 71.54 %

Table 3: Average coverage for 95% credible intervals constructed for training (TrainCred-
Cov) and test (TestCredCov) data and 95% prediction intervals constructed for training
(TrainPredCov) and test (TestPredCov) data. The prediction interval coverage is esti-
mated based on 1000 iid samples, N = 20, 000 and K = 30. All results are averaged over
three different realizations of data.

For a more clear comparison of the methods, Table 3 shows the average coverage of

95% credible intervals (CI) for predictors f(x) and 95% prediction intervals (PI) for future

responses y. The calculations are made for the values of y and f(x) in the training and

test data sets.

The coverage for CI is given by the averaging for all training or test data of

#{f(xi) ∈ Îf(xi) : 1 ≤ i ≤ N}
N

where Îf (xi) is the CI for f(xi) estimated based on the MCMC draws from π.

The coverage of the PI corresponding to a pair (yi, f(xi)) is given by the proportion of

1000 iid samples generated from the true generative model N(f(xi), σ
2) that fall between

its limits, i.e. the average over training or test data of

#{ỹj ∈ Ĵyi : ỹj
iid∼ N(f(xi), σ

2)1 ≤ j ≤ 1000}
1000

,
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where Ĵyi is the PI for yi. The PI coverage in modLISA and SingleMachine are very close

to nominal and vastly outperform the PI’s produced using LISA or CMC.

One can see that coverages of the CI built via CMC and LISA are high, which is not

surprising since both algorithms produce over-dispersed approximations to the conditional

distributions of f(x). Our observation is that the CI for LISA and CMC are too wide to

be practically useful. Also, modLISA and SingleMachine have much lower CI coverage

than nominal which, as pointed out by one of the referees, is also expected due to the

systematic bias induced by the discrepancy between the functional forms of the true

predictor (continuous) and of the one fitted by BART (piecewise constant). Thus, the CI

for f(x) will exhibit poor coverage as they are centered around a biased estimate of f(x).

In order to verify that this is indeed the case we have generated a dataset of size 20,000

from the piecewise constant function:

f(x) = 1[0,0.2)(x1) + 2 · 1[0.2,0.4)(x1) + 3 · 1[0.4,0.6)(x1) + 4 · 1[0.6,0.8)(x1) + 5 · 1[0.8,1)(x1)

where 1[a,b)(x) = 1 if x ∈ [a, b) and 0 otherwise, x = (x1, . . . , x10) ∈ (0, 1)10 is a ten-

dimensional input vector, with xi ∼ Uniform(0, 1), and y ∼ N (f(x), 9). Additional 5000

data have also been simulated as test cases. Table 4 summarizes the analysis with K = 30

and confirms a sharp decrease in RMSEs even though the noise has the same variance

σ2 = 9. We note that the coverages of CI build under modLISA and SingleMachine are

much higher.

Method TestRMSE TestCredCov

CMC 1.35 100 %
LISA (unif wgh) 0.94 100 %

modLISA (wgh avg) 0.24 90.16 %
SingleMachine 0.15 98.76 %

Table 4: Comparing test data RMSE and coverage of 95% credible intervals for piecewise
f(x) with N = 20, 000 and K = 30.
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(a) Test x∗ = 1000, f(x∗) = 13.8
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(b) Test x∗ = 2000, f(x∗) = 14.4
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(c) Training x = 999, f(x) = 19.8

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n(

x)
SingleMachine
modLISA (wgh avg)
LISA (unif wgh)
CMC

(d) Training x = 2001, f(x) = 11.2

Figure 1: Empirical distribution functions of f̂(x) obtained from MCMC samples pro-
duced by modLISA (red line), LISA (green line), CMC (blue line), and SingleMachine
BART (black line) for two different pairs of training and test data. In this example
K = 30.

6.1.2 Comparison with SingleMachine BART

In order to investigate the closeness of posterior samples in each method to the Sin-

gleMachine BART, we have plotted in Figure 1 the empirical distribution functions of

f̂(x) generated from each algorithm for two pairs of observations in the training and test

dataset. One can see that the empirical distribution functions in LISA and CMC don’t

match the ones from SingleMachine, and look over-dispersed. However, the empirical
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distribution functions in modLISA weighted average look much closer to SingleMachine

with a slight shift in location.
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Figure 2: Blue lines: Fitted polynomial trends (for both train and test data) of average
squared difference between empirical distribution functions of SingleMachine and the fol-
lowing: (a) CMC for training (solid line) and test (dot dashed line) data, (b) LISA with
uniform weights for training (solid line) and test (dot dashed line) data and (c) modLISA
with weighted average for training (solid line) and test (dot dashed line) data. The differ-
ence is plotted against the mean prediction f̂(x) produced by SingleMachine. Grey areas
represent the 95% credible intervals constructed from 100 independent replicates.
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In order to assess the performance of the sampling procedures considered, we use

the Cramér-von Mises distance to assess the difference between empirical distribution

functions. This distance is defined to be ω2 =
∫∞
−∞(Fn(x) − F (x))2dF (x) where in our

case we assume F (x) = FBART (x) to be the empirical distribution function generated

from posterior samples in SingleMachine BART and Fn(x) is similarly computed for the

alternative method that is considered for comparison.

Using a set of T = 1000 equispaced points, we compute the average squared difference

between the single machine and all other alternative methods for each observation in

the dataset. To illustrate, for LISA we estimate ω using ω̂2
LISA = 1

T

∑T
j=1(FLISA(tj) −

FBART (tj))
2.

Figure 2 is comparing the fitted polynomial trends of ω̂2 (in each method) versus mean

predicted f̂(x) in SingleMachine with their corresponding 95% credible regions (for both

train and test data). Clearly in LISA and modLISA, there are small variations around the

trends with no significant changes in values of ω̂2 among different mean predicted f̂(x),

which specifies consistency within different train or test observations. In addition, the

gap between trends from train and test data indicate that the average distance between

LISA/modLISA and SingleMachine’s distributions are smaller for test data compared to

train data. Furthermore, there are still small variations seen around CMC’s trends, but

with slight changes in values of ω̂2 among different mean predicted f̂(x), especially for

the test dataset which indicates inconsistency within different observations.

To emphasize the difference in performance between modLISA and its competitors,

Figure 3 shows all the fitted polynomial trends without their credible regions for the

train and test data. One can see that there is a large gap between ω̂2 values in mod-

LISA weighted average and other alternative methods (for both train and test data),

with modLISA having the lowest value. Thus the weighted average of samples produced

by modLISA yields the closest results to SingleMachine. This can also be justified by

comparing average ω̂2 over all train observations for each trend which is calculated to be
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Figure 3: Comparing fitted polynomial trends of average squared difference in empirical
distribution functions of each method and SingleMachine, as functions of mean predicted
f̂(x) in SingleMachine (for both train and test data).

0.013 for modLISA that is significantly smaller than 0.059, 0.048 for CMC, and LISA,

respectively. Similarly, the average ω̂2 over test data are 0.008, 0.047, and 0.031 for mod-

LISA, CMC, and LISA respectively, which again the smallest value is seen in modLISA.

We conclude that modLISA weighted average sample yields the closest representation of

the BART posterior and exhibits the best performance compared to alternative methods.

At last we compare run time per iteration for each method so we can draw some

conclusions regarding the overall efficiency.

6.1.3 Run Time Comparisons

The main goal of methods such as LISA and CMC was to reduce run times regarding

big data applications. Here we have compared average run times per iteration (from one

processor) for each method using our implementation of BART.

As it is seen in Table 5, modLISA, LISA and CMC with K = 30 are all faster com-
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Method Avg Time per iteration (Secs) Speed-up

CMC 11.99 31%
LISA 5.04 71%

modLISA 1.81 90%
SingleMachine 17.28 —–

Table 5: Running times for CMC, LISA, modLISA and SingleMachine when K = 30.

pared to SingleMachine since they are influenced by the smaller subsets of data used.

However, since LISA and CMC generate much larger trees, they become slower compared

to modLISA which is the fastest method. We have also reported the speed-up percentages

with respect to SingleMachine, which is defined to be (1− t/17.28)× 100% where t is the

average time per iteration in each method. Clearly, CMC shows the smallest speed-up

(31%) while modLISA has the highest (90%).

6.2 Additional Considerations

6.2.1 Effect of N (number of training data) on Posterior Accuracy

To see how the number of training data (N) can effect the posterior accuracy, we have

examined the performance of all methods when N is increased to 60,000 while we keep

the same number of batches K = 30. Tables 6 shows the results of 1000 posterior samples

generated from fitting the BART model to the training set with additional 5000 data

considered as test cases.

Unsurprisingly, Tables 1 and 6 show that the RMSE for training and test data in

LISA, modLISA, and SingleMachine decrease as N increases. More importantly, while

LISA and CMC estimates for σ2 get worse, modLISA generates more accurate estimates

of σ2 with a larger N .

Trees have a stable size in modLISA, but tend to grow larger in CMC and LISA, as N

increases. Table 7 shows that coverage of PI decreases in CMC and LISA, but increases in
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Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 2.85 5.56 983 0.48 [0.30 , 0.66]
LISA (unif wgh) 1.17 1.19 125 0.0003 [0.00031 , 0.00035]

modLISA (wgh avg) 0.41 0.42 7 8.82 [8.79 , 8.86]
SingleMachine 0.41 0.41 11 9.04 [8.94 , 9.16]

Table 6: Tree sizes, estimates and 95% credible intervals for σ2, RMSE for training data
(TrainRMSE) of size N = 60, 000 and for test data (TestRMSE) of size 5, 000 for each
method run with K = 30.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 25.74 % 17.28 % 51.37 % 85.92 %
LISA (unif wgh) 0.84 % 0.84 % 100 % 100 %

modLISA (wgh avg) 94.54 % 94.53 % 53.68 % 52.68 %
SingleMachine 94.83 % 94.84 % 57.79 % 58.90 %

Table 7: Average coverage for 95% credible intervals constructed for training (TrainCred-
Cov) and test (TestCredCov) data and 95% prediction intervals constructed for training
(TrainPredCov) and test (TestPredCov) data. The prediction interval coverage is esti-
mated based on 1000 iid samples, N = 60, 000 and K = 30.

modLISA and SingleMachine for larger training data. We find it particularly promising

that modLISA competes with SingleMachine for larger N . Note that, coverage of CI in

LISA and CMC are still unreliable because of their over-dispersion, while in modLISA

and SingleMachine they decrease as N increases, which is reasonable since larger sample

size creates narrow CI that are around a biased f(x) estimate, as discussed in the previous

section. Overall, as N increases, modLISA seems to be a more reliable method as it shows

a better performance compared to all other alternatives.

6.2.2 Effect of K (number of batches) on Posterior Accuracy

To examine the effect of K on posterior accuracy, we have generated 1000 posterior draws

for training data of size N = 20, 000 and K = 10. The test data sample is of size 5,000.

The results are shown in Table 8.

As K decreases, the performance of LISA and CMC drops while modLISA generates
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Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 2.92 3.18 951 0.73 [0.57 , 0.90]
LISA (unif wgh) 1.70 1.78 131 0.001 [0.0010 , 0.0012]

modLISA (wgh avg) 0.46 0.47 7 8.69 [8.61 , 8.77]
SingleMachine 0.55 0.56 7 9.04 [8.85 , 9.21]

Table 8: Tree sizes, estimates and 95% credible intervals for σ2, RMSE for training data
(TrainRMSE) of size N = 20, 000 and for test data (TestRMSE) of size 5, 000 for each
method run with K = 10.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 31.08 % 29.83 % 48.18 % 99.80 %
LISA (unif wgh) 1.44 % 1.43 % 99.98 % 99.96 %

modLISA (wgh avg) 94.30 % 94.29 % 71.08 % 70.32 %
SingleMachine 94.67 % 94.65 % 71.58 % 71.54 %

Table 9: Average coverage for 95% credible intervals constructed for training (TrainCred-
Cov) and test (TestCredCov) data and 95% prediction intervals constructed for training
(TrainPredCov) and test (TestPredCov) data. The prediction interval coverage is esti-
mated based on 1000 iid samples, N = 20, 000 and K = 10.

stronger results, which is intuitively expected as each batch is larger and closer to the full

sample when K is smaller. We also note the improvement of modLISA over SingleMachine

in terms of RMSE. In addition, Table 9 shows that the PI and CI coverages for modLISA

and SingleMachine are very close.

6.3 Varying the Underlying Model – Different f(x)

Consistency in performance of modLISA can also be seen when the underlying model is

changed. For instance, we also considered a sample of size 20,000 using

f(x) = 3
√
x1 − 2x2

2 + 5x3x4, (17)

where x = (x1, . . . , x4) is a four-dimensional input vector that is simulated independently

from a U(0, 1) and y ∼ N (f(x), σ2) with σ2 = 1. Additional 5000 data have also been
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simulated as test cases. Similarly, by fitting this newly simulated dataset to each method

with K = 30, we have generated 1000 posterior samples with results averaged across three

different realizations of data shown in Tables 10 and 11.

Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 0.89 0.76 614 0.21 [0.18 , 0.34]
LISA (unif wgh) 0.32 0.33 57 0.0001 [0.000083 , 0.000103]

modLISA (wgh avg) 0.11 0.11 7 0.88 [0.87 , 0.89]
SingleMachine 0.14 0.14 7 1.00 [0.99 , 1.03]

Table 10: Tree sizes, estimates and 95% credible intervals for σ2, RMSE for training data
(TrainRMSE) of size N = 20, 000 generated from (17) and for test data (TestRMSE) of
size 5, 000 for each method run with K = 30. Results are averaged over three different
data replications.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 49.74 % 52.97 % 84.16 % 100 %
LISA (unif wgh) 1.50 % 1.49 % 100 % 100 %

modLISA (wgh avg) 93.07 % 93.18 % 82.88 % 83.50 %
SingleMachine 94.82 % 94.81 % 79.13 % 78.47 %

Table 11: Average coverage for 95% credible intervals constructed for training (TrainCred-
Cov) and test (TestCredCov) data and 95% prediction intervals constructed for training
(TrainPredCov) and test (TestPredCov) data generated from (17). The prediction inter-
val coverage is estimated based on 1000 iid samples, N = 20, 000 and K = 30. Results
are averaged over three different data replications.

Again modLISA outperforms all alternative methods, and its performance is closest to

SingleMachine. This confirms the previous simulation results and allows us to conclude

that modLISA is a more reliable method for BART models with large datasets.

In the next section we will apply modLISA weighted average BART to a large socio-

economic study.
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6.4 Real Data Analysis

The American Community Survey (ACS) is a growing survey from the US Census Bureau

and the Public Use Microdata Sample (PUMS) is a sample of responses to ACS which

consists of various variables related to people and housing units (see US Bureau of Census,

2013). Considering the person-level data from PUMS 2013, we would like to predict a

person’s total income based on variables such as sex, age, education, class of worker, living

state, and citizenship status. We have collected information related to people who are

employed and have total income of at least $5000 with education level of either Bachelor’s

degree, Master’s degree, or a PhD which resulted in 437, 297 observations. We randomly

divided the dataset into approximately 80% training and 20% testing sets, with K = 100

batches considered for splitting the training data to apply modLISA. Computations were

performed on the GPC supercomputer at the SciNet HPC Consortium (Loken et al.,

2010) using 100 cores, each running on 3, 500 observations. Considering the logarithm of

total income for each person as the response variable, we have ran modLISA with weighted

average and SingleMachine BART on this dataset for 1500 iterations (since SingleMachine

is very slow) and discarded the first 1000 draws which resulted in 500 posterior samples.

Table 12 contains the results of Test RMSE as well as average post burn-in σ2 estimates

and tree sizes.

Method TestRMSE Avg σ̂2 Tree Nodes Speed-up

modLISA (wgh avg) 0.71 0.488 7 90%
SingleMachine 0.70 0.485 23 –

Table 12: Perfomance summaries computed from 1000 posterior samples generated from
modLISA with K = 100 and SingleMachine BART on PUMS 2013 test data.

One can see that Test RMSE in modLISA is similar to the one from SingleMachine, but

with a 90% speed-up of modLISA over SingleMachine. The speed-up can be explained by

the larger acceptance probabilities and by the smaller tree sizes reported in Tables 13 and
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Method GROW PRUNE CHANGE

modLISA 10 % 11 % 14 %
SingleMachine 8% 7% 7%

Table 13: Average acceptance rates of tree proposal moves.

12, respectively. The 90% speedup is important for applications like the one considered

here, as it takes more than a day to simulate 1, 500 samples from the posterior using

SingleMachine. The result indicate the potential of the proposed method for reducing

computational costs while producing accurate predictions.

7 Discussion

The challenge of using MCMC algorithms to sample posterior distributions obtained from

a massive sample of observations is a serious one.

In this paper, we introduced a new method based on the idea of randomly dividing

the data into batches and drawing samples from each of the resulting sub-posteriors

independently and in parallel on different machines. We propose a novel way to define

the sub-posteriors and we develop a strategy to combine the samples produced by each

batch analysis for the important class of Bayesian Additive Regression Trees Models.

For this model, the proposed methodology performs very well and shows reduction in

computation time that are as high as 90%.

In future work we would like to find a procedure for combining the sub-posterior

samples that will make LISA easy to adapt to a wide variety of models. We also hope

that our paper will stimulate the research into this type of divide-and-conquer approaches

for Big Data MCMC and will expand the research on how to construct the batch-specific

sub-posteriors along with novel strategies of combining or weighting the samples obtained

from each batch analysis.
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