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Label Switch in Mixture Model and Relabeling Algorithm

Abstract

When MCMC is used to perform Bayesian analysis for mixture models, the so-call label switch
problem affects the clustering analysis. If the problem is not handled properly, the ergodic average
of the MCMC samples is not appropriate for the estimation of the parameters. In this paper, we
will review the Label Switch problem in mixture model, discuss and implement the re-labelling
algorithm suggested by Stephens. To illustrate the problem, we apply data augmentation Gaussian
Mixture Model to Galaxy data with different number of components.

Introduction

Cluster analysis in data mining is to classify the observed objects into disjoint groups. Mixture of
Gaussian models and Bayesian methods are popular tools to perform these kinds of analysis.
However, since the component from which a particular observation comes from is unknown and
the posterior distribution of Bayesian p(@I x) is difficult to directly estimate. To solve this
problem, a latent variable z is introduced for each observed data; z is an indicator variable
indicating component for each observed data; therefore, the posterior distribution p(&Ix) can
be obtained from p (6| x,z) by integrating out z. The model with latent variable is the data
augmentation model. The latent variable z for each observed data can help to perform the
estimation, but it also increases the number of dimension of the parameter space in the model. As
a result, it makes the quantity analysis very difficult. One possible solution for this issue is the
Marko Chain Monte Carlo (MCMC) simulation. In MCMC, the Gibber Sampler can draw samples
from the posterior distribution p(&I x,z) and the ergodic average can be used to estimate the
model parameters. When MCMC is applied to mixture model, the so-called label-switch problem
takes place during MCMC simulation. The label switch problem is caused by the invariance of the
likelihood function with respect to the permutation of the component labels. The Gibbs Sampler
mixes up its sample’s component labels when label switch happens. As a result, the ergodic
average is not appropriate for the parameter estimation. In this project, we will explore the label
switch problem in details. We first introduce the label switch problem and discuss its related
computational features; we also explore solutions to remove the label switch from the MCMC
samples: a random permutation MCMC algorithm suggested by Fruhwirth-Schnatter (2001b) and
re-labeling algorithm suggested by Stephens (2000b). In this paper, Finite Gaussian Mixture
Model and Gibber Sampler are used for problem illustration and Galaxy data is used as an

observed dataset. The Galaxy data obtained from: “http://www.stats.bris.ac.uk/~peter/mixdata”

consists of the velocities of 82 distant galaxies, and analyzed under different mixture models by
several authors including Escobar and West (1995) and Phillips and Smith (1996).


http://www.stats.bris.ac.uk/~peter/mixdata

In our previous project (the final project for course Monte Carlo Method), we have already
introduced the data augmentation Gaussian Mixture Model and its posterior distribution. The
conditional distributions for Gibbs Sampler and prior distribution are provided there too; therefore,

we do not repeat them here. They are included in Appendix A for reference.

The Label Switch Problem

When Bayesian approach is applied to parameter estimation and clustering analysis for mixture
models, the so-called label switch problem might occur. The problem is mainly caused by the
invariance of the likelihoods with respect to the permutations of the component labels in the
mixture model. As a consequence, during MCMC simulation, when the prior distributions are

exchangeable, the sampler encounters symmetries of the posterior distribution (MCMC label
switching). To illustrate the problem, let X = X, X,,...,X, be independent observations from a

mixture density with known finite k components, we have:

px17TO) =77 f(x;0) +...+ 7T f(x;O,)
where @, (i =1,...,k) is the parameter spaces for the ith component and 77(i =1,..., k) is

the weight parameter with constrain 77 >0 and ZT{ =1.
Let (A&1),...,Xk)) denote a permutation of the integers 1,...,k. and define

A7TO :(7—5(1) AAAAA %k)’ep(l) ,,,,, @p(k))-Then

775(1)f(X; @p(n) +... +77;7(k)f(x;ep(k))

rx1 A7)

Then the likelihood function for the n observed data is:

L@ = []px, 760) =[] p(x, IP(EO) = L(ATE ) )

That is the likelihood function is invariant with respect to permutations of the components.
The posterior distribution for MCMC is
x) = rUtQOx) _ p(x1 719 p(ITO)
p(x) p(x)
If the prior distribution is exchangeable, then (77 = p(AX77)) and the posterior
distribution p(720Ol x) = p(A 7T | x) therefore, during MCMC simulation, the sampler

might encounter a symmetries of the posterior distribution.

p(7T Ol

Label switch problem is crucial for Bayesian inference and computational issues (Martin et al).
During the MCMC simulation, the symmetries of the posterior distribution make the MCMC
samples carry little component label information. Therefore, the component labels are mixed up

and cannot be distinguished from each other. As a result, the marginal on the parameters for all



components is identical and the posterior expectation for the parameters is identical too.

Obviously, the identical posterior expectations are not appropriate for Bayesian inference any

more.
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Figure One: Gibbs Sampler for Galaxy data. We fitted four-component normal
mixture to the data. The black color is mul; red is mu2; green is mu3 and blue
is mu4. The parameters are mixed together for the components and the

histograms for mul, mu2 and mu3 are identical.

To demonstrate the label-switching problem, we implement the Gibbs Sampler on the galaxy data.
We fit the data in four-component Gaussian Mixture Model with same variance in each
component. In Figure one, label switches are clearly observed. They occur frequently among the
components. The symmetric modes in the posterior distribution are clear and the Sampler visits
most of the 4! (number of permutations) symmetric modes. The histograms of the first three
components are identical; their mean value is 20.6, 19.4 and 19.2 respectively. The last component

is different from the others; we explain it in the following paragraph.

Computational Features of Label Switch Problem

The label-switch problem in Bayesian analysis for mixture model is very clear from mathematical
point of view. However, during MCMC computation, the problem is not always as expected. Given

a mixture model with k components, there are & ! symmetric modes of the posterior distribution



due to the invariance of the likelihood with respect to the permutation of the component labels.
The MCMC sampler should switch from modes to modes between the iterations. If the Sampler
can thoroughly and evenly travel all the A! symmetric modes, the posterior expectation for each
component parameters should be identical. This feature provides a useful convergence diagnostic
at the simulation stage: the failure to visit the identical posterior expectations reveals that the

MCMC sampler has not converged (Jasra, Holmes & Stephens).

However, the value of k! is very large as k increase and the posterior distribution surface is a very
high multimodal space. It is hard for the regular Markov Chain Monte Carlo sampler to thoroughly
and evenly explore the high multimodal distribution surface. The MCMC Sampler might be
trapped into local modes and require an enormous number of iterations to escape from (Marin,
Mengersen & Robert). When the Sampler fails to thoroughly and evenly explore the distribution
surface, the unbalanced label switch takes place. According to Sylvia Fruhwirth-Schnatter, the un-
balanced label switch will cause a very poor estimate in estimating the marginal density from the
MCMC draws and the results might be very different from different runs of the MCMC sampler
(Fruhwirth-Schnatter).

From our computational experiments, we observe two unbalanced label switch cases. In the first
case, label switches only occur among some of component labels or label switches do not take
place evenly among the components. For example, in Figure one, the fourth component is different
from the other three because the Sampler fails to evenly visit all the modes. As another example to
show the unbalanced label switch, we implement the Gibber Sampler to fit the Galaxy data using
four-component Gaussian Mixture Model with different variance. From the figure two (a), we can
observer that if there are only 2000 iterations in MCMC sampling, we can observe that the label
switch happens between the red line and the blue line; but no label switch happens between the
green line and the black line. In figure two (b), if there 20000 iterations in MCMC sampling, we
can see the label switch happen a lot among the components parameters; but the MCMC sampler
still fails to thoroughly and evenly travel all sample space in 4! modes, i.e.: most of the time, the
green line stays near the value of 10 and occasionally travels to the value near 20; for a balanced
label switch, the green line should travel almost the same number of times around the values near
10, 20, 21 and 30 and so do the other lines.
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Figure Two (a): Gibbs Sampler for Galaxy data with 2000 iterations. We fitted
four-component Gaussian Mixture Model with different variance. No label

switches for green line and black line
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Figure Two (b): Gibbs Sampler for Galaxy data with 20000 iterations. We
fitted four-component Gaussian Mixture Model with different variance. Label

switches do not happen evenly for all the lines
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Figure Two (c): Gibbs Sampler for Galaxy data with 2000 iterations. We fitted
three-component Gaussian Mixture Model with different variance. No label

switches happen at all

Another case in unbalanced label switch is the label switches do not occur at all during the
MCMC sampling. Under this case, the sampler might have a good performance in the sense that it
has picked out the means from the data; but this good performance cannot be trusted because we
can not guarantee no label-switching happened all the time. Especially, if the Sampler is run with
enough iterations, we might see another symmetric mode (Jasra, Holmes & Stephens). This case
can be clearly shown when we fit the Galaxy data in three components with different variance. In
figure two (c), we do not see any label switch happen and the sampler performs very well in
predicting the mean value of each components. However, the sampler only visits one of the 3!

modes.

To provide more examples for unbalance label switch, we enlarge k to six and fit the Galaxy data
with same variance for all components. From Figure three (a, b), we only observe label switching
behaviours in components 1, 2, 3 and 5 but not in component 4 and 6. The histograms for

components 1, 2, 3, and 5 differ from histogram for components 4 and 6 too. The Gibbs Sampler



fails to thoroughly travel the posterior distribution surface. As a consequence, the MCMC can not

provide the right estimations.
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Figure Three (a): Gibbs Sampler for Galaxy data. We fitted six-component

normal mixture to the data. The label switching behavior is found in 1,2,3 and

5 components parameters but not found in 4 and 6 components
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Figure Two (b): Gibbs Sampler for Galaxy data.

We fitted six-component



normal mixture to the data. The histograms for 1,2,3 and 5 components

parameters differs from those of 4 and 6 components
Theoretically, the balanced label switch can be guaranteed if there are infinite iterations in the
MCMC sampler; obviously, it is impossible for computation. In data augmentation model, the
unbalance label switch is more common because the latent variable Z; dramatically increase the

dimensions of the posterior distribution. It is harder for a Sampler to visit all these dimensions.

Solutions for Label Switching Problem

Based on the above understanding, two issues should be addressed when applying MCMC
simulation for Bayesian inference in mixture models. First, the MCMC sampler should be
guaranteed to thoroughly and evenly travel all the A! symmetric modes in the posterior
distribution surface to avoid the unbalanced label switches. Secondly, remove label switches from

the raw MCMC samples; that is: relabeling the components.

Random Permutation MCMC sampling (for the first issue: unbalanced label switching)

Fruhwirth-Schnatter suggests a Random Permutation MCMC sampler to solve the unbalanced
label switching issue (Fruhwirth Schnatter, 2001b.) The algorithm is simple but efficient. It

randomly draws one of A! permutation label order and applies this label order to substitute the
current MCMC sample’s component order. For example, let (&,..., &) is the current
parameter sample from Gibbs Sampler and ( £X1),..., £Xk)) is the drawn permutation order of
the labels, then substitute the (&,..., &) by (6, s---» E,,) (Fruhwirth Schnatter,
2001b.). When k is large, the algorithm performs the exchanges of the labels with high probability
(1 —% ). This guarantees all the k! modes being fully explored. Fruhwirth Schnatter has

more discussions about theoretical properties of permutation sampling (Fruhwirth Schnatter
2001b). Figure four shows the Random Permutation samples thoroughly travel the A ! modes for

the galaxy data with six components.
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Figure Four: The Random Permutation Sampler is implemented for Galaxy data and the
balanced label switching is guaranteed. The densities for each component parameter are

identical (with mean value around 19.8)

A relabeling algorithm (for the second issue: label switching)

Sperrin, Jaki and Wit summary three kinds of strategies to re-label the MCMC samples so that the
affect of label-switching can be removed (2009). The first and the easiest one is identifiability
constraint. A constraint is imposed to the parameter space so that only one of specific permutation

order for the samples satisfies it. For example, a possible constraint can be set as:
H <L, <[L...< [ . Although the identifiability constraint is simple, sometimes, it is not easy
to find a proper constraint; for instance, in high dimension cases, it is hard to find a way to define
H <L, <[...< [ . Moreover, many choices of identifiability constraint will be ineffective in

removing the symmetry in the posterior distribution, and when the constraint is inappropriate,
label-switching problem may remain after imposing an identifiability constraint (Stephens 1997).
The second strategy is the deterministic relabeling algorithm which re-labels each sample in the
MCMC output so that the expectation of the pre-defined loss function can be minimized. The third
one is probabilistic approaches which recognize the uncertainty during the component relabeling
for each MCMC output sample. In this paper, we will discuss the deterministic relabeling

algorithm and implement a loss function suggested by Stephens.

When applying MCMC samplers in mixture models, the main problem is the likelihood is



invariant under all permutations of the parameters. Stephens (2000) suggests a relabeling
algorithm to solve the problem. According to Stephens, a loss function is defined on actions and
real parameters; that is: F : AX® - R. A single action & is chosen to handle the MCMC
outcome samples so that the defined loss function can be minimized. The meaning of £ (X, B
is the loss when the action & is chosen to manipulate the samples given the true parameter value

&. What’s more, the chosen action and the defined loss function should be invariant under each
permutation of the parameter samples. Therefore, the basic relabeling algorithm is:

Step 1: Given the observed data x, choosing the action ¢ which minimize the posterior expected
loss: [(a) =E{F (a;0)| x} and

Step 2: For each MCMC outcome sample 6,F (a;0) :nlvin{F 0 (a;V(Q))}, where

v( B is the permutation of &.
In step 1, given the MCMC outcome samples, the posterior expected loss can be estimated by the
Monte Carlo Risk; that is

|
GV | , where N is the number of samples in MCMC outcomes (after burn-in)
|

Bl

The above two steps are iterated until the permutation for each samples in MCMC converged into
a fixed point. According to Stephens, the algorithm is guaranteed to convergence because there are
only finite numbers of permutation for each MCMC sample and [ is decreased in each iteration
(Stephens, 2000).

For the K components cluster analysis in mixture model, a natural way to choose the action is to
define a matrix Q = (q,j) where ¢,; represents the probability that observation i is assigned to
group j (so each row sums to 1) (Stephens, 2000). Therefore, Q can be interpreted as a distribution

on k-component clustering of the data.

A classification probability matrix P( &) is defined as:
TLf(x;14;58)
> TS (i, )

P(6) can be considered as the true probability distribution on the clusters given X, 7T LL.S ;

p;(0)=Pr(z, = jlx,mu,S)=

therefore, the loss function can be defined as the Kullback-Libler distance from the distribution P



to the distribution Q (Stephens, 2000). That is:

k& 1 (@)..p,. (B) & & (0
LO(Q;Q):Z...ZplZI(B)...pnzn(B)logp“'; ) 5 ¢ ):ZZpU(B)logp ©

Therefore, Stephens’ relabeling algorithm for cluster analysis in K-component mixture models is

as followings:
Set V,,...,V, to the identity permutation; iterate the following two steps until a fixed point is
reached.

[Step 1] Choose O = (g;) to minimize

N ([)
Zzzpy(v(em)l PU(( )

= ij

Actually, this is achieved by
1 N
Gy =~ py(,(8")
N &

[Step 2] For t=1,...,N choose V, to minimize

n k ([)
S5 0,0, )log 1T

=T A q;
When k is small, this can be easily achieved by examining all k! possibilities for each v,

(Stephens, 2000).

Running Time of the Re-labelling Algorithm

The relabeling algorithm can effectively solve the label switch problem. However, the running
time for the algorithm is O(T * N *(k!)* M) which is exponential of the value K. T is the
number of iterations before a fixed permutation point is reached for each sample. N is number of
observations and M is the number of MCMC samples. Both N and M significantly affect the

running time when they are large. K is the number of components; according to Sterling’s
o _ P Lo L . .
approximation, k!=~/27& (k/e)" which is exponential in running time. Therefore, when

implementing the relabeling algorithm, we need to find a way to reduce the running time. One way

we tried is as following:

1) Randomly select 2000 samples from the M samples when M is very large and run the
relabeling algorithm on the 2000 samples only.

2) Pre-compute the P matrix for all the 2000 samples on all K! permutations and save the
results into the memory; therefore, in each iteration, it is not necessary to re-compute the

P matrix. The access to the data structure (i.e.: array) in memory is only O(1).



Obviously, step two is only a trade-off between the memory space and the running time. When K
is large, we will run out of the memory quickly. However, the method is quite effective when we
implement the Galaxy data with four components. We get the result very quickly (in half an hour).
When K is large, Stephens suggests a way to convert the problem into integer programming

problem for which efficient algorithm exist. (Stephens, 2009)

Implementation of relabeling algorithm for Galaxy Data

We implemented the relabeling algorithm for the Galaxy data. We apply the Gaussian Mixture
Model with four components to fit the data. Before the relabeling algorithm, Random Permutation
MCMC algorithm is applied to the samples and 2000 samples are randomly selected for the
implementation of relabeling algorithm. Figure Five is the samples after running the re-labelling
algorithm. We can see that the re-labelling algorithm successfully re-labels the mixed parameter
samples and the label-switch disappears from the plot. The estimated value for the mean value of
each component is: 9.725554, 19.21909, 22.23947 and 32.56761 respectively. They are correctly
estimated by the algorithm. In our example, it only takes four iterations for all the samples
converging to their fixed permutation point. In our implementation, the total running time is about

30 minutes.
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Figure Five: The results of re-labeling algorithm run on the samples from Random
Permutation MCMC Sampler. All the label switches are removed and the posterior
expectations provide good estimations for the component parameters. This one is run on

Galaxy data with four components.

Implementation of relabeling algorithm for Synthetic Data

Besides the Galaxy data, we run the algorithm for a synthesis data as well. We simulated 50 data

points from the four-component Gaussian Mixture model suggested by Jasra, Holmes and
Stephens (2005) :



x, =0.25N(-3,0.55%) +0.25N(0,0.55*) +0.25N(3,0.55%) +0.25N(0.55%) .

Figure six (a) is the raw data from the Gibbs Sampler with 20000 iterations. We observe no label
switch taken place and the sampler performs perfectly in the sense that the mean value of each
component is well estimated. Such as Jasra, Holmes and Stephens point out, the good performance

cannot be trusted and the sampler is not stable for the runs (Jasra, Holmes and Stephens).
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Figure Six (a): Raw MCMC samples for synthesis data with 4 components in Gaussian

Mixture model. No label switches occur.
We apply the Random Permutation MCMC algorithm for the data to force the balance label
switch. From the figure six (b), we see the balance label switch. The Sampler smoothly goes

through all the 24 (4!) modes in the posterior distribution. We get the estimates of 1.717891,
1.586022, 1.728616 and 1.628728 for each component respectively; they are identical each other.
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Figure Six (b): Random Permutation MCMC samples for synthesis data with 4 components
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in Gaussian Mixture model. The Sampler thoroughly and evenly visits all the posterior

distribution space. The samples mix up the component labels.

Based on the samples from Random Permutation MCMC, we randomly draw 2000 samples to run
the re-labelling algorithm. From the figure, we see the algorithm correctly re-label the samples.
The estimate for each component is: -3.173219, -0.2285065, 3.254033 and 6.238465. It takes three
iterations for all the samples convergent to its fixed permutation point. The running time for this

example is about 20 minutes.
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Figure Six (c): The relabeling algorithm successfully removes the label switches from the
Random Permutation MCMC samples in (b) and the ergodic averages provide good

estimations for component parameters.

Relabeling algorithm for component with high dimensions

This part is included in “Relabelling Algorithm in High Dimension”.

Summary and Future Study

In this paper, we explore the so-called label switch problem in details. The problem is caused by
the invariance of the likelihood function to the permutation of the labels for the components in
mixture models and thus the Bayesian and MCMC approach is affected. We also discuss the
unbalanced label switch -- the computational features of the label switch problem. To remove the
unbalance and balance label switch, the Random Permutation MCMC algorithm and re-labelling
algorithm are discussed. The re-labelling algorithm is to define a loss function and find a way to
re-label the samples so that the loss function is minimized. For illustration, we implement the
algorithms for Galaxy data and the simulated data using data augmentation Gaussian Mixture
Models. The results for both data sets look good and re-labelling algorithm successfully remove

the label switches from the samples.

Currently, some authors (Jasra) introduce the probabilistic approaches to the re-labelling
algorithm. The basic idea of the probabilistic approaches is to introduce the uncertainty in
selecting the labels on each iteration of the MCMC output (Sperrin, Jaki and Wit, 2009). The EM
(Expectation-Maximization) algorithm is used to implement the probabilistic relabeling and the
missing data in EM algorithm is the order of the components at each iteration of the MCMC
(Sperrin, Jaki and Wit, 2009). The probabilistic relabeling is attractive because the uncertainty in
relabeling is recognized and under the control while the deterministic relabeling ignores those

uncertainty. For the future study, we will explore these topics in details.
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Appendix A: the Gaussian mixture model and its Gibbs Sampler

Introduction

In this paper, we first will give a Gibbs sampler for a mixture normal model with known
components by introducing a latent indicator variable and posing Dirichlet and Wishart priors to
our estimate parameters accordingly. After that, we will discuss "label-switch" problem, and
describe a relabelling algorithm. Also a realization of the modified algorithm will be given. In the

discussion, we will give a new proposal to this kind of questions.

Gibbs Sampler

Let X;,...,X, (each X; is a p-vector) be a random sample from a mixture of normals, i.e.

K
p(xlu,7,8)=Y mdN(x|p,.S) (1)
i=1

where dN(x|/,S) denote the density function of multivariate normal with mean M and

variance-covariance matrix S. K is the number of components(fixed and known).

K
u=,.... 1) and 7 =(7,,... 7). 7, 20,i=1,..., K and Zﬂ'i =1.
i=1

We want to write down the likelihood function for this sample. However, since we do not know the

component from which a particular observation X; comes from, we need to introduce, for each
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observation X, , an indicator variable z, with P(z; = j) = 7r; foralli=1,...n and j=1,....K. Then

the likelihood function can be written as:

p(xlz,,U,S)=IEIHdN(xi lu;,S)

j=1 el
where x =(x,,...,X,), 2=(Z;,-.,2,), Ij ={i:z;=j,i=1..,n}de. IJ- counts the number of

observations that come from component j). 7] ; is the number of elements in

IiGen; =) 1))
i=1

We put priorson T, d =S, and # respectively:

The prior distribution of T = (7,,..., ;) is a Dirichlet distribution with parameter

K

1
= (Noys-+sTox ) = Sz (T 175) = AL
Mo =Ty, Mok 0 B(UO)H

i=1

here we do not need to bother with B(7),) since it is just a normalizing constant.

The prior distribution of @ = §~' is a Wishart distribution with parameter V, (df) and VO_ICIDO :

Vo—p-1

I[Pl 2 e

7%tmce(v0<1>071<1>)

fo(@Ivy,v, '@, =

VoP v,

22 lv,'®, I T, ("50)
The prior distribution for each 4, is a multivariate normal with known mean K, and
variance-covariance matrix V.
Given 7, z has a multinomial distribution zl7x ~ M (K, 7).

Now, we are ready to write down the joint density of (7,z,1,S)"

f(7,z,1,®) = fn(ﬁlno)ﬁ(zlﬂ)HdN(,uj NNV C IR ] B | B EAUCAVTIR )

j=l iel;
K K
K IS WPl e ) _%Z(ﬂj_#j())rv.i&l(:uj_lujo) n ;g(x,—yj)%mi—yj)
=C([J="H[]x" 0@l 2 e? )e PP (e )
i=1 i=1

We shall use Gibbs sampler to sample from the above density. So we next
compute the conditional distribution of each parameter given the current
value of all others.



A. condition distribution of T

K K
Mo; 1 nj

f(ﬂ.’ z,,u,d)) (I;Iﬂl )(I:l[ﬂ:l ) £ To;+1; -1
f(ﬂlz’ﬂaé): = > . _C TT. g

f(z,lu,q)) I(ﬁﬂiUOi_l)(ﬁﬂinj )dﬂ' i=1

So the conditional distribution of 7 is again Dirichlet with parameter 7],+7], where

Mo = Myys--Moi) and N =(1,,....,7) .

B. Conditional distribution of @

K
Vo—p-l _ln-aCE(Vo@oﬂCI)) 2 Z]';(Xi_”j)rqxx’._#j)
j=liel ;
F@lepmy L EBLh®) (P12 e )PP (e )
) B - - K
f(Z, ﬂ’ 72:) Yo=p-l —ltmce(VUQUﬂ'fD) 2 ;;(X[ o )TQ(Xi_ﬂj)
I(ICIDI 2 g2 YD (e )dd
1 1 & T
votn-p=l  —trace{lvo®y ' +Y Y (o=t —)" 10}
=Cl®d| %2 e L

(here, we use the fact:

(x[ _‘uj)Tq)(xi —,uj.)=trace{(xi —‘uj)TCI)(xi _,uj)}:trace{(x,' _.uj)(x,' _/Jj)Tq)})

So the conditional distribution of & is again Wishart with parameter V, =V, +n and
1 R .
- - T
v, @, =v,®, +Zz(xi_ﬂj)(xi_uj)

j=liel;

C. Condition distribution of H#
For eachjin {1,...,K}

1 _
5{(#,-—#,0)7 Vi (y=t0)+ Y (=) @ O=p1))}

f(ﬂ‘-’ Z’;Lta (b) e =
f(ﬂjlz?q)’ﬂ:): = )
f(n., Ly ,u(j) ’ (I)) E{(ﬂj_ﬂjO)TV/07] (ﬂ;‘ﬂ,‘o)"‘z("i_“j )T‘P(Xl_ﬂ/)}
je (Elj du/

We can see that the conditional distribution of H; is again Gaussian. To identify its mean and

variance, we set ,Llj ~ N(lujl’vjl) , then we have:
—1 -1 -1 -1
le = VjO +1]j(I> , SO le = (VjO +T]jCI>)

Hj = le[cI)(Z x;) +Vj0_]luj0]

iel;
D. Conditional distribution of z
The conditional distribution of z is a little bit tricky since z does not explicitly appear in the joint

density.



P(z; = j, 24, %)
P(z;),x)

P(z, = jlx, 2, 0, T, P)=P(z, = jlx,2,) =

P(Z,- = jaZ(i)7x) P(Z(i)’x(i)) _CP(Zi = j’z(i)’x)
P(zg,x;)  P(z;),x) Pz, %)

:CP(Z,’ =,j|Z(i)’x(i))P(xi | ;= j,Z(i),x(i)):CP(Zi = ])P(xl |Zi = j’Z(i)’x(i))
=Cm,P(x; 12, = J, 24,5 X))

where P(X, 12, = o240 %) = [ P0G 12, = 200 X AP 2, %, )

= [PCx, 12, = o WP 1 2 % )t X T [ PO 1 20 %0 )bty

k#j

= J.P(x,. V2, = J, )P 1 2, X )d

= [dN (x| 1, P(; 1 2%,

By similar derivation as in part C, we know that:

Pz, %)) =dN QL .V )

(nj!iq).kvjofl)*', M= jll[¢(le)+vo Mol and

lel;;

where V,

I,={l:2,= jle{lL.n\{i}}. 7, issize of I ;.

So

(3,12, = o2y %,) = [ AN, Lt SN, 11,V )dpt, = AN, LV + @7
So

P(z; = j1x,24, 4,7, P) = Cr,dN (x; | +o™)

jLi? Jll

Given the above derivation, we are ready to write a Gibbs sampler algorithm to sample from the

posterior distribution of (7, S, i, 7) .



