OPTIMAL METROPOLIS SCALING: PREVIOUS PROOFS AND POSSIBLE GENERALIZATIONS

L'EMIR OMAR CHEHAB @ UNIVERSITY OF TORONTO, UNDER PROF. ROSENTHAL HOME SUPERVISOR: PROF. RUSSO, ENSTA PARISTECH

ON MCMC ALGORITHMS

- THE SAMPLING PROBLEM
- APPLICATIONS

OUR CASE STUDY: THE RWM

MCMC framework: RWM, MALA, HMC...

A SIMPLE APPROACH: THE LEAPFROG DIAGRAM

"We start somewhere in the state space, jump randomly in a certain perimeter defined by a proposal distribution, look at the new state we obtain, and decide to move to it with a probability describing how closer this new position is to a 'high-density zone' of the target distribution."

"In conclusion, we start somewhere and randomly explore the state space in directions of higher density of target distribution we wish to emulate."

THE LITERATURE ON OPTIMALITY

- iid target distribution: Roberts, Gelman, Gilks
- i -not i- d target distribution: Bédard, Rosenthal
- infinite-dimensional target distribution: Stuart, Mattingly, Pillai
- Toward a more general target distribution? Why? How?
- Relevance of the original paper in understanding subsequent research

RGG'S PROOF: THE LARGE SCHEME

- Discrete Markov Chain ------- Time-Space Rescaling -----> Continuous Langevin Dynamic
- Ethier and Kurtz: Stochastic processes, Skorokhod CV

$$\iff$$

Generators --- LI CV

- Gross points: Taylor expansions...
- Finer points: equivalency in... the Skhorokhod topology
 - ... of deterministic (linear) and stochastic (Poisson-process) acceleration
 - ... by time-elasticity of the topology

IN PRACTICE

■ TUNING: the SIGMA-JUMP for a 0.234 ACCEPTANCE RATE

(a) Proposal variance too large

(b) Proposal variance too small

(b) Proposal variance approximately optimised

From Roberts and Rosenthal, 2001

ACKNOWLEDGEMENTS

- PROF. JEFF ROSENTHAL @ U of T
- PROF. MYLENE BEDARD @ U de Montréal
- Fellow grads @ U of T
- PROF. FRANCESCO RUSSO @ ENSTA ParisTech