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Abstract

A group of privately informed individuals with common interests chooses a bi-

nary option. Each individual chooses whether to reveal her signal, at a cost. If the

group is large and cannot commit to a decision rule then it takes the correct de-

cision with high probability in one state but with probability bounded away from

one in the other. It cannot do better by committing to an anonymous decision rule

without transfers, but can achieve the first best if transfers between individuals are

possible, and can approximately achieve the first best with a non-anonymous deci-

sion rule.

1. Introduction

The job applicant has been grilled, her skills tested, her employment history scruti-

nized, her references interrogated. Her interviewers have reached various conclusions.

Awkwardly polite dinner conversation has led the participants to disparate inferences

about her potential devotion to the company’s philosophy. Now everyone has to decide
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whether it is worthwhile to explain their assessments to the personnel manager, perhaps

in a meeting or perhaps in a private conversation, depending on the company’s proto-

col. Everyone agrees on the quality bar that should be used to determine whether the

applicant is hired; they differ only in the “signals” they have received, and the manager’s

role is merely aggregative. The manager’s decision will be based on all the information

available, including not only the signals revealed but also the number of employees who

do not reveal signals.

Independent scientists have conducted research on the impact of a public policy.

Each of them has to decide whether to engage in the costly enterprise of explaining

her research to policy-makers, motivated only by the impact of doing so (or not) on

the chosen policy; they all agree on the right policy conditional on the unknown facts.

An enlightened government bases its decision on the research communicated and its

inference about the results of the research that was not communicated.

Each member of a community has absorbed a variety of information about the effect

of a local policy. Now each of them has to decide whether to exert the effort necessary

to speak at a local council meeting to make her assessment of the evidence known. Ev-

eryone agrees on the best policy given the facts. The council will make a decision based

on the assessments revealed and the inference drawn from others’ choices not to reveal

their assessments.

In each case, if the decision-maker cannot commit to a mechanism, what type of

information do the agents reveal? How well is information aggregated? If the decision-

maker can commit to a mechanism, which one is best? Can higher welfare be achieved

when the decision-maker can commit to a mechanism than when she cannot?

Model We study a simple model designed to answer these questions. Two states of

the world are possible, 0 and 1. Each member of a group of n people, whom we call

agents, has the same prior belief about the probability of each state and observes the

realization of a private signal, a number between 0 and 1 whose distribution depends on

the state. Conditional on the state, the realizations of the signals are independent across

agents. The probability density f 0 of the signal in state 0 is decreasing in the signal and

the density f 1 in state 1 is increasing in the signal, as in Figure 1, so that the receipt of

a small signal provides relatively strong evidence of state 0 and the receipt of a large
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t → 10

f 0(t ) f 1(t )

Figure 1. An example of the probability densities of each agent’s signal, t . In state s , the density of each
agent’s signal is f s .

one provides relatively strong evidence of state 1. Having observed a signal, each agent

decides whether, at the cost c , to reveal it. These decisions are made simultaneously. A

moderator observes the signals that are revealed and the set of agents who do not reveal

signals, and chooses one of two options. Everyone agrees that option 0 is best if the

state is 0 and option 1 is best if the state is 1. The payoff of each agent is 1 if the option

matches the state and she does not reveal a signal and 1− c if she does; otherwise, her

payoff is 0 if she does not reveal a signal and −c if she does.1

We start by assuming that the moderator chooses an option that maximizes the com-

mon expected payoff given her belief about the state, which depends on her informa-

tion, namely the signals that are revealed and the set of agents who do not reveal signals.

(She makes her decision after the signals are revealed, when the costs of revelation have

been borne, so the payoff she maximizes does not include these costs.) Subsequently

we ask whether the moderator can do better if she can impose transfers among agents

(Section 5.1) or if she can commit to a decision rule that, for some collections of signals,

specifies an option that is not optimal (Section 5.2). We divide the latter case according

to whether or not the moderator must treat all agents symmetrically.

Results We restrict attention to symmetric equilibria, in which the set of signals each

agent reveals is the same. We show (Proposition 1) that the common strategy of the

1Note that we do not allow agents to misreport their signals. Given that the agents have common
interests, if the moderator interprets their reports as truthful then no agent would have an incentive to
misreport if she could. Thus every equilibrium of the game we study would remain an equilibrium if
reports were “cheap talk” (but additional equilibria might exist).
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agents in every such equilibrium has a threshold form: either there is a signal x > 0 such

that the set of signals revealed is [0,x ], or there is a signal x such that the set of signals

revealed is [x , 1], or there are signals x > 0 and x > 0 with x > x such that the set of signals

revealed is [0,x ]∪[x ,1]. We refer to an equilibrium of the first two types as one-sided and

to one of the last type as two-sided.

The structure of the set of equilibria is complex, even with only two agents. Our main

results concern properties of the equilibria when the number of agents is large.

In equilibrium, an agent reveals a signal only if doing so improves the moderator’s

decision enough to compensate for the cost of revelation. When the number of agents is

large, some agents are likely to receive extreme, highly informative signals. Thus the rev-

elation of a moderate signal is likely to have little effect on the decision. Consequently,

when the number of agents is large, the thresholds in any symmetric equilibrium are

close to 0 and 1: only extreme signals are revealed (Lemma 1). Further, the expected

number of agents who reveal signals is bounded, regardless of the size of the group: if

many signals are revealed, the improvement in the quality of the decision when another

signal is revealed is slight, even if that signal is very informative, and is insufficient to

compensate for the cost of revelation (Lemma 3).

When the number of agents is sufficiently large, the game has no two-sided equilib-

rium. To understand why, consider the possibility of a two-sided equilibrium in which

the moderator chooses option 0 if no signal is revealed. Since the equilibrium expected

number of agents revealing signals close to 1 is bounded in state 1, and is much lower

in state 0, it is likely that no such signals occur in state 0. Thus the moderator is likely to

make the correct decision in state 0 even if no signal close to 0 is revealed, implying that

revealing low signals is not optimal. This logic is formalized in Proposition 2.

When the number of agents is large, the game has two equilibria, one in which the

moderator chooses option 0 if no signal is revealed, and one in which she chooses op-

tion 1 in this case. Each agent’s ex ante expected payoff is higher in the former equi-

librium than in the latter if and only if the prior probability of state 0 exceeds 1
2

. In the

former equilibrium, the probability that the moderator chooses the right option is close

to 1 when the state is 0, and close to 1− c when the state is 1 (Proposition 3); informa-

tion is perfectly aggregated in state 0, but the costliness of revelation inhibits perfect

aggregation in state 1. If the probability of the moderator’s choosing option 1 in state 1
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were higher than 1−c , then for a large enough number of agents, this probability would

remain higher than 1− c were a given agent to switch from revealing to not revealing

her signal, regardless of the signal. Thus her revealing her signal would increase the

probability of a correct decision by less than c , making revelation of a signal in favor of

state 1 suboptimal. We conclude that erroneous decisions must occur with probability

at least c in one of the states for agents to reveal signals in favor of that state. Thus for at

least one state, 1− c is an upper bound—in the limit as the number of agents increases

without bound—on the probability of a correct decision in that state.

When the number of agents is large, the agents collectively have almost perfect in-

formation. The game in which each of them individually has perfect information (that

is, the signals are perfectly informative) has a symmetric mixed strategy equilibrium in

which the correct decision is made with probability 1 in one state and with probability

1− c in the other (as well as asymmetric pure strategy equilibria in which exactly one

agent reveals her signal). If this symmetric equilibrium is regarded as the relevant ana-

logue of the equilibrium in our model, then our result can be interpreted as saying that

when information is dispersed and signal qualities differ, the probability of the correct

decision’s being made in the state in which information is not perfectly aggregated is the

same as it is when every agent’s signal is perfect.

The logic that 1− c is an upper bound on the probability of the correct decision in

one of the states applies to more general mechanisms. Suppose that rather than being

bound to choose an option that maximizes the common expected payoff given her be-

lief, the moderator can commit to a decision rule that, for some sets of revealed signals,

chooses the suboptimal option. Consider an agent who reveals some signals. For her

to be willing to do so, if she does not reveal a signal then the moderator must choose

the wrong option with probability at least c in at least one state. If she does reveal her

signal, her expected payoff is at most 1 − c . Thus, regardless of her action, in at least

one state her payoff is at most 1− c . Hence when the number of agents is large, the ex

ante expected payoff of an agent who reveals some signal is at most the larger of her ex

ante expected payoffs in the two equilibria of the game in which the moderator does not

commit to a decision rule. If the moderator is restricted to anonymous decision rules, in

which the selected option depends only on the set of revealed signals, not which agent

revealed which signal, this implies that no agent can do better than in the game without
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commitment, and the likelihood that the moderator makes a correct decision cannot be

increased (Corollary 1).

In contrast, average payoffs arbitrarily close to 1 can be attained if the moderator can

use decision rules that discriminate among the agents, or if the mechanism can include

transfers. For example, the moderator can select k agents and commit to choose the

optimal option according to their signals if they all reveal signals, and the suboptimal

option if any of them does not reveal a signal, ignoring any signals revealed by other

agents. If k is large enough, the option chosen by this rule is almost certainly correct if

all k agents reveal signals and is almost certainly incorrect otherwise. Thus all k agents

optimally reveal their signals and the remaining agents do not. The number k that is

sufficiently large is independent of the total number of agents, so for a total number

large enough, the agents’ average expected payoffs are arbitrarily close to 1.

With transfers, the first-best outcome can be implemented, regardless of the number

of agents. We show (Lemma 10) that the first-best strategy profile is an equilibrium of the

game in which the revelation cost is c/n (rather than c ) and construct, in Proposition 4,

a budget-balanced tax-subsidy scheme that realizes this cost. The scheme taxes those

who do not reveal signals and subsidizes those who do so that the net cost of revelation

is exactly c/n .

For the hiring decision in our first example, the manager’s control over the agents’

salaries makes transfers possible, so that our results imply that the first-best outcome,

with the optimal amount of information revelation, can be achieved.

In the other two examples, in which scientists choose whether to explain their re-

search to policy makers and residents choose whether to attend a meeting about a local

policy, transfers appear to be more difficult to implement. Thus our results imply that

if we want to treat individuals symmetrically, no advantage is to be gained from com-

mitting to a scheme to incentivize scientists to write op-eds on public policy or to one

that induces residents to attend local council meetings. Rather, a decision maker should

simply act optimally given the signals revealed.

Related ideas In our model without commitment, an agent’s revealing her signal can-

not make the outcome worse, because the moderator chooses the best option given the

signals revealed. The only reason for an agent not to reveal her signal is the cost of doing

6



Coarse reporting Full reporting

No cost
Feddersen and Pesendorfer (1996, 1997)
Duggan and Martinelli (2001)
McMurray (2013, 2017a,b)

Coughlan (2000)

Interim cost
Krishna and Morgan (2012)
Lohmann (1993, 1994), Battaglini (2017)

This paper

Ex ante cost
Martinelli (2006, 2007)
Persico (2004)

Li (2001)
Gerardi and Yariv (2008)

Table 1. Related literature can be broadly divided along two dimensions. The first dimension pertains
to whether agents incur a cost, and if so, whether they do so at the ex ante stage—before observing
their signals—or the interim stage—after observing their signals. The second dimension pertains to
whether agents report all of their information or only a coarsening thereof (in the form of a binary vote or
“protest”).

so; if this cost is zero, then an agent optimally reveals every signal, as in Coughlan (2000).

If the choice for an agent is not whether to reveal her signal x , but rather whether to re-

veal some coarser information g (x ), then her calculation has another ingredient: given

what she knows about the process generating the other agents’ signals, and hence the

signals they are likely to reveal, revealing g (x ) may make the outcome worse. Thus if,

for example, each agent is limited to casting a vote, as in the model of Feddersen and

Pesendorfer (1996, 1997), then even if voting is costless she may be better off abstaining

if she is poorly informed about the state. The models of this type that come closest to

ours may be those of McMurray (2013, 2017a,b), in which the qualities of agents’ infor-

mation are drawn from a continuous distribution, and in equilibrium each agent votes

for an option if her posterior belief that the state matches that option is high enough.

In Feddersen and Pesendorfer’s model, the fact that voting is costless leads to full in-

formation aggregation even though agents can reveal only coarsenings of their signals.

This result survives if voting is costly and each voter’s cost is drawn independently from

a distribution with support [0, c ] for some c > 0 (Krishna and Morgan, 2012). In a variant

of their model in which every voter has the same cost c > 0, our result implies that infor-

mation aggregation fails: even though the agents in our model report their full signals,

the equilibrium for a large number of agents can be replicated with a majority vote.2

2We conjecture that if the costs in Krishna and Morgan’s model are drawn independently from a distri-
bution with support [c , c ] with c > 0, then the results as n grows large approximate our results for a cost
of c .
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In these models, the decision rule—majority voting—is fixed. Suppose instead, as

we assume initially, that the moderator cannot commit to a decision rule, but rather

chooses the best option given the signals revealed. Maintain the assumption in the vot-

ing models, however, that the moderator observes only a coarsening of the agents’ sig-

nals, not the signals themselves. Then intuition suggests that if revelation is costless,

information will be perfectly aggregated in a large population. Battaglini (2017) studies

a variant of such a model in which the moderator’s preferences differ from those of the

agents and the agents’ actions (“protests”) may be costly. If the difference between the

preferences is large enough, information aggregation is inhibited.3

Another strand of work examines the costly acquisition of information prior to

coarse reporting through voting (Martinelli 2006, 2007, Persico 2004) or full reporting

through deliberation (Li 2001, Gerardi and Yariv 2008). Given that with common in-

terests each agent’s sincerely reporting her information is optimal, one can think of

these models as involving a decision at the ex ante stage—before observing the signal

realization—of whether to pay the cost of reporting (or, in the case of voting, condition-

ing one’s vote on one’s signal). Of these papers, Li (2001) and Gerardi and Yariv (2008) are

the closest to our work. As in those papers, agents in our model have an incentive to free-

ride. This incentive leads to underreporting relative to the average-payoff maximizing

symmetric strategy profile, which can be mitigated by committing to an appropriately

designed decision rule.

Models in which information is costly to disclose go back at least to Jovanovic (1982)

and Verrecchia (1983). More recently, Kartik, Lee, and Suen (2017) study strategic in-

teraction among multiple senders with disclosure costs. This line of work focuses on

environments in which senders seek to move the receiver’s beliefs in a particular direc-

tion, whereas the “senders” in our model always benefit from the receiver’s having more

information.

Our results that in an equilibrium a small number of extreme signals are revealed are

reminiscent of results in an earlier paper with overlapping authorship, Osborne, Rosen-

3Lohmann (1993, 1994) previously studied related models of protests. In her models, agents’ prefer-
ences differ. In Lohmann (1993), the outcome is chosen by a moderator and in Lohmann (1994) it is
determined by majority voting. Her main points are that in an equilibrium agents may reveal their signals
even though doing so is costly, and, in the model with voting, the outcome may be better when agents are
not permitted to reveal their signals.
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thal, and Turner (2000). However, the logic behind the results is completely different. In

the earlier paper, information is perfect and agents’ preferences differ; the option cho-

sen is the median favorite option of participants. The reason moderate preferences are

not expressed in equilibrium is not that they have intrinsically low value. Rather, the fact

that the outcome is the median of the participants’ favorite options leads to an equilib-

rium in which moderates do not participate, because only then does each agent’s par-

ticipation have a sufficiently large effect on the outcome to offset the participation cost.

2. Model

A set {1, . . . , n} of agents has to choose one of two options, 0 and 1. The desirability of

each option depends on an unknown state, which is either 0 or 1. Specifically, every

agent prefers option 0 in state 0 and option 1 in state 1. Every agent’s prior belief is that

the state is 0 with probability q ∈ (0, 1).

Each agent receives a private signal, a number in [0,1], which is correlated with the

state. The agents’ signals are generated independently; in state s , the distribution of

each agent’s signal is Fs , with support [0,1] and density f s . We assume that f 0 is contin-

uous and decreasing, f 1 is continuous and increasing, and f 0(1) = f 1(0) = 0.4 (The as-

sumption that f 0 is decreasing and f 1 is increasing is equivalent to the assumption that

the likelihood ratio f 1/ f 0 is increasing.5 We discuss the assumption that f 0(1) = f 1(0) = 0

in Section 6.) An example of f 0 and f 1 is shown in Figure 1.

Given the agents’ common interests, they all benefit from sharing their signals. How-

ever, doing so entails a cost. Specifically, each agent who reveals her signal incurs the

cost c > 0. We study a game in which each agent chooses whether to reveal her signal.6

To model the group’s collective choice of an option, we introduce a moderator, whose

preferences and prior belief about the state are the same as those of every agent. The

moderator observes the signals revealed by the agents and chooses an option. In doing

so, she uses all the information available to her, including the implications of the agents’

4Our results survive if f 0(1) and f 1(0) are sufficiently small (see Section 6).
5Proof: Suppose that f 1/ f 0 is increasing. (That is, f satisfies the strict monotone likelihood ratio prop-

erty.) Then change the variable from x to φ(x ) = 1
2
(F0(x ) + F1(x )). The function φ is increasing and onto

[0,1]. Denote its inverse by γ and define G0 by G0(y ) = F0(γ(y )). Then g 0(y ) = 2 f 0(y )/( f 0(y )+ f 1(y )), so
that, given that f 1/ f 0 is increasing, g 0 is decreasing; similarly g 1 is increasing.

6As we mentioned in footnote 1, no agent would have an incentive to misreport her signal if she could.
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strategies for the signals that are not revealed.

In summary, we study an extensive game in which the set of players is the set of

agents plus the moderator. The game unfolds as follows.

• Chance selects a state: 0 with probability q , 1 with probability 1−q .

• For each state, chance selects a collection of signals, one for each agent. In state s

(0 or 1), each agent’s signal is drawn from the distribution Fs independently.

• Each agent observes only her own signal.

• Each agent chooses whether to reveal her signal; these decisions are made simul-

taneously.

• The moderator observes only the signals revealed.

• The moderator chooses one of the two options, 0 and 1.

We assume that the moderator’s payoff is 1 if she chooses option 0 when the state

is 0 or option 1 when the state is 1, and is 0 otherwise. Each agent’s payoff is equal to

the moderator’s payoff if she does not reveal her signal and to the moderator’s payoff

minus c if she does reveal her signal. We argue in the supplementary file that these

assumptions about the cardinal payoffs are essentially without loss of generality as long

as all participants have common interests.

We restrict attention to equilibria in pure strategies. (We discuss mixed strategies in

Section 6.) A (pure) strategy σi of agent i is a (measurable) function from the set [0,1]

of signals to {0,1}, where σi (x ) is the probability that agent i reveals her signal when it

is equal to x . A (pure) strategy for the moderator is a function that associates an option

(0 or 1) with each of her information sets, where an information set corresponds to a list

(a 1, . . . , a n ) in which a i ∈ [0,1]∪{∅} for each agent i , where a i =∅means that i does not

reveal a signal.

Following the standard approach to extensive games with imperfect information, we

assume that for each of her information sets, every player behaves optimally, given a be-

lief about the state (“sequential rationality”). We assume also, again following the stan-

dard approach, that this belief is, whenever possible, derived using Bayes’ Rule (“consis-

tency”). At two types of information set, both belonging to the moderator, Bayes’ Rule
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cannot be applied. At one type, some agent, say i , reveals a signal, say xi , that her strat-

egy calls for her not to reveal. The only sensible assumption about the moderator’s belief

at such an information set seems to be that it is the same as the belief she would hold

if i ’s strategy were to reveal xi , and this is the assumption we adopt. At the other type

of information set at which Bayes’ Rule cannot be applied, some agent does not reveal

a signal even though her strategy calls for her to reveal almost all signals. However, un-

der a natural restriction on the moderator’s beliefs, there is no equilibrium in which any

agent employs such a strategy; see Section A.1 in the appendix for details.

Given that the game has no equilibrium in which any agent reveals almost all signals,

we describe our notion of equilibrium explicitly only for strategy profiles in which no

agent reveals almost all signals, and study only equilibria for which the strategy profile

has this property. (Doing so significantly reduces the required notation.)

For any strategy σi of agent i and state s , define

h(σi , s ) =

∫ 1

0

(1−σi (x )) f s (x )d x ,

the probability that i does not reveal a signal when the state is s . For any a i ∈ [0,1]∪{∅},

strategy σi of agent i , and state s , define

w (a i ,σi , s ) =

(
f s (a i ) if a i ∈ [0,1]

h(σi , s ) if a i =∅.

For a strategy profile σ, the probability the moderator’s belief assigns to state 0 at the

information set a = (a 1, . . . , a n ) is

βσ(0 | a ) =
q
∏n

i=1 w (a i ,σi ,0)

q
∏n

i=1 w (a i ,σi ,0)+ (1−q )
∏n

i=1 w (a i ,σi ,1)

and the probability it assigns to state 1 is βσ(1 | a ) = 1−βσ(0 | a ). (Given our restriction to

strategies in which no agent reveals almost all signals, the denominator is positive when

a j =∅ for some agent j , as well as when a j is a signal.)

Given a strategy profileσ, we say that the moderator acts optimally if her strategyσm
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satisfies

σm (a ) =

(
0 if βσ(0 | a )>βσ(1 | a )

1 if βσ(1 | a )>βσ(0 | a ).

Equivalently, she acts optimally if she chooses option 0 whenever

βσ(0 | a )

βσ(1 | a )
=

q

1−q

n∏

i=1

w (a i ,σi ,0)

w (a i ,σi ,1)
> 1 (1)

and option 1 whenever this ratio is less than 1.

For any strategy profileσ and signal xi of agent i , let u i (xi ;σ) be the expected payoff

of type xi of agent i , excluding the revelation cost, when she reveals her signal. That is,

u i (xi ;σ) is the probability that the option chosen by the moderator is equal to the state

when i is of type xi and reveals her signal, given the probability distribution over the

moderator’s information sets implied by the other agents’ strategies and the moderator’s

beliefs at these information sets implied byσ. Let u i (∅;σ)be the analogous payoff when

i does not reveal a signal.

An equilibrium is a strategy profile σ for which an agent of type xi reveals her signal

if u i (xi ;σ)− c > u i (∅;σ) and does not reveal it if u i (xi ;σ)− c < u i (∅;σ), and the mod-

erator acts optimally. We restrict attention to equilibria in which every agent’s strategy

is the same; we refer to such strategy profiles as symmetric, although we often omit this

qualifier and write simply “equilibrium”.

3. Equilibria

3.1 Example

The game is not trivial even if there is a single agent (n = 1); an analysis of this case

illustrates the logic behind an equilibrium and shows how multiple equilibria can exist.

Denote by P(s | x ) the posterior probability of state s given the signal x ∈ [0,1]:

P(0 | x ) =
q f 0(x )

q f 0(x )+ (1−q ) f 1(x )
and P(1 | x ) =

(1−q ) f 1(x )

q f 0(x )+ (1−q ) f 1(x )
. (2)

If the agent reveals the signal x , the moderator’s payoff when she chooses op-

tion z is P(z | x ). Thus in any equilibrium the option chosen by the modera-
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1
2

x̂ x →0 1

P(1 | x )P(0 | x )

Moderator 0 1
∅
0

P(1 | x )− cP(0 | x )− c

P(0 | x ) = P(1 | x )− c

x

1
2
(1− c )

Agent ∅ x

Figure 2. An equilibrium in the case of a single agent. The moderator chooses option 0 if the agent does
not reveal a signal or reveals a signal less than x̂ , and option 1 if she reveals a signal greater than x̂ . The
agent reveals signals greater than x and does not reveal signals less than x .

tor is argmaxz∈{0,1}P(z | x ), so that the expected payoff of type x of the agent is

maxz∈{0,1}P(z | x )− c if she reveals her signal, indicated by the orange curve in Figure 2.

First consider the possibility of an equilibrium in which the moderator chooses op-

tion 0 if the agent does not reveal a signal. In this case, the expected payoff of type x is

P(0 | x ) if she does not reveal her signal, indicated by the green curve in Figure 2.

Given that P(0 | x ) is decreasing in x and P(1 | x ) is increasing in x , there exists a

signal x such that the agent optimally reveals every signal x > x and does not reveal

any signal x < x . Specifically, P(0 | x ) = 1
2
(1− c ), as illustrated in Figure 2. The pair of

strategies is an equilibrium if, given the agent’s strategy, choosing option 0 when the

agent does not reveal a signal is optimal for the moderator. The condition for optimality

is Pr(s = 0 | x ∈ [0,x ]) ≥ 1
2

, which is true if q is sufficiently large (q > 1
2

is enough) or c is

sufficiently small.

A symmetric analysis applies when the moderator chooses option 1 if the agent does

not reveal a signal. Thus for small values of c the game has two (pure) equilibria, one in

which the agent reveals low signals and one in which she reveals high signals.

If there are two or more agents, the set of equilibria is complex, even for simple func-

tional forms. We present an example with two agents in the supplementary file.
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3.2 Structure of equilibria

Let σ be a symmetric strategy profile, let a i ∈ [0, 1] ∪ {∅}, let s be a state, and let z be

an option. Denote by ψ(z , a i , s ;σ) the probability that the moderator chooses option z

when the state is s , the moderator and n−1 agents follow the strategy profile σ, and the

remaining agent’s action is a i . The actions of the n − 1 agents who follow σ depend on

the signals they receive, so the option chosen by the moderator is random even though

σ is pure.

In any (symmetric) equilibrium, each agent reveals only signals that are sufficiently

extreme, and the boundaries between revealing and not revealing a signal are character-

ized by indifference conditions. To state this result, we define a threshold strategy with

thresholds x and x , where x ∈ [0,1], x ∈ [0, 1], and x < x , to be a strategy of an agent that

reveals every signal in [0,x )∪ (x ,1] and no signal in (x ,x ). Note that if x = 0 then [0,x ) is

empty and if x = 1 then (x ,1] is empty. Recall that P(s | x ) is the posterior probability of

state s given the signal x (see (2)).

Proposition 1 In every (symmetric) equilibriumσ, the agents’ common strategy is a thresh-

old strategy. For an equilibrium strategy with thresholds x and x , if x ∈ (0,1) then an agent

with signal x is indifferent between revealing and not revealing her signal, so that

c = P(0 | x )
�
ψ(0,x ,0;σ)−ψ(0,∅,0;σ)

�
+P(1 | x )

�
ψ(1,x ,1;σ)−ψ(1,∅,1;σ)

�
, (3)

and if x ∈ (0,1) then an agent with signal x is indifferent between revealing and not re-

vealing her signal, so that

c = P(0 | x )
�
ψ(0,x ,0;σ)−ψ(0,∅,0;σ)

�
+P(1 | x )

�
ψ(1,x ,1;σ)−ψ(1,∅,1;σ)

�
. (4)

The signal that, for the agents’ common equilibrium strategy, generates the same belief for

the moderator about the state as does non-revelation (x 0 in Lemma 4) is in (x ,x ).

Proofs are in Section A.2, in the appendix.

Intuition suggests that for every strategy of an agent (that, as we assume throughout,

does not reveal some positive measure of signals), some moderate signal generates the

same belief for the moderator about the state as does non-revelation; Lemma 4 in the

appendix establishes this result formally. The last claim in Proposition 1 is that for the
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agents’ common equilibrium strategy, this signal, x0, lies in [x ,x ], the interval of signals

not revealed. The key idea behind the proposition is that the incentive to reveal a sig-

nal is stronger for a signal farther from x0. For example, consider signals xi and x ′i for

some agent i with xi < x ′i < x0. The difference between xi and x ′i affects i ’s incentive to

reveal her signal in two ways. First, the signal she receives determines her interim belief

about the state: she assigns higher probability to state 0 if she receives signal xi than

if she receives x ′i . Second, revealing the signal xi leads to a larger increase in the mod-

erator’s belief in state 0, relative to nonrevelation, than does revealing x ′i . To compare

the incentives to reveal these two signals, the proof of Proposition 1 compares each to

a hypothetical intermediate case in which the agent’s belief is based on xi whereas the

moderator acts according to x ′i if the signal is revealed. Since i ’s revealing either signal

makes the moderator more likely to choose action 0, the incentive to reveal is stronger

in this case than if the agent receives signal x ′i . Since the agent and the moderator have

common interests, the agent’s incentive to reveal xi is stronger if the moderator acts ac-

cording to xi than if she acts according to x ′i . Combining these two comparisons, we

conclude that the agent has a stronger incentive to reveal signals farther from x0.

4. Large number of agents

While the structure of the set of equilibria for a fixed number n of agents appears to be

complicated (except for n = 1), it becomes relatively simple as n grows large. We start

by showing that as n grows large, the thresholds in any equilibrium become extreme.

The logic is that if they did not become extreme, then eventually the moderator would

have enough information to make the right decision with high probability even if an

agent deviated to not revealing her signal; consequently, for no signal would revelation

be optimal.

Lemma 1 For every ε > 0 there exists a number N such that, for every n > N , for any

equilibrium of the game with n agents we have x < ε and x > 1−ε, where x and x are the

thresholds of the common equilibrium strategy.

How accurate are the moderator’s decisions? The following result states that in an

equilibrium in which agents with signals close to 0 reveal them, the quality of decision-

making in state 0 is not too high, and symmetrically for signals close to 1. Specifically, for
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x = 0 or x = 1, in an equilibrium in which agents reveal signals close to x , the probability

that the moderator chooses option x in state x can be only slightly higher than 1 − c

when the number of agents is large. Moreover, the bound is uniform across equilibria

and across values of n (provided that they are sufficiently large).

Lemma 2 For every ε > 0 there exists a number N such that, for any n >N , in any equi-

librium of the game with n agents, if x > 0 then the probability that the moderator chooses

option 0 in state 0 is at most 1−c +ε, and if x < 1 then the probability that the moderator

chooses option 1 in state 1 is at most 1− c + ε, where x and x are the thresholds of the

common equilibrium strategy.

Roughly, if the moderator is too likely to choose the right option, paying the cost of

revealing a signal is not worthwhile for an agent. This rough intuition does not take into

account the fact that when an agent deviates from revealing a signal to not revealing it,

the option chosen by the moderator may change. Indeed, for an agent with an extreme

signal, such a deviation could significantly reduce the probability that the moderator

chooses the correct option. However, when averaged across all signals, the effect of

such a deviation is small when the number of agents is large: in a symmetric equilib-

rium, every agent’s ex ante impact is the same, and is hence small. In particular, if the

equilibrium probability of a correct decision in state s is greater than 1− c , then for a

large enough number of agents, it remains above 1 − c if a single agent deviates to not

revealing any signal. But then if an agent gets an extreme signal in favor of state s , she

does not want to reveal it because the probability that the moderator chooses option s

in state s if the agent does not reveal her signal is already greater than 1− c .

We now establish that the expected number of agents who reveal signals in an equi-

librium remains bounded as the number of agents increases. The idea behind this result

is the same as for Lemma 1: if the expected number of agents who reveal signals were to

increase without bound as the number of agents increases, then eventually the quality

of the moderator’s decision would be too good to justify any agent’s revealing her signal.

Lemma 3 The expected number of agents who reveal signals in equilibrium remains

bounded as the number of agents increases without bound.

We say that an equilibrium in which x > 0 and x < 1 is two-sided and one in which

either x = 0 and x < 1, or x > 0 and x = 1, is one-sided.
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Our next result says that when the number of agents is large the game has no two-

sided equilibrium. Suppose that the moderator chooses option 0 if no signal is revealed.

By Lemma 3, in state 1 the expected number of agents with signals above x who reveal

them remains bounded as the number of agents increases. By Lemma 1, the threshold

x converges to 1 as the number of agents increases, so that f 0(x )/ f 1(x ) converges to

zero. Thus in state 0 the expected number of agents with signals above x who reveal

them goes to zero, and in fact the probability that no signal above x is revealed goes to

1. But then in state 0 the moderator almost certainly chooses option 0 regardless of the

revealed signals less than x , so that an agent with such a signal has no incentive to reveal

it. Hence a two-sided equilibrium is not possible.

The next result shows also that when the number of agents is large, the moderator’s

decision takes a particularly simple form: whenever at least one agent reveals a signal

in equilibrium, the moderator takes the opposite decision to the one she takes when no

signal is revealed.

Given that f 1(0) = f 0(1) = 0 and that f 0 is decreasing and f 1 is increasing, for any

signal x ∈ (0,1) and any value of n there is a unique signal z 1(x , n ) such that the posterior

probability of state 0 is 1
2

given the information that there are n − 1 signals in [0,x ] and

one signal equal to z 1(x , n ). Precisely, z 1(x , n ) satisfies

1
2
=

q F0(x )n−1 f 0(z 1(x , n ))

q F0(x )n−1 f 0(z 1(x , n ))+ (1−q )F1(x )n−1 f 1(z 1(x , n ))

or, equivalently,

q f 0(z 1(x , n ))F0(x )
n−1 = (1−q ) f 1(z 1(x , n ))F1(x )

n−1. (5)

Proposition 2 There exists a number N such that if n >N then (i) the game has no two-

sided equilibrium and (ii) in any one-sided equilibrium in which x = 0 we have x ≥

z 1(x , n ), where x and x are the thresholds of the common equilibrium strategy, so that the

moderator chooses option 1 if and only if at least one signal (of at least x ) is revealed. A

symmetric result holds for one-sided equilibria with x = 1.

An implication of this result is that when the number of agents is large, in a one-

sided equilibrium in which x = 0 the moderator chooses option 0 if every agent’s signal
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is less than x and option 1 if some agent’s signal is greater than x . Thus the probability

of a correct decision in such an equilibrium is F0(x )n in state 0 and 1− F1(x )n in state 1,

so that the ex ante probability of a correct decision is

q F0(x )
n +(1−q )(1− F1(x )

n )

and an agent’s expected payoff is

q F0(x )
n +(1−q )(1− F1(x )

n )− c [q (1− F0(x ))+ (1−q )(1− F1(x ))].

We can now identify the quality of information aggregation in the limit as the num-

ber of agents increases without bound.

Proposition 3 For each positive integer n, let x n be the upper threshold of the common

equilibrium strategy in a one-sided equilibrium when there are n agents. If x n < 1 for all

n then as n increases, the equilibrium probability of the moderator’s choosing option 0 in

state 0 approaches 1, the probability of her choosing option 1 in state 1 approaches 1− c ,

and the expected number of agents who reveal signals approaches −(1−q ) ln c .

By Lemma 2, in any equilibrium, for one state the limit of the probability that the

moderator chooses the correct option as the number of agents increases without bound

is at most 1− c . Proposition 3 indicates that this bound is achieved in the limit as n

grows large: the correct option is chosen with probability 1 − c in one state and with

probability 1 in the other. Thus the limit of the highest expected payoff of any agent in

any equilibrium as the number of agents increases without bound is

π=max{q ,1−q}+(1− c )min{q ,1−q}. (6)

5. Alternative mechanisms

Proposition 3 shows that, even for an arbitrarily large number of agents, information

aggregation is imperfect and average payoffs are bounded away from the first-best. Can

welfare be improved by using a mechanism that differs from the game in which the mod-

erator is bound to choose an optimal option for every set of revealed signals? For exam-

ple, the mechanism could require the moderator to take a particular action unless at

18



least some fixed number of agents (a “quorum”) reveal their signals. Alternatively, the

mechanism could specify that the moderator “punish” agents for revealing certain sig-

nals by choosing a suboptimal option.

Whether a mechanism exists that improves welfare depends on whether the designer

can tax agents and subsidize the cost of revelation. We show (Proposition 4) that, for any

number of agents, there exists a budget-balanced transfer scheme under which a strat-

egy profile that maximizes the agents’ average payoff is an equilibrium. We show also

(Proposition 5) that if transfers are not possible but the moderator can commit to an

anonymous decision rule, then the agents’ common ex ante expected payoff does not

exceed π, defined in (6). That is, no anonymous decision rule for the moderator im-

proves on the limiting equilibrium outcome as the number of agents increases without

bound of the game we have studied so far.

5.1 Mechanisms with transfers

Suppose the designer can commit to ex post budget-balanced transfers among the

agents. That is, the designer chooses a function t : ([0,1]∪{∅})n → Rn that asso-

ciates with every list of actions for the agents a list of transfers to the agents such that
∑n

i=1 ti (a 1, . . . , a n ) = 0 for every (a 1, . . . , a n ), where ti denotes the i th coordinate of t . The

game we study is identical to the one described in Section 2 except that, for each i , the

transfer ti is added to agent i ’s payoff. We refer to any equilibrium of this game as an

equilibrium for t .

For any given number of agents, the first-best payoff is the maximum average ex-

pected payoff for the agents across all strategy profiles.

Proposition 4 Let ti (a ) = (1−k (a )/n )c if i reveals a signal and t i (a ) =−k (a )c/n other-

wise, where k (a ) is the number of agents who reveal signals. There exists an equilibrium

for t in which the average expected payoff of the agents is equal to the first-best payoff.

This result shows that an appropriately designed transfer scheme generates an effi-

cient outcome.7 The inefficiency in the equilibria of the game without transfers arises

7The result is reminiscent of a result in Persico (2004, Section 7). One key difference is that in our
model, whether an agent has incurred the cost to reveal a signal is observable, so that our transfers are
independent of the reported signals, whereas in Persico’s model they are not. Another key difference is
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because of an externality: when agent i reveals her signal, all agents, not only agent i ,

benefit. Thus to induce the amount of revelation that maximizes the agents’ average

payoff, each agent’s payoff has to reflect this externality. Because an agent’s revelation

of her signal benefits all n agents, it is intuitively plausible that the payoffs internalize

the externality when each agent’s revelation cost is c/n rather than c , a result verified in

Lemma 10 of the appendix. Accordingly, to prove Proposition 4, it suffices to show that

the transfer scheme defined there is budget-balanced and each agent who reveals her

signal receives a transfer that is larger by exactly (n−1)c/n than it would have been had

she not revealed her signal, making c/n the net revelation cost.

5.2 Mechanisms without transfers

Suppose that transfers among the agents are not possible, but the moderator can com-

mit to a strategy, which we refer to as a decision rule, before the agents choose actions.

Accordingly, define a decision rule to be a function d : ([0,1]∪{∅})n → {0,1} giving the

option chosen for each list of actions of the agents. We study the (possibly asymmet-

ric) Nash equilibria of the (Bayesian) game G (d ) among the agents for a fixed decision

rule d .

The next result shows that for any decision rule d and any equilibrium of G (d ), the

ex ante expected payoff of any agent who reveals some signals is at most π (defined

by (6)). Agents who reveal no signals may receive higher payoffs, but the result says

that any agent who reveals some signals receives no more than her limiting equilibrium

expected payoff, as the number of agents increases without bound, in the game in which

the moderator always acts optimally.

Proposition 5 For any number of agents, any decision rule d of the moderator, and any

equilibrium of the game G (d ), the (ex ante) expected payoff of every agent who reveals

some signals is at most π. If no type of any agent reveals her signal then the expected

payoff of every type of every agent is at most max{q , 1−q}, which is at most π.

Here is the idea behind this result. Fix a decision rule and choose an equilibrium

and an agent, say i , who reveals some signals in the equilibrium. Let xi be a signal she

that Persico’s notion of first-best does not account for the agents’ costs. (According to that notion, the
equilibrium outcome in our model is trivially first-best.)
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reveals. Then the expected payoff of type xi of agent i if she does not reveal her signal

is not more than her expected payoff if she does reveal it, which is at most 1 − c . Thus

if agent i does not reveal a signal, in at least one state the probability that the decision

rule chooses the correct option is at most 1− c . This bound limits the ex ante expected

payoff of agent i (over all her possible types); it turns out that the upper limit is π.

Now consider a decision rule for which the option selected depends only on the set

of signals, not on the identity of the agent who revealed any particular signal. Call such a

decision rule anonymous. In a symmetric equilibrium of G (d ) for any anonymous deci-

sion rule d , every agent’s expected payoff is the same, so a consequence of Proposition 5

is that in such an equilibrium every agent’s expected payoff is no more than π, her limit-

ing expected payoff in the best equilibrium of the game in which the moderator always

acts optimally. That is, when the number of agents is large, in a symmetric equilibrium

for an anonymous rule, there is no gain to the moderator’s being able to commit to a

decision rule that selects the suboptimal option under some circumstances.

Corollary 1 For any anonymous decision rule d , the expected payoff of every agent in any

symmetric equilibrium of G (d ) is at most π.

Proof. In any such equilibrium, every agent receives the same expected payoff, so the

result follows from Proposition 5. �

Proposition 5 does not exclude the possibility of nonanonymous decision rules with

equilibria in which the average expected payoff over all agents is greater than π. In fact,

when the number of agents is large such decision rules exist in which the average ex-

pected payoff is arbitrarily close to 1. Consider, for example, the following decision rule.

Let k < n . The decision rule chooses the option that is optimal according to the poste-

rior belief derived from the signals revealed by agents 1, . . . , k if all of these agents reveal

a signal, and chooses the option that is suboptimal according to this belief if one or more

of these agents does not reveal a signal.8 (If the posterior belief assigns probability 1
2

to

each state, then the decision rule can choose either option.) In particular, the option

chosen by the decision rule is independent of the actions of agents k + 1, . . . , n , who

8The moderator could choose the k agents randomly, but if she does so, she has to inform the agents
of the outcome of the randomization before they choose whether to reveal their signals, and her action
depends on which agents revealed signals, so the mechanism is not anonymous in the sense we define.
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consequently do not report their signals. This rule is a variant of a quorum applied to a

fixed subset of agents in which the moderator does not ignore revealed signals if they are

insufficiently numerous, but rather deliberately chooses the wrong option in this case,

and ignores any additional signals.

If k is sufficiently large, the option chosen by this decision rule is almost certainly

correct if every agent 1, . . . , k reveals her signal and almost certainly incorrect if exactly

one of these agents does not reveal her signal. Thus for any value of c less than 1, for

k large enough there is an equilibrium for the decision rule in which every type of each

agent 1, . . . , k reveals her signal. Hence the probability of a correct decision—which is

equal to the equilibrium payoffs of agents k+1, . . . , n—can be made arbitrarily close to 1

by choosing k sufficiently large (and any n ≥ k ). How large k needs to be is independent

of n , so the average expected payoff can be made arbitrarily close to 1 by choosing k

sufficiently large and n sufficiently large relative to k .

6. Discussion

Heterogeneous preferences For simplicity, we have assumed that players have common

interests regarding the option chosen. We conjecture that results similar to ours would

hold if the players had heterogeneous preferences. For example, suppose that each

agent i has a privately known preference type ζi ∈ R drawn i.i.d. from a bounded in-

terval. Assume that an agent of type ζ receives a payoff, excluding the revelation cost,

of ζ if the moderator chooses action 0 and the state is 0, 2−ζ if the moderator chooses

action 1 and the state is 1, and 0 otherwise.9 Note that some types may prefer a par-

ticular action regardless of the state (namely, those for which ζ /∈ [0,1]). As before, an

agent incurs a cost of c if she reveals her signal to the moderator, and, to ensure that the

problem is nontrivial, the moderator strictly prefers option s in state s .

Although preference types vary in their equilibrium thresholds, the forces driving in-

formation revelation are essentially the same as in the homogeneous case. Suppose that

Pr(ζ > 0)> 0 and consider an equilibrium of the extended model in which the modera-

tor chooses option 1 if no agent reveals a signal. For any type to be willing to pay the cost

of revealing its signal, doing so must increase its expected payoff by at least c . When the

9This model coincides with our common interest model when ζ= 1 almost surely.
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number of agents is large, such an increase is possible only for those types most strongly

in favor of option 0—those whose signal is close to 0 and whose value of ζ is high. As

in the homogeneous case, if these types obtain a discrete gain from revealing their sig-

nals then these signals must be rare in state 1, suggesting that the equilibrium must be

one-sided in the sense that no type reveals signals close to 1. The only difference, then,

relative to the homogeneous case, seems to be that the revelation cost must be normal-

ized relative to the gain from changing the moderator’s choice. Thus, for example, if M is

the supremum of the support of ζ, then we conjecture that, in the limit as the number of

agents increases without bound, the moderator almost surely chooses option 1 in state

1, and chooses option 0 in state 0 with probability 1− c/M .

Bounded beliefs The assumption that f 0(1) = f 1(0) = 0 plays an important role in our

analysis, implying that there is no bound on the informativeness of agents’ signals. We

have verified that our results can be extended to cases in which this informativeness

is bounded, as long as f 0(1) and f 1(0) are sufficiently small.10 However, we have some

reservations about the assumption that beliefs are bounded. Under this assumption,

there is a hard, commonly known limit on the strength of any individual’s belief about

the state: the belief of an agent who receives a signal of 1, say, assigns positive probability

to both states. However, there is no such limit on the amount of information collectively

available through aggregating individuals’ signals. We find a tension between these two

features: if more precise information may be obtained by the group, why should the

precision of any one agent’s signal have a firm limit? A formulation that deals with the

problem seems to require additional correlation in the agents’ signals.

Mixed strategies Our analysis is restricted to pure strategies. Allowing agents to mix

would have essentially no effect on our results since, in any equilibrium, only the thresh-

old types x and x are indifferent. Allowing the moderator to mix after no agent reveals

a signal could, however, introduce additional equilibria. We focus on pure strategies

of the moderator for two reasons. First, we think of the option chosen by the modera-

tor if no agent reveals a signal as a widely understood status quo. The only reasonable

nondeterministic choice seems to be the 50–50 mixture of the two options, but that mix-

ture is not in general compatible with an equilibrium. Second, we conjecture that, for

10That is, there exists ε > 0 such that our results hold if f 0(1)< ε and f 1(0)< ε.
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a sufficiently large number of agents, there is generically one equilibrium in which the

moderator randomizes nontrivially, and that equilibrium is two-sided. By Lemma 2,

two-sidedness implies that the correct option is chosen with probability at most 1−c in

each state (in the limit as the number of agents grows without bound). This equilibrium

therefore entails lower welfare than does either of the one-sided pure strategy equilibria.

Since we are interested primarily in welfare-maximizing equilibria, it thus makes sense

to focus on pure strategies.

Appendix

A.1 Off-equilibrium-path beliefs

As noted in Section 2, Bayes’ rule cannot be applied to determine the moderator’s belief

if an agent does not reveal a signal when her equilibrium strategy calls for her to re-

veal almost all signals. How the moderator should form a belief about the state at such

an information set is unclear. As a consequence, we put few restrictions on this belief.

Specifically, for any strategy profile σ in whichσi reveals almost every signal we assume

that for some alternative strategyσ′i for which the set of signals not revealed has positive

measure, the moderator’s belief about the state is derived from σ′i at every information

set at which i does not reveal a signal. The main restriction that this assumption entails

is that, for any given strategy profile σ, the strategy σ′i is the same for every information

set at which i does not reveal a signal; it does not depend on the other agents’ actions

at the information set. This restriction seems sensible given that the agents make their

decisions independently.

Under this assumption, the game has no equilibrium in which some agent reveals

almost all signals.11 To see why, suppose that agent i ’s strategy σi reveals almost all

signals. If agent i does not reveal a signal, then the moderator forms her belief about the

state on the basis of the alternative strategy σ′i . It is straightforward to extend Lemma 4

below to show that for some signal x0, this belief is the same as the belief the moderator

would form were the agent to reveal x0. (If, for example, the signals that σ′i does not

11Without the restriction on beliefs, the moderator’s belief when exactly one agent does not report a
signal could be the opposite of the belief based on Bayesian updating given the reported signals of all
other agents, so that equilibria exist in which all agents reveal all signals.
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reveal constitute an interval, then x0 is a member of that interval.) Because revelation is

costly and i can affect the option chosen by the moderator only by affecting her belief,

revealing x0—and, by continuity, signals close to x0—is not optimal for the agent.

A.2 Proofs

Lemma 4 For any strategy σi of any agent i , there exists a unique signal x 0 ∈ [0,1] such

that
w (x0,σi ,0)

w (x0,σi ,1)
=

w (∅,σi ,0)

w (∅,σi ,1)
.

Consequently, for any strategy profile σ̂ in which the moderator acts optimally and

agent i ’s strategy is σi , we have u i (x0;σ̂) = u i (∅;σ̂).

Proof. By the definition of w ,

w (∅,σi , 0)

w (∅,σi , 1)
=

h(σi ,0)

h(σi ,1)
=

∫ 1

0
(1−σi (x )) f 0(x )d x

∫ 1

0
(1−σi (x )) f 1(x )d x

.

Let M = supx∈[0,1] f 0(x )/ f 1(x ) and m = infx∈[0,1] f 0(x )/ f 1(x ), so that f 0(x ) < M f 1(x ) and

f 0(x )>m f 1(x ) for all x ∈ (0,1). Then

m <

∫ 1

0
(1−σi (x )) f 0(x )d x

∫ 1

0
(1−σi (x )) f 1(x )d x

<M .

So by the continuity of f 0 and f 1 and the fact that f 0 is decreasing and f 1 is increasing,

there exists a unique signal x0 such that

f 0(x0)

f 1(x0)
=

∫ 1

0
(1−σi (x )) f 0(x )d x

∫ 1

0
(1−σi (x )) f 1(x )d x

,

which completes the argument because

w (x ,σi ,0)

w (x ,σi ,1)
=

f 0(x )

f 1(x )

for all x ∈ (0,1).
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For the second claim, the action of type x0 does not affect the moderator’s choice

unless the ratio on the left-hand side of (1) is equal to 1. In that case, the expected payoff

is independent of the moderator’s choice. �

Proof of Proposition 1. Let σ be a symmetric strategy profile in which the moderator

acts optimally. For any type xi of agent i , define the incentive to reveal for type x i , Ii (xi ),

to be the difference between i ’s expected payoffs from revealing and not revealing her

signal. That is,

Ii (xi ) = P(0 | xi )(ψ(0,xi ,0;σ)−ψ(0,∅,0;σ))+P(1 | xi )(ψ(1,xi ,1;σ)−ψ(1,∅,1;σ))−c . (7)

Let x0 be as in Lemma 4 for σi . The claims in the first two sentences of the result

follow if, for each agent i , Ii is continuous, decreasing on [0,x0), and increasing on (x0,1].

From Lemma 4, we have ψ(0,∅,0;σ) =ψ(0,x0,0;σ) and ψ(0,∅,1;σ) =ψ(0,x0,1;σ),

so

Ii (xi ) = P(0 | xi )(ψ(0,xi ,0;σ)−ψ(0,x0,0;σ))+P(1 | xi )(ψ(1,xi ,1;σ)−ψ(1,x0,1;σ))− c .

Since agent i has the same preference over the options as does the moderator, her ex-

pected payoff from the moderator’s action if she reveals her signal xi and the moderator

acts as if she had revealed x ′i 6= xi is no higher than her expected payoff from revealing

xi . That is,

P(0 | xi )ψ(0,xi ,0;σ)+P(1 | xi )ψ(1,xi ,1;σ)≥ P(0 | xi )ψ(0,x ′i ,0;σ)+P(1 | xi )ψ(1,x ′i , 1;σ)

for every xi . It follows that

Ii (xi )≥ P(0 | xi )(ψ(0,x ′i ,0;σ)−ψ(0,x0,0;σ))+P(1 | xi )(ψ(1,x ′i ,1;σ)−ψ(1,x0,1;σ))− c

= Ii (x
′
i )+

�
P(0 | xi )−P(0 | x ′i )

��
ψ(0,x ′i ,0;σ)−ψ(0,x0,0;σ)

−ψ(1,x ′i ,1;σ)+ψ(1,x0,1;σ)
�

(8)

for every x ′i . Now suppose xi < x ′i < x0. Since x ′i < x0, ψ(0,x ′i ,0;σ) > ψ(0,x0,0;σ) and

ψ(1,x0,1;σ) > ψ(1,x ′i ,1;σ). Since xi < x ′i , P(0 | xi ) > P(0 | x ′i ). Together with (8), these
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inequalities imply that Ii (xi )> Ii (x ′i ). Therefore, Ii is decreasing on [0,x0]. A symmetric

argument shows that it is increasing on [x0, 1].

Finally, we show that Ii is continuous. We have

Ii (xi ) = P(0 | xi )ψ(0,xi , 0;σ)+P(1 | xi )ψ(1,xi , 1;σ)

−P(0 | xi )ψ(0,∅, 0;σ)−P(1 | xi )ψ(1,∅,1;σ)− c .

The third and fourth terms are continuous in xi by the continuity of f 0 and f 1. The sum

of the first two terms is the moderator’s expected payoff conditional on agent i ’s hav-

ing signal xi and revealing it. The moderator’s expected payoff conditional on reaching

the information set a is max{βσ(0 | a ),1− βσ(0 | a )}, where βσ(0 | a ) is, as before, the

probability assigned to state 0 by the moderator’s belief at her information set a . The

probability βσ(0 | a ) is continuous in a i for a i ∈ [0, 1] for any given values of a j for j 6= i ,

so that taking the expectation over the other agents’ actions conditional on a i shows that

the moderator’s expected payoff conditional on agent i ’s having signal a i and revealing

it is continuous in a i , so that Ii is continuous. �

Lemma 5 Consider a symmetric strategy profile in which the common strategy of the

agents is a threshold strategy with thresholds x and x and the moderator acts optimally.

The probability that the option chosen by the moderator is equal to the state is nonde-

creasing in x and nonincreasing in x .

Proof. Increasing x or decreasing x makes the signals provided to the moderator more

informative in the sense of Blackwell. Therefore such a change cannot reduce her ex-

pected payoff, which is the probability that she chooses the option equal to the state. �

Lemma 6 For any ε > 0 and δ > 0 there exists N such that for any n > N and threshold

strategy σ̂ such that x ≥ ε or x ≤ 1−ε (or both), where x and x are the thresholds, if every

agent uses the strategy σ̂ and the moderator acts optimally then the moderator’s expected

payoff exceeds 1−δ in each state.
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Proof. First suppose that all agents use the strategy σ̂ for which x = ε and x = 1. For any

information set (a 1, . . . , a n ) of the moderator, let

ρ(a 1, . . . , a n ) =
q

1−q

n∏

i=1

w (a i ,σ̂,0)

w (a i ,σ̂,1)
,

and recall (see (1)) that the moderator chooses option 0 whenever ρ(a 1, . . . , a n )> 1 and

option 1 whenever ρ(a 1, . . . , a n )< 1.

Note that for every agent i

E

�
w (a i ,σ̂, 0)

w (a i ,σ̂, 1)
| s = 1

�

= Prσ̂(a i =∅ | s = 1)
h(σ̂,0)

h(σ̂,1)
+

∫

x∈[0,ε]

f 0(x )

f 1(x )
d F1(x )

= Prσ̂(a i =∅ | s = 1)
Prσ̂(a i =∅ | s = 0)

Prσ̂(a i =∅ | s = 1)
+

∫

x∈[0,ε]

f 0(x )d x

= Pr(xi ∈ [ε,1] | s = 0)+Pr(xi ∈ [0,ε] | s = 0)

= 1.

Thus, conditional on s = 1, (ρ(a 1, . . . , a n ))∞n=1 is a nonnegative martingale, since ac-

tions are (conditionally) independent across agents. Therefore by Shiryaev (1996, Corol-

lary 3, p. 509), ρ(a 1, . . . , a n ) converges almost surely as n →∞. We have Prσ̂(a i 6=∅ | s =

1)> 0 (since x > 0) and f 0(x ) 6= f 1(x ) for almost all x , so Pr(wi (a i ,σ̂,0) 6=wi (a i ,σ̂,1) | s =

1)> 0. Hence the random variable to which ρ(a 1, . . . , a n ) converges is equal to 0 almost

surely. Symmetrically, ρ(a 1, . . . , a n ) diverges to ∞ almost surely conditional on s = 0.

Thus given any δ> 0, there exists a number N (ε,δ) such that for any n >N (ε,δ),

Pr(ρ(a 1, . . . , a n )> 1 | s = 0)> 1−δ and Pr(ρ(a 1, . . . , a n )< 1 | s = 1)> 1−δ. (9)

If all agents use the strategy with x = 0 and x = 1− ε, a symmetric argument shows

that there exists N (ε,δ) for which (9) holds whenever n > N (ε,δ). Letting N (ε,δ) =

max{N (ε,δ), N (ε,δ)}, Lemma 5 implies that (9) holds for all n > N (ε,δ) whenever all

agents use a common threshold strategy with either x ≥ ε or x ≤ 1−ε and the moderator

acts optimally. �
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Lemma 7 There exists η > 0 such that, for any n, any symmetric equilibrium σ, any

agent i , and each state s , the probability that i does not reveal a signal, Pr({xi : σi (xi ) =

0} | s ), is at least η.

Proof. Note that the function q̃ : [0,1]2→ [0,1] defined by

q̃ (p ,x ) =
p f 0(x )

p f 0(x )+ (1−p ) f 1(x )

is continuous. Since its domain is compact, the continuity is uniform. In particular,

there exists γ> 0 such that |q̃ (p ,x )− q̃ (p ,x ′)|< c/2 for all p whenever |x −x ′|<γ.

Let x and x be the thresholds for a symmetric equilibrium strategy (for given n).

Assume that x > 0. (The case x < 1 is similar.) Suppose that all agents other than i

follow the equilibrium strategy. If agent i ’s signal is x and she reveals it, the posterior

probability the moderator assigns to state 0 is at least as high as if agent i does not reveal

her signal. Revealing x therefore affects the payoff from the moderator’s choice only if it

switches the posterior belief from less than 1
2

to greater than 1
2

, in which case it provides

an expected gain of q ′ − (1−q ′) = 2q ′ −1, where q ′ is the posterior belief that the state is

0 when i reveals x . For any list a−i of the actions of the players other than i , let q (a−i ) be

the posterior probability of state 0 given a−i and let x0 be the signal given by Lemma 4

for the strategy σi . Then the condition that type x be indifferent between revealing her

signal and not revealing it is

Prσ({a−i | q̃ (q (a−i ),x )> 1
2

and q̃ (q (a−i ),x0)<
1
2
})×

E
�

2q̃ (q (a−i ),x )−1 | q̃ (q (a−i ,x )> 1
2

and q̃ (q (a−i ),x0)<
1
2

�
= c . (10)

By the argument in the first paragraph of the proof, if |x −x0|<γ then q̃ (p ,x )< (1+ c )/2

whenever q̃ (p ,x0) <
1
2

, in which case the left-hand side of (10) is less than c . Hence

|x −x0| ≥ γ, and thus for s = 0,1 the probability that agent i does not reveal a signal is

Pr({xi :σi (xi ) = 0} | s ) = Fs (x )− Fs (x )≥ Fs (x0)− Fs (x )≥ min
x∈[0,1−γ]

Fs (x +γ)− Fs (x ),

where the first inequality follows from Proposition 1, which says that x0 ∈ (x ,x ).

Taking η=mins∈{0,1}minx∈[0,1−γ] Fs (x +γ)− Fs (x ) gives the result. �
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Proof of Lemma 1. Choose δ < cη, where η comes from Lemma 7. Given ε > 0, let N be

the number given by Lemma 6. Then for any n > N and any threshold strategy σ with

x ≥ ε or x ≤ 1− ε, we have

1−δ< Pr({xi :σ(xi ) = 0} | 0)ψ(0,∅,0;σ)+

∫

xi∈[0,1]\(x ,x )

ψ(0,xi ,0;σ)d F0(xi )

=ηψ(0,∅,0;σ)+ (Pr({xi :σ(xi ) =∅} | 0)−η)ψ(0,∅,0;σ)

+

∫

xi∈[0,1]\(x ,x )

ψ(0,xi ,0;σ)d F0(xi )

≤ηψ(0,∅,0;σ)+Pr({xi :σ(xi ) =∅} | 0)−η+1−Pr({xi :σ(xi ) =∅} | 0)

≤ηψ(0,∅,0;σ)+1−η.

Thusψ(0,∅,0;σ)> 1−δ/η. Similarly,ψ(1,∅,1;σ)> 1−δ/η. Therefore, for any type, the

expected payoff from nonrevelation is greater than 1 −δ/η, which, by the choice of δ,

is greater than 1− c , the highest possible payoff from revelation. Therefore the strategy

profile in which all agents use the thresholds x and x is not an equilibrium. �

Proof of Lemma 2. Suppose x > 0. The option chosen by the moderator when all agents

but i follow the strategy profile σ and agent i does not reveal her signal differs from the

option the moderator chooses if all agents use σ only if agent i ’s signal is in [0,x )∪ (x ,1].

For any given signal xi the difference between the probabilities that the moderator

chooses option 0 in the two cases is at most 1, so that the difference between the prob-

abilities that the moderator chooses option 0 in the two cases when the state is 0 is at

most Pr(xi ∈ [0,x )∪ (x ,1] | s = 0). Denoting the probability that the moderator chooses

option a when the state is s and all players use σ by Ψ(a , s ;σ), we thus have

�
�Ψ(0,0;σ)−ψ(0,∅,0;σ)

�
�≤ Pr(xi ∈ [0,x )∪ (x ,1] | s = 0).

By Lemma 1, for n sufficiently large we have Pr(xi ∈ [0,x )∪ (x ,1] | s = 0)< ε, so that

|Ψ(0,0;σ)−ψ(0,∅,0;σ)|< ε (11)
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and hence

P(0 | x )Ψ(0,0;σ)< P(0 | x )(ψ(0,∅, 0;σ)+ ε).

Now, given x > 0, by Proposition 1 the indifference condition (3) is satisfied. Substituting

forψ(0,∅,0;σ) from (3) leads to

P(0 | x )Ψ(0,0;σ)< P(0 | x )(ψ(0,x , 0;σ)+ε)+P(1 | x )
�
ψ(1,x ,1;σ)−ψ(1,∅,1;σ)

�
−c . (12)

Let x0 be the signal given in Lemma 4 for the common strategy of each agent in σ. Then

ψ(1,x ,1;σ)−ψ(1,∅,1;σ) =ψ(1,x , 1;σ)−ψ(1,x0,1;σ)< 0 since x < x0 by Proposition 1,

so that revealing the signal x increases the probability that the moderator chooses op-

tion 0 and thus decreases the probability that she chooses option 1. Dividing both sides

of (12) by P(0 | x ) and omitting the negative term, we have

Ψ(0,0;σ)<ψ(0,x ,0;σ)+ ε− c/P(0 | x )< 1− c + ε,

as needed.

A symmetric argument shows that if x < 1 then the probability that the moderator

chooses option 1 in state 1 is at most 1− c + ε. �

Lemma 8 Let q̂ =min(q , 1−q ). Then for any δ ∈ (0, cq̂ ), there exists N such that for any

n > N , in any equilibrium with thresholds x and x in which either x > 0 or x < 1, the

moderator’s expected payoff is at most 1−δ.

Proof. Suppose x > 0. Let N be the number given in Lemma 2 for ε = c −δ/q̂ > 0, so

that in a symmetric equilibrium the probability of the moderator’s choosing option 0 in

state 0 is at most 1− c/P(0 | 0) + ε ≤ 1− c + ε = 1−δ/q̂ . Thus the moderator’s expected

payoff in the equilibrium is at most

q (1−δ/q̂ )+ (1−q ) ·1= 1−δq/q̂ ≤ 1−δ.

A symmetric argument leads to the same conclusion if x < 1. �
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Lemma 9 In any equilibrium with thresholds x and x , the moderator’s expected payoff is

at least 1−4D/nM 2, where M =max{F0(x )−F1(x ), F0(x )−F1(x )} and D =max{F0(x ), F1(x ),

1− F0(x ),1− F1(x )}.

Proof. Suppose that F0(x )− F1(x )> F0(x )− F1(x ). Denote by Y be the (random) number

of agents i for whom xi < x , so that in state i the mean of Y is n Fi (x ). Suppose the

moderator selects option 0 if and only if Y > n (F0(x ) + F1(x ))/2. Then in each state the

moderator selects the wrong option if Y differs from its mean by more than∆= n (F0(x )−

F1(x ))/2≥ nM/2. Now, the distribution of Y in state i is Binomial(n , Fi (x )), with variance

v = n Fi (x )(1− Fi (x )) ≤ n Fi (x ) ≤ nD . So by Chebyshev’s inequality, the probability that

Y differs from its mean by more than ∆ is at most v /∆2 ≤ (nD)/(nM/2)2 = 4D/nM 2.

Hence the probability that this strategy of the moderator chooses the right option is at

least 1− 4D/nM 2. Thus the probability that the moderator’s optimal strategy chooses

the right option is also at least this number, so that the moderator’s expected payoff in

an equilibrium is at least the same number.

A symmetric argument establishes the same inequality if F0(x ) − F1(x ) ≤ F0(x ) −

F1(x ). �

Proof of Lemma 3. If x = 0 and x = 1 then the number of agents who reveal signals is

zero, so the result follows. So assume x > 0 or x < 1. Choose α > 1 and ε > 0 small

enough that f 0(ε) ≥ α f 1(ε) and f 1(1− ε) ≥ α f 0(1− ε). Let N be the number given in

Lemma 1 for ε, so that for n >N we have x < ε and 1− x < ε. Let q̂ =min(q ,1−q ) and

δ< cq̂/2.

Combining Lemmas 8 and 9, we have 1−4D/nM 2 ≤ 1−δ, where D and M are given

in Lemma 9, so that 4D/δM 2 ≥ n .

Since x ≤ ε and x ≥ 1− ε, we have F0(x )≥αF1(x ) and 1− F1(x )≥α(1− F0(x )). Thus

M =max{F0(x )− F1(x ), (1− F1(x ))− (1− F0(x ))}

≥max{F0(x )− F0(x )/α, (1− F1(x ))− (1− F1(x ))/α}

=max{(1−1/α)F0(x ), (1−1/α)(1− F1(x ))}

= (1−1/α)D,
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where the last equality follows from the facts that F1(x ) < F0(x ) (because f 0(x ) > f 1(x ))

and 1− F0(x )< 1− F1(x ) (because f 1(x )> f 0(x )).

Thus n ≤ 4D/δM 2 ≤ 4α2/δ(α− 1)2D . But then the expected number of agents who

reveal their signals is at most

n max{F0(x )+1− F0(x ), F1(x )+1− F1(x )} ≤ 2nD ≤ 8α2/δ(α−1)2,

and in particular is bounded independently of n . �

Proof of Proposition 2. Consider a two-sided equilibrium with thresholds x > 0 and x <

1 in which the moderator chooses option 0 if no signal is revealed. Let X denote the

number of agents with signals at least x . Then

E [X | s = 0]

E [X | s = 1]
=

n (1− F0(x ))

n (1− F1(x ))
=

1− F0(x )

1− F1(x )

and

lim
x→1

1− F0(x )

1− F1(x )
= lim

x→1

f 0(x )

f 1(x )
= 0.

By Lemma 1, x converges to 1 as the number of agents increases, so for any sequence

of equilibria, one for each n , E [X | s = 0]/E [X | s = 1] converges to 0 as n increases. By

Lemma 3, E [X | s = 1] is bounded, so E [X | s = 0] converges to 0 and hence Pr(X = 0 |

s = 0) converges to 1. Since, by assumption, the moderator chooses option 0 if no agent

reveals her signal, she chooses option 0 also whenever X = 0 (in which case all revealed

signals are at most x ). Therefore, the probability that the moderator chooses option 0 in

state 0 converges to 1, contradicting Lemma 2.

For the second statement, the posterior probability of state 0 if one agent reveals the

signal x and no one else reveals a signal is

q f 0(x )F0(x )n−1

q f 0(x )F0(x )n−1+(1−q ) f 1(x )F1(x )n−1
=

1

1+ 1−q
q

F1(x )n−1

F0(x )n−1

f 1(x )
f 0(x )

. (13)

By Lemma 1 and the fact that f 0(1) = 0, f 1(x )/ f 0(x ) increases without bound as n in-

creases. We claim that it suffices to show that F1(x )n−1 is bounded away from 0 as n

increases. The reason is that in this case the posterior (13) approaches 0, so that for suf-
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ficiently large n the moderator chooses option 1 whenever at least one agent reveals a

signal of at least x .

Let p (n ) = 1− F1(x (n )), the probability in state 1 that a signal is revealed in the equi-

librium when there are n agents. By Lemma 3, np (n ), the expected number of sig-

nals revealed, remains bounded as n increases without bound. Denote the bound by

B . Then p (n ) < B/n for all n , so that (1− p (n ))n > (1− B/n )n for all n . Given that

limn→∞(1− B/n )n = e−B > 0, we conclude that limn→∞(1−p (n ))n = limn→∞ F1(x (n ))n >

e−B > 0. Hence F1(x (n ))n−1 is also bounded away from 0 as n increases without bound.�

Proof of Proposition 3. In such an equilibrium σ, (4) holds. By Lemma 1, P(0 | x n ) ap-

proaches 0 and P(1 | x n ) approaches 1 as n increases. By Proposition 2, for large enough

n we have z 1(x n , n ) < x n , so that ψ(1,x n ,1;σ) = 1. Therefore ψ(1,∅,1;σ) approaches

1−c . By the analogue of (11) for state 1,ψ(1,∅,1;σ) approachesΨ(1,1;σ) a n increases,

as needed.

By Proposition 2, the expected number of agents who reveal signals in state 0 ap-

proaches 0 as n increases. Let πn = 1− F1(x n ), the probability that in state 1 an agent

reveals her signal. Then when the number of agents is large, the expected payoff of an

agent in state 1 is the probability that at least one signal is revealed, namely 1−(1−πn )n .

By the previous paragraph, this expected payoff approaches 1 − c , so that for large n ,

1− (1− πn )n ≈ 1− c . Thus the expected number nπn of agents who reveal signals in

state 1 satisfies

nπn ≈ n (1− c 1/n ) = n
�

1− e (ln c )/n
�
≈ n (1− (1+(ln c )/n )) =− ln c ,

so that the expected number of agents who reveal signals is −(1−q ) ln c . �

Lemma 10 A strategy profile that maximizes the average payoff of the agents among

those in which the moderator acts optimally for the game with cost c is an equilibrium of

the game in which each agent’s revelation cost is c /n.

Proof. For a given strategy profile, the agents’ average payoff is

Pr(correct decision)−
n∑

i=1

Pr(i reveals her signal)c/n .
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Consider a strategy profile σ that maximizes this average payoff among those in which

the moderator acts optimally. Suppose that σ is not an equilibrium of the game with

cost c/n . Then some agent i in that game has a profitable deviation, say to the strategy

σ′i . Consider the game in which each agent’s revelation cost is c/n . In that game, relative

toσ, the strategy profile (σ−i ,σ′i ) increases the payoff of agent i , namely

Pr(correct decision)−Pr(i reveals her signal)c/n ,

and does not affect the probability that any other agent reveals her signal. Therefore

(σ−i ,σ′i ) yields higher average payoff (with cost c ) than does σ, contradicting our as-

sumption that σmaximizes the agents’ average payoff. �

Proof of Proposition 4. The transfer scheme defined in the result satisfies budget bal-

ance since
n∑

i=1

ti (a ) = k (a )(1−k (a )/n )c − (n −k (a ))k (a )c/n = 0.

In addition, when k signals are revealed, an agent who switches from not revealing

her signal to revealing it goes from paying a tax of k c/n to receiving a subsidy of

(1− (k +1)/n )c , causing her transfer to increase by (n − 1)c/n . Thus the net cost of

revealing a signal is c/n , so that the result follows from Lemma 10. �

Proof of Proposition 5. Let σ be the strategy profile in our original game in which the

agents follow the equilibrium of G (d ) and the moderator’s strategy is d .

If, according to σ, no type of any agent reveals her signal, then the expected payoff

of each type of every agent is at most max{q ,1−q}.

Now suppose that according to σ, type xi of agent i reveals her signal. Then the

optimality of revelation for type xi of agent i means that

P(0 | xi )ψi (0,xi ,0;σ)+P(1 | xi )ψi (1,xi ,1;σ)− c

≥ P(0 | xi )ψi (0,∅,0;σ)+P(1 | xi )ψi (1,∅,1;σ). (14)

The left-hand side of (14) is at most 1− c , so that either ψi (0,∅,0;σ) orψi (1,∅,1;σ) (or

both) is at most 1− c . Suppose that ψi (0,∅,0;σ)≤ 1− c . Then if type yi of agent i does
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not reveal her signal, her expected payoff is at most P(0 | yi )(1− c )+P(1 | yi ), so that the

(ex ante) expected payoff of agent i is at most

Exi [max{1− c , P(0 | xi )(1− c )+P(1 | xi )}] = Exi [P(0 | xi )(1− c )+P(1 | xi )]

=q (1− c )+1−q

=π,

where the second line follows from the Law of Iterated Expectations. A symmetric argu-

ment applies ifψi (1,∅, 1;σ)≤ 1− c . �

References

Battaglini, Marco (2017), “Public protests and policy making.” Quarterly Journal of Eco-

nomics, 132, 485–549. [7, 8]

Coughlan, Peter J. (2000), “In defense of unanimous jury verdicts: mistrials, communi-

cation, and strategic voting.” American Political Science Review, 94, 375–393. [7]

Duggan, John and César Martinelli (2001), “A Bayesian model of voting in juries.” Games

and Economic Behavior, 37, 259–294. [7]

Feddersen, Timothy J. and Wolfgang Pesendorfer (1996), “The swing voter’s curse.”

American Economic Review, 86, 408–424. [7]

Feddersen, Timothy J. and Wolfgang Pesendorfer (1997), “Voting behavior and informa-

tion aggregation in elections with private information.” Econometrica, 65, 1029–1058.

[7]

Gerardi, Dino and Leeat Yariv (2008), “Information acquisition in committees.” Games

and Economic Behavior, 62, 436–459. [7, 8]

Jovanovic, Boyan (1982), “Truthful disclosure of information.” Bell Journal of Economics,

13, 36–44. [8]

Kartik, Navin, Francis X. Lee, and Wing Suen (2017), “Investment in concealable infor-

mation by biased experts.” RAND Journal of Economics, 48, 24–43. [8]

36



Krishna, Vijay and John Morgan (2012), “Voluntary voting: costs and benefits.” Journal

of Economic Theory, 147, 2083–2123. [7]

Li, Hao (2001), “A theory of conservatism.” Journal of Political Economy, 109, 617–636.

[7, 8]

Lohmann, Susanne (1993), “A signaling model of informative and manipulative political

action.” American Political Science Review, 87, 319–333. [7, 8]

Lohmann, Susanne (1994), “Information aggregation through costly political action.”

American Economic Review, 84, 518–530. [7, 8]

Martinelli, César (2006), “Would rational voters acquire costly information?” Journal of

Economic Theory, 129, 225–251. [7, 8]

Martinelli, César (2007), “Rational ignorance and voting behavior.” International Journal

of Game Theory, 35, 315–335. [7, 8]

McMurray, Joseph C. (2013), “Aggregating information by voting: the wisdom of the ex-

perts versus the wisdom of the masses.” Review of Economic Studies, 80, 277–312. [7]

McMurray, Joseph C. (2017a), “Ideology as opinion: a spatial model of common-value

elections.” American Economic Journal: Microeconomics, 9, 108–140. [7]

McMurray, Joseph C. (2017b), “Voting as communicating: mandates, multiple candi-

dates, and the signaling voter’s curse.” Games and Economic Behavior, 102, 199–223.

[7]

Osborne, Martin J., Jeffrey S. Rosenthal, and Matthew A. Turner (2000), “Meetings with

costly participation.” American Economic Review, 90, 927–943. [8]

Persico, Nicola (2004), “Committee design with endogenous information.” Review of

Economic Studies, 71, 165–191. [7, 8, 19]

Shiryaev, Albert N. (1996), Probability, second edition. Springer, New York. [28]

Verrecchia, Robert E. (1983), “Discretionary disclosure.” Journal of Accounting and Eco-

nomics, 5, 179–194. [8]

37


	1 Introduction
	2 Model
	3 Equilibria
	3.1 Example
	3.2 Structure of equilibria

	4 Large number of agents
	5 Alternative mechanisms
	5.1 Mechanisms with transfers
	5.2 Mechanisms without transfers

	6 Discussion
	Appendix
	A.1 Off-equilibrium-path beliefs
	A.2 Proofs


