
Optimization via Rejection-Free Partial

Neighbor Search

Sigeng Chen1, Jeffrey S. Rosenthal1, Aki Dote2, Hirotaka
Tamura3 and Ali Sheikholeslami4

1Department of Statistical Sciences, University of Toronto, 700
University Avenue, Toronto, M5G 1Z5, Ontario, Canada.

2Fujitsu Ltd., 4-1-1 Kamikodanaka Nakahara-ku, Kawasaki,
211-8588, Kanagawa, Japan.

3DXR Laboratory Inc., 4-38-10 Takata-Nishi, Kohoku-ku,
Yokohama, 223-0066, Kanagawa, Japan.

4Department of Electrical and Computer Engineering, University
of Toronto, 10 King’s College Road, Toronto, M5S 3G4, Ontario,

Canada.

Contributing authors: sigeng.chen@mail.utoronto.ca;
jeff@math.toronto.edu; dote.aki@fujitsu.com;

tamura.hirotaka@dxrlab.com; ali@ece.utoronto.ca;

Abstract

Simulated Annealing using Metropolis steps at decreasing temperatures
is widely used to solve complex combinatorial optimization problems
(Kirkpatrick et al, 1983). To improve its efficiency, we can use the
Rejection-Free version of the Metropolis algorithm, which avoids the
inefficiency of rejections by considering all the neighbors at every step
(Rosenthal et al, 2021). To prevent the algorithm from becoming stuck
in local extreme areas, we propose an enhanced version of Rejection-
Free called Partial Neighbor Search, which only considers random parts
of the neighbors while applying Rejection-Free. We demonstrate the
superior performance of the Rejection-Free Partial Neighbor Search
algorithm compared to the Simulation Annealing and Rejection-Free
with several examples, such as the QUBO question, the Knapsack
problem, the 3R3XOR problem, and the quadratic programming.

Keywords: Simulated Annealing, Rejection-Free, Partial Neighbor Search,
QUBO

1



2 Optimization via Rejection-Free Partial Neighbor Search

1 Introduction

Optimization is the cornerstone of many areas. It plays a crucial role in find-
ing feasible solutions to real-life problems, from mathematical programming
to operations research, economics, management science, business, medicine,
life science, and artificial intelligence (Floudas and Pardalos, 2008). Before the
invention of linear and integer programming in the 1950s, optimization was
characterized by several independent topics, such as optimum assignment, the
shortest spanning tree, transportation, and the traveling salesman problem,
which were then united into one framework (Schrijver, 2005). Today, combi-
natorial optimization is essential in research because most problems originate
from practice and are dealt with daily (Schrijver, 2005). Optimization ques-
tions aim to find an optimal solution to maximize or minimize a real function
within a given state space. Sometimes, a feasible solution with the correspond-
ing function value near the optimal solution is also acceptable. The process
of finding an optimal or feasible solution to some complex combinatorial opti-
mization problems may take a considerable amount of time. In particular, no
algorithm for NP-hard problems can guarantee that the optimal state of the
problem will be found within a limitation governed by a polynomial based on
the input length (Garey et al, 1974).

Among all complex optimization problem solvers, metaheuristics are usu-
ally nature-inspired (Bianchi et al, 2009). They are designed to select a
heuristic that often arrives at a feasible solution instead of an optimal one.
The Simulated Annealing algorithm (Kirkpatrick et al, 1983), based on the
Metropolis steps (Metropolis et al, 1953) at decreasing temperatures, is a
typical method of this kind. The Simulated Annealing algorithm, however,
may be inefficient because of frequent rejections. To improve the performance
of Simulated Annealing, we adopt the Rejection-Free algorithm for sampling
(Rosenthal et al, 2021; Douc and Robert, 2011) into an optimization ver-
sion. Additionally, Rejection-Free may experience inefficiency when it enters
local extreme areas. Therefore, we propose another algorithm based on the
Rejection-Free algorithm called Partial Neighbor Search (PNS) to enhance its
efficiency further.

Rejection-Free and PNS are more efficient in many optimization problems
than Simulated Annealing, even when applied to a single-core implementa-
tion. The implementation of these algorithms can also be carried out through
parallelism to increase efficiency even further. It is possible to use processors
designed for general purposes, such as Intel and AMD cores, for parallel com-
puting to accelerate the algorithm to some extent. However, these chips were
not built for parallel computing, and off-chip communication significantly slows
the data transfer rate to and from the cores (Sodan et al, 2010). On the other
hand, parallelism hardware explicitly designed for MCMC trials has been cre-
ated. For example, the second generation of Fujitsu Digital Annealer uses a
dedicated processor called Digital Annealing Unit (DAU) (Matsubara et al,
2020) to achieve high speed. This dedicated processor is designed to mini-
mize communication overhead in arithmetic circuitry and with memory. It can



Optimization via Rejection-Free Partial Neighbor Search 3

achieve 100x to 10,000x speedups by combining Rejection-Free and PNS with
such parallelism hardware (Sheikholeslami, 2021).

This paper aims to propose a new metaheuristic algorithm called Partial
Neighbor Search to find a feasible solution in optimization questions efficiently.
We next review the Simulated Annealing algorithm, the Metropolis algo-
rithm, and the Rejection-Free algorithm for sampling. Following that, Section 2
describes how to use the Rejection-Free algorithm to solve optimization prob-
lems. Our next point is that the local maximum may lead to another kind
of inefficiency for Rejection-Free, and Section 3 introduces our Partial Neigh-
bor Search (PNS) algorithm for optimization, which considers just subsets of
neighbor states for possible moves. In Section 4, we demonstrate how PNS can
be applied to quadratic unconstrained binary optimization (QUBO) questions
and its effectiveness in solving them. We then discuss why this improvement
occurs (Section 5), and how its subsets of partial neighbors should be chosen
(Section 6), as well as its relation to the Tabu Search algorithm (Section 7).
Moreover, we present several other examples, such as the Knapsack problem
(Section 8) and the 3R3XOR problem (Section 9), to illustrate the advan-
tages of the PNS algorithm in discrete optimization problems. Furthermore,
Section 10 demonstrates another advantage of PNS over Rejection-Free by pro-
viding a continuous optimization example known as quadratic programming.
PNS can easily be adapted to the general state space by selecting only a finite
subset, and it outperforms Simulated Annealing. In contrast, Rejection-Free
cannot be applied in this case due to the need to consider all neighbors at each
step.

1.1 Background on Simulated Annealing for optimization

Simulated Annealing, as introduced by Kirkpatrick et al (1983), is widely used
to solve combinatorial optimization problems, such as approximating the opti-
mal values of functions with many variables (Rutenbar, 1989). Although there
is some theory to prove that Simulated Annealing will converge to the optimal
solution almost surely with sufficiently slow cooling schedules Nikolaev and
Jacobson (2010), for many complex optimization problems, such as NP-hard
problems, there is no guarantee that this algorithm will provide an optimal
solution within a reasonable amount of time. On the other hand, Simulated
Annealing can give reasonable, feasible solutions quickly (Albright, 2007). Dis-
crete Simulated Annealing contains the following essential elements (Bertsimas
and Tsitsiklis, 1993):

1. A state space S.
2. A real-valued target density π on S. The ultimate goal for the Simulated

Annealing is to find y ∈ S such that π(y) > π(x), ∀x ∈ S. However, for
many circumstances, a good feasible solution is acceptable.

3. ∀x ∈ S, ∃ a proposal distribution Q(x, ·) where
∑

y∈S\{X}Q(x, y) = 1.

4. ∀X ∈ S, ∃ N (x) = {y ∈ S | Q(x, y) > 0} ⊂ S\{x}, called the neighbors of
x.



4 Optimization via Rejection-Free Partial Neighbor Search

5. A non-increasing function T : N → (0,∞), called the Cooling Schedule.
T (k) is called the temperature at step k ∈ N.

6. An initial State X0 ∈ S.

We discuss the discrete cases here first, and then in Section 10, we
will talk more about optimization in general state space. With the above
elements, the Simulated Annealing algorithm, which consists of a discrete time-
inhomogeneous Markov Chain {Xk}Kk=0 can be generated by Algorithm 1.
Algorithm 1 is designed to find Xk such that π(Xk) ≈ supx∈S π(x) with high
probability, though that is not guaranteed. Note that the algorithm can also
be formulated using log values for better numerical stability.

Algorithm 1 Simulated Annealing

initialize X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < [ π(Y )
π(Xk−1)

]1/T (k) then

▷ accept with probability min
{
1,
[ π(Yk)
π(Xk−1)

]1/T (k)
}

Xk = Y ▷ accept and move to state Y
else

Xk = Xk−1 ▷ reject and stay at Xk−1

end if
end for

1.2 Background on Metropolis-Hastings algorithm

The above Simulated Annealing algorithm is designed based on the Metropo-
lis algorithm (Metropolis et al, 1953). Among all the Monte Carlo algorithms,
the Metropolis algorithm has been the most successful and influential (Beichl
and Sullivan, 2000). It is designed to generate a Markov chain that converges
to a given target density π on a state space S. As a generalization of the
Metropolis algorithm, the Metropolis-Hastings algorithm includes the pos-
sibility of a non-symmetric proposal distribution Q (Hitchcock, 2003). The
Metropolis-Hastings algorithm is described in Algorithm 2.

Algorithm 2 ensures the Markov chain {X0, X1, X2, . . . , XK} has π as sta-
tionary distribution. It follows (assuming irreducibility) that the expected
value Eπ(h) of a functional h : S → R with respect to π can be esti-

mated by 1
M

∑M
i=1 h(Xi) for sufficiently large run length M . Although the

Metropolis-Hastings algorithm and Simulated Annealing are designed for
different purposes, regarding the implementation, the Cooling Schedule is
the only difference between them. Thus, both Simulated Annealing and



Optimization via Rejection-Free Partial Neighbor Search 5

Algorithm 2 the Metropolis-Hastings algorithm

initialize X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y )Q(Y,Xk−1)
π(Xk−1)Q(Xk−1,Y ) then

▷ accept with probability min
{
1, π(Y )Q(Y,Xk−1)

π(Xk−1)Q(Xk−1,Y )

}
Xk ← Y ▷ accept and move to state Y

else
Xk ← Xk−1 ▷ reject and stay at Xk−1

end if
end for

the Metropolis-Hastings algorithm may face inefficiencies from the rejections
(Rosenthal et al, 2021).

1.3 Background on Rejection-Free algorithm for sampling

Rejections in both Simulated Annealing and the Metropolis-Hastings algo-
rithm may slow down the efficiency of the algorithm. In Algorithm 1, if

Uk ≥ [ π(Y )
π(Xk)

]1/T (k), then we will remain at the current state, even though we

have spent time in proposing a state, computing a ratio of target densities,
generating a random variable Uk, and deciding not to accept the proposal.
Such inefficiencies could happen frequently and are considered a necessary evil
of Simulated Annealing and the Metropolis-Hastings algorithm. However, we
can compute all potential acceptance probabilities simultaneously to allow for
the possibility of skipping these rejection steps. By removing the inefficien-
cies of rejections in both algorithms, the Rejection-Free algorithm can lead to
significant speedup (Rosenthal et al, 2021; Douc and Robert, 2011).

Before introducing Rejection-Free, we need to introduce the jump chain
first. Given a run {Xk} of a Markov chain, we define the jump chain to be
{Jk,Mk}, where {Jk} represents the same chain as {Xk} except omitting any
immediately repeated states, and the Multiplicity List {Mk} is used to count
the number of times the original chain remains at the same state.

For example, if the original chain is

{Xk} = {a, b, b, b, a, a, c, c, c, c, d, d, a, . . . }, (1)

then the jump chain would be

{Jk} = {a, b, a, c, d, a, . . . }, (2)

with the corresponding multiplicity list being

{Mk} = {1, 3, 2, 4, 2, 1, . . . }. (3)



6 Optimization via Rejection-Free Partial Neighbor Search

the jump chain {Jk,Mk} itself is a Markov chain. If we use notation P (y | x)
to represent the transition probability from x to y by Metropolis-Hastings, the
transition probabilities P̂ (y | x) for the jump chain is specified by

P̂ (x | x) := 0

∀y ̸= x, P̂ (y | x) := P [Jk+1 = y | Jk = x] =
P (y | x)∑
z ̸=x P (z | x)

(4)

Moreover, the conditional distribution of {Mk} given {Jk} is equal to the
distribution of 1 + G where G is a geometric random variable with success
probability p = 1 − P (x | x) =

∑
z ̸=x P (z | x); see Rosenthal et al (2021);

Douc and Robert (2011).
Given the above properties for the Jump chain, the Rejection-Free algo-

rithm can be used for sampling as described by Algorithm 3. Algorithm 3 only
works for the discrete cases where all states have at most finite neighbors.
Theorem 13 in Rosenthal et al (2021) extended the Rejection-Free to general
state space, and we will discuss more by a continuous optimization question
in Section 10.

Algorithm 3 Rejection-Free for Sampling (Discrete Cases)

initialize J0
for k in 1 to K do

p← 0 ▷ p is used to record the success probability for Mk−1

for Y in N (Jk−1) do ▷ only works for finite neighbors

calculate q(Y ) = Q(Y, Jk−1)min{1, π(y)
π(Jk−1)

}
▷ the transition prob. from Jk−1 to Y

p← p+ q(Y ) ▷ p =
∑

z ̸=x P (z | x)
end for
choose Jk ∈ N (Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y )

▷ choose the next jump chain state
calculate Mk−1 = 1 +G where G ∼ Geom(p)

▷ multiplicity list for current state
end for

Algorithm 3 ensures (assuming irreducibility) that the expected value
Eπ(h) of a functional h : S → R with respect to π can be estimated by∑K

k=1 Mk h(Jk)∑K
k=1 Mk

for sufficiently large run length K, while avoiding any rejections.

Rejection-Free can lead to great speedup in examples where the Metropolis
algorithm frequently rejects (Rosenthal et al, 2021).



Optimization via Rejection-Free Partial Neighbor Search 7

2 Rejection-Free algorithm for optimization

In addition to sampling, the above Rejection-Free algorithm can also be applied
to optimization problems. Given a set S and a real-valued target density π on
the set S, we can use the Rejection-Free algorithm to find x ∈ S that maximizes
π(x) by Algorithm 4. Algorithm 4 is also designed to findXk such that π(Xk) ≈
supx∈S π(x) with high probability, and the efficiency is greatly improved by
avoiding rejections. Although the purpose of sampling and optimization are
different, regarding the implementation, Rejection-Free optimization is only
different from Rejection-Free sampling by getting rid of the multiplicity list
{Mk}.

Algorithm 4 Rejection-Free for Optimization (Discrete Cases)

initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1) do
▷ only works for finite neighbors

calculate q(Y ) = Q(Y, Jk−1)min{1, [ π(Y )
π(Jk)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ N (Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y )

▷ choose the next jump chain State
end for

Although the Rejection-Free algorithm for optimization can help reduce
the inefficiency of rejections, local maximum areas of π can still be a problem.
For example, we want to find x ∈ S, which maximizes π(x) from a state space
starting at state A in Figure 1. Here, we use a uniform proposal distribution
Q on the neighbor sets N as shown in Figure 1.

Note that, π(A1) = π(A2) = · · · = π(An) = 0.01 while π(A) = π(B) =
100. Then the probability of escaping from state A by one Metropolis step is
1

n+1 +
n

n+1 ×
1

10000 , where
1

n+1 represents the probability of moving from state

A to state B, and n
n+1 ×

1
10000 is the probability of moving from state A to

A1, A2, . . . , An. Thus, we will have many rejections using Simulated Annealing
with constant temperature T ≡ 1. Cooling Schedules can help reduce the
probability of rejection at the beginning of Simulated Annealing since T should
be large during that time. However, as we move on in Simulated Annealing, we
will be more and more likely to be trapped by local maximum areas like this.

The Rejection-Free algorithm for optimization can produce some speedup
in this case, but the Rejection-Free chain will still be stuck by the local maxi-
mum area {π(A), π(B)}. If n, the number of other neighbors for A and B, is



8 Optimization via Rejection-Free Partial Neighbor Search

Fig. 1 Illustration of the local maximum area in an optimization problem where both Sim-
ulated Annealing and Rejection-Free may get stuck. The target density π has the following
function values: π(A) = π(B) = 100, π(A1) = π(A2) = · · · = π(An) = π(B1) = π(B2) =
· · · = π(Bn) = 0.01.

small, this chain will be switching between A and B for a long time, since

P̂ (J1 = B | J0 = A) =
min{1, π(B)

π(A)}∑
z ̸=A min{1, π(z)

π(A)}
=

1

1 + 0.0001× n
≈ 1

P̂ (J1 = A | J0 = B) ≈ 1.

(5)

To help our Markov chain escape from those local maximums in optimiza-
tion, we propose another method called Partial Neighbor Search based on the
Rejection-Free algorithm.

3 Proposed Search Algorithm: Partial
Neighbor Search

Partial Neighbor Search (PNS) is an algorithm based on the Rejection-Free,
also designed as a Markov chain used for optimization as described in Algo-
rithm 5. Algorithm 5 is also intended to findXk such that π(Xk) ≈ supx∈S π(x)
with high probability, and the efficiency is improved even further by avoiding
both rejections and traps in local maximum areas.

The (⋆) step in Algorithm 5 is the key of PNS. At this step, Nk(Jk−1) could
be random 50% of the elements from N (Jk−1). In Section 6, we will explore
many other choices for the (⋆) step to figure out the best strategy. Moreover, for
continuous cases, PNS can be applied, and we only need to ensure the Partial



Optimization via Rejection-Free Partial Neighbor Search 9

Algorithm 5 Partial Neighbor Search

initialize J0
for k in 1 to K do

pick Nk(Jk−1) ⊂ N (Jk−1) (⋆)
for Y ∈ Nk(Jk−1) do ▷ Only neighbors in Nk will be considered

calculate q(Y ) = Q(Y, Jk−1)min{1, [ π(Y )
π(Jk)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y )

▷ choose the next Jump Chain State
end for

Neighbor Sets Nk are always finite, ∀k. On the other hand, Algorithms 3 and
Algorithm 4 for Rejection-Free only work for discrete cases where the number
of neighbors for all states must be finite, and we will illustrate these by an
optimization example in continuous cases in Section 10.

The motivation for PNS is simple: we have a better chance of escaping from
the local maximum area if we force the algorithm to avoid some neighbors
randomly. For example, in Figure 1, if we only consider half of the neighbors
at state A, we may disregard state B with probability 50%. That is, we have
a probability of at least 50% of selecting a state from {A1, A2, . . . , An} as our
next state in the PNS chain. If this occurs, we are more likely to escape from
the local maximum area {π(A), π(B)}.

4 Application to the QUBO question

The quadratic unconstrained binary optimization (QUBO) has gained increas-
ing attention in combinatorial optimization due to its wide range of applica-
tions in finance and economics to machine learning (Kochenberger et al, 2014).
The QUBO problem is known to be NP-hard (Glover et al, 2018), so it is
common to use Simulated Annealing to find the optimal or workable solution.
This problem can now be addressed using our PNS algorithm. (Additional
applications are in Sections 8, Section 9, and Section 10 below.)

For a given N by N matrix Q (usually upper triangular), the QUBO
question aims to find

argmaxxTQx, where x ∈ {0, 1}N (6)

Sometimes argmin is used instead of argmax, which is equivalent to taking
the negative of Q, so for simplicity, we focus on the argmax version here. In
the simulation here, we use N = 200.

As part of our algorithm, we use a uniform proposal distribution among
all neighbors where the neighbors are defined as binary vectors with Hamming
distance 1. That is, Q(x, y) = 1

N for ∀y ∈ N (x), where y ∈ N (x) ⇐⇒



10 Optimization via Rejection-Free Partial Neighbor Search

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 2 Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest
(log) target density value log π(x) = xTQx being found, for a random upper triangular
QUBO matrix Q where the non-zero elements are generated by Qi,j ∼ N(0, 1002). Four
different cooling schedules where T (k) = 0.1, 1, and 10 constantly, and T (k) being geometric
from 10 to 0.1 are used here. The number of iterations for Simulated Annealing is 200,000,
and the numbers of iterations for Rejection-Free and PNS are 1000. The three black lines
inside the violin plots are 25%, 50%, and 75% quantile lines. The colored segments represent
the mean values.

|x− y| =
∑N

i=1|xi − yi| = 1, ∀x, y ∈ {0, 1}N . We randomly choose half of the
neighbors at each step of PNS, which means we only consider a random subset
NK(x) ⊂ N (x) whose cardinality is |Nk(x)| = 1

2 |N (x)| = 1
2N for ∀x ∈ {0, 1}N .

In addition, the target density π(x) = exp{xTQx}, since we need the target
density to be positive all time to use the Cooling Schedule, and maximizing
xTQx is the same as maximizing exp{xTQx}. Furthermore, T (k) represents
the temperature at step k for the cooling schedule.

We compare Simulated Annealing, Rejection-Free for Optimization, and
PNS in 1000 simulation runs. We randomly generate a 200 by 200 upper trian-
gular as the QUBO matrix Q. The non-zero elements from Q were generated
randomly by Qi,j ∼ Normal(0, 1002), ∀i ≤ j.

The result for the simulation is shown in Figure 2. Here, we used a violin
plot to summarize the results. The violin plot uses the information available
from local density estimates and the basic summary statistics to provide a
valuable tool for data analysis and exploration (Hintze and Nelson, 1998). To
reveal the data structure, the violin plot combines two density traces on both
sides and three quantile lines (25%, 50%, and 75%). In addition, we added a
long segment of the bottom layer as the mean for the values. We also added a
short segment on the y-axis to help compare the mean values.



Optimization via Rejection-Free Partial Neighbor Search 11

Figure 2 shows that the PNS is always the best in all four different cooling
schedules. Note that the number of iterations used for Simulated Annealing
is 200, 000 for Simulated Annealing while they are 1000 for both Rejection-
Free and PNS. We used these many iterations because we need to consider
200 neighbors at each iteration in Rejection-Free. In contrast, we only need
to consider one neighbor for each iteration in Simulated Annealing. If we pro-
ceed with all three algorithms on a single-core machine, the run time of a
single simulation run for simulated Annealing is about 20 seconds; the run
time for Rejection-Free is about 10 seconds; the run time for PNS is only 5
seconds. In addition, parallelism in computer hardware can increase the speed
of both Rejection-Free and PNS by distributing the calculation of the transi-
tion probabilities for different neighbors onto different cores (Rosenthal et al,
2021). Besides that, we can also use multiple replicas at different tempera-
tures, such as in parallel tempering, or deploy a population of replicas at the
same temperature (Sheikholeslami, 2021). Combining these methods with par-
allelism hardware can yield 100x to 10,000x speedups for Rejection-Free and
PNS (Sheikholeslami, 2021).

In the above example, the improvement in the efficiency of Rejection-Free
is easy to understand, while the performance of PNS is counter-intuitive. Com-
pared to Rejection-Free, why would we get a better result by considering fewer
neighbors at each step? To illustrate how PNS works, we can look closely at
the Markov chains generated in the above example.

5 Understanding the improvement of Partial
Neighbor Search

In this section, we found a local maximum area for the target density π pur-
posefully in the previous QUBO example in Section 4 by looking at the final
results from the simulation runs from the previous section. Many Rejection-
Free chains stopped at this local maximum area after 1000 iterations. For this
local maximum area, the target density value is around 82600. This area con-
tains three states whose target density values are much larger than all their
other neighbors. Thus, this local maximum can trap the regular Rejection-Free
chain for a long time, just like the cases we mentioned in Figure 1. We can plot
the Markov chains by PNS with the target density values for all the neighbors
by Rejection-Free and the random subset of neighbors by PNS in the form of
boxplots. The boxplot of the first 30 steps from the first simulation in PNS is
shown in the first plot in Figure 3

From the first plot in Figure 3, most of the target density values within the
boxplot are not useful since they are too small to be picked by the algorithm.
Therefore, we only need to consider the important neighbors likely to be cho-
sen. Firstly, for each state Jk in the Markov Chain, we find the max value
among all the transition probabilities, and we define the important neighbors
to be those neighbors whose transition probability is larger than exp{−10}
times the highest transition probability among all neighbors. That is, for each



12 Optimization via Rejection-Free Partial Neighbor Search

0 5 10 15 20 25 30

79
00

0
81

00
0

83
00

0
Detailed Partial Neighbor Search Chain

Number of Iteration

C
os

t F
un

ct
io

n 
V

al
ue

all neighbors (red boxplots) and partial neighbors (blue boxplots)
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0

0 5 10 15 20 25 30

82
40

0
82

60
0

82
80

0
83

00
0

Detailed Rejection Free Chain

Number of Iteration

C
os

t F
un

ct
io

n 
V

al
ue

all important neighbors (red points) and partial important neighbors (blue points)

0 5 10 15 20 25 30

82
40

0
82

60
0

82
80

0
83

00
0

Detailed Partial Neighbor Search Chain

Number of Iteration

C
os

t F
un

ct
io

n 
V

al
ue

all important neighbors (red points) and partial important neighbors (blue points)

Fig. 3 The detailed Markov Chains from Rejection-Free (the pink chain in the second
plot) and PNS (the light blue chain in the first and the third plot). The red box plots in
the first plot represent the target density values for all neighbors, and the blue box plots
represent the partial neighbors. Most of these values are useless because they are too small
to be picked by the Markov chain. The second and the third plots only show the important
neighbors, defined as those whose transition probability is larger than exp{−10} times the
highest transition probability among all neighbors. Here, red points represent all important
neighbors, and blue points mean important neighbors of a random subset of all neighbors
used for PNS. The Rejection-Free Chain switches between three local maximum states all
the time while the PNS chain escapes from the local maximum area after five iterations.

Jk from the chain, we find q(Y0) = max{q(Y ) | Y ∈ N (Jk)}, and then we
define {Y | Y ∈ N (Jk), q(Y ) > exp{−10} × q(Y0)} to be important neigh-
bors for Jk. This time, we only have several important neighbors at each step.
Thus, we used points instead of boxplots to show the important neighbors.
The result from Rejection-Free and PNS is also shown in Figure 3.

From the second plot in Figure 3, the red dots represent the important
neighbors, and the pink line means the Rejection-Free chain. We can see that
this local maximum area of three states can easily trap the Rejection-Free



Optimization via Rejection-Free Partial Neighbor Search 13

chains because their target density values are much higher than all other neigh-
bors. Thus, the important neighbors for any of these three states are only the
remaining two, and the Rejection-Free chain will be switching between these
three for a long time. At the same time, the blue dots in the second plot repre-
sent the important neighbors if we start to do PNS from that state. Although
we did not apply PNS in the second plot, we still put the random subset for
PNS there as a comparison. From the blue dots in the second plot, we can
say that if we perform PNS, then the Markov chain can escape from this local
maximum area faster since some groups of the blue dots do not contain any
of these three states with high target density values.

On the other hand, the third plot in Figure 3 shows that the PNS chain
(blue line) escapes from this local maximum area within five steps. Again, the
blue dots represent the important neighbor from PNS, and the red dots rep-
resent the important neighbor if we start to perform Rejection-Free from that
step. For each step of PNS within the local maximum area of three states, the
Markov Chain has the probability of 25% to include neither of the remain-
ing neighbors from the three states. Thus, PNS helped the Markov chain to
escape from this local maximum area. In addition, in the middle part of the
PNS chain, when the target density value of the PNS chain is increasing, we
usually have more than one important neighbor. For example, if we have three
important neighbors, we only have 12.5% for considering none by PNS.

Thus, the PNS is better than Rejection-Free because the PNS performs
much better than the Rejection-Free algorithm when the local maximum areas
trap the Markov chain. On the other hand, PNS performs similar to Rejection-
Free when the Markov chain is increasing with respect to the target density
value.

This section uses 50% random partial neighbors for each step. We have
many other choices, and we will consider and compare these choices in the
next section.

6 Optimal subset choice for Partial Neighbor
Search

Before we start our Markov chain, we have a proposal distribution Q with a
corresponding neighbor set N where N (x) := {y ∈ S | Q(x, y) > 0}. A Partial
Neighbor Set means any function Ni satisfies the following conditions:

1. Ni : S → P(S), where S is the state space, and P(S) is the power set of S;
2. Ni(x) ⊂ N (x), ∀x ∈ S;
3. y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S;

Usually, we want to pick Ni such that |Ni(x)| < |N (x)| to perform proper
PNS. In addition, to ensure irreducibility, we need to make sure ∪Kk=1Nk(x) =
N (x) for all x ∈ S. The corresponding proposal distribution is defined to be
Qi(x, y) : S ×S → R, where Qi(x, y) ∝ Q(x, y) for y ∈ Ni(x) and Qi(x, y) = 0
otherwise.



14 Optimization via Rejection-Free Partial Neighbor Search

Here, we compare the four different ways to choose the proposal distribution
{Qk,Nk} for PNS in the (⋆) step in Algorithm 5 by the 200 × 200 QUBO
question we discussed in Section 4:

• Method A (random subset every step): The Partial Neighbor Sets Nk are
randomized for every step, where |Nk(x)| = 1

2 × |N (x)| = 100. Qk’s are
defined accordingly.

• Method B (random subset every ten steps): The Partial Neighbor Sets Nk

are randomized for once ten steps, where |Nk(x)| = 1
2 × |N (x)| = 100. That

is, N10×k+1 = N10×k+2 = · · · = N10×k+10 for ∀k ∈ N. Qk’s are defined
accordingly.

• Method C (systematic subset every step): Before we start our Markov Chain,
we define two Partial Neighbor Sets N1 and N2, where |N1(x)| = |N2(x)| =
1
2 × |N (x)| = 100, N1(x) ∩ N2(x) = ∅. For step k of the Markov chain, we
only randomly generate rk ∈ {1, 2}, and apply Nrk for step k. Q1 and Q2

are defined accordingly.
• Method D (systematic subset every ten steps): Before we start our Markov
Chain, we define two Partial Neighbor Sets N1 and N2, where |N1(x)| =
|N2(X)| = 1

2 × |N (x)| = 100, N1(x) ∩N2(x) = ∅. For every ten steps of the
Markov chain, we only randomly generate rk ∈ {1, 2} and apply Nrk . That
is r10×k+1 = r10×k+2 = . . . = r10×k+10 for ∀k ∈ N. Q1 and Q2 are defined
accordingly.

For this 200× 200 QUBO example, the settings for the simulation are the
same as in Section 4. For Method C and D, the two Partial Neighbor Sets N1

and N2 are defined as flipping the first 100 entries in x and flipping the last
100 entries in x. The result for the simulation is shown in Figure 4. This figure
shows that the random subset at every step (Method A) performs the best in
all four Cooling Schedules. Therefore, we will keep using Method A in all later
parts.

In addition, we used Partial Neighbor Sets with half elements from all
neighbors in previous simulations. Now we compare the Partial Neighbor Sets
with cardinality of |N (x)|×{1, 3

4 ,
2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8} by the same simulation

settings as before. From Figure 5, we can see that 1
3 ,

1
4 ,

1
5 are overall the best

among all the choices. Thus, we can conclude that Partial Neighbor Sets with
around 25% of the neighbors being considered at each step are the best for the
above QUBO question.

Therefore, we conclude that our best method to do optimization for the
200× 200 QUBO question is Algorithm 6.

7 Comparison with Tabu Rejection-Free
algorithm

Tabu search (Glover, 1989, 1990) is also a methodology in optimization that
guides a local heuristic search procedure to explore the solution space beyond
local optimality. The idea of Tabu search is to prohibit access to specific



Optimization via Rejection-Free Partial Neighbor Search 15

81500

82000

82500

83000

83500

Method A Method B Method C  Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

79000

80000

81000

82000

83000

Method A Method B Method C  Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 1

82000

82500

83000

Method A Method B Method C  Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 10

80000

81000

82000

83000

Method A Method B Method C  Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 4 Comparison of different methods to choose the subsets for PNS, in terms of the
highest (log) target density value log π(x) = xTQx found. Method A: random subset every
step; method B: random subset every ten steps; method C: systematic subset every step;
method D: systematic subset every ten steps. Random upper triangular QUBO matrix where
the non-zero elements are generated by Qi,j ∼ N(0, 1002). Four different cooling schedules
where T = 0.1, 1, and 10 for all n, and T being geometric from 10 to 0.1, are used here. The
number of iterations for all methods is 1000. The three black lines inside the violin plots are
25%, 50%, and 75% quantile lines. The colored segments represent the mean values.

Algorithm 6 Partial Neighbor Search for the 200 by 200 QUBO question

initialize J0
for k in 1 to K do

randomly pick Nk(Jk−1) ⊂ N (Jk−1) where |Nk(Jk−1)| = 50
▷ Only 50 out of the 200 neighbors will be considered

for Y ∈ Nk(Jk−1) do

calculate q(Y ) = min{1, [ exp(Y TQY )

exp(JT
k−1QJk−1)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y )

▷ choose the next Jump Chain State
end for

previously-visited solutions. Tabu search is the most intuitive method to help
the Markov Chain escape from local maximum areas, as in Figure 1. After
moving from state A to state B, we must choose our next state among
{B1, B2, . . . , BN}. We can combine our Rejection-Free algorithm for optimiza-
tion with Tabu search and then compare this new method to the PNS by the
QUBO question. Note that we do not need to record all visited states since we



16 Optimization via Rejection-Free Partial Neighbor Search

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 1

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 10

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 5 Comparison of different sizes of the random subsets for PNS, in terms of the
highest (log) target density value log π(x) = xTQx being found. Subset sizes are N ×
{1, 3

4
, 2
3
, 1
2
, 1
3
, 1
4
, 1
5
, 1
6
, 1
7
, 1
8
}. Random upper triangular QUBO matrix where the non-zero

elements are generated by Qi,j ∼ N(0, 1002). Four different cooling schedules where T =
0.1, 1, and 10 for all n, and T being geometric from 10 to 0.1, are used here. The number
of iterations for all methods is 1000. The three black lines inside the violin plots are 25%,
50%, and 75% quantile lines. The colored segments represent the mean values.

are almost impossible to revisit a state after a certain number of steps. Thus,
we only need to record the last several steps and prohibit our Markov chain
from revisiting them. The new algorithm is formulated as Algorithm 7.

Algorithm 7 L steps Simplified Tabu Rejection-Free for optimization

initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1)\{Jk−2, . . . , Jk−L−1} do
▷ Remove states from the last L steps

q(Y ) = min{1, [ exp(Y
TQY )

exp(JT
k QJk)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y )

▷ choose the next Jump Chain State
end for

We compare PNS with L-step Simplified Tabu Rejection-Free for L =
1, 2, 3, . . . , 9. Again, we randomly generate a 200 by 200 upper triangular
QUBO matrix. The non-zero elements from the 200 by 200 upper triangular



Optimization via Rejection-Free Partial Neighbor Search 17

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 6 Comparison of PNS, Rejection-Free, and 1-Step to 9-steps Simplified Tabu
Rejection-Free, in terms of the highest (log) target density value log π(x) = xTQx found.
Random upper triangular QUBO matrix where the non-zero elements are generated by
Qi,j ∼ N(0, 1002). Four different cooling schedules where T = 0.1, 1, and 10 constantly,
and T being geometric from 10 to 0.1, are used here. The run time for all algorithms on a
single-core implementation is about the same. The number of iterations for PNS is 400, and
the number of iterations for all other methods is 100. The colored segments represent the
mean values.

matrix Q were generated randomly with Qi,j ∼ N(0, 1002) for i < j. Note that
we need to consider about 200 neighbors at each step for Rejection-Free and
Simplified Tabu Rejection-Free, while we only need to consider 50 neighbors
at each iteration for PNS. If we proceed with the algorithms with a single-
core implementation, Rejection-Free and Tabu Rejection-Free need about four
times longer than PNS with the same number of steps. Therefore, we can com-
pare the PNS with 4 × 100 = 400 iterations with the other methods to get a
fair comparison for the program on a single core. Note that we are using this
many steps here because 400 steps are enough for PNS to find a good enough
answer. The result for the simulation is shown in Figure 6. From this plot, we
can see that PNS performs much better than Rejection-Free and Simplified
Tabu Rejection-Free.

8 Application to Knapsack problem

The Knapsack problem is another well-known NP-hard problem in optimiza-
tion (Salkin and De Kluyver, 1975). We consider the simplest 0-1 Knapsack
problem here. Given a knapsack of max capacity W and N items with corre-
sponding values {vi}Ni=1 and weights {wi}Ni=1, we want to find a finite number of



18 Optimization via Rejection-Free Partial Neighbor Search

items among all N items which can maximize the total value while not exceed-
ing the max capacity of the knapsack. That is, for given W > 0, {vi}Ni=1 > 0
and {wi}Ni=1 > 0, find a sequence of N binary variable {xi}Ni=1 ∈ {0, 1} to
maximize

N∑
i=1

vixi

subject to

N∑
i=1

wixi ≤W

(7)

Since the Knapsack problem is NP-hard, we can use the Simulated Anneal-
ing algorithm to find a feasible solution. For this simulation, we set W =
100, 000. We randomly generate N = 1000 items where the values and
weights are random by wi, vi ∼ Poisson(1000). The mean and the variance
for Poisson(1000) are both 1000. Suppose we want to find a binary vector
x = (x1, x2, . . . , xN )T of dimension N to maximize vTx subject to wTx ≤W .

Again, we used a uniform proposal distribution among all neighbors where
the neighbors are defined as binary vectors with Hamming distance 1. That is,
Q(x, y) = 1

N for ∀y ∈ N (x), where y ∈ N (x) ⇐⇒ |x−y| =
∑N

i=1|xi−xi| = 1,
∀x, y ∈ {0, 1}N . We randomly choose half of the neighbors at each step for
PNS. That is, |Nk(x)| = 1

2 |N (x)| = 500 for ∀x ∈ {0, 1}N . Moreover, the target
density π(x) = 1(wTx ≤W )×vTx, where 1 represents the indicator function.
In addition, T (k) represents the temperature at step k for the Cooling Schedule
here.

Again, we compare Simulated Annealing, Rejection-Free, and PNS here.
The result is shown in Figure 7. The plot shows that Rejection-Free for opti-
mization and PNS algorithm are better than the regular Simulated Annealing
algorithm in all four Cooling Schedules. Again, for the simulation shown in
Figure 7, the numbers of iterations used for the three methods are set to be
different to have a fair comparison between the three methods. We set the
number of iterations for Simulated Annealing to be 1000, 000. The numbers of
iterations for Rejection-Free and PNS are 1000 since we need to consider 1000
neighbors at each iteration for Rejection-Free for optimization. In contrast, we
only need to consider one neighbor for each iteration in Simulated Annealing.

This result shows that PNS is not always that much better than Rejection-
Free when the number of iterations is the same. In some cases, where the target
density is not sharply peaked, and there are few local extreme areas, Rejection-
Free can also perform excellently. Note that if we run the above simulation on
a single core, PNS will only take about half of the time used by Rejection-Free,
and if we use parallel hardware to apply the above algorithm, Rejection-Free,
and PNS will take about the same time.

In addition, Rejection-Free is not always better than simple Simulated
Annealing. For example, there will be no rejections if π(x) ≡ 1 for all x ∈ S.
The Simulated Annealing will move to a new state by computing a single prob-
ability, while the Rejection-Free will do the same but compute the probabilities



Optimization via Rejection-Free Partial Neighbor Search 19

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 7 Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest
target density values found in Knapsack Problem with W = 100, 000, N = 1000, wi, vi ∼
Poisson(1000). Four different cooling schedules where T = 0.1, 1, and 10 constantly, and
T being geometric from 10 to 0.1, are used there. The number of iterations for Simulated
Annealing is 1,000,000, while the number for Rejection-Free and PNS is 1000. The three
black lines inside the violin plots are 25%, 50%, and 75% quantile lines. The colored segments
represent the mean values.

for all neighbors. However, when the dimension of the problem is large, or
the target density is sharply peaked, the PNS will perform much better than
Rejection-Free, and Rejection-Free will perform much better than Simulated
Annealing.

9 Application to 3R3XOR problem

The 3R3XOR problem is a methodology for generating benchmark problem
sets for Ising machines devices designed to solve discrete optimization problems
cast as Ising models introduced by Hen (2019). The Ising model, named after
Ernst Ising, is concerned with the physics of magnetic-driven phase transitions
(Cipra, 1987). The Ising model is defined on a lattice, where a spin si ∈ {−1, 1}
is located on each lattice site (Block and Preis, 2012). The optimization ques-
tion for the Ising model has been widely applied to many scientific problems
such as neuroscience (Hopfield, 1982) and environmental science (Ma et al,
2014). Thus, algorithms, even special-purpose programmable devices, designed
to solve discrete optimization problems cast as Ising models are popular (Hen,
2019), and our PNS algorithm is one of them.

However, the non-planar Ising model is NP-complete (Cipra, 2000). We
cannot find an optimal state from an Ising model in polynomial time. Then,
it is hard for us to compare the performance of the heuristic solvers, such as



20 Optimization via Rejection-Free Partial Neighbor Search

Rejection and PNS, by the time used to find the optimal state from a random
Ising model. On the other hand, Hen (2019) introduced a tool for benchmarking
Ising machines in 2019. In his approach, linear systems of equations are cast
as Ising cost functions. The linear systems can be solved quickly, while the
corresponding Ising model exhibits the features of NP-hardness (Hen, 2019).
This way, we can construct special Ising models with a unique known optimal
state. Then we can use these special Ising models to compare the heuristic
solvers’ runtimes to find the optimal state.

This section focuses on constructing a simplified version of 3-body Ising
withN spins from a binary linear system ofN equations. The simplified version
is defined as follows:

H({sj}) =
∑

a<b<c

Ma,b,csasbsc, (8)

where si ∈ {−1, 1} for ∀i = 1, 2, . . . , N . Ma,b,c is a N ×N ×N matrix where
Ma,b,c = 0 ∀a ≥ b, b ≥ c, or a ≥ c.

In Hen’s (2019) approach, we start by choosing a binary matrix {Ai,j} and
a binary vector {bj} to form a modulo two linear system of N equations in N
variables.

N∑
j=1

Ai,jxj ≡ bi mod 2, for i = 1, 2, . . . , N. (9)

This module two linear system of equations can always be solved in polynomial
time using Gaussian elimination. In addition, as long as the binary matrix
{Ai,j} is invertible, the solution, if it exists, is unique. Suppose {x1, ..., xn}
are n binary variables. Then for given {Ai,j} and {bj}, we define

F ({xj}) =
N∑
i=1

1
( N∑

j=1

Ai,jxj ̸≡ bi mod 2
)
, (10)

where 1 means indicator function here. Since F is a sum of N indicator func-
tions, then 0 ≤ F ≤ N and the minimum bound is reached when {xj} is the
solution to the modulo two linear system.

Let sj = 1 − 2xj ∈ {−1, 1} for j = 1, 2, . . . , N be N Ising spins. Then we
must have

∏
j:Ai,j=1

sj = (−1)bi if and only if

N∑
j=1

Ai,jxj ≡ bi mod 2, (11)



Optimization via Rejection-Free Partial Neighbor Search 21

∀i = 1, 2, . . . ,m. Then

F =

N∑
i=1

1
( N∑

j=1

Ai,jxj ̸≡ bi mod 2
)

=

N∑
i=1

1
( ∏

j:Ai,j=1

sj ̸= (−1)bi

)
, since

∏
j:Ai,j=1

sj and (−1)bi ∈ {−1, 1}

=
1

2

[ N∑
i=1

(
1− (−1)bi

∏
j:Ai,j=1

sj

)]
.

(12)

After dropping immaterial constants, we define

F0({sj}) =
N∑
i=1

[
(−1)bi

∏
j:Ai,j=1

sj

]
. (13)

Note that F ≥ 0 and the minimum bound is reached when {xj} is the solution
to the modulo two linear system. Thus, F0 ≤ N , and the maximum bound will
be reached when {xj | xj = 1

2 (1 − sj)} is the solution to the modulo 2 linear
system. In addition, as long as the matrix {Ai,j} is invertible, the solution to
the equation system must uniquely exist, and then there must exist a single
configuration maximizes F0 whose maximum value is exactly N .

Again, the Hamiltonian for simplified 3-body Ising model including only the
cubic term to be H({sj}) =

∑
a<b<c Ma,b,csasbsc. Here, we assume, on each

row of the binary matrix {Ai,j},
∑N

j=1 Ai,j = 3. Then, let Ma,b,c = (−1)bi

if ∃i, a < b < c such that Ai,a = Ai,b = Ai,c = 1, and Ma,b,c = 0 otherwise.
Then, we have H({sj}) = F0({sj}).

Thus, we can construct an Ising model with a unique optimal bound with
a known optimal value N as follows:

1. find an invertible binary matrix {Ai,j} and a binary vector {bi}, where∑N
j=1 Ai,j = 3, ∀i

2. solve the modulo 2 linear equation system
∑N

j=1 Ai,jxj ≡ bi mod 2, for
i = 1, 2, . . . , N to make sure the unique solution exists

3. define Ma,b,c be a N×N×N matrix where Ma,b,c = (−1)bi if ∃i, a < b < c
such that Ai,a = Ai,b = Ai,c = 1, and Ma,b,c = 0 otherwise

4. then we must have a unique optimal solution smax for H(smax) =
max(H(s)) = N

By constructing the special 3-body N ×N ×N Ising model with a unique
optimal solution of maximum bound N , we can examine the performance of
the Rejection-Free and PNS algorithms on these special Ising models. Again,
uniform proposal distributions are used here, and the neighbors are defined as
binary vectors with Hamming distance 1. We randomly generate the special
Ising models with four different sizes N = 12, 24, 48, and 96. For each of these



22 Optimization via Rejection-Free Partial Neighbor Search

1e−02

1e+00

1e+02

0 25 50 75 100
Dimension of the Problem

T
im

e 
to

 S
ol

ut
io

n 
(s

ec
)

Method 25% PNS 50% PNS 75% PNS Rejection−Free

Time to Solution versus Dimension

Fig. 8 Comparison of the minimum value for the time used to find the optimal state by
Rejection-Free and PNS with 25%, 50%, and 75% of the neighbors being considered at each
step for a random Ising model generated by 3R3XOR. Each dot represents the median of
50 repeated simulations for a given problem size N = 12, 24, 48, and 96.

four different sizes, we generate 50 different Ising models and record the time
used by the algorithms to reach their individual optimal states. The median
of these 50 results for both Rejection-Free and PNS algorithms are shown in
Figure 8. From this figure, Rejection-Free is the worst. 25% PNS performs
comparably to 75%, and the 50% PNS performs the best.

10 Application to Continuous State Space

In previous sections, we focused on optimization questions with the discrete
state space S where all states have, at most, a finite number of neighbors.
Meanwhile, Simulated Annealing also works for general state space, where the
number of neighbors can be uncountable. In addition, Theorem 13 in Rosen-
thal et al (2021) extended the Rejection-Free sampling to general state space.
Similarly, we can extend the Rejection-Free optimization to general state space.

Although we have a solid theory base for Rejection-Free sampling in gen-
eral state space Rosenthal et al (2021), applying Rejection-Free sampling to
those cases is challenging. A significant difficulty is involved in the for loop
that calculates the transition probability of all neighbors in Algorithm 4. In
continuous cases, although numerical integration of all transition probability
can be performed, such tasks are unlikely to be efficiently divided among spe-
cialized hardware with a certain number of parallel processing units. A similar
challenge holds for Rejection-Free optimization as well. On the other hand,



Optimization via Rejection-Free Partial Neighbor Search 23

PNS, as described in Algorithm 5, can be applied straightforwardly to contin-
uous cases by choosing the Partial Neighbors Sets Nk(x) to be finite subsets
of all the neighbors N (x) in Algorithm 5.

We compare the performance of Simulated Annealing with our PNS on a
simple example of quadratic programming, which belongs to the category of
continuous optimization, as stated below:

argmax xTQx

subject to xi ≥ 0, ∀i = 1, 2, . . . , N

N∑
i=1

xi = 1,

(14)

where Q is a given an upper triangular N by N matrix and x ∈ RN . For most
cases, the quadratic programming is stated by argmin instead of argmax. We
use the argmax version here to be consistent with the QUBO question in
Section 4, and argmax is equivalent to argmin when replacing Q by −Q. This
quadratic programming question is also NP-hard as long as Q is indefinite
(Sahni, 1974), where indefinite means matrices that are neither positive semi-
definite nor negative semi-definite.

We randomly generate a 200 by 200 upper triangular to be the matrix
Q, where the non-zero elements from the 200 by 200 upper triangular matrix
Q were generated randomly by Qi,j ∼ Normal(0, 1002), ∀i ≤ j. We compare
Simulated Annealing and PNS in 100 simulation runs here. We omit Rejection-
Free since applying Rejection-Free to continuous cases is quite challenging.

The target density value is set to be π(x) = exp{xTQx}, ∀x such that
xi ∈ (0, 1), ∀i = 1, 2, . . . , N , and π(x) = −∞ otherwise. In addition, the
proposal distribution Q and the corresponding neighbor set N are defined as
follows:

1. for state x = (x1, x2, . . . , xN )T ∈ S, choose a random entry xr for r ∈
{1, 2, . . . , N};

2. generate a random value s ∼ Normal(0, 0.12);
3. let yr = xr + s and yn = xn × 1−xr

1−yr
, ∀n ̸= r;

4. if yr /∈ (0, 1), then the corresponding π(y) is defined to be −∞; in practice,
we just need to generate a new y; also note that, as long as yr, x ∈ (0, 1),
we must have y ∈ (0, 1)N ;

5. to ensure the reversibility within each Partial Neighbor Set, we also consider
y′r = xr−s and y′n = xn× 1−xr

1−y′
r
, ∀n ̸= r; if y′r /∈ (0, 1), then we can ignore y′.

With the given steps, we have
∑N

n=1 yn = 1 as long as
∑N

n=1 xn = 1. This
method is similar to component-wise Simulated Annealing. We find a ran-
dom component, magnify or minify it, and then modify the rest of the entries
to keep the summation unchanged. This proposal distribution Q is therefore
systematic. By the above ways to generate neighbors, we can eliminate the



24 Optimization via Rejection-Free Partial Neighbor Search

constraints that xi ≥ 0, ∀i = 1, 2, . . . , N , and
∑N

i=1 xi = 1, and we only need
to focus on argmaxxTQx.

In addition, some papers such as Bierkens (2016); Neal (2004) claim that
the non-reversible MCMC is more efficient than the reversible MCMC. For
the previous discrete examples, their proposal distributions are intuitively
reversible since we always consider states with flipped bits as neighbors. Thus,
we test the efficiency of non-reversible MCMC here with our continuous exam-
ple. To get a non-reversible PNS, Step 5 from the method to choose the
reversible partial neighbor set there shall be ignored to get the non-reversible
PNS, and we just need to do Steps 1 to 4.

For Simulated Annealing, we randomly generate one neighbor by the above-
given steps and calculate the transition probability. For both reversible and
non-reversible PNS, we can generate, for example, 20 random neighbors in
total at each step. In this case, the reversible Partial Neighbor Set Ni is only a
random subset withN with 20 elements, which are 10 pairs of states created by
reversibility, and the non-reversible Partial Neighbor Set is simply 20 random
states from the proposal distribution. The implementation of both versions of
PNS is simple compared to the Rejection-Free since Rejection-Free needs to
consider uncountable many neighbors.

The result for the simulation is shown in Figure 9. We can see that both
reversible and non-reversible PNS performs better than Simulated Annealing
in all four different cooling schedules. However, the difference between PNS
and Simulated Annealing in this continuous example is not as much as the
difference between the algorithms from the discrete QUBO questions. Note
that the continuous example is not as sharply peaked as the discrete example
from Section 6. Thus, after we choose a random entry r, we only need to move
a small step around the original value of xr. On the other hand, we have to
flip between 0 and 1 in the discrete example. Thus, the rejection rate for the
Simulated Annealing is lower than the rate from the discrete example, so the
performance of these algorithms gets closer than the discrete cases. In addition,
the non-reversible PNS does not outperform the reversible PNS, which means
the non-reversible PNS does not always solve the optimization questions more
efficiently. However, the results may differ for other examples, which can be
one of our future research directions.

In addition, PNS is specially designed for parallelism hardware. Again, with
a specialized dedicated processor such as DAU, PNS can yield 100x to 10,000x
speedups (Sheikholeslami, 2021). In addition, this example also shows that
PNS has more flexibility compared to the Rejection-Free algorithm. Again,
Rejection-Free can hardly work for cases with infinite neighbors, while PNS
can be easily applied by choosing finite Nk.

Moreover, the number of elements in Nk needs to be reasonable for PNS to
keep its performance. For example, if we used |Nk| = 500, we would calculate
too many transition probabilities at each step, making the algorithm inefficient.
Meanwhile, if we used |Nk| = 2, the number of Partial Neighbor Sets being
considered at each step would be too few. As PNS will force the Markov chain



Optimization via Rejection-Free Partial Neighbor Search 25

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Fig. 9 Comparison of Simulated Annealing and PNS in terms of the highest (log) target
density value log π(x) = xTQx being found, for a random upper triangular matrix Q and

x ∈ RN subject to xi ≥ 0, ∀i = 1, 2, . . . , N , and
∑N

i=1 xi = 1. The non-zero elements are
generated by Qi,j ∼ N(0, 1002). Four different cooling schedules where T (k) = 0.1, 1, and 10
constantly, and T (k) being geometric from 10 to 0.1 are used here. The number of iterations
for Simulated Annealing is 200, 000, and the number of iterations for both reversible and
non-reversible PNS is 24, 000. The run times for these three algorithms on a single-core
implementation are around 30 seconds. The three black lines inside the violin plots are 25%,
50%, and 75% quantile lines. The colored segments represent the mean values.

to move to one element from the Partial Neighbor Set Nk, it will move to some
terrible choices of states when all states in the Partial Neighbor Set Nk have
small target density values. In the above simulation, choosing |Nk| from 10 to
30 is the best strategy, and the numbers between 10 and 30 perform similarly.

Furthermore, especially for the continuous cases, using a new partial neigh-
bor set at each step is the key for PNS to get good performance. If we keep
using the same partial neighbors for too many steps, the Markov chain may
be forced to go somewhere wired, and thus, the efficiency of such PNS won’t
be that good.

11 Summary

In this paper, we have demonstrated new methods for optimization ques-
tions based on the Markov chain Monte Carlo. Rejection-Free can improve the
optimization efficiency over Simulation Annealing by considering all the neigh-
bors simultaneously. Also, PNS optimization was introduced to address the
problem that local maximum areas may trap the Markov chains. PNS works
better than Rejection-Free and Simulated Annealing in the four optimization



26 Optimization via Rejection-Free Partial Neighbor Search

examples illustrated in this paper. Three sets of discrete examples have been
simulated to demonstrate that PNS can produce significant speedups in opti-
mization problems. PNS has also been applied to one continuous example to
demonstrate its greater flexibility than Rejection-Free.

Besides the Rejection-Free sampling paper (Rosenthal et al, 2021), we have
also applied PNS to the sampling cases (Chen et al, 2022). We have proven
the convergence theorem for the PNS sampling algorithm. Under some specific
conditions, the Markov chain produced by PNS sampling will converge to the
target density almost surely. On the other hand, PNS optimization illustrated
by this paper does not need such strict conditions for convergence. For the
three conditions described in Section 6, the third condition y ∈ Ni(x) ⇐⇒
x ∈ Ni(y) related to the reversibility of the Markov chain can be somehow
loosened. A fascinating question is how much we can loosen the conditions.
For example, non-reversible PNS can be useful in optimization questions. We
tried one non-reversible PNS in Section 10, and the result shows that the
non-reversible PNS is just as good as the reversible PNS. We believe that non-
reversible PNS can be helpful under other circumstances, and it can be one of
our future research directions.

The limitation of PNS is that if we apply it on parallelism hardware, espe-
cially for chips not specially designed for parallel computing, the speed will be
slower than desired. This algorithm needs different processors to communicate
frequently. For example, on my personal computer, using sixteen processors to
do PNS can only reduce 50% of the time required by the program compared to
one processor. On the other hand, if we use specialized hardware such as DAU
Matsubara et al (2020), the time used for communication between processors
will be much shorter.

Acknowledgments

The authors thank Fujitsu Ltd. and Fujitsu Consulting (Canada) Inc. for
providing financial support.
The authors thank the reviewers and editors for very careful readings and
helpful comments which have greatly improved the manuscript.

References

Albright B (2007) An introduction to simulated annealing. The College
Mathematics Journal 38(1):37–42.

Beichl I, Sullivan F (2000) The Metropolis algorithm. Computing in Science
& Engineering 2(1):65–69.

Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Statistical science
8(1):10–15.



Optimization via Rejection-Free Partial Neighbor Search 27

Bianchi L, Dorigo M, Gambardella LM, et al (2009) A survey on metaheuristics
for stochastic combinatorial optimization. Natural Computing 8(2):239–287.

Bierkens J (2016) Non-reversible metropolis-hastings. Statistics and Comput-
ing 26(6):1213–1228

Block B, Preis T (2012) Computer simulations of the Ising model on graphics
processing units. The European Physical Journal Special Topics 210(1):133–
145.

Chen S, Rosenthal JS, Dote A, et al (2022) Sampling via rejection-free partial
neighbor search. arXiv preprint arXiv:221010513

Cipra BA (1987) An introduction to the Ising model. The American Mathe-
matical Monthly 94(10):937–959.

Cipra BA (2000) The Ising model is NP-complete. SIAM News 33(6):1–3.

Douc R, Robert CP (2011) A vanilla Rao–Blackwellization of Metropolis–
Hastings algorithms. Annals of statistics 39(1):261–277

Floudas CA, Pardalos PM (2008) Encyclopedia of optimization, Springer
Science & Business Media, pp 1538–1542.

Garey MR, Johnson DS, Stockmeyer L (1974) Some simplified NP-complete
problems. In: Proceedings of the sixth annual ACM symposium on Theory
of computing, pp 47–63.

Glover F (1989) Tabu search—part I. ORSA Journal on computing 1(3):190–
206.

Glover F (1990) Tabu search—part II. ORSA Journal on computing 2(1):4–32.

Glover F, Kochenberger G, Du Y (2018) A tutorial on formulating and using
QUBO models. arXiv:1811.11538

Hen I (2019) Equation planting: A tool for benchmarking Ising machines. Phys
Rev Applied 12:011,003.

Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism.
The American Statistician 52(2):181–184.

Hitchcock DB (2003) A history of the Metropolis-Hastings algorithm. The
American Statistician 57(4):254–257.

Hopfield JJ (1982) Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences
79(8):2554–2558.

arXiv:1811.11538


28 Optimization via Rejection-Free Partial Neighbor Search

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. science 220(4598):671–680.

Kochenberger G, Hao JK, Glover F, et al (2014) The unconstrained binary
quadratic programming problem: a survey. Journal of combinatorial opti-
mization 28(1):58–81.

Ma YP, Sudakov I, Strong C, et al (2014) Ising model for melt ponds on Arctic
sea ice. arXiv:1408.2487

Matsubara S, Takatsu M, Miyazawa T, et al (2020) Digital annealer for high-
speed solving of combinatorial optimization problems and its applications.
2020 25th Asia and South Pacific Design Automation Conference (ASP-
DAC) pp 667–672.

Metropolis N, Rosenbluth AW, Rosenbluth MN, et al (1953) Equation of State
Calculations by Fast Computing Machines. The Journal of Chemical Physics
21(6):1087–1092.

Neal RM (2004) Improving asymptotic variance of mcmc estimators: Non-
reversible chains are better. arXiv preprint math/0407281

Nikolaev AG, Jacobson SH (2010) Simulated annealing. Handbook of meta-
heuristics pp 1–39

Rosenthal JS, Dote A, Dabiri K, et al (2021) Jump Markov chains and
rejection-free Metropolis algorithms. Computational Statistics 36(4):2789–
2811.

Rutenbar RA (1989) Simulated annealing algorithms: An overview. IEEE
Circuits and Devices magazine 5(1):19–26.

Sahni S (1974) Computationally related problems. SIAM Journal on comput-
ing 3(4):262–279.

Salkin HM, De Kluyver CA (1975) The knapsack problem: a survey. Naval
Research Logistics Quarterly 22(1):127–144.

Schrijver A (2005) On the history of combinatorial optimization (till 1960).
Handbooks in operations research and management science 12:1–68.

Sheikholeslami A (2021) The power of parallelism in stochastic search for
global optimum: Keynote paper. In: ESSCIRC 2021 - IEEE 47th European
Solid State Circuits Conference (ESSCIRC), pp 36–42.

Sodan AC, Machina J, Deshmeh A, et al (2010) Parallelism via multithreaded
and multicore CPUs. Computer 43(3):24–32

arXiv:1408.2487

	Introduction
	Background on Simulated Annealing for optimization
	Background on Metropolis-Hastings algorithm
	Background on Rejection-Free algorithm for sampling

	Rejection-Free algorithm for optimization
	Proposed Search Algorithm: Partial Neighbor Search
	Application to the QUBO question
	Understanding the improvement of Partial Neighbor Search
	Optimal subset choice for Partial Neighbor Search
	Comparison with Tabu Rejection-Free algorithm
	Application to Knapsack problem
	Application to 3R3XOR problem
	Application to Continuous State Space
	Summary

