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Before the presentation…

• I will skip some slides that are included 
for completeness. You can ask me 
questions about these during Q&A.

•Only outline/general ideas of my proof 
will be presented; we will not discuss 
technical details



My Thesis
• I focused on studying theoretical properties (convergence) of 

MCMC algorithms; there was no coding or experiments involved. 
But I have carefully studied a non-trivial problem concerning 
asymptotic behavior of Adaptive Gibbs Sampler and have done 
extensive expository studies in MCMC literature

• Expository studies:
• Discrete-time, general-state space Markov Chain following Meyn and 

Tweedie (1997) and Rosenthal’s review papers on Markov chain and MCMC
• Adaptive MCMC: convergence conditions for adaptive MCMC, adversarial 

adaptive MCMC, adaptive Gibbs sampler, optimal scaling and other papers
• Quantitative convergence rates: general framework and proofs (Rosenthal 

1995) and application on James Estimator (Rosenthal 1998)
• Weak convergence of Random Walk Metropolis to Langevin diffusion; 

required theories regarding weak convergence of stochastic processes 
following Ethier and Kurtz (2009) and other sources; Complexity bounds 
via diffusion limit



Cont. My Thesis

• Original Studies:
• Strengthened results regarding “stairway to heaven” example 

in Latuszynki and Rosenthal (2007). 
• Proof by construction of countably many phases—more intuitive
• Proof by auxiliary process, similar to the original paper but with more 

careful bounds

• Tried to apply Rosenthal (1995)’s quantitative rates results to 
an MH example. Only had results on a trivial case. 



Presentation Objective and Schedule 

• A non-technical, intuitive, concise presentation of my 
major original work: 

• An alternative proof of “stairway to heaven 
problem/conjecture” proposed in the following paper: Adaptive 
Gibbs samplers and related MCMC methods. The Annals of Applied 
Probability, 23(1), pp.66-98.

• An overview of the topics I have studied: 
• What is Markov Chain Monte Carlo? 
• Why ”convergence speed” matters? 
• What are the existing approach to measure convergence speed? 



What is Markov Chain Monte Carlo 
(MCMC)? Why we need it?
• It is algorithms, meaning that it can produce sample points 

given a (potentially highly complicated) probability 
distribution. 

• “But we can always use excel to sample from a distribution 
right?” e.g. NOMINV(Rand(), mean, Std). Why MCMC?

• From a practical point of view, MCMC is necessary 
because often times an explicit expression for inverse 
of the cdf. Such as (NOMINV) is not easy to find. E.g. 
high dimensional integral

• So MCMC can be used to estimate complicated integral as 
well



Example: Parameter estimation for 
Hierarchical Bayesian models

*K can be very 
large. And the 
model can be more 
complicated.



Parameters distribution (posterior, conditional) for 
previous model—goal is to sample these!

*Intuition: Fix everything else but one parameter, 
then sample via conditional distribution above 
(Each parameter here is a dimension). So we “take 
a step” on one direction at a time. This is Gibbs 
Sampler!



How and Why MCMC work?

• MCMC is an approximation to 
direct sampling

• The foundation of MCMC is 
convergence: unconditional 
distribution of MCMC at step N 
where N is large should be 
“close” to target distribution; 

• We make sure it is indeed the 
case. Then run MCMC long 
enough (how long?)



Convergence Is 
Important/Necessary
• The sample acquired from MCMC is “correct/accurate” 

only if 
• we run the algorithm long enough, i.e. collect sufficient 

amount of sample points (Law of large numbers for MCMC)
• MCMC used converges to target distribution

• In slightly technical terms, if we measure “difference” 
between target distribution and the distribution from 
MCMC (dist at step n) with total variance distance



Simpler, more standard MCMC

• Gibbs sampler (we will focus on this)
• Used when conditional distributions are simple e.g. Bayesian models
• Sequential sampling
• Randomly choose a dimension

• Metropolis Hastings (MH): 
• Propose via a known distribution (e.g. Random Walk with certain step 

size)
• Reject or Accept (depending on target distribution)

• They are designed to be convergent. You don’t have to know 
any math or check anything – just follow the 
instructions/recipes



Gibbs sampler



So why we are still studying MCMC: 
Standard MCMC is not always 
efficient
• Because standard method 

such as MH and Gibbs 
samplers are not always 
optimal to use– can be very 
slow: think of the following 
(slanted, elongated 
distribution). How would a 
Gibbs sampler behave

• What “step size” should you 
choose for MH?



Adaptive MCMC

• MCMC that can learn from sample path so far to 
figure out optimal parameters, including orientation 
of coordinate systems, preference for coordinate to 
update, step size—can be anything

• Examples of Adaptive models
• Directional sampling: rotating axis
• Adaptive Gibbs: adapt dimension selection probability
• Adaptive MH: scale the “step size” such that acceptance rate 

is 0.23



How do we know if Adaptive MCMC 
converges?
• There is no “recipe” anymore! Designers have to figure out 

themselves.
• They may not be Markovian (next step does not entirely 

depend on current location but may be entire history of the 
chain). Typical Markov chain theory cannot be applied 
directly.

• Rosenthal and Roberts (2001) gave two general 
conditions (proved via coupling):

• Containment Condition: all your adaptation kernels must converge 
to target distribution in a “somewhat” uniform fashion 

• Diminishing Adaptation: you must adapt “less and less” 



Downside of Adaptive Algorithms: 
Need to show Convergence
• Consider a random scan Gibbs 

sampler where we adapt on 
the probability of selecting 
each coordinate to update.

• Apply the two general 
conditions. Latuszynki and 
Rosenthal (2007) manages to 
show the following 
convergence conditions:



Adaptive Random Scan Gibbs 
sampler



Simpler conditions? They are wrong 
and we want to refute them
Levine and Casella (2006) proposed the following 
conditions for adaptive random scan Gibbs sampler, 
which does not require condition (b) in previous slide . 
Latuszynki and Rosenthal (2007) is able to prove it 
false through a counter example (“stairway to 
heaven”):



The counter example

where {}, n=0,1,2… is some sequence satisfying  >= 8 

Note that this process satisfies (i) and (ii) given by Levine and Casella 
(2006). We only need to prove that this tends to infinite with positive 
probability to prove it not converging to target distribution .

 



Graphically, the state space looks 
like a staircase:
Step 1. You will select 
either x or y direction 
by Rn. 

Step 2. You will 
choose to stay where 
you are or move one 
step by conditional 
distribution. 



How we move on the staircase?
After some simplification, this is equivalent to determine
(i) Move one step forward, or
(ii) Move one step backward, or
(iii)Stay
by tossing a three-way coin with the following distribution where xn is current x coordinate



Conjecture: “Stairway to Heaven” -- 
yet to be proved
There exists {an} such 
that {an>=8} 
converges to infinity for 
which the process tends 
to infinity with 
probability 1. Goes 

to 
Heave
n? 



Partial results

My result: Can find a sequence {an} that tends to 
infinity such that the process tends to infinity with 
any probability (fixed) less than 1.  Simpler proof

Original result: Can find a sequence {an} that 
tends to infinity such that the process tends to 
infinity with probability 
larger than 0. Sufficient to refuse false claim.



My proof by constructing phases 
(strategy)
• The strategy is to have countably 

infinitely many phases. 
• Each phase is comprised of 

finitely many steps. 
• Infinite sequence {an} is constant 

for each phase but increases as 
we enter the next phase (so that 
{an} still tends to infinity).

• Goal: “the little person here 
moves up certain amount during 
each phase” 



Constructions: {an}

• The sequence {an} is constant during each phase
• But {an} converges to infinity as phase  

 



Construction: phases
Intuitively,
• M is a large number that satisfies 

certain technical conditions;
• Phase 1 has M steps
• Phase 2 has M-2 steps
• Phase 3 has M steps
• Phase 4 has M+2 steps
• Phase 5 has M+4 steps
• Phase 6 has M+6 steps
• Phase 7 has M+8 steps
• …



Proof based on monotone coupling 
technique (also called stochastic 
domination)
As I will show in the next slide, couple the 
current process to a simpler process will 
simplify the proof:  



A technical lemma: when can we 
couple?

Here I proved that when “the little person” is 
above the i-th staircase during phase i, there is 
a ”coupling” to a biased i.d.d. random walk 
{Zn}. {Zn} is biased to move forward each step in a 
“homogeneous” fashion.  This is important. No 
matter what happens, the process should not 
fall below i-th stairway or everything breaks.



Sequence of “Omega Events”: Moving up certain 
amount during each phase
Omega here denotes events that are associated with each 
phase (we will refer to these as Omega events).  that after 
phase i the process is above certain level (M+4(i-1)): these 
are events we want to happen with large probability 
(how large, we will see)—because if all Omega events 
happen, the process tends to infinity. 

And we shall prove via induction that if events for all phases 
before i occurs, event i will occur with a sufficiently large 
probability.

 



Proof by induction: First Inductive 
Lemma
If Omega events for all phases prior to i occurs, 
then we are guaranteed that “the little person” 
will not fall below i-th staircase during phase i.  
Recall from previous technical lemma, this means we 
can couple to the biased random walk during phase i! 
The proof is by construction of {an} and phase steps.



Proof by induction: Second Inductive 
lemmaNotice that this lemma is exactly what we what, i.e., if 
Omega events for all phases before i occurs, 
event i will occur with a sufficiently large 
probability: the probability in blue box. 

We will talk about how we get this from first inductive 
lemma, coupling and Hoeffding inequality bounds in next 
slide



Key to Prove the Second Inductive 
Lemma
• First Inductive Lemma guarantees that we can couple to 

the biased random walk sequence {Zn}
• Coupling to {Zn} allows us to apply Hoeffding’s 

inequality whereby by choosing appropriate t, we 
establish the bounds necessary for second inductive 
lemma:



Proof of the main theorem via 
Second Inductive Lemma
• Note again, if all Omega events are true, the process 

tends to infinity. Therefore, the probability of all 
Omega events are true is the probability the 
process tends to infinity, which is the following:



Overview Expository Studies

• Discrete-time, general-state space Markov Chain following Meyn and 
Tweedie (1997) and Rosenthal’s review papers on Markov chain and 
MCMC

• Adaptive MCMC: convergence conditions for adaptive MCMC, 
adversarial adaptive MCMC, adaptive Gibbs sampler, optimal scaling 
and other papers

• Quantitative convergence rates: general framework and proofs 
(Rosenthal 1995) and application on James Estimator (Rosenthal 1998)

• Weak convergence of Random Walk Metropolis to Langevin diffusion; 
required theories regarding weak convergence of stochastic processes 
following Ethier and Kurtz (2009) and other sources; Complexity 
bounds via diffusion limit



How fast is the chain converging?
• Quantitative convergence rates (Rosenthal, 1995):



Quantitative convergence rates

• How to use this method?
• Step 1: Pick an appropriate auxiliary function “f”
• Step 2: Find parameters and verify the Drift and Minorisation 

conditions in blue box 
• Step 3: Plug in parameters into the red box and claim your 

quantitative bounds!

• The proof is based on a coupling argument and 
Minorization condition: basically locate a ”special” set 
called small set and set up two chains from different 
initial distribution and analyze how long they will 
converge.



Optimal Scaling (Optimal step size): a proof of weak 
convergence of random walk MH to Langevin diffusion



Thank 
you!
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