
Some Simulated Annealing Applications And
Card Shuffling

Reihaneh Entezari

April 2012
Department of Statistics - University of Toronto

Supervisor: Prof J.Rosenthal

1

Contents

1 Introduction 3
1.1 Simulated Annealing . 3
1.2 Card Shuffling . 3

2 Card Shuffling 4
2.1 Results . 5

3 Travelling Salesman Problem (TSP) 5
3.1 Results . 6

4 Sudoku Puzzles 17
4.1 Results . 17

5 References 21

6 Appendix 21
6.1 Appendix 1 . 21
6.2 Appendix 2 . 28
6.3 Appendix 3 . 31

2

1 Introduction

Nowadays, MCMC is one of the most commonly used methods that has
grasped many statisticians interest with its extensive applications. Specifi-
cally, Simulated Annealing(SA) is a well known algorithm used for optimiza-
tion problems that has various applications such as sudoku puzzles and the
travelling salesman problem which will be done in this paper. Card shuffling
is another interesting application of MCMC, which will also be discussed
here.

1.1 Simulated Annealing

As mentioned above, simulated annealing is an optimization method, where
its main goal is to find (or approximate) the global optimal solution to the
problem. In SA, the problem of interest is usually in a form of a function
called ”Cost” where we wish to either find its global minimum or maximum.
SA starts with an initial guess for the solution and attempts to replace the
current solution by another random solution (the step where we ”Propose”).
We accept the proposed solution if the cost function moves in the direction
closer to minimizing (or maximizing) it. This is done by accepting with a
probability that depends on both, the differences in the cost function and also
a parameter T (called temperature) that decreases (cools down) after each
iteration so that at high temperature it can search more for a solution and as
the temperature decreases, it searches around the solution to find the actual
optimal point. There are different cooling schedules, where the common ones
are linear cooling and geometric cooling. In this paper we will use geometric
cooling, where there is an initial value for T, and that after each iteration it
is multiplied by a constant. Here we will see how SA is implemented in R
to solve problems like the Travelling Salesman Problem (TSP) and Sudoku
Puzzles.

1.2 Card Shuffling

Card Shuffling has become one of the most engaging problems in many games
involved with a deck of cards. The goal is to shuffle the cards as many times
as needed so that after several shuffles, no one can know the order of the
cards. In mathematical words, any permutation of the cards are likely to
appear at final, with the same probability (having Uniform distribution).

3

In this paper, we will introduce different ways of shuffling a deck of cards
and will implement them in R to see that they will converge to the uniform
distribution after some amount of iterations.

2 Card Shuffling

Scrambling the order of a deck of n cards in any manner can be called a
shuffle. In card shuffling, the state space Ω is the set of all possible permuta-
tions of n cards, Sn . The main goal is to choose a specific way of shuffling so
that after several shuffles the chain will converge to the uniform distribution
π (P(any order) = 1

|Sn|=
1
n!

). There are some popular ways of shuffling a deck
of cards, described as below :

• Random Transposition Shuffle: For each shuffle, we choose two
cards i and j uniformly at random with replacement and swap their
places. In this case the Markov Chain will be irreducible (since any
permutation is a product of transpositions) and aperiodic (since it’s
possible that i=j). Also swapping the same cards twice will give the
first permutation so P(x, y)=P(y, x) for every pair of x, y and thus P
is symmetric, hence reversible w.r.t. the uniform distribution. So it’s
stationary distribution is uniform and thus from theorem, the chain
will converge to the uniform distribution.

• Top-to-Random Shuffle: In each iteration we take the top card and
insert it at one of the n positions of the deck of cards, uniformly at
random. Again the Markov Chain is irreducible and aperiodic, but here
P is not symmetric anymore since if the top card is inserted somewhere
in between, we cannot get back to the same state in one step. But
starting at any state x, the chain can move to one of n states in one
step, since the top card has n positions to go to, each with probability
1
n
. Similarly, for every state y, it comes back from exactly one of the

n states each with probability 1
n
. Thus every row and column of the

transition probability matrix P sums to 1. This matrix is called doubly
stochastic and so from a lemma, the Markov Chain is reversible w.r.t.
the uniform distribution, hence the chain will converge to the uniform
distribution.

• Riffle Shuffle: GSR-Model In each iteration we (1) split the deck of
cards into two sets according to the binomial distribution Bin(n,1/2),

4

one in the left hand L and one in the right hand R. (2) Drop the cards
in a sequence where the next card comes from the left hand with proba-
bility |L|

|L|+|R| where | L | and | R | are the number of cards remaining in
the left and right hand, respectively at that step of dropping the cards.
It has been proved that the second step is equivalent to selecting an
interleaving of the two parts uniformly at random preserving the order
of the cards in each hand.

These three different ways of shuffling a deck of cards, has been implemented
in R and can be seen in appendix 1. Some results of the printout are discussed
below:

2.1 Results

As it is seen in Appendix 1, there are three different functions, each imple-
menting one of the three shuffling algorithms explained above. Each function
has been run for different number of deck of cards (n) and different amount
of iterations (M). From the printout, it is clear as M increases, the chain con-
verges to the uniform distribution π, just as we had expected from theorems.
So mainly, after the needed amount of shuffles, any order of the deck of cards
are likely to appear with the same probability (Uniform Distribution). The
program output can be seen in Appendix 1.

3 Travelling Salesman Problem (TSP)

Travelling Salesman Problem (TSP) is one the most popular optimization
problems which can be solved by simulated annealing method. Suppose that
there are n cities in a region of a country, and that we have the pairwise
distances between the cities. The goal is to find the smallest path starting
from one city, visiting all the other cities exactly once and finally returning to
the origin city. This problem also has several applications such as planning,
DNA sequencing... In this problem, the cost function is the travelling dis-
tance for a specific path and the possible paths can be seen as a permutation
over the n cities. Starting with an initial order of the cities, we propose by
randomly choosing two cities and swapping their positions. Hence the new
order will be accepted with probability min(1, exp−dC/T). The cooling sched-
ule used here is geometric cooling.This has been implemented in R using the

5

Euclidean distance space and can be seen in appendix 2. Some results of
using simulated annealing for this problem are discussed below:

3.1 Results

As seen in appendix 2, TSP has been implemented in R with simulated
annealing. The code works well for n up to 25 cities, but as the number of
cities increases, it reaches to a solution close to the actual solution, and not
the true optimal path. But for it to not get stuck in a local minimum, it is
better to do SA for a fixed temperature for some number of iterations and
then decrease the temperature. Here iterations 5,10,20 and 30 are tested to
do SA for a fixed temperature before decreasing the temperature. This has
worked out better than before, since it gave the optimal path for n = 30
and almost for n = 40 (except two cities should have been changed). To
get to the optimal path for larger n, we need to do more iterations for fixed
temperatures and since ”for” loops are much slow in R, it will take a while
to run the program. Some parameters have been changed and tested such as
the number of total iterations (M=104,106) and also the initial temperature
(temp=100,80,70,50 which 70 worked out better most of the time). The
acceptance rates has also been computed in the code, where they are usually
around 0.4. Below are some graphs showing the optimal path with different
number of cities and starting temperatures (the red line indicates the end
of the path). The last graph is for 40 cities and seems very close to the
optimal (2 cities might have to be changed). Also some graphs are showing
the cost function (for ten cities) over all iterations and how it decreases to
zero. Finally the last graph is the graph of the temperature showing how it
cooled down :

6

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

n=10 temp=50 M=10^4 fixed.itr=5

X

Y

1

2

3

4

5

6

7

8

9

10

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

n=20 temp=50 M=10^4 fixed.itr=10

X

Y

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

n=25 temp=70 M=10^4 fixed.itr=10

X

Y

1

2

3 4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19
20

21

22
23

24

25

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

X

Y

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

n=35 temp=50 M=10^4

X

Y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

X

Y

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

1920

21

22

23

24

25

26

27

28

2930

31

32

33

34

35

36
37

38
39

40

0 2000 4000 6000 8000 10000

6
8

10
12

Cost(travelling distance) for n=10

Index

co
st
1

0 2000 4000 6000 8000 10000

8
10

12
14

Cost(travelling distance) for n=10

Index

co
st
1

0 2000 4000 6000 8000 10000

6
7

8
9

10
11

12
Cost(travelling distance) for n=10

Index

co
st
1

0 2000 4000 6000 8000 10000

0
10

20
30

40
50

temperature cooling down

Index

te
m
pl
is
t

4 Sudoku Puzzles

Solving Sudoku Puzzles is another engaging problem these days. They
range in difficulty from easy to very challenging; the hardest puzzles have the
most empty cells. A sudoku puzzle is a 9×9 grid which is filled with digits
1,...,9 such that each digit is seen exactly once in each row, column, and a
3×3 block. Here we have used simulated annealing to reach a solution for the
puzzle. The state space is a full 9×9 grid, and the cost function is the total
number of digits repeated more than once in each row, column,and block. So
we want the cost function to reach its minimum zero. To propose, we have to
choose two cells and swap their contents, but here it’s important that which
two cells are chosen to swap since some cells are more trouble making cells.
According to the paper ” Techniques for solving sudoku puzzles” by Eric C
Chi and Kenneth Lange, to ensure that the most trouble making cells are
more likely to be chosen to swap, they can be chosen non-uniformly with
probability proportional to exp(i), where i is the number of constraints on a
cell, which is the number of times the content of that cell has been repeated
in its row, column and block. We start with an initial guess for the puzzle
(which also has to satisfy that each digit has exactly 9 copies of itself in
the overall 9×9 grid) with respect to some clue puzzle and at each step n,
we swap to propose with a new grid B that has cost c(B). The proposal is
accepted with probability min(1, exp((c(Bn) − c(B))/Tn)). Although there
are websites that have programmed the sudoku puzzle in a similar way that it
has been done here (since here it has been followed from the paper mentioned
in the reference category), but I have implemented it in R too, and can be
seen in appendix 3. Some results are discussed as below.

4.1 Results

As seen in Appendix 3, solving sudoku puzzles has been implemented in R
using simulated annealing. However, it usually reaches a solution very close
to the actual solution. The same situation as for the TSP, happens here, so
for SA not to get stuck in a local minimum, it is better to iterate for a fixed
temperature before decreasing the temperature. Again since ”for” loops are
slow in R, this can’t be done fast and it takes a long time for the program
to run. However, in the appendix, this code has been ran for two different
sudoku puzzles (two different clue matrices), which has actually solved the
first one, but the second one has remained with cost equal to 2 (which is very

17

close to the solution and needs more runs for fixed temperature). In most
of the time we are left with a small amount of cost. Some parameters has
been changed and tested, for example the initial temperature, the number of
iterations. The acceptance rates has also been computed and they are around
0.37 for the second example. Below are graphs showing the cost function for
the second example (clue matrix) which is decreasing to zero :

18

0 2000 4000 6000 8000 10000

10
20

30
40

50
60

70
Cost function for Example 2

Index

co
st
1

0 2000 4000 6000 8000 10000

0
10

20
30

40
50

60
70

Cost function for Example 2

Index

co
st
1

5 References

1. ” Techniques for solving Sudoku Puzzles” by ERIC C. CHI and KEN-
NETH LANGE

2. http://www.cs.berkeley.edu/ sinclair/cs294/n2.pdf

3. http://people.csail.mit.edu/costis/6896sp11/lec2s.pdf

4. wikipedia

6 Appendix

6.1 Appendix 1

The code starts on next page

21

> #### Random Transposition
>
> run<-function(n,M){
+ a=seq(1,n) # initial value
+ d=seq(1,n) #a fixed state of the chain to keep track of the # of times it appears
+ count=0
+ for(i in 1:M){
+ if(all(a==d)) count<-count+1 # counting the # of times d appears
+ b=sample(1:n,2,replace=T) # choosing 2 cards uniformly at random with replace
+ result=a
+ result[b[1]]<-a[b[2]] # swapping
+ result[b[2]]<-a[b[1]] # swapping
+ a<-result
+
+ }
+ cat("fraction=",count/M,"\n") # the fraction of times d has appeared in M iterations
+ cat("actual pi=",1/factorial(n)) # the actual pi that will converge to
+ }
> run(4,10^3)
fraction= 0.028
actual pi= 0.04166667
> run(4,10^4)
fraction= 0.0435
actual pi= 0.04166667
> run(4,10^5)
fraction= 0.04135
actual pi= 0.04166667
> run(4,10^6)
fraction= 0.041808
actual pi= 0.04166667
> run(5,10^3)
fraction= 0.009
actual pi= 0.008333333
> run(5,10^4)
fraction= 0.0094
actual pi= 0.008333333
> run(5,10^5)
fraction= 0.00878
actual pi= 0.008333333
> run(5,10^6)
fraction= 0.008381
actual pi= 0.008333333
> run(7,10^3)
fraction= 0.001
actual pi= 0.0001984127
> run(7,10^4)
fraction= 2e-04

actual pi= 0.0001984127
> run(7,10^5)
fraction= 0.00025
actual pi= 0.0001984127
> run(7,10^6)
fraction= 0.000188
actual pi= 0.0001984127
> run(10,10^6)
fraction= 1e-06
actual pi= 2.755732e-07
> run(10,10^7)
fraction= 2e-07
actual pi= 2.755732e-07
>

> ### Top-to-Random
>
> run1<-function(n,M){
+ a=seq(1,n) # initial value
+ d=seq(1,n) #a fixed state of the chain to keep track of the # of times it appears
+ count=0
+ for(i in 1:M){
+ if(all(a==d)) count<-count+1 # counting the # of times d appears
+ b=sample(1:n,1) #choosing a position from the n positions to replace the top card
+ result=a
+ result[b[1]]<-a[1] # replacing the top card to the random place
+ if(b[1]>1){ # this if statement happens when the state will have to change
+ for(j in 1:(b[1]-1)){
+ result[j]<-a[j+1] # shifting the cards before the random place one to the left
and the rest remain
+ }
+ }
+ a<-result
+
+ }
+ cat("fraction=",count/M,"\n") # the fraction of times d has appeared in M iterations
+ cat("actual pi=",1/factorial(n)) # the actual pi that will converge to
+ }
> run1(4,10^3)
fraction= 0.038
actual pi= 0.04166667
> run1(4,10^4)
fraction= 0.0408
actual pi= 0.04166667
> run1(4,10^5)
fraction= 0.0425
actual pi= 0.04166667
> run1(4,10^6)
fraction= 0.041414
actual pi= 0.04166667
> run1(5,10^3)
fraction= 0.01
actual pi= 0.008333333
> run1(5,10^4)
fraction= 0.0077
actual pi= 0.008333333
> run1(5,10^5)
fraction= 0.0089
actual pi= 0.008333333
> run1(5,10^6)
fraction= 0.008191
actual pi= 0.008333333

> run1(7,10^3)
fraction= 0.001
actual pi= 0.0001984127
> run1(7,10^4)
fraction= 5e-04
actual pi= 0.0001984127
> run1(7,10^5)
fraction= 0.00024
actual pi= 0.0001984127
> run1(7,10^6)
fraction= 0.000184
actual pi= 0.0001984127
> run1(10,10^6)
fraction= 1e-06
actual pi= 2.755732e-07
> run1(10,10^7)
fraction= 2e-07
actual pi= 2.755732e-07

> ### Riffle Shuffle
>
> run2<-function(n,M){
+ a=seq(1,n) # initial value
+ count=0
+ result=rep(0,n)
+ b=seq(1,n) #a fixed state of the chain to keep track of the # of times it appears
+ library(gtools)
+ for(i in 1:M){
+ if(all(a==b)) count<-count+1 # counting the # of times b appears
+ j=rbinom(1,n,0.5) # choosing where to split the deck into two parts
+ if(j>0 && j<n){ # the state will change
+ a1=a[1:j] # cards in the left hand L
+ a2=a[(j+1):n] # cards in the right hand R
+ A=combinations(n,j) # choosing j positions from n positions to replace with L
+ r=sample(1:(nrow(A)),1) # picking at random which j positions
+ t=A[r,]
+ result[t]=a1 # replacing L to the j positions chosen
+ result[-t]=a2 # replacing R to the remaining
+ # t=sort(sample(1:n,j)) another way to choose j positions
+ # result[t]=a1
+ # result[-t]=a2
+ a<-result
+ }
+
+ }
+ cat("fraction=",count/M,"\n") # the fraction of times d has appeared in M iterations
+ cat("actual pi=",1/factorial(n)) # the actual pi that will converge to
+
+ }
> run2(4,10^3)
fraction= 0.046
actual pi= 0.04166667
> run2(4,10^4)
fraction= 0.044
actual pi= 0.04166667
> run2(4,10^5)
fraction= 0.04124
actual pi= 0.04166667
> run2(4,10^6)
fraction= 0.041407
actual pi= 0.04166667
> run2(5,10^3)
fraction= 0.01
actual pi= 0.008333333
> run2(5,10^4)
fraction= 0.0074

actual pi= 0.008333333
> run2(5,10^5)
fraction= 0.00876
actual pi= 0.008333333
> run2(5,10^6)
fraction= 0.008395
actual pi= 0.008333333
> run2(7,10^3)
fraction= 0.001
actual pi= 0.0001984127
> run2(7,10^4)
fraction= 3e-04
actual pi= 0.0001984127
> run2(7,10^5)
fraction= 0.00012
actual pi= 0.0001984127
> run2(7,10^6)
fraction= 0.000188
actual pi= 0.0001984127

6.2 Appendix 2

The code starts on next page

28

> ### Travelling Salesman Problem
>
> n=10 # number of cities
> M=10^4 # number of iterations
> temp=50 # initial temperature
> finaltemp=0.1
> tempfactor= (temp/finaltemp)^(-1/M)
> fixed.itr=5 # number of iteration for a fixed temperature
>
> #######
>
> dist<-function(x1,y1,x2,y2){ # computes the Euclidean distance between (x1,y1) and
(x2,y2)
+ return(sqrt(((x1-x2)^2) + ((y1-y2)^2)))
+ }
>
> #######
>
> cost<-function(ord){ #computes the total travelling distance of a order of points
+ p=length(ord)
+ d=rep(0,p)
+ for(i in 1:(p-1)){
+ d[i]=dist(xlist[ord[i]],ylist[ord[i]],xlist[ord[i+1]],ylist[ord[i+1]])
+ }
+ d[p]<- dist(xlist[ord[1]],ylist[ord[1]],xlist[ord[p]],ylist[ord[p]]) # the distance between
the first and last city
+ cost=sum(d)
+ return(cost)
+ }
> cost1=rep(0,M)
> numaccept=0 # to keep track of accepting
> templist=rep(0,M) # to keep track of temperature
> xlist=runif(n,0,2) # generating random points in 2 dimension as to be cities
> ylist=runif(n,0,2)
> ord=seq(1:n) # initial order for the path
>
> #######
> for(i in 1:M){
+ cost1[i]=cost(ord)
+ for(t in 1:(fixed.itr)){
+ # propose to move
+ a=sample(1:n,2) # randomly choosing two cities
+ result=ord
+ result[a[2]]=ord[a[1]] # swapping
+ result[a[1]]=ord[a[2]] # swapping
+ U=runif(1)
+ if(U < exp((cost(ord)-cost(result))/temp)){

+ ord<-result # accept/reject
+ numaccept <- numaccept + 1 # to compute the acceptance rate
+ }
+ }
+ templist[i]=temp
+ temp=temp*0.999 # update temperature
+ # temp=tempfactor*temp
+ }
> library(calibrate)
> ord
 [1] 6 1 3 7 9 8 4 10 2 5
> cat(" iterations = ",M,"\n")
 iterations = 10000
> cat("acceptance rate = ", numaccept/(M*fixed.itr),"\n")
acceptance rate = 0.4081
> plot(xlist,ylist,xlab="X",ylab="Y",main="n=10 temp=50 M=10^4 fixed.itr=5")
> textxy(xlist,ylist,(1:n),cx=1)
> lines(xlist[ord],ylist[ord])
> lines(c(xlist[ord[1]],xlist[ord[n]]),c(ylist[ord[1]],ylist[ord[n]]),col="red")
> plot(templist,type='l',main="temperature cooling down")
> plot(cost1,type='l',main="Cost(travelling distance) for n=10")
> library(calibrate)
> ord
 [1] 2 7 9 4 5 6 3 8 10 1
> cat(" iterations = ",M,"\n")
 iterations = 10000
> cat("acceptance rate = ", numaccept/(M*fixed.itr),"\n")
acceptance rate = 0.4159
> plot(xlist,ylist,xlab="X",ylab="Y",main="n=10 temp=50 M=10^4 fixed.itr=5")
> textxy(xlist,ylist,(1:n),cx=1)
> lines(xlist[ord],ylist[ord])
> lines(c(xlist[ord[1]],xlist[ord[n]]),c(ylist[ord[1]],ylist[ord[n]]),col="red")
> plot(templist,type='l',main="temperature cooling down")
> plot(cost1,type='l',main="Cost(travelling distance) for n=10")
> library(calibrate)
> ord
 [1] 5 9 7 1 2 3 8 10 6 4
> cat(" iterations = ",M,"\n")
 iterations = 10000
> cat("acceptance rate = ", numaccept/(M*fixed.itr),"\n")
acceptance rate = 0.42914
> plot(xlist,ylist,xlab="X",ylab="Y",main="n=10 temp=50 M=10^4 fixed.itr=5")
> textxy(xlist,ylist,(1:n),cx=1)
> lines(xlist[ord],ylist[ord])
> lines(c(xlist[ord[1]],xlist[ord[n]]),c(ylist[ord[1]],ylist[ord[n]]),col="red")
> plot(templist,type='l',main="temperature cooling down")
> plot(cost1,type='l',main="Cost(travelling distance) for n=10")

6.3 Appendix 3

The code starts on next page

31

Sudoku Puzzles

############### different ways of intializing with respect to the
clue matrix

random sample
B=clue
smpl=NULL
for(k in 1:9){

smpl=c(smpl,rep(k,9 - sum(clue==k))) # because each digit
should appear 9 times in the overall matrix
}
B[clue==0]=sample(smpl) # filling the matrix clue randomly with
keeping the actual clues and having exactly 9 copies for each
digit

random sample, preserving the uniqueness of all digits in all
rows
B=clue
for(i in 1:9){

for(j in 1:9){
a=NULL

 b=NULL
if(clue[i,j]>0){ a=c(a,clue[i,j]) # keep tracking of the

clues
b=c(b,j)} # the columns of the clues

}
if(length(a)==0) B[i,]=sample(1:9) # if no clues, just sample

normally
else B[i,-b]=sample((1:9)[-a]) # if any clues, sample from the

rest
}
B

random sample, preserving the uniqueness of all digits in all
blocks
B=clue
for(i in 1:9){

r_block = seq(1,3) + (3* ((i-1) %% 3)) # row block index
 c_block = seq(1,3) + (3* floor((i-1)/3)) # column block
index
 B[r_block,c_block]=sample(1:9) # normal sampling
}
B

#################

cost<- function(B){ # computing the # of repeated digits in each
row,column,block

count=0
for(i in 1:9){
r_block = seq(1,3) + (3* ((i-1) %% 3)) # row index for block

 c_block = seq(1,3) + (3* floor((i-1)/3)) # column index for
block

for(j in 1:9){
if(sum(B[i,]==j) > 1) count <- count + sum(B[i,]==j) -1

num of repeated j in row i except itself
if(sum(B[,i]==j) > 1) count <- count + sum(B[,i]==j) -1

num of repeated j in column i except itself
if(sum(B[r_block,c_block]==j) > 1)count<- count +
sum(B[r_block,c_block]==j) -1 #num of repeated j in the specified
block

}

}
return(count)

}

constr<-function(r,c,B){ # computes the # of contraints for cell
r,c

count=0
if(sum(B[r,c]==B[r,])>1) count<-count + sum(B[r,c]==B[r,]) -1
num of cells equal to B[r,c] in its row not including itself
if(sum(B[r,c]==B[,c])>1) count<- count + sum(B[r,c]==B[,c]) -1
num of cells equal to B[r,c] in its column not including

itself
r_block= seq(1,3) + (3*floor((r-1)/3))#row index for the

block B[r,c] is in
c_block= seq(1,3) + (3*floor((c-1)/3))#column index for the

block B[r,c] is in
 if(sum(B[r_block,c_block]==B[r,c]) > 1) count<-count +
sum(B[r_block,c_block]==B[r,c]) -1 # num of repeated B[r,c] in
its own block

return(count)
}

swap<-function(B){
probl=matrix(0,nrow=9,ncol=9)
for(i in 1:9){

for(j in 1:9){
probl[i,j]=exp(constr(i,j,B)) # matrix of proportional

probabilities for all cells
}

}
swap=sample((1:81)[clue==0],2,prob=probl[clue==0]/sum(probl))

choosing 2 cells at random with probability proportion to exp(i)
with i contraints

while(B[swap[1]]==B[swap[2]]){ # this while loop is making
sure that the swapping is not useless

swap=sample((1:81)[clue==0],2,prob=probl[clue==0]/
sum(probl))

}
result=B
result[swap[1]]=B[swap[2]] #swapping
result[swap[2]]=B[swap[1]] #swapping
return(result)

}
cost1=rep(0,M)
numaccept=0 # keep track of acceptance
temp=70 # initial temperature
M=10^4 # num of iterations
for(i in 1:M){

cost1[i]=cost(B)
updating temperatue
temp=temp*0.999

for(t in 1:10){
proposing
propose=swap(B)
U=runif(1)
if(U < exp((cost(B)-cost(propose))/temp)){ # accept/reject
B<-propose
numaccept <- numaccept + 1 # counting the number of accepted

moves
}

}
if(cost(B)==0) break

}
B
cost(B)
cat("acceptance rate = ", numaccept/M,"\n")
plot(cost1,type='l',main="Cost function for Example 2")

###################### EXAMPLE 1

clue=matrix(0,ncol=9,nrow=9)
clue[1,c(6,8)]=c(6,4)
clue[2,c(1:3,8)]=c(2,7,9,5)
clue[3,c(2,4,9)]=c(5,8,2)
clue[4,3:4]=c(2,6)
clue[6,c(3,5,7:9)]=c(1,9,6,7,3)
clue[7,c(1,3:4,7)]=c(8,5,2,4)
clue[8,c(1,8:9)]=c(3,8,5)
clue[9,c(1,7,9)]=c(6,9,1)

###################### EXAMPLE 2

clue=matrix(0,ncol=9,nrow=9)
clue[1,c(1,6,7)]=c(8,1,2)
clue[2,c(2:3)]=c(7,5)
clue[3,c(5,8,9)]=c(5,6,4)
clue[4,c(3,9)]=c(7,6)
clue[5,c(1,4)]=c(9,7)
clue[6,c(1,2,6,8,9)]=c(5,2,9,4,7)
clue[7,c(1:3)]=c(2,3,1)
clue[8,c(3,5,7,9)]=c(6,2,1,9)

> ### Sudoku Puzzles
> ###################### EXAMPLE 1
>
> clue=matrix(0,ncol=9,nrow=9)
> clue[1,c(6,8)]=c(6,4)
> clue[2,c(1:3,8)]=c(2,7,9,5)
> clue[3,c(2,4,9)]=c(5,8,2)
> clue[4,3:4]=c(2,6)
> clue[6,c(3,5,7:9)]=c(1,9,6,7,3)
> clue[7,c(1,3:4,7)]=c(8,5,2,4)
> clue[8,c(1,8:9)]=c(3,8,5)
> clue[9,c(1,7,9)]=c(6,9,1)
> # random sample
> B=clue
> smpl=NULL
> for(k in 1:9){
+ smpl=c(smpl,rep(k,9 - sum(clue==k))) # because each digit should appear 9
times in the overall matrix
+ }
> B[clue==0]=sample(smpl) # filling the matrix clue randomly with keeping the actual
clues and having exactly 9 copies for each digit
> #################
>
> cost<- function(B){ # computing the # of repeated digits in each row,column,block
+ count=0
+ for(i in 1:9){
+ r_block = seq(1,3) + (3* ((i-1) %% 3)) # row index for block
+ c_block = seq(1,3) + (3* floor((i-1)/3)) # column index for block
+ for(j in 1:9){
+ if(sum(B[i,]==j) > 1) count <- count + sum(B[i,]==j) -1 # num of repeated j in
row i except itself
+ if(sum(B[,i]==j) > 1) count <- count + sum(B[,i]==j) -1 # num of repeated j in
column i except itself
+ if(sum(B[r_block,c_block]==j) > 1)count<- count + sum(B[r_block,c_block]==j) -1
#num of repeated j in the specified block
+ }
+
+ }
+ return(count)
+
+ }
>
>
> constr<-function(r,c,B){ # computes the # of contraints for cell r,c
+ count=0
+ if(sum(B[r,c]==B[r,])>1) count<-count + sum(B[r,c]==B[r,]) -1
+ # num of cells equal to B[r,c] in its row not including itself

+ if(sum(B[r,c]==B[,c])>1) count<- count + sum(B[r,c]==B[,c]) -1
+ # num of cells equal to B[r,c] in its column not including itself
+ r_block= seq(1,3) + (3*floor((r-1)/3))#row index for the block B[r,c] is in
+ c_block= seq(1,3) + (3*floor((c-1)/3))#column index for the block B[r,c] is in
+ if(sum(B[r_block,c_block]==B[r,c]) > 1) count<-count +
sum(B[r_block,c_block]==B[r,c]) -1 # num of repeated B[r,c] in its own block
+ return(count)
+ }
>
>
>
> swap<-function(B){
+ probl=matrix(0,nrow=9,ncol=9)
+ for(i in 1:9){
+ for(j in 1:9){
+ probl[i,j]=exp(constr(i,j,B)) # matrix of proportional probabilities for all
cells
+ }
+ }
+ swap=sample((1:81)[clue==0],2,prob=probl[clue==0]/sum(probl)) # choosing 2
cells at random with probability proportion to exp(i) with i contraints
+ while(B[swap[1]]==B[swap[2]]){ # this while loop is making sure that the swapping
is not useless
+ swap=sample((1:81)[clue==0],2,prob=probl[clue==0]/sum(probl))
+ }
+ result=B
+ result[swap[1]]=B[swap[2]] #swapping
+ result[swap[2]]=B[swap[1]] #swapping
+ return(result)
+
+ }
>
> temp=70 # initial temperature
> M=10^4 # num of iterations
> for(i in 1:M){
+ # updating temperature
+ temp=temp*0.999
+ # for(t in 1:10){
+ # proposing
+ propose=swap(B)
+ U=runif(1)
+ if(U < exp((cost(B)-cost(propose))/temp)) # accept/reject
+ B<-propose
+ # }
+ if(cost(B)==0) break
+
+ }

> B
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
 [1,] 1 8 3 5 2 6 7 4 9
 [2,] 2 7 9 4 1 3 8 5 6
 [3,] 4 5 6 8 7 9 3 1 2
 [4,] 7 3 2 6 4 1 5 9 8
 [5,] 9 6 8 3 5 7 1 2 4
 [6,] 5 4 1 8 9 2 6 7 3
 [7,] 8 1 5 2 3 9 4 6 7
 [8,] 3 9 7 1 6 4 2 8 5
 [9,] 6 2 4 7 8 5 9 3 1
> cost(B)
[1] 2
>
> B=clue
> smpl=NULL
> for(k in 1:9){
+ smpl=c(smpl,rep(k,9 - sum(clue==k))) # because each digit should appear 9
times in the overall matrix
+ }
> B[clue==0]=sample(smpl) # filling the matrix clue randomly with keeping the actual
clues and having exactly 9 copies for each digit
> temp=70 # initial temperature
> M=10^4 # num of iterations
> for(i in 1:M){
+ # updating temperature
+ temp=temp*0.999
+ # for(t in 1:10){
+ # proposing
+ propose=swap(B)
+ U=runif(1)
+ if(U < exp((cost(B)-cost(propose))/temp)) # accept/reject
+ B<-propose
+ # }
+ if(cost(B)==0) break
+
+ }
> B
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
 [1,] 1 3 8 5 2 6 7 4 9
 [2,] 2 7 9 3 4 1 8 5 6
 [3,] 4 5 6 8 7 9 3 1 2
 [4,] 7 4 2 6 3 5 1 9 8
 [5,] 9 6 3 1 8 7 5 2 4
 [6,] 5 8 1 4 9 2 6 7 3
 [7,] 8 9 5 2 1 3 4 6 7
 [8,] 3 1 7 9 6 4 2 8 5

 [9,] 6 2 4 7 5 8 9 3 1
> cost(B)
[1] 0
>

> ### Sudoku Puzzles
>
> ###################### EXAMPLE 2
>
> clue=matrix(0,ncol=9,nrow=9)
> clue[1,c(1,6,7)]=c(8,1,2)
> clue[2,c(2:3)]=c(7,5)
> clue[3,c(5,8,9)]=c(5,6,4)
> clue[4,c(3,9)]=c(7,6)
> clue[5,c(1,4)]=c(9,7)
> clue[6,c(1,2,6,8,9)]=c(5,2,9,4,7)
> clue[7,c(1:3)]=c(2,3,1)
> clue[8,c(3,5,7,9)]=c(6,2,1,9)
>
> # random sample
> B=clue
> smpl=NULL
> for(k in 1:9){
+ smpl=c(smpl,rep(k,9 - sum(clue==k))) # because each digit should appear 9
times in the overall matrix
+ }
> B[clue==0]=sample(smpl) # filling the matrix clue randomly with keeping the actual
clues and having exactly 9 copies for each digit
>
> #################
>
> cost<- function(B){ # computing the # of repeated digits in each row,column,block
+ count=0
+ for(i in 1:9){
+ r_block = seq(1,3) + (3* ((i-1) %% 3)) # row index for block
+ c_block = seq(1,3) + (3* floor((i-1)/3)) # column index for block
+ for(j in 1:9){
+ if(sum(B[i,]==j) > 1) count <- count + sum(B[i,]==j) -1 # num of repeated j in
row i except itself
+ if(sum(B[,i]==j) > 1) count <- count + sum(B[,i]==j) -1 # num of repeated j in
column i except itself
+ if(sum(B[r_block,c_block]==j) > 1)count<- count + sum(B[r_block,c_block]==j) -1
#num of repeated j in the specified block
+ }
+
+ }
+ return(count)
+
+ }
>
>
> constr<-function(r,c,B){ # computes the # of contraints for cell r,c

+ count=0
+ if(sum(B[r,c]==B[r,])>1) count<-count + sum(B[r,c]==B[r,]) -1
+ # num of cells equal to B[r,c] in its row not including itself
+ if(sum(B[r,c]==B[,c])>1) count<- count + sum(B[r,c]==B[,c]) -1
+ # num of cells equal to B[r,c] in its column not including itself
+ r_block= seq(1,3) + (3*floor((r-1)/3))#row index for the block B[r,c] is in
+ c_block= seq(1,3) + (3*floor((c-1)/3))#column index for the block B[r,c] is in
+ if(sum(B[r_block,c_block]==B[r,c]) > 1) count<-count +
sum(B[r_block,c_block]==B[r,c]) -1 # num of repeated B[r,c] in its own block
+ return(count)
+ }
>
>
>
> swap<-function(B){
+ probl=matrix(0,nrow=9,ncol=9)
+ for(i in 1:9){
+ for(j in 1:9){
+ probl[i,j]=exp(constr(i,j,B)) # matrix of proportional probabilities for all
cells
+ }
+ }
+ swap=sample((1:81)[clue==0],2,prob=probl[clue==0]/sum(probl)) # choosing 2
cells at random with probability proportion to exp(i) with i contraints
+ while(B[swap[1]]==B[swap[2]]){ # this while loop is making sure that the swapping
is not useless
+ swap=sample((1:81)[clue==0],2,prob=probl[clue==0]/sum(probl))
+ }
+ result=B
+ result[swap[1]]=B[swap[2]] #swapping
+ result[swap[2]]=B[swap[1]] #swapping
+ return(result)
+
+ }
> cost1=rep(0,M)
> numaccept=0 # keep track of acceptance
> temp=70 # initial temperature
> M=10^4 # num of iterations
> for(i in 1:M){
+ cost1[i]=cost(B)
+ # updating temperatue
+ temp=temp*0.999
+ # for(t in 1:10){
+ # proposing
+ propose=swap(B)
+ U=runif(1)
+ if(U < exp((cost(B)-cost(propose))/temp)){ # accept/reject

+ B<-propose
+ numaccept <- numaccept + 1 # counting the number of accepted moves
+ }
+ # }
+ if(cost(B)==0) break
+
+ }
> B
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
 [1,] 8 9 4 6 7 1 2 3 5
 [2,] 6 7 5 3 4 2 8 9 1
 [3,] 3 1 2 9 5 8 7 6 4
 [4,] 1 4 7 2 3 4 9 8 6
 [5,] 9 6 3 7 8 5 5 1 2
 [6,] 5 2 8 1 6 9 3 4 7
 [7,] 2 3 1 5 9 6 4 7 8
 [8,] 4 5 6 8 2 3 1 5 9
 [9,] 7 8 9 4 1 7 6 2 3
> cost(B)
[1] 4
> cat("acceptance rate = ", numaccept/M,"\n")
acceptance rate = 0.3745
> plot(cost1,type='l',main="Cost function for Example 2")
>
> # random sample
> B=clue
> smpl=NULL
> for(k in 1:9){
+ smpl=c(smpl,rep(k,9 - sum(clue==k))) # because each digit should appear 9
times in the overall matrix
+ }
> B[clue==0]=sample(smpl) # filling the matrix clue randomly with keeping the actual
clues and having exactly 9 copies for each digit
> cost1=rep(0,M)
> numaccept=0 # keep track of acceptance
> temp=70 # initial temperature
> M=10^4 # num of iterations
> for(i in 1:M){
+ cost1[i]=cost(B)
+ # updating temperatue
+ temp=temp*0.999
+ # for(t in 1:10){
+ # proposing
+ propose=swap(B)
+ U=runif(1)
+ if(U < exp((cost(B)-cost(propose))/temp)){ # accept/reject
+ B<-propose

+ numaccept <- numaccept + 1 # counting the number of accepted moves
+ }
+ # }
+ if(cost(B)==0) break
+
+ }
> B
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
 [1,] 8 4 9 6 7 1 2 5 3
 [2,] 6 7 5 4 2 3 9 1 8
 [3,] 3 1 2 8 5 9 7 6 4
 [4,] 1 8 7 2 3 4 5 9 6
 [5,] 9 6 4 7 8 5 3 2 1
 [6,] 5 2 3 1 6 9 8 4 7
 [7,] 2 3 1 9 4 8 6 7 5
 [8,] 4 5 6 3 2 7 1 8 9
 [9,] 7 9 8 5 1 6 4 3 2
> cost(B)
[1] 2
> cat("acceptance rate = ", numaccept/M,"\n")
acceptance rate = 0.3787
> plot(cost1,type='l',main="Cost function for Example 2")
>
>

