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1 Foundations of Markov Chains

1.1 Definition

We first introduce Markov Chains in the most basic format, which comprises discrete time steps
and state spaces.

Definition 1.1 (Markov Chain). A Markov Chain is a sequence of random variables equipped
with the following attributes:

• A state space S,

• An initial probability {υi}i∈S where υi = P (X0 = i),

• A transition probability {pij}i,j∈S where pij = P (Xn+1 = i|Xn = i).

The Markov chain existence theorem states that given the above three attributes a sequence
of random variables can be generated. Since the pij is not a function of n, a Markov chain is
time-homogeneous. The Markov property refers to the fact that P (Xn+1 = i| ∩l≤n {Xl = il}) =
P (Xn+1 = i|Xn = in).

Theorem 1.1 (Chapman-Kolmogomorov equation).

p
(n+m)
ij =

∑
k∈S

p
(n)
ik p

(m)
kj

Proof.

p
(n+m)
ij = P (Xn+m = j|X0 = i)

=
∑
k∈S

P (Xn+m = j|Xn = k,X0 = i)P (Xn = k|X0 = i)

By the Law of total probability

=
∑
k∈S

P (Xn+m = j|Xn = k)P (Xn = k|X0 = i) By the Markov property

=
∑
k∈S

P (Xm = j|X0 = k)P (Xn = k|X0 = i) Because of time invariance

=
∑
k∈S

p
(n)
ik p

(m)
kj
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Corollary (Chapman-Kolmogomorov inequality).

p
(n+m)
ij ≥ p(n)

ik p
(m)
kj

1.2 Transience and recurrence

The following are equivalent notations

• p(n)
ij = Pi(Xn = j) = P (Xn = j|X0 = i)

• Ei[Xn = j] = E[Xn = j|X0 = i]

• τi = inf{n : Xn = i}

• f (n)
ij = Pi({Xn = j}

⋂
l<n{Xl 6= j}) = Pi(τi = n)

• fij = Pi(∃n : Xn = j) =
∑
n≥1 f

(n)
ij = Pi(τi <∞) = pij +

∑
k∈S,k 6=j pikfkj

Definition 1.2 (Transience and recurrence). State i is transient if fii < 1 and is recurrent if
fii = 1

Theorem 1.2. State i is recurrent: fii = 1 ⇐⇒ Pi(Xn = i i.o.) = 1 ⇐⇒
∑
n≥1 p

(n)
ii =

∞ ⇐⇒ Pi(τi <∞) = 1

Proof. First ⇐⇒

Pi(Xn = i i.o.) = Pi( lim
k→∞

|n : Xn = i| > k)

= lim
k→∞

Pi(|n : Xn = i| > k) By continuity of probabilities

= lim
k→∞

(fii)
k = 1 ⇐⇒ fii = 1

Second ⇐⇒ (Since the events are not independent the Borel-Cantelli lemma can only be used
in 1 direction although I suspect the time invariance could be used to prove the converse.)∑

n≥1

p
(n)
ii =

∑
n≥1

Pi(Xn = i)

=
∑
n≥1

Ei[I(Xn = i)]

= Ei[
∑
n≥1

I(Xn = i)] By MCT

= Ei[|n : Xn = i|]
≥ Ei[|n : Xn = i||Xn = i i.o.]P (Xn = i i.o.)

≥ ∞ ∗ 1 =∞
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Third ⇐⇒

Pi(τi <∞) = lim
k→∞

Pi(τi ≤ k)

= lim
k→∞

Pi(

k⋃
l=1

τi = l) By continuity of probabilities

= lim
k→∞

k∑
l=1

Pi(τi = l) Since events are disjoint

= lim
k→∞

k∑
l=1

f
(n)
ii = fii

Note that the theorem refers only the probability of a Markov chain returning to its initial
state. This is because the theorem is not true for a Markov chain transitioning from one state
to another.

Definition 1.3 (State communication). States i and j (denoted ij)communicate if fij > 0 and
fji > 0. In other words, if there exists an n,m such that pnij > 0 and pmji > 0 then states i, j
communicate.

The following are attributes that can be associated with a Markov chain .

Definition 1.4 (Irreducible). A Markov chain is irreducible if all states communicate.

Definition 1.5 (Decomposable). A Markov chain is decomposable if there exists a partition
S1, S2, . . . such that fij = 0 if state i and j belong to different subsets.

If a Markov chain is decomposable, then it is not irreducible, but the converse is not true.
A state can be classified as recurrent, but a Markov chain can also be referred to as recurrent.

Definition 1.6. A Markov chain is recurrent if it is irreducible and for all i, j ∈ S, fij = 1.

Theorem 1.3. If a Markov chain is recurrent then the following properties hold:

1. There exists k ∈ S such that fkk = 1

2. For all i, j ∈ S, fij = 1

3. There exists i, j ∈ S such that
∑
n≥1 p

(n)
ij =∞

4. For all i, j ∈ S,
∑
n≥1 p

(n)
ij =∞

Note the subtleties in this theorem. Bullet (1) states that there exists a state k ∈ S such
that fkk = 1. Why not state instead that there exists states i, j ∈ S such that fij = 1? Because
this is not equivalent. Think of the random with p > 1/2, a non recurrent Markov chain . If
j > i, fij = 1, but fji < 1 and fii < 1.

What about the bullet (3)? If bullet (1) is referring to a single state k why can bullet (3)
be more general and refer to any state i, j? Again think of the random walk where p > 1/2 and
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Figure 1:

j > i. So we know that fij = 1 even though the Markov chain is not recurrent, but assuming
j − i is even,

∑
n≥1

p
(n)
ij =

∑
n≥1

(
2n

n+ (j − i)/2

)
pn+(j−i)/2(1−p)n−(j−i)/2 ≤

(
p

1− p

)(j−i)/2∑
n≥1

(4p(1−p))n <∞

This shows that even though fij = 1,
∑
n≥1 p

(n)
ij <∞.

Proposition 1.4. If state i and j communicate, then state i is recurrent if and only if state j
is recurrent.

Proof. Suppose state i is recurrent then
∑
n≥1 p

(n)
ii = ∞ and there exists an s, t such that

p
(s)
ji > 0, p

(t)
ij > 0 and so by the Kolmogomorov-Chapman inequality,∑

n≥1

p
(n)
jj ≥

∑
n≥s+t

p
(s)
ji p

(n)
ii p

(t)
ij =∞

This implies that state j is also recurrent.

This tells us that either all states in an irreducible Markov chain are recurrent (called a
recurrent Markov chain as above) or transient.

Some observations about Markov chain :

1. If j → i then there exists a positive probability of reaching state i from j without passing
through j first.

2. If j → i and fjj = 1 then fij = 1
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Definition 1.7 (Mean recurrence time). The mean recurrence time of a state i is mi = Ei[τi]

First note that inf{∅} =∞. This means that all transient states have infinite mean recurrence
time. Recurrent states that have infinite mean recurrence time are called null recurrent and
recurrent states that have finite mean recurrence time are called positive recurrent. If a state
space is finite and the Markov chain is irreducible then all recurrent states are positive recurrent.

Mean recurrence is closely linked to the stationary distribution of irreducible Markov chains.
This will be shown in the next section, but for now a preliminary lemma is introduced.

Lemma 1.5. Let Gn(i, j) = Ei[l : 1 ≤ l ≤ n ∩ Xl = j] =
∑n
l=1 p

(l)
ij . For a recurrent Markov

chain

lim
n→∞

Gn(i, j)

n
=

1

mj

Proof. Let T rj be the time of the rth hit of state j then,

T rj = T 1
j + (T 2

j − T 1
j ) + . . .+ (T rj − T r−1

j )

and so for s ≥ 1, Ej [T
s
j − T s−1

j ] = Ej [τj ] which means that Ei[T
r
j ] = Ei[T

1
j ] + rmj and so

assuming Ei[T
1
j ] <∞, by the strong law of large numbers limr→∞

T rj
r = mj with probability 1.

Let rn represent the number of hits of state j by time n. By definition since rn represents the
maximum number of hits by time n which must have occurred before time n so, T rn ≤ n ≤ T rn+1

and,
T rn

rn
≤ n

rn
≤ T rn+1

rn

Further, since state j is recurrent limn→∞ rn = ∞ with probability 1. This means that

limrn→∞
T rnj
rn

= mj with probability 1 and so by sandwich, limrn→∞
n
rn

= mj or limrn→∞
rn
n =

1
mj

with probability 1. Lastly, since rn
n ≤ 1 by the bounded convergence theorem,

lim
n→∞

Gn(i, j)

n
= lim
n→∞

Ei[rn]

n
= Ei

[
lim
n→∞

rn
n

]
=

1

mj

Proposition 1.6. If state i and j communicate, then state i is positive recurrent if and only if
state j is positive recurrent.

Proof. If state i is positive recurrent then,
∑n
l=1 p

(l)
ij

n > 0. By communication, there exists an s, t

such that p
(s)
ji > 0, p

(t)
ij > 0 and so by the Kolmogomorov-Chapman inequality,∑

n≥1 p
(n)
jj

n
≥
∑
n≥s+t p

(s)
ji p

(n)
ii p

(t)
ij

n
> 0

An irreducible Markov chain are either all transient, null recurrent or positive recurrent. An
irreducible Markov chain on a finite space is always positive recurrent.
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1.3 Period of a state

Definition 1.8 (Period of a state). A state i is of period d if the greatest common denominator

of {n : p
(n)
ii > 0} is d.

An alternative definition of periodicity for a Markov chain is the following:

Definition 1.9 (Period of a state alternative definition). A Markov chain is of period d if there

exists a partition of S =
⋃̇
r≥1Sr such that if i ∈ Sr then Pi(Sr+1) = 1.

Theorem 1.7. If state i and j communicate then state i and j have the same period.

Proof. Since fij > 0 and fji > 0, there exists n,m such that p
(n)
ij > 0 and p

(m)
ji > 0. Let di, dj

be the periods for state i and j, respectively. So we know that p
(n+dik+m)
ii ≥ p

(n)
ij p

(dik)
jj p

(m)
ji > 0

for all k ≥ 0. This implies that n+m is a multiple of di and by symmetry, n+m is a multiple

of dj . So n + dik + m is a multiple of dj for all k. This implies that dj ∈ CD({n : p
(n)
ii > 0})

(where CD represents the common denominators) and so dj ≤ GCD({n : p
(n)
ii > 0}) = di. By

symmetry dj ≤ di and so di = dj .

This tells us that all states in an irreducible Markov chain all have of the same period.

Definition 1.10 (Aperiodicity). A Markov chain whose states are all equal to 1 is called ape-
riodic.

1.4 Stationarity

Definition 1.11 (Stationarity). The distribution π is a stationary distribution of a transition
probability P if πP = π or in other words, for all i ∈ S, πi =

∑
k∈S πkpki.

1.4.1 The eigenvalue connection

Solving for the stationary distribution is closely tied to the eigenvalue and eigenvectors of the
transition matrix P . Firstly, π is the left eigenvector of P when the eigenvalue is 1. Let
λ0, . . . , λn−1 be the eigenvalues of P . There will always be one λ0 = 1, furthermore, |λi| ≤ 1 for
i ∈ {0, . . . , n− 1}.

Let λ∗ = maxi∈{1,...,n−1} λi. To have a λ∗ < 0 means that π is unique and υP k → π (we will
see what this means later). If all entries of P are strictly positive then λ∗ < 1. Furthermore,
λ∗ < 1 if and only if P is indecomposable and aperiodic.

The eigenvalues and eigenvectors can be calculated in two ways. The first way is to solve
for |P − λI| = 0 to get the eigenvectors and then calculate v such that P − λv = 0 to get the
eigenvalues.

The second approach is used when the Markov chain is a random walk (this means that the
Markov chain is loation invariant, P (x, y) = Q(y−x) for some distribution Q) on a finite abelian
group, Z/(n). The characteristic function is denoted as follows,

χm(x) = e2πimx/n

The eigenvalue is, λm = EQ[χm] and the eigenvector is χm where χm(x) = χm(−x). Thus, we
get that χmP = λmχm.
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Eigenvectors will return when we talk about convergence bounds.
Note that eigenvalues are the finite version of spectral norm (or spectral gap?). We call

λ∗ = maxi∈{1,...,n−1ı6=0 |λi| = ||P0|| the operator norm of P without π.

1.4.2 Existence of stationarity

Definition 1.12 (Doubly stochastic). A Markov chain is doubly stochastic if
∑
i∈S pij = 1∀j ∈

S or in other words the columns all add to 1.

If a Markov chain is doubly stochastic, then πi = 1
|S| is a stationary distribution.

Proof. ∑
i∈S

1

|S|
pij =

1

|S|
∗ 1 = πj

Definition 1.13 (Reversible). A Markov chain is reversible with respect to π if πipij = πjpji∀i, j ∈
S.

Theorem 1.8. If P is reversible with respect to π then∑
i∈S

πipij =
∑
i∈S

πjpji = πj

and so π is a stationary distribution of P .

A reversible Markov chain can be constructed from undirected graphs with weighted edges
(All Markov chain can be constructed from directed graphs with weighted edges).

For example a reversible can be constructed from the graph in figure 3 where, p12 = 5
5+7 and

π3 = 7+6
2(7+5+6)

Theorem 1.9. An irreducible Markov chain that has all positive recurrent states has a unique
stationary distribution π where πi = 1

mi
.

Proof. The proof utilizes lemma 1.5.

Corollary. If a Markov chain has a stationary distribution π and state i is null recurrent then
πi = 0.

Proof.

πi =
∑
j∈S

πjp
(n)
ji = lim

n→∞

∑n
l=1

∑
j∈S πjp

(l)
ji

n

=
∑
j∈S

πj lim
n→∞

∑n
l=1 p

(l)
ji

n
Since sum is finite by M-test

=
∑
j∈S

πj
1

∞
= 0 By 1.5 if state i is null recurrent
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Figure 2: A reversible Markov chain can be constructed from an undirected graph with weighted
edges.
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By the above corollary a recurrent Markov chain is either all null or positive recurrent.
Thus, for an irreducible Markov chain either all states are transitive or null recurrent and so no
stationary distribution exists or all states are positive recurrent and the stationary distribution
for any state j is πj = 1

mj
.

1.4.3 Markov chain convergence

Aperiodic Markov chains
Stationarity is not a sufficient condition to ensure that the Markov chain to converges to

the stationary distribution. As stated above, convergence occurs when P is indecomposable and
aperiodic. This is because the stationary distribution is unique. As figure 1 shows, a Markov
chain that is irreducible is indecomposable and so convergence occurs when P is irreducible and
aperiodic. A more formal proof will be shown later.

Before the fundamental lemma is proven, two results must be stated.

Lemma 1.10. An irreducible Markov chain that has a stationary distribution must be positive
recurrent.

Proof. An irreducible Markov chain has states that are either all transitive, null recurrent or pos-
itive recurrent. If a stationary distribution exists, then the states cannot be transitive (exercise).
If a stationary distribution is null recurrent then by corollary 1.4.2 each state i has stationary
measure πi = 0 and

∑
i∈S πi = 0. This is a contradiction. Thus the Markov chain must have all

positive recurrent states.

Lemma 1.11. A Markov chain is irreducible and aperiodic if and only if for each i, j ∈ S there

exists n(i, j) such that for all n ≥ n(i, j), p
(n)
ij > 0. (I modified this to be an iff statement)

Proof. Refer to textbook for ⇐= . Beginning of personal proof: Let A = {n : p
(n)
ii > 0}. If

m,n ∈ A then m+n ∈ A. If m ∈ A then for all k ∈ N, km ∈ A. What type of set is A? Further,
it must be proven that Ac is finite. I am having trouble proving this.

=⇒ : Suppose that for each i, j ∈ S there exists n(i, j) such that for all n ≥ n(i, j), p
(n)
ij > 0.

The Markov chain is irreducible, further there exists an N = n(i, j) + n(j, i) such that for

n ≥ N, p(n)
ii > 0 and so the Markov chain is aperiodic.

Theorem 1.12 (Markov chain convergence theorem 1). If a Markov chain is irreducible and

aperiodic and there exists a stationary distribution π then limn→∞ p
(n)
ij = πj.

Proof. Let (Xn, Yn) be a new Markov chain such that Xn and Yn are two independent copies of
the original irreducible and aperiodic Markov chain . This means that the transition probabilities
are p(ij)(kl) = pijpkl and πij = πiπj .

Since for each i, j ∈ S there exists n(i, j) such that for all n ≥ n(i, j), p
(n)
ij > 0, for the new

Markov chain chain, there exists n0 = max{n(i, j), n(k, l)} such that for all n ≥ n0, p
(n)
(ij)(kl)) > 0

and so the Markov chain is irreducible and aperiodic by lemma 1.11.
Since the Markov chain is irreducible and has a stationary distribution, by lemma 1.10 the

states are positive recurrent.
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Let i, j, k ∈ S and i0 ∈ S such that τ = inf{n : Xn = Yn = i0}. We first want to show that
|pik − pjk| → 0:

|p(n)
ik − pjk| = |P(ij)(Xn = k|τ > n)P(ij)(τ > n) + P(ij)(Xn = k|τ ≤ n)P(ij)(τ ≤ n)

− P(ij)(Yn = k|τ > n)P(ij)(τ > n)− P(ij)(Yn = k|τ ≤ n)P(ij)(τ ≤ n)|
= |P(ij)(Xn = k|τ > n)P(ij)(τ > n)− P(ij)(Yn = k|τ > n)P(ij)(τ > n)|

Since P(ij)(Xn = k|τ > n) = P(ij)(Yn = k|τ > n)

≤ P(ij)(τ > n)

Since the Markov chain is irreducible and aperiodic, with probability 1, there exists an n such
that Xn = Yn = i0 and so P(ij)(τ > n)→ 0.

Next we want to show that |pij − πj | → 0:

lim
n→∞

|p(n)
ij − πj | = lim

n→∞
|
∑
k∈S

πkp
(n)
ij −

∑
k∈S

πkp
(n)
kj |

= lim
n→∞

|
∑
k∈S

πk(p
(n)
ij − p

(n)
kj )|

≤
∑
k∈S

πk lim
n→∞

|(p(n)
ij − p

(n)
kj )| by the M-test

=
∑
k∈S

πk ∗ 0 = 0

The above theorem can be extended to any general initial distribution. Denote P (Xn = j)
as the probability of reaching point j at time n given transition probabilities P and initial
distribution υ. Then since the summation is bounded by the M-test,

lim
n→∞

|P (Xn = j)− πj | ≤ lim
n→∞

∑
k∈S

υk|p(n−1)
kj − πj | =

∑
k∈S

υk lim
n→∞

|p(n−1)
kj − πj | = 0

A more general statement can be shown through eigenvectors for Markov chain on finite
state space S. It is more general, because irredicuble Markov chain are indecomposable, but
not all indecomposable Markov chain are irreducible. This statement also doesn’t assume that
a stationary distribution exists.

Theorem 1.13. . If λ∗ < 1 then there is a unique stationary distribution on P .

Theorem 1.14 (Markov chain convergence theorem 2). If a Markov chain is indecomposable,
aperiodic and has finite state space, then there exists a unique stationary distribution such that
minn→∞ Pk(Xn = j) = πj

Sketch. The proof is divided into two parts. First we will show that if λ∗ < 1 then the Markov
chain converges. Next we will show that λ∗ < 1 ⇐⇒ the Markov chain is indecomposable and
aperiodic.
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Example 1.1. The following matrix is aperiodic and indecomposable but not irreducible. Fur-
ther, λ∗ = 1/3. 1/3 1/3 1/3

0 1 0
0 0 1


Periodic Markov chains
If a Markov chain is of period d > 1, not all hope is lost. There exists other forms of

convergence.

Theorem 1.15. If a Markov chain is irreducible, a stationary distribution exists and the period
is d then

lim
n→∞

1

d

d−1∑
r=0

p
(n+r)
ij = πj

Proof. For a Markov chain, there exists a partition of S, S1, . . . , Sd such that P (Si, Si+1) = 1

where i ∈ Z/(d). By symmetry π(Si) = 1
d . Pick Sr and let p′ij = p

(d)
ij for i, j ∈ Sr. Since

the original Markov chain is irreducible, this sub Markov chain is irreducible and aperiodic and
there exists a stationary distribution π′ = (π ∗d)ISr , which is the original stationary distribution
restricted to the subset Sr and is defined on p′ij . By irreducibility and aperiodicity, we get that

limn→∞ p
′(n)
ij = π′j or in other words, limn→∞ p

(dn)
ij = π ∗ d when i, j ∈ Sr.

Further since p
(dn+r)
ij = 0 for 1 ≤ r ≤ d−1, limn→∞

1
d

∑d−1
r=0 p

(n+r)
ij = πj when i, j ∈ Sr. This

can be shown to generalize to any i, j ∈ S.

Theorem 1.16. If a Markov chain is of period d, it is irreducible, and a stationary distribution
exists then

lim
n→∞

1

n

n∑
m=0

p
(m)
ij = πj

.

Proof.

lim
n→∞

1

n

n∑
m=0

p
(m)
ij = lim

n→∞

1

dn

n∑
m=0

d−1∑
r=0

p
(dn+r)
ij = lim

n→∞

1

n

n∑
m=0

1

d

d−1∑
r=0

p
(dn+r)
ij = πj

Since limn→∞
1
d

∑d−1
r=0 p

(dn+r)
ij = πj by lemma 1.15 and so by the Cesaro principle, the sample

average of the limit also converges to πj .

This tells us that any irreducible Markov chain has at most 1 stationary distribution.

1.5 Continuous-state space Markov chains

We are going to extend the above theory to continuous state spaces while keeping the time
periods discrete. The original definitions must be generalized.

Definition 1.14 (Markov Chain where S is continuous). A Markov Chain is a sequence of
random variables {Xn}n≥0 equipped with the following attributes:
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• A continuous state space S,

• An initial probability υ where υ(A) = P (X0 ∈ A),

• A transition probability P where Pn(x,A) = P (Xn+1 ∈ A|Xn = x).

So

P (X0 ∈ A0, X1 ∈ A1, . . . , Xd ∈ Ad) =

∫
A0

∫
A1

. . .

∫
Ad

P (xd−1, dxd) . . . P (x2, dx1)P (x0, dx1)υ(dx0)

=

∫
A0

υ(dx0)

∫
A1

P (x0, dx1) . . .

∫
Ad

P (xd−1, dxd)

Definition 1.15 (φ-irreducible Markov chain). A Markov chain on a general state space is
considered φ-irreducible if for all sets A ⊆ S such that φ(A) > 0 and for all x ∈ S, there exists
an n ∈ N such that Pn(x,A) > 0

Definition 1.16 (Period). A Markov chain is of period d if there exists a partition S =
⋃̇d
i=1Si

such that the probability of transition from any set to the next set is 1 that is, P (Si, Si+1) = 1
where i ∈ Z/(d). Further there is no partition that is greater.

Theorem 1.17. If there exists a δ > 0 such that for all x ∈ S and [for all subsets A ⊆
[x− δ, x+ δ], P (x,A) > 0] then the Markov chain is λ-irreducible and aperiodic.

Proof. Irreducible: Let A ⊆ S be a set such that λ(A) > 0. There exists an M ∈ R such that
MA = [−M,M ] ∩ A 6= ∅ and λ(MA) > 0. Next, lets choose an n ∈ N such that xnδ > M >
−M > x−nδ. And so, Pn(x, [x−nδ, x+nδ]) > 0. Further, since every subset of [x−nδ, x+nδ]
has positive transition probability and MA ⊆ [x− nδ, x+ nδ], Pn(x,MA) > 0.

Aperiodic: Suppose the period of the Markov chain is d > 1 and let x ∈ Si. Since d > 1,
this means that P (x, Si+1) = 1. Further by assumption, all subsets of [x−δ, x+dδ] have positive
transition probability and so, [x − δ, x + δ] ⊂ Si+1. This means that x ∈ Si and x ∈ Si+1, a
contradiction since Si’s are disjoint, so d = 1.

Definition 1.17 (Stationarity). A distribution, π, is a stationary distribution of P if for all
A ⊆ S that have positive measure on π,

π(A) =

∫
S

π(x)P (x,A)dx

For continuous space Markov chain the convergence theorem 1.12 still applies. Although one
must be more careful with the definition and formalizing convergence.

Finally a generalization of the definition of reversibility is as follows,

Definition 1.18 (Reversible). Let L2(π) be the set of all measurable, real-valued functions on
S that are squared integrable with respect to π(dx). A continuous Markov chain is reversible
with respect to π if for all f, g ∈ L2(π),∫

X

g(x)Pf(x)π(dx) =

∫
X

f(x)Pg(x)π(dx)
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Definition 1.19 (Non negative definite). A continuous Markov chain is non-negative definite if
for all f ∈ L2(π), ∫

X

f(x)Pf(x)π(dx) ≥ 0

1.6 Total variation distance

Total variation is metric that will be used for defining convergence and bounds.

Definition 1.20 (Total variation). The total variation distance between two measures υ1, υ2 is,

||υ1 − υ2|| = sup
A⊆S
|υ1(A)− υ2(A)|

Total variation is a metric. (Fun exercise)

Proof. Identity: If υ1 = υ2 then for allA ∈ F , υ1(A) = υ2(A) which occurs ⇐⇒ supA⊆S |υ1(A)−
υ2(A)| = 0.

Symmetry: Obvious.
Subadditivity:

||υ1 − υ|| = sup
A⊆S
|υ1(A)− υ2(A)|

≤ sup
A⊆S
|υ1(A)− υ3(A)|+ |υ3(A)− υ2(A)|

≤ sup
A⊆S
|υ1(A)− υ3(A)|+ sup

A⊆S
|υ3(A)− υ2(A)|

If the distribution functions have continuous densities then the total variation in 3 is the area
of A or the area of B, which are equal. Why? Because the areas of densities for u and v are 1,
so their differences must also cancel out.

In more formal terms the same applies for finite S.

Proposition 1.18. If S is finite, then

||υ1 − υ2|| =
1

2

∑
x∈S
|υ1(x)− υ2(x)|

Properties 1.19. The following are equivalent definitions for total variation. (Note that the
proofs are sketches– they wouldn’t be final answers in a homework assignment.)

1. ||υ1 − υ2|| = supf :S→[0,1] |
∫
fdυ1 −

∫
fdυ2|

Proof. Let {An}n≥1 be a sequence of nested sets such that An ∈ F and

lim
n→∞

|υ1(An)− υ2(An)| = sup
A⊆S
|υ1(A)− υ2(A)|

13



Figure 3:

Such a sequence exists, by definition of supremum and by continuity of probabilities. Fur-
ther, let f(x) = limn→∞ Ix∈An . Then,

sup
A⊆S
|υ1(A)− υ2(A)| = lim

n→∞
|υ1(An)− υ2(An)|

= lim
n→∞

|
∫
s∈S

Is∈Andυ1 −
∫
s∈S

Is∈Andυ2|

Is∈An is mesurable b/c An ∈ F

≤ sup
f :S→[0,1]

|
∫
fdυ1 −

∫
fdυ2| Since it is true for each Is∈An

Further there exists an fn → f ′ such that |
∫
f ′dυ1 −

∫
f ′dυ2| = supf :S→[0,1] |

∫
fdυ1 −∫

fdυ2|. Let Bn be the set on which fn is positive. Since fn’s are measurable, Bn ∈ F
and so there exists an Am(n) such that

|
∫
s∈S

fn(s)dυ1 −
∫
s∈S

fn(s)dυ2| ≤ |
∫
s∈S

Is∈Bndυ1 −
∫
s∈Bn

Is∈Bndυ2|

≤ |
∫
s∈S

Is∈Andυ1 −
∫
s∈An

Is∈Bndυ2|

14



And so,

lim
n→∞

|
∫
s∈S

fn(s)dυ1 −
∫
s∈S

fn(s)dυ2| ≤ |
∫
s∈S

Is∈Andυ1 −
∫
s∈An

Is∈Bndυ2|

= sup
A⊆S
|υ1(A)− υ2(A)|

Since both inequalities hold, we get an equality.

2. ||υ1 − υ2|| = 1
b−a supf :X→[a,b] |

∫
fdυ1 −

∫
fdυ2|

Proof. If gn : S → [a, b] then gn = a+ (b− a)fn where fn : S → [0, 1],

1

b− a
sup

g:X→[a,b]

|
∫
gdυ1 −

∫
gdυ2| =

1

b− a
sup

f :X→[0,1]

|
∫
a+ (b− a)fdυ1 −

∫
a+ (b− a)fdυ2|

= sup
f :X→[0,1]

|
∫
fdυ1 −

∫
fdυ2| By linearity

= sup
A⊆S
|υ1(A)− υ2(A)|

3. If π is a stationary distribution for a Markov chain then ||Pn(x, ·)−π(·)|| ≤ ||Pn−1(x, ·)−
π(·)||

Proof.

|Pn+1(x,A)− π(A)| = |
∫
y∈S

Pn(x, dy)P (y,A)−
∫
y∈S

π(dy)P (y,A)|

= |
∫
y∈S

Pn(x, dy)P (y,A)−
∫
y∈S

π(dy)P (y,A)|

= |
∫
y∈S

f(y)Pn(x, dy)−
∫
y∈S

f(y)π(dy)| Where f(y) = P (y,A)

≤ sup
f :S→[0,1]

|
∫
y∈S

f(y)Pn(x, dy)−
∫
y∈S

f(y)π(dy)|

= ||Pn(x, ·)− π(·)|| By property A

4. Let t(n) = 2 supx⊆S ||Pn(x, ·) − π(·)||, where π(·) is a stationary distribution, then t(m +
n) ≤ t(m)t(n) or

sup
x⊆S
||Pn+m(x, ·)− π(·)|| ≤ 2 sup

x⊆S
||Pn(x, ·)− π(·)|| × sup

x⊆S
||Pm(x, ·)− π(·)||

15



5. If Pn(x, ·) and π(·) have densities fn and g with respect to some σ-finite measure ρ and
M = max{fn, g}, m = min{fn, g} then,

||Pn(x, ·)− π(·)|| = 1

2

∫
S

M −mdρ = 1−
∫
S

mdρ

In figure 3, this equation represents the average area of A and B.

6. There exists joint defined random variables Xn and Y such that L(Xn) = Pn(x, ·) and
L(Y ) = π(·) and

||Pn(x, ·)− π(·)|| = 1− P (Xn = Y )

Ideas:
Suppose the transition probability P has a density f(x, y).
Then

∫
y∈S f(x, y)dy = 1 but

∫
x∈S f(x, y)dx ≥ 0 and is not bounded. If P is φ-irreducible

then for any A ⊆ S where φ(A) > 0 there exists a B ⊆ S such that φ(B) > 0 and P (B,A) > 0.
I’d be really interested in showing the following (conjecture)

• If π is the stationary distribution and the Markov chain is irreducible and aperiodic. Fur-
ther then for all n ≥ 1

0 < ||Pn(x, ·)− π(·)|| < ||Pn−1(x, ·)− π(·)||

That is, the convergence is asymptotic.

Proof. (Attempt)

• If there exists a δ > 0 such that the transition proability P (x, ·) has strictly positive density
over [x− δ, x+ δ] could be shown that the transition distribution is absolutely continuous
that is Pn >> Pn−1

Theorem 1.20. If a Markov chain is φ-irreducible and aperiodic and there exists a stationary
distribution π where [φ >> π] then for π-a.e and x ∈ X.

lim
n→∞

||P (x, ·)− π(·)|| = 0

.

2 MCMC

Problem: Given an unnormalised (or improper) πu where 0 <
∫
πu(x)dx <∞ and π non-negative

a.e. we want to estimate Eπ[f ] where π is the normalised distribution.
Markov Chain Monte Carlo is an algorithm to simulate random variables from complicated

distributions that cannot be directly sampled. Its most prominent use is in Bayesian statistics
when the density function is improper or unnormalised.

Lets break down the definition into parts.
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Definition 2.1 (Monte Carlo simulation). Monte Carlo simulation is about using i.i.d. samples
to estimate the Eπ[f ] through the sample mean. That is,

Eπ[f ] ≈ 1

N

N∑
n=1

f(Xn)

By the weak law of large numbers if the Xis has the finite first and second moment, then the
average converges and so the Monte Carlo simulation will converge in probability to Eπ[f ].

In the turn of the century Russia, a big debate was going on. Was pairwise independence
a necessary condition for the weak law of large numbers to hold? Nekrasov thought so, but
Markov wanted to prove him wrong. This is how the concept of Markov chains came about:
it was Markov’s counter-example. (p. 244-245 of Statisticians of the Centuries). Regardless of
how Markov did it, it is with this theoretical underpinning that allows us to use a sequence of
non-independent random variables whose sample mean still converges to the sample mean in
probability. Further, if the samples cannot be estimated because the normalising constant for
πu is unknown then we need another solution that uses a Markov chain who mean converges in
probability to the sample mean. This is the foundation of Markov Chain Monte Carlo (MCMC).

MCMC differs from Monte Carlo simulation in that it doesn’t sample i.i.d. random variables.
Instead a Markov chain is simulated whose unconditional distribution converges to π. That is
L(Xn)→ π as n→∞.

Definition 2.2 (Markov Chain Monte Carlo (MCMC) algorithm ). MCMC is a Monte Carlo
algorithm where the samples are generated from a random a Markov chain.

Suppose X1, X2, . . . XN are simulated values from a Markov chain. For a sufficiently large
N0 < N , and for N0 ≤ n ≤ N L(Xn) ≈ π and so Eπ[f ] is estimated as follows.

Eπ[f ] ≈ 1

N −N0

N∑
n=N0

f(Xn)

The next question that comes to mind is how will we get a Markov chain whose limiting
distribution is π?

If we can construct a transition probability P that is reversible with respect to π then π is
also a stationary distribution and combining this with the Markov chain convergence theorem
1 1.12, the Markov chain will converge in distribution to π regardless of the initial distribution
and so we obtain what we are looking for and the initial distribution is irrelevant.

The Metropolis Hastings Algorithm generates a Markov chain that converges to a stationary
distribution π.

Definition 2.3 (Metropolis Algorithm). Given an unnormalized distribution πu and a state
space S a Markov chain can be generated as follows.

Choose a proposal density q(·, ·) that is symmetric (q(x, y) = q(y, x)) and define the density
of P as follows if y 6= x,

dP (x, y) = q(x, y)min{1, π(y)

π(x)
}

And P (x, {x}) = 1−
∫
S
q(x, y)min{1, π(y)

π(x)}dx.
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Theorem 2.1. The transition probability generated by the Metropolis algorithm is reversible. If
y 6= x

π(x)P (x, y) = π(x)q(x, y) min{1, π(y)

π(x)
}

= q(x, y) min{π(x), π(y)}
= q(y, x) min{π(x), π(y)}
= π(y)P (y, x)

Theorem 2.2 (MCMC convergence theorem). If S is a compact set and the density of π [where
π << λ] is strictly positive over S and there exists a δ > 0 such that for all x ∈ S and y ∈ Bδ(x),
q(x, y) > 0 then the corresponding P generated from the Metropolis Hastings algorithm is π-
irreducible and aperiodic and so

lim
n→∞

||P (x, ·)− π(·)|| = 0

Proof. This is a direct result of theorem 1.17 and 1.20.

The Metropolis algorithm can be generalized to the Metropolis Hastings algorithm.

Definition 2.4 (Metropolis-Hastings algorithm ). Given an unnormalized distribution πu and
a state space S a Markov chain can be generated as follows.

Choose a proposal density q(·, ·) and define the density of P as follows if y 6= x,

dP (x, y) = q(x, y)min{1, π(y)q(y, x)

π(x)q(x, y)
}

And P (x, {x}) = 1−
∫
S
q(x, y)min{1, π(y)q(y,x)

π(x)q(x,y)}dx.

The Metropolis-Hastings algorithm is reversible and the MCMC convergence theorem still
holds.

3 Markov Chain convergence

3.1 Foundations of the minorization and drift conditions

Now that we are provided with a selection of requirements for a Markov chain to converge to
stationarity (ie that Markov chain is ergodic), the next question is at what rate does the law of
the Markov chain converge to stationarity?

Definition 3.1 (Uniformly ergodic (section 3.3 of [2])). A Markov chain with stationary distri-
bution π is uniformly ergodic if there exists a 1 > ρ > 0 and M <∞ such that

||P (x, ·)− π(·)|| ≤Mρn

Theorem 3.1 (Proposition 7 of [2]). A Markov chain is uniformly ergodic ⇐⇒ there exists an
n0 ∈ N such that,

sup
x∈S
||Pn0(x, ·)− π(·)|| < 1/2
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Proof. =⇒ : Obvious
⇐= : Suppose that supx∈S ||Pn0(x, ·)− π(·)|| < 1/2. Let

β = t(n0) = 2 sup
x∈S
||Pn0(x, ·)− π(·)||

So, β < 1 and by
Let m ∈ N and by proposition 1.19 part 4, t(jn) ≤ t(n)j and so,

||Pm(x, ·)− π(·)|| ≤ ||P b
m
n0
cn0(x, ·)− π(·)|| By prop 1.19 part 3

= t(bm
n0
cn0)/2

≤ βb
m
n0
c/2 By prop 1.19 part 4

≤ β−1/2× β
m
n0

= Mρm where M = β−1/2 and ρ = β
1
n0

Definition 3.2 (Minorisation condition and small set (equation 8 in [2])). The minorisation
condition on a small set C ⊆ S holds when there exists an ε > 0, a distribution υ and an n0 ∈ N
such that, for all A ⊆ S and x ∈ C

Pn0(x,A) ≥ ευ(A) (1)

Theorem 3.2 (Minorization condition and uniform ergodicity). If a Markov chain has a sta-
tionary distribution π and the minorization condition holds with the small set equal to the state
space, C = S, then the Markov chain is uniformly ergodic.

Proof. See presentation.

The special thing about the small set is that there is positive probability of coupling hap-
pening. That is if two random variables belong to the small set, they can be constructed so that
there is a positive probability that they will become equal.

Definition 3.3 (Geometrically ergodic (section 3.4 of [2])). A Markov chain with stationary
distribution π is geometrically ergodic if there exists a 1 > ρ > 0 and M : S 7→ R+ − {∞} such
that

||P (x, ·)− π(·)|| ≤M(x)ρn (2)

Definition 3.4 (Univariate drift condition (Equation 10 in [2])). A Markov chain satisfies the
diffusion condition when there exists a function V : S 7→ [1,∞] and two constants, 0 < λ < 1
and b <∞ such that,

E[V (Xn+1)|Xn] =

∫
y∈S

V (y)P (Xn, dy) ≤ λV (Xn) + bIC(Xn) (3)
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Definition 3.5 (Bivariate drift condition (Equation 11 in [2])). A bivariate condition holds on
a Markov chain if there exists an α > 1 and a bivariate function h(x, y) : S × S 7→ [1,∞] such
that for all (Xn, Yn) /∈ C × C,

E[h(Xn+1, Yn+1)|Xn, Yn] =

∫
s∈S

∫
t∈S

h(s, t)P (Xn, ds)P (Yn, dt) ≤ h(Xn, Yn)/α (4)

Definition 3.6 (Petite set). A subset C ′ ⊆ S is a petite set relative to a Markov chain if there
exists a positive integer n0, ε > 0 and a probability measure υ(·) on S such that for all x ∈ C ′
and A ⊆ S ∑

1≤i≤n0

P i(x,A) ≥ ευ(A) (5)

The main purpose of this note is to prove the following theorem.

Theorem 3.3 (Minorization condition with drift and geometric ergodicity). Suppose a Markov
chain has the following attributes. It is

• φ-irreducible and aperiodic,

• a minorisation condition holds (def. 3.2),

• a diffusion condition holds (def. 3.4).

Then the Markov chain is geometrically ergodic (def. 3.3).

To prove this we will first state the following lemmas.

Lemma 3.4 (Lemma 18 of [2]). Suppose a Markov chain has a drift (def. 3.4) and minorization
condition (def. 3.2) Let C ′ = C ∪Sd where C is a small set (def. 3.2) and Sd = {x ∈ S : V (x) ≤
d}, where

d > b/(1− λ)− 1 (6)

then C ′ is petite for some n0 ∈ N, ε > 0 and distribution υ.

Lemma 3.5 (Lemma 17 of [2]). If a Markov chain is φ-irreducible and aperiodic, then a petite
set is a small set.

Lemma 3.6 (Proposition 11 of [2]). Suppose that the univariate drift condition (def. 3.4) holds
on a Markov chain and let d = infx∈Cc V (x). If equation 6 holds then the bivariate drift condition
holds (def. 3.5) with h(x, y) = 1

2 (V (x) + V (y)) and α−1 = λ+ b/(d+ 1).

Lemma 3.7 (Theorem 12 of [2]). Suppose that a minorization condition (def. 3.2) and a
bivariate drift condition (def. 3.5) holds on a Markov chain. Let

Bn0
= max{1, αn0(1− ε) sup

(x,y)∈C×C
R̄h(x, y)}

where for x, y ∈ C × C

R̄h(x, y) =
1

(1− ε)2

∫
X

∫
X

h(z, w)(Pn0(x, dz)− ευ(dz))(Pn0(y, dw)− ευ(dw))

Further, let {Xn}n≥1 and {Yn}n≥1 be two copies of the Markov chain with initial distribution
L(X0, Y0). Then for k ∈ N and integer 1 ≤ j ≤ k

||L(Xk)− L(Yk)|| ≤ (1− ε)j + α−kBj−1
n0

E[h(X0, Y0)]
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It is clear to see that the above lemmas follow a given sequence to prove theorem 3.3. First a
petite set C ′ is proposed that satisfies equation 6. Next, we show that C ′ is small. Then because
equation 6 and a minorization condition hold, a bivariate drift condition holds. Since a bivariate
drift condition holds, there is a geometric ergodic bound.

Proof of lemma 3.4. The minorization condition holds, so given the notation defined in def. 3.2,
define N ∈ N 1 − λNd > 0 and define r = 1 − λNd > 0. We will show that for any x ∈ C ′ and
A ⊆ S

N+n0∑
i=1

P i(x,A) ≥ rευ(A) (7)

First define the stopping time,

τ0 = inf{n ∈ N : Xn ∈ C}

Step 1: Let Wn = Zmin{n,τ0} and Zn = λ−nV (Xn). Show that Wn is a supermartingale.
If τ0 ≤ n then Wn = Zτ0 and E[Wn+1|Xn] = Wn

If τ0 > n then Wn = λ−nV (Xn) and X1, X2, . . . Xn /∈ C, the drift condition is E[Vn+1|Xn] ≤
λV (Xn) and

E[Wn+1|Xn] = E[λ−(n+1)V (Xn+1)|Xn] ≤ λ−(n+1)λV (Xn) = λ−nV (Xn) = Wn

So for all n, E[Wn+1|Xn] ≤Wn and so Wn is a supermartingale.
Step 2: Show that PX0(τ0 < N) ≥ 1− λNd = r for any X0 ∈ C ′.

PX0
(τ0 > N) = Px(λ−τ0 > λ−N )

≤ EX0 [λ−τ0 ]

λ−N
By Markov’s inequality

≤ λNEX0
[λ−τ0V (Xτ0)] Since V (·) ≥ 1

≤ λNEX0 [λ0V (X0)] = λNV (X0) Since Wn is a supermartingale by step 1

≤ λNd Since X0 ∈ S

This shows that PX0(τ0 ≤ N) ≥ 1− λNd = r.
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Step 3: Show that
∑N+n0

i=1 P i(x,A) ≥ rευ(A) for any x ∈ C ′.

N+n0∑
i=1

P i(x,A) ≥
N∑
i=1

P i+n0(x,A)

≥
N∑
i=1

∫
y∈C

P i(x, dy)Pn0(y,A) By the Chapman-Kolmogomorov inequality

≥
N∑
i=1

∫
y∈C

P i(x, dy)εv(A) By the minorization condition

= εv(A)

N∑
i=1

P i(x,C)

≥ εv(A)P (∪Ni=1Xi ∈ C|X0 = x) By subadditivity

= εv(A)PX0
(τ0 ≤ N)

≥ rεv(A) Since PX0
(τ0 ≤ N) ≥ r by step 2

And so C ′ is a petite set.

Proof of 3.6. Suppose (Xn, Yn) /∈ C × C. This means that at least one Xn or Yn is in Cc.

E[h(Xn+1, Yn+1)|Xn, Yn] =
E[V (Xn+1)|Xn] + E[V (Yn+1)|Yn]

2

≤ λV (Xn) + λV (Yn) + b

2
By the minorization condition

≤ λ(V (Xn) + V (Yn))

2
+
b

2

V (Xn) + V (Yn)

d+ 1
Since V (·) ≥ 1 and V (x) ≥ 1∀x ∈ C

=
V (Xn) + V (Yn)

2

(
λ+

b

d+ 1

)
= α−1V (Xn) + V (Yn)

2

Further,

α−1 < 1 ⇐⇒ λ+
b

d+ 1
< 1 ⇐⇒ b

1− λ
− 1 < d

which is true by assumption.

Proof of 3.7. Let Nk = |{m : 0 ≤ m ≤ k and Xm = Ym}| and fix 1 ≤ j ≤ k. First,

||L(Xk)− L(Yk)|| ≤ P (Xk 6= Yk)

= P (Xk 6= Yk ∩Nk ≥ j) + P (Xk 6= Yk ∩Nk < j)

23



Each term can be bounded. Since Nk ≥ j in the first term, at least j times the Markov chain
is in the small set and so by coupling we get that

P (Xk 6= Yk ∩Nk ≥ j) ≤ (1− ε)j

The second term is more labour intensive.
First it must be shown that the term Mk = αkh(Xk, Yk)I(Xk 6= Yk)B−Nk−1 is a supermartin-

gale. At the core of the proof is the bivariate drift condition.

E[Mk|Xk, Yk] = E[αkh(Xk, Yk)I(Xk 6= Yk)B−Nk−1 |Xk, Yk]

Case 1: If Xk = Yk, then Xk+1 = Yk+1 and so Mk+1 = Mk = 0. Inequality holds.

Case 2: If Xk 6= Yk and (Xk, Yk) ∈ C × C. Then Nk = Nk−1 + 1 and B−Nk−1 ≤ B−Nk−1 ,
which is counter to what we want. This is where the definition of B comes in and the
application of coupling is used.

E[Mk+1|Xk, Yk] = E[αk+1h(Xk+1, Yk+1)I(Xk+1 6= Yk+1)B−Nk |Xk, Yk]

= αkB−Nk−1
α

B
E[h(Xk+1, Yk+1)I(Xk+1 6= Yk+1)|Xk, Yk]

= αkB−Nk−1
α

B

(
(1− ε)

∫
z∈S

∫
w∈S

h(w, z)

(
Pn0(Xk, dw)− ευ(dw)

1− ε

)(
Pn0(Yk, dw)− ευ(dw)

1− ε

))
= αkB−Nk−1

(
α(1− ε)R̄h(x, y)

max{1, αn0(1− ε) sup(x,y)∈C×C R̄h(x, y)}

)
≤ αkB−Nk−1 Since term is less than or equal to 1

≤ αkB−Nk−1h(Xk, Yk)I(Xk 6= Yk) Since h(Xk, Yk)I(Xk 6= Yk) ≥ 1

= Mk

Case 3: If Xk 6= Yk and (Xk, Yk) /∈ C × C. If (Xk, Yk) /∈ C × C then Nk = Nk−1 and so,

E[Mk+1|Xk, Yk] = E[αk+1h(Xk+1, Yk+1)I(Xk+1 6= Yk+1)B−Nk |Xk, Yk]

= αk+1B−Nk−1E[h(Xk+1, Yk+1)I(Xk+1 6= Yk+1)|Xk, Yk]

≤ αk+1B−Nk−1I(Xk 6= Yk)
h(Xk+1, Yk+1)

α
By the bivariate drift condition and I(Xk+1 6= Yk+1) ≤ I(Xk 6= Yk)

= αkB−Nk−1I(Xk 6= Yk)h(Xk+1, Yk+1)

= Mk

Thus, Mk = αkh(Xk, Yk)I(Xk 6= Yk)B−Nk−1 is a supermartingale. Next, the inequality is shown.
Note that in the 4th equality the term I(Xk 6= Yk)B−Nk−1 is a supermartingale, however

Bj−1 is an increasing function and for P (Xk 6= Yk ∩Nk ≥ j) to converge to 0, we need j → ∞
as k → ∞ and so αk

αk
is added to the equation. To bound the numerator the term h(Xk, Yk) is

added because it is greater that 1 and combined with αk provides a supermartingale property.
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P (Xk 6= Yk ∩Nk−1 < j) = P (Xk 6= Yk ∩Nk−1 ≤ j − 1)

= P (Xk 6= Yk ∩B−Nk−1 ≥ B−(j−1))

= P (I(Xk 6= Yk)B−Nk−1 ≥ B−(j−1)) Because B−(j−1) > 0

= Bj−1E[I(Xk 6= Yk)B−Nk−1 ] By Markov’s inequality

=
Bj−1

αk
E[αkh(Xk, Yk)I(Xk 6= Yk)B−Nk−1 ] Since h(Xk, Yk) ≥ 1

≤ Bj−1

αk
E[α0h(X0, Y0)I(X0 6= Y0)B−N−1 ]

Since αkh(Xk, Yk)I(Xk 6= Yk)B−Nk−1 is a supermartingale

=
Bj−1

αk
E[h(X0, Y0)]

Putting all of the lemmas together, we have a proof of theorem 3.3.

3.2 Discussion of bounds related to the minorization and drift condi-
tions

Definition 3.7 (Convergence rate). The convergence rate of a Markov chain is denoted as

ρ∗ = inf{ρ : ||Pn(x, ·)− π(·)|| ≤M(x)ρn}

or is the minimum ρ that satisfies definition 3.3.

This discussion will focus on the convergence rate of geometrically ergodic Markov chains. We
want to study how well certain famous bounds that apply the minorization and drift conditions
estimate the convergence rate.

The goal is to better understand the limits of a bound that utilizes the drift and minorization
condition. To do this, famous bounds that use the drift and minorization condition are studied.

3.2.1 Rosenthal’s bound

The results come from [3] and [5].

Theorem 3.8 (Original: Rosenthal’s bound, see theorem 12 in [1]. This version is taken from
theorem 4 in [3]). Suppose that

1. there exists λ < 1 and L <∞ and a function V : S → [0,∞)] such that for all x ∈ S

E[V (Xn+1)|Xn] ≤ λV (Xn) + L

2. there exists d > 2L/(1 − λ) and a probability measure υ : F → [0, 1] such that for every
x ∈ C where

C = {x ∈ S : V (x) ≤ d}
and for all A ∈ F , P (x,A) ≥ (1− γ)υ(A). (ie. the minorization condition holds)
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Then for all x ∈ S, m ≥ 0 and a ∈ (0, 1),

||Pm(x, ·)− π(·)|| ≤ γam +

(
1 +

L

1− λ
+ V (x)

)[(
1 + 2L+ λd

1 + d

)1−a

[1 + 2(λd+ L)]a

]m
Proof. See theorem 3.3 for a proof of a similar theorem. Some differences are that b is replaced
by 2b in lemma 3.6 to take into account the drift condition.

Regardless of the original minorization condition, in the proof a new minorization condition
is constructed where the small set C is modified to be a set that can be defined as follows for
2L/(1− λ) ≤ d <∞.

C = {x ∈ S : V (x) ≤ d}

The small set can be shrunk to ensure that d <∞ (see lemma 14 of probsurv). Also intuitively
it makes sense given the small set is concentrated around the smallest values of V (·).

The small set is also expanded so that the new set, C ′ is defined as follows, C ′ = C ∪ {x ∈
S : V (x) ≤ d}.

Expanding the small set means that the original γ in the minorization condition may be
larger than the constant found in the bound.

Theorem 3.8 implies that a upper bound on the convergence rate, which we will call Rosen-
thal’s bound, denoted ρrose, is as follows.

ρ∗ ≤ ρrose = max{γa,
(

1 + 2L+ λd

1 + d

)1−a

[1 + 2(λd+ L)]a}

Note that the requirement that infx∈Cc V (x) = d > 2L/(1 − λ) ensures that the chain is
aperiodic (it is a more strict requirement than aperiodicity) and that π(C) ≥ 1/2.

Proposition 3.9 (Proposition 2.16 in [6]). For C in theorem 3.8, π(C) ≥ 1/2.

Proof. Let notation be as in theorem 3.8.

L

1− λ
≥ Eπ[V (Xn)] By cutoff argument

≥ d(1− π(C)) Since V (X) ≥ dICC (x)

≥ 2L(1− π(C))

1− λ
Since d ≥ 2L

1−λ

This implies that,
1/2 ≥ 1− π(C) ⇐⇒ π(C) ≤ 1/2

The following is a general result for when a Markov chain satisfies a minorization condition.

Lemma 3.10 (Lemma 5 in [5], which was left as an exercise to the reader). Let k(x, ·) be the
density of K(x, ·) with respect to some measure µ. If assumption 2 in 3.8 holds, then for x, y ∈ C,

1

2

∫
S

|k(x, x′)− k(y, x′)|dx ≤ γ
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Proof. By assumption A2, for x, y ∈ C

|K(x, ·)−K(y, ·)| ≤ 1− (1− γ)υ(·) = (1− υ(·)) + γυ(·)

and so,
1

2

∫
S

|k(x, s)− k(y, s)|µ(ds) ≤
∫
S

γυ(ds) = γ

Lemma 5 is then used in 3.1 to prove that Rosenthal’s bound in the autoregressive normal
process converges to 1 exponentially fast as the dimension p increases.

Example 3.1 (Autoregressive normal process). Setup: Let { ~Xn}n≥1 be a p dimensional Markov
chain such that

L( ~Xn+1| ~Xn) = N

(
~Xn

2
,

3

4
Ip

)
The chain is reversible with respect to the distribution π(·) = N(0, Ip) since P (x, dy)π(dx)

is symmetric with respect to x, y.

P (x, dy)π(dx) = Ce−
2
3 ||x/2−y||

2

e−||x||
2

= C exp(
2

3

p∑
i=1

(
xi
2
− yi)2 +

1

2

p∑
i=1

x2
i

)

= C exp

(
p∑
i=1

2

3
x2
i −

2

3
xiyi +

2

3
y2
i

)

Thus, π is a stationary distribution of P . Further, it is known that the convergence rate is
ρ∗ = 1/2. That is there is a function M(x) <∞ such that,

||L( ~Xn)− π(·)|| ≤M(x)(1/2)n

and there is no value smaller than 1/2.
Any drift and minorization condition that satisfies the requirements in theorem 3.8 has

ρmnd → 1 as p→∞ exponentially.

Proof. Let C be the small set. In order for π(C) ≥ 1/2 and be the smallest set, C must be a
hypersphere with radius of

√
mp where mp is the median of the χ2

p distribution. Let Xn be the
Markov chain . The invariant stationary distribution of π(·) is N(0, Ip). So we solve for r,

1

2
≤ P (Xn ∈ Br(0p))

= P (

p∑
i=1

X2
i ≤ r2)

= P (χ2
p ≤ r2)
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For the above to hold, r =
√
mp where mp is the median of the χ2

p-distribution and so diam(C) =
2
√
mp

Let k(x, ·) be the density associated with K(x, ·) ∼ N(x/2, 3Ip/4)

sup
x,y∈C

∫
Rp
|k(x, x′)− k(y, x′)|dx′

≥
∫
Rp
|k((−√mp, 0, . . . , 0), x)− k((

√
mp, 0, . . . , 0), x)|d~xp

=

∫
Rp

∣∣∣∣∣
(√

2

3π

)p
e−

2
3 ((x1−mp/2)2+

∑p
x=2 x

2
i ) −

(√
2

3π

)p
e−

2
3 ((x1+mp/2)2+

∑p
x=2 x

2
i )

∣∣∣∣∣ d~xp
=

∫
R

∣∣∣∣∣
√

2

3π
e−

2
3 ((x1−mp/2)2 −

√
2

3π
e−

2
3 ((x1+mp/2)2

∣∣∣∣∣
∫
Rp−1

(√
2

3π

)p−1

e−
2
3

∑p
x=2 x

2
i d~xp−1dx1

=

√
2

3π

∫
R

∣∣∣e− 2
3 ((x1−mp/2)2 − e− 2

3 ((x1+mp/2)2
∣∣∣ dx1

= 2

√
2

3π

∫
R+

e−
2
3 ((x1−mp/2)2 − e− 2

3 ((x1+mp/2)2dx1

= 2(P (X ≥ 0)− P (Y ≥ 0)) where X ∼ N(
√
mp
2 , 3

4 ) and Y ∼ N(
−√mp

2 , 3
4 )

= 2

(
Φ

(√
mp

3

)
− Φ

(
−
√
mp

3

))
= 2

(
1− 2Φ

(
−
√
mp

3

))
= 2− 4Φ

(
−
√
mp

3

)
Since mp is of order p (see figure 5), Φ

(
−
√

mp
3

)
is of order en and so

γ ≥ 1

2
sup
x,y∈C

∫
S

|k(x, s)− k(y, s)|µ(ds) By lemma 3.10

≥ 1

2

(
2− 4Φ

(
−
√
mp

3

))
=

(
1− 2Φ

(
−
√
mp

3

))
And so as p→∞, γ → 1 at a rate e−n

In [3], Qin and Hobert try to uncover whether the Rosenthal bound (and later the Baxendale
bound) is tight given the assumptions. If the bound is tight with respect to the assumptions
while it is not tight with respect to ρ∗, then the bound has limitations.

Assume that α = 1 going forward.

Definition 3.8 (Simple bound). A bound is considered a simple bound if it is solely a function
of the parameters in the assumption.
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Figure 5: mp is of order p

Rosenthal’s bound is considered a simple bound, because it is a function of (γ, λ, L, d). Define

S(γ,λ,L,d) = {P : The corresponding Markov chain has the parameters (γ, λ, L, d)}

and

ρopt(γ, λ, L, d) = sup
P∈S(γ,λ,L,d)

ρ∗(P )

Then Rosenthal’s bound is tight with respect to to the assumptions if, ρopt(γ, λ, L, d) is close
to ρrose(γ, λ, L, d).

Naturally,
ρrose(γ, λ, L, d) ≤ ρopt(γ, λ, L, d)

, but we want to know how well does ρopt(γ, λ, L, d) estimate ρrose(γ, λ, L, d).

Proposition 3.11 (Proposition 16 in [3]). For a given (γ, λ, L, d) in Rosenthal’s bound,

ρopt ≥ γ

Proof. A proof is constructed by creating a Markov chain that converges as slow as possible
given the constraints of belonging to S(γ,λ,L,d).

Note that α = 1 and the authors note that the limitations shown here do not apply for when
α > 1 (or growing with respect to p).

Also note that a Markov chain can have varying (γ, λ, L, d) and so the sets of Markov chain
, S(γ,λ,L,d), are not disjoint.
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3.2.2 Baxendale’s bound

The results come from [3].
This section is to show that Baxendale’s bound is tight with respect to the theorems assump-

tions. This implies that any gap in the bound is due to variation within the Markov chain that
satisfy the assumption parameters and not the bound itself.

Theorem 3.12 (Baxendale’s bound, found in [3] as theorem 1). Suppose that

1. there exists λ ∈ (0, 1), L <∞, a function V : S → [1,∞)], and a small set C such that for
all x ∈ S,

E[V (Xn+1)|Xn] ≤ λV (Xn)ICc(Xn) + LIC(Xn)

2. there exists ε ∈ [0, 1) and a probability measure υ : F → [0, 1] such that for every x ∈ C
and for all A ∈ F ,

P (x,A) ≥ ευ(A)

. (ie. the minorization condition holds)

3. There exists a β such that υ(C) ≥ β

4. The chain is reversible

5. The chain is non-negative definite

Then for all x ∈ S, m ≥ 0 and a ∈ (0, 1),

ρ∗(P ) ≤ max{λ, (1− ε)1/α∗}Iε<1 + λIε=1

where

α∗ =
log[(L− ε)/(1− ε)] + log λ−1

log λ−1

Baxendale’s bound is also a simple bound. Define

S(ε,λ,L,β) = {P : The corresponding Markov chain has the parameters (ε, λ, L, β)}

and

ρopt(ε, λ, L, β) = sup
P∈S(ε,λ,L,β)

ρ∗(P )

Then Baxendale’s bound is tight with respect to to the assumptions as shown in the following
proposition.

Proposition 3.13 (Theorem 8 in [3]). For a given (ε, λ, L, β) in Baxendale’s bound,

ρopt ≥ max{λ, (1− ε)1/α}Iε<1 + λIε=1

where α = Int{α∗}

Proof. Constructed a Markov chain , P , that belongs to S(ε,λ,L,β) with ρ∗(P ) = max{λ, (1 −
ε)1/α}Iε<1 + λIε=1.

This indicates that the Baxendale bound is good given the assumptions. This shows the
limitation of only using (ε, λ, L, β) in the bound.

Qin and Hobert also propose and optimal bound that is only a function of ε and C indicating
the limitations of the minorization condition (see corollary 12 in [3]).
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3.3 Bounds using Wasserstein distance

Definition 3.9 (Wasserstein distance). Let P(S) be the set of all probability measures in S. The
Wasserstein distance with respect to a measure ψ between two probability measures, µ, υ ∈ P(S)
is,

Wψ(µ, υ) = inf
ξ∈τ(µ,υ)

∫
S×S

ψ(x, y)ξ(dx, dy)

Where τ(µ, υ) represents the set of all couplings. That is,

τ(µ, υ) = {ξ ∈ P(S × S) : ∀A ∈ Fξ(A,S) = µ(A) and ξ(S,A) = υ(A)}

or
τ(µ, υ) = {L(X,Y ) : L(X) = µ,L(Y ) = υ}

An alternative definition of the Wasserstein distance [?]: Suppose that L(X) = µ,L(Y ) = υ
then,

Wψ(µ, υ) = inf E[ψ(X ′, Y ′)] where (X ′, Y ′) is a coupling of (X,Y )

The best way to interpret the Wasserstein distance when ψ(x, y) = |x− y| is via the optimal
transport approach, which addresses the question: what is the most efficient way of moving 1
unit of dirt from one distribution to another?

For example in figure 6 to get µ from υ, the area in region B needs to be moved to the area
in region C. Suppose that the area in region B is filled with little stickers that aren’t overlapping
and we want to move these little stickers to cover region C in the most efficient way possible ie,
the minimum distance spent carrying one sticker from region B to C. How can this be done?
The sticker located at the tail ends of the sets B will be moved to the tail ends of C and the
sticker located at the centers of B will be moved to the tip of C. All of the area in the region of
A will not move. In this example, the Wasserstein distance is the average distance to move the
area from B to the area of C.

The areas of A,B, and C can be defined with random variables, XA, XB , XC where L(Xi)
is the normalized region of i. Then there exists a, b ∈ [0, 1] such that X = aXA + bXB ,
Y = aXA + bXC and L(X) = µ,L(Y ) = υ. The question can then be asked as follows: what is
the relationship between XB and XC?

Lemma 3.14. If limn→∞W|·|(µn, µ) = 0 then µn → µ in distribution.

Wasserstein distance measures distance according to the probabilistic distance of the elements
in S. The focus is as much on the distance between the set over which the measures are defined
as the measures themselves. In contrast, total variation distance, doesn’t seem to care about
where the set of each distribution that doesn’t overlap is located.

In figure 7 the measurement of the Wasserstein and TV is compared. Example 1 represents
two uniform random variables, U(0, 1), U(1.1, 2.1). the area over which the two distributions are
positive does not overlap. The Wasserstein distance is 1.1 (Let X be a r.v. s.t. L(X) = U(0, 1)
and Y = X + 1.1, then E[|X − Y |] = 1.1) while the TV is 1 (|µ(B)− υ(B)| = |0− 1| = 1). The
distances are close.

Example 2 represents two other distributions that overlap except that υ can be constructed
so that the tip of density µ is clipped off and moved at least 100 units away. The Wasserstein
distance is greater than 100µ(B) while the TV distance is µ(B).
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Figure 6: Visual of the Wasserstein distance between µ and υ

Figure 7: Contrast between two distribution distances
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In order for the Wasserstein distance to bound the TV distance we must therefore take into
account the relative difference between the sets that do not overlap.

Theorem 3.15 (Theorem 2 in [7], proposition 11 in [5]). Let the density function of the transition
probability K(x, ·) be k(x, ·) with dominating measure µ. If there exists a C < ∞ such that for
all x, y ∈ S, ∫

S

|k(x, x′)− k(y, x′)|dµx′ ≤ Cψ(x, y) (8)

Then,

||Km(x, ·)− π||TV ≤
C

2
Wψ(Km−1

x , π)

We would further like to apply a geometric bound to the Wasserstein distance.

Theorem 3.16 (Proposition 1 in [7], proposition 6 in [5]). If c(x) =
∫
S
ψ(x, y)K(x, dy) <

∞∀x ∈ S and for a random mapping f(x) ∼ K(x, ·) there exists a γ < 1 such that ∀x, y ∈ S,

E[ψ(f(x), f(y))|] ≤ γψ(x, y) (9)

then for each x ∈ S,m ∈ N,

Wψ(Km(x, ·), π) ≤ c(x)

1− γ
γm

That is, the Markov chain is geometrically ergodic.

We can put theorem 3.15 and 3.16 together by finding a measure ψ that satisfies both
theorems in which case,

||Km(x, ·)− π||TV ≤
C

2
Wψ(Km−1

x , π) ≤ C

2

c(x)

1− γ
γm

The following lemma will help find an upper bound for equation 9 in theorem 3.16, which
can be difficult to find in practise.

Lemma 3.17. If S is a convex subset of a Euclidean space and ψ(x, y) = ||x− y|| where || · || is
a norm and f is a differentiable function then,

E[||f(x)− f(y)||] ≤ sup
t∈[0,1]

E

[
df(x+ t(y − x))

dt

]
and so, the requirement, equation 9, in theorem 3.16 can be replaced by

sup
t∈[0,1]

E

[
df(x+ t(y − x))

dt

]
≤ γ||x− y||

Proof. Given the assumptions above,
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E[||f(x)− f(y)||] = E

[
||
∫ 1

0

df(x+ t(y − x))

dt
dt||
]

≤ E
[∫ 1

0

||df(x+ t(y − x))

dt
||dt
]

≤
∫ 1

0

E

[
||df(x+ t(y − x))

dt
||
]
dt since df(x+t(y−x))

dt is bounded

≤ sup
t∈[0,1]

E

[
||df(x+ t(y − x))

dt
||
]

Example 3.2 (Continuation of 3.1). The example was one where is it known that ρ∗ = 1/2,
but for any drift and minorization condition that satisifies the requirements in the theorem 3.8,
ρmnd → 1 as p→∞.

Applying 3.15 and 3.16 will lead to the exact bound, ρwas = ρ∗ = 1/2.

Let the metric be ψ(x, y) = ||x− y||2 and the random mapping be f( ~Xn) = ~Xn/2 + 3/4~Zp.
Then,

c(~x) =

∫
~y∈Rp

||~x− ~y||K(x, dy) <∞∀x ∈ R (10)

since the normal has finite first and second moments and

E
[
||f( ~Xn)− f(~Yn)||

]
= E

[
|| ~Xn/2 + 3/4~Zp − ~Yn/2− 3/4~Zp||

]
(11)

=
1

2
E
[
|| ~Xn − ~Yn||

]
(12)

Thus, by 3.16

dW,ψ(Km( ~Xn, ·), π(·)) ≤ c( ~Xn)

1− γ
γm (13)

Further, by lemma 3.15 since,

∫
S

|k(x, t)− k(y, t)|dt = 2

∣∣∣∣P (X ≤ a(X + Y )

2
)− P (Y ≤ a(X + Y )

2
)

∣∣∣∣
Where X ∼ N(x/2, 3/4) and Y ∼ N(y/2, 3/4)

= 2

∣∣∣∣Φ(x− y√3

)
− Φ

(
y − x√

3

)∣∣∣∣
This is indeed bounded by a constant multiple of ||x−y||2 for all p. This is known with computer
calculations. The following ratio was calculated to see whether it was bounded by a constant.

Ratio =

∫
S
|k(x, t)− k(y, t)|dt
||x− y||2
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Figure 8:

It is only necessary to find the ratio when ||x− y||2 ≤ 2 since
∫
S
|k(x, t)− k(y, t)|dt ≤ 2. Figure

8 shows that the ratio is indeed bounded for ||x− y||2 ≤ 2 and so equation 8 is indeed bounded
in theorem 3.15 for any value p (in the figure, p = dim).

So, bounding the total variation distance with the Wasserstein distance, which is then
bounded by a function results in the following bound,

Km(x, ·)− π||TV ≤
C

2

c(x)

1− γ
γm

We can further simplify this. We know from equation 11 that γ = 1/2 and from equation 10
that c(x) while increase at a rate p when the dimension increases and by the figure 8, C decreases
at a rate of e−p (this is all sort of winging it. May not be true) and so since γ remains constant,
using this approach, we know that ρ∗ ≤ 1/2. Since ρ∗ = 1/2 the upper bound estimates the
convergence rate perfectly.

Next a novel bound for the Wasserstein distance stated by Hobert and Qin [4] is shown. It
uses a drift and contraction assumption.

Theorem 3.18 (Theorem 2.5 of [4]). Let ψ be a metric over which we want the estimate the
Wasserstein distance. Assume the following for a Markov chain with transition kernel P on a
Polish metric space (S, ψ,B).

1. (Generalized drift condition) There exists a measurable function V : S → R+ and an
a ∈ (0,∞) such that PV (x) <∞ for all x ∈ S and

ψ(x, y)

a
≤ V (x) + V (y) + 1, (x, y) ∈ S × S (14)

2. (Generalized contraction condition) There exists a measurable function Γ : S × S → R+

such that for each (x, y) ∈ S × S,

Wψ(δxP, δyP ) ≤ Γ(x, y)ψ(x, y) (15)
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where δx = x with probability 1.

3. (Restriction on Γ) There exists a Λ : S × S → R+ such that

Λ(x, y) ≥ PV (x) + PV (y) + 1

V (x) + V (y) + 1
(16)

and there exists a r ∈ (0, 1) such that

ρr = sup
(x,y)∈S×S

Γ(x, y)rΛ(x, y)1−r < 1 (17)

Then there exists a stationary distribution π such that for every r that satisfies 17 and
x ∈ S

Wψ(δxP
n, π) ≤ a

(
PV (x) + V (x) + 1

1− ρr
ρnr

)
(18)

Proof. The proof shows that the sequence {δxPn}n≥1 is a Cauchy sequence with an upper bound
as in 18 in the Polish metric space (S, ψ,B). Since P is defined on a Polish metric space it is
assumed to be complete and thus there exists a π such that Wψ(δxP

n, π) is bounded by the
function in 18.

3.4 Shift coupling

Another method to study is shift coupling.

Theorem 3.19 (Proposition 1 in [8]). Suppose that Xk, X
′
k are two Markov chains with the

same transition probability. Let T, T ′ be the corresponding stopping times where XT = X ′T ′ We
have that,

||
N∑
k=1

P (Xk ∈ A)−
N∑
k=1

P (X ′k ∈ A)|TV ≤ E[min{max{T, T ′}, N}]
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The proof was written by me, but probably resembles the original proof.

||
N∑
k=1

P (Xk ∈ A)−
N∑
k=1

P (X ′k ∈ A)| TV

= sup
A

∣∣∣∣∣
N∑
k=1

P (Xk ∈ A)−
N∑
k=1

P (X ′k ∈ A)

∣∣∣∣∣
= sup

A

∣∣∣∣∣
N∑
k=1

( ∞∑
n=1

P (Xk ∈ A ∩max{T, T ′} = n)−
∞∑
n=1

P (X ′k ∈ A ∩max{T, T ′} = n)

)∣∣∣∣∣
If k > n then P (Xk ∈ A) = P (Xk+T ′−T ∈ A)

= sup
A

∣∣∣∣∣∣
N∑
n=1

∑
k≤n

P (Xk ∈ A ∩max{T, T ′} = n)−
∑

k≤n+T ′−T

P (X ′k+T−T ′ ∈ A ∩max{T, T ′} = n)

∣∣∣∣∣∣
= sup

A

∣∣∣∣∣
N∑
k=1

P (Xk ∈ A ∩max{T, T ′} ≥ k)− P (X ′k+T−T ′ ∈ A ∩max{T, T ′} ≥ k + T ′ − T )

∣∣∣∣∣
WLOG T ′ ≤ T (the alternative can easily be proven by symmetry)

≤ sup
A

∣∣∣∣∣
N∑
k=1

P (Xk ∈ A ∩max{T, T ′} ≥ k)− P (X ′k+T−T ′ ∈ A ∩max{T, T ′} ≥ k)

∣∣∣∣∣
≤

N∑
k=1

P (max{T, T ′} ≥ k)

=

∞∑
k=1

P (min{max{T, T ′}, N} ≥ k)

= E[min{max{T, T ′}, N}]
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