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1 Introduction

This paper deals with important inequalities found in the study of conver-
gence rates and variance bounding for Markov Chains, and Markov Chain
Monte Carlo. We present results for bounding the convergence rate of Markov
Chains to it’s stationary distribution using total variation distance, and re-
sults on efficiency dominance of finite space Chains. We also provide a partial
answer to an open-problem posed by Jeffrey Rosenthal and Radford Neal in
Efficiency of Reversible MCMC Methods: Elementary Derivations and Ap-
plications to Composite Methods, as well prove new results on the efficiency
dominance of finite chains on perpendicular subspaces of L2. We also present
bounds on the total variation distance for finite product measures. The Con-
vergence rates of discrete-time time-homogeneous Markov Chains to their
stationary distributions are explored. Sections 2-3 and 10-11 of this paper is
a very thorough retelling of the results presented in Markov Chains, Eigen-
values and Couplings by Jeffrey Rosenthal, covering finite state space chains
in sections 2-3, finite group state spaces in section 10, and general state space
chains through the use of coupling in section 11. Those sections fill in nearly
every gap of the paper by Jeffrey Rosenthal, making it much more accessible
to audiences newer to probability and stochastic processes. Sections 4,5 and
7-9 cover the Efficiency Dominance of finite Markov Chains covered in the
paper Efficiency of Reversible MCMC Methods: Elementary Derivations and
Applications to Composite Methods by Radford Neal and Jeffrey Rosenthal,
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once again making results more explicit and accessible. Section 6 presents
the partial answer to the open problem of finding an explicit function for
which Q is more efficient than P when Q− P has negative eigenvalues, and
presents results converining the efficiency dominance of chains on perpen-
dicular subspaces. Finally, section 12 provides a some final inequalities and
technical lemmas, including an original bound of the variation distance of
product probability measures on finite state spaces. Topics are introduced
from the initial definitions, and the text is almost completely self-contained,
with the only prior knowledge required being basic probability theory and
linear algebra.

2 Initial Definitions

We start with the initial definitions of discrete-time, time-homogeneous Markov
Chains.

Definition (Discrete-Time, Time-Homogeneous Markov Chains). Given a
measure space (X ,M) with state space X and event space M, a discrete-
time, time-homogeneous Markov Chain is a countable (hence discrete-time)
sequence of random variables X0, X1, . . . on (X ,M) such that

1. there exists an initial distribution µ0 on (X ,M) such that P(X0 ∈ E) =
µ0(E), ∀E ∈ M,

2. there exists a transition kernel P (x, dy), such that P (x, ·) is a probabil-
ity measure on (X ,M), ∀x ∈ X ,

3. where P(Xn+1 ∈ E|Xn = x) = P (x,E) = P(X1 ∈ E|X0 = x), ∀E ∈ M
and ∀x ∈ X , ∀n ∈ N. I.e. the tranisition probabilities do not depend
on the time n (hence time-homogeneous).

Some important things to point out, is that both the initial distribution
µ0 and the transition kernel P satisfy

∫
X µ0(dy) =

∫
X P (x, dy) = 1, ∀x ∈ X .

This paper is mostly concerned with finite state space Markov Chains. Luck-
ily, in this case, our definitions can be drastically simplified.

Definition (Finite State Space Discrete-Time, Time-Homogeneous Markov
Chains). Given a non-empty finite state space X , a Discrete-Time, Time-
Homogeneous Markov Chain is a countable sequence of random variables
X0, X1, . . . on X such that
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1. there exists an initial distribution µ0 on X such that µ0(x) = P(X0 =
x), ∀x ∈ X ,

2. a transition kernel P (x, y), such that P (x, ·) is a probability distribution
on X for every x ∈ X ,

3. where P(Xn+1 = y|Xn = x) = P (x, y) = P(X1 = y|X0 = x), ∀x, y ∈ X ,
∀n ∈ N.

This is equivalent to the previous definition, taking X to be finite, and
taking M = P(X ). We can make this assumption without loss of generality,
as for any non-empty finite state space X and event space M on X , we can
define a new non-empty finite state space X ′ such that P(X ′) = M. In the
rest of our study of finite state space Markov Chains, we will without loss of
generality always make the assumption we are working with (X ,P(X )).

In this case, our earlier remark simplifies to
∑

y∈X µ0(y) =
∑

y∈X P (x, y) = 1.
Furthermore, assuming X = {x0, . . . , xn−1}, we can express the transition
kernel P as a matrix,

P =

 P (x0, x0) . . . P (x0, xn−1)
...

. . .
...

P (xn−1, x0) . . . P (xn−1, xn−1)

 .

Continuing with this linear algebraic idea, we can express the initial distri-
bution as both a set {µ0(xi) : xi ∈ X} and as a vector µ0 = (µ0(x0), . . . , µ0(xn−1)).

Given an initial distribution µ0 and a transition kernel P (x, dy) on a proba-
bility space (X ,M), we can define µk, ∀k ∈ N to be the probability measure
on (X ,M) such that µk(E) =

∫
X P (x,E)µk−1(dx), ∀E ∈ M. This is equiv-

alent to saying that µk is the probability distribution of the Markov Chain
at k steps, given it’s initial distribution.

Notice that if X is finite, this reduces to µk(E) =
∑

x∈X P (x,E)µk−1(x).
Furthermore, using the notion of expressing P as a matrix and µk as a vector,
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notice that we can write this as

µk(y) =
∑
x∈X

P (x, y)µk−1(x)

=
∑
x∈X

pxyµk−1(x)

= (µk−1P )y,

so we can express µk = µk−1P .
Notice that as µk−1 = µk−2P too, µk = µk−1P = µk−2PP = µk−2P

2.
Repeating this k times gives us µk = µ0P

k.

Definition (Total variation distance). Let µ and v be probability distributions
on the probability space (X ,M). Then the total variation distance between
µ and v is

||µ− v||var := supE∈M|µ(E)− v(E)|.

Sometimes the subscript will be omitted when it is understood we are talking
about the total variation distance.

The total variation distance can be thought of as simply the distance
between two probability distributions. So, if we are given a sequence of
probability distributions, {µk}k=0, not necessarily from a Markov Chain, and
another probability distribution v on the same space, the sequence of distri-
butions is said to converge to v if limk→∞ ||µk − v||var = 0.

In our study of convergence of finite space Markov Chains, we will make
alot of use of the following fact about the total variation distance on finite
state spaces.

Proposition 1. If X is a finite state space, and µ and v are two probability
distributions on X , then ||µ− v|| = 1

2

∑
x∈X |µ(x)− v(x)|.

Proof. Notice that as X is finite, any A ⊆ X will also be finite. So,

||µ− v|| := supA⊆X |µ(A)− v(A)| = maxA⊆X |
∑
x∈A

[µ(x)− v(x)]|.
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So, this is maximized on the set E = {x ∈ X : µ(x) ≥ v(x)} or EC = {x ∈
X : µ(x) < v(x)}. But as µ and v are probability distributions on X , we
have

0 = 1− 1 =
∑
x∈X

[µ(x)− v(x)] =
∑
x∈E

[µ(x)− v(x)] +
∑
x∈EC

[µ(x)− v(x)].

So, as ∀x ∈ E, µ(x) − v(x) ≥ 0 and ∀x ∈ EC , µ(x) − v(x) < 0, this is
equivalent to 0 = |

∑
x∈E[µ(x)− v(x)]| − |

∑
x∈EC [µ(x)− v(x)]|. So,

|
∑
x∈E

[µ(x)− v(x)]| = |
∑
x∈EC

[µ(x)− v(x)]|.

Thus, as |
∑

x∈A[µ(x)− v(x)]| is maximized when either A = E or A = EC ,
and the sum is the same using either, they both satisfy the max. Combining
this with the fact that [µ(x) − v(x)] is greater or equal to zero when x ∈ E
and less than zero when x ∈ EC , gives us

2||µ− v|| = 2(maxA⊆X |
∑
x∈A

µ(x)− v(x)|)

= |
∑
x∈E

[µ(x)− v(x)]|+ |
∑
x∈EC

[µ(x)− v(x)]|

=
∑
x∈E

|µ(x)− v(x)|+
∑
x∈EC

|µ(x)− v(x)|

=
∑
x∈X

|µ(x)− v(x)|.

3 Finite sample spaces and Linear Algebra

We continue on a finite state space X = {x0, . . . , xn−1}, n ∈ N. Let µ0 be an
initial distribution on X , and let P be a transition kernel on X .

If v is a vector and xi ∈ X , then v(xi) is the ith entry of v.

We start with some basic facts about the matrix P .
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Proposition 2. The stochastic matrix P has an eigenvalue λ = 1. Further-
more, the vector v = (1, . . . , 1) is it’s associated eigenvector.

Proof. Let P be defined as earlier. Let v = (1, . . . , 1).

Pv =

 P (x0, x0) + · · ·+ P (x0, xn−1)
...

P (xn−1, x0) + · · ·+ P (xn−1, xn−1)

 = v,

as ∀i ∈ {0, . . . , n − 1}, P (xi, x0) + · · · + P (xi, xn−1) = 1 (Law of Total
Probability).

Notation. Let λ0, . . . , λn−1 be the eigenvalues (generalized eigenvalues in the
case of a non-diagonalizable stochastic matrix) of P , and assume λ0 = 1 is
the eigenvalue found in the above proposition.

Definition. Let λ∗ := max1≤i≤n−1|λi|.

Proposition 3. For any stochastic matrix P , λ∗ ≤ 1.

Proof. Let P be a stochastic matrix. Assume λ is an eigenvalue of P . Then
let v be an eigenvector of P with associated eigenvalue λ.
Let x ∈ X such that |v(x)| ≥ |v(y)|, ∀y ∈ X .
(Equivalent to choosing x ∈ X such that |v(x)| = maxy∈X |v(y)|). Then

|λv(x)| = |(Pv)x| (by assumption)

= |
∑
y∈X

P (x, y)v(y)| (by definition of (Pv)x)

≤
∑
y∈X

P (x, y)|v(y)| (by the triangle inequality, as ∀x, y ∈ X , P (x, y) ≥ 0)

≤
∑
y∈X

P (x, y)|v(x)| (by assumption)

= |v(x)|
∑
y∈X

P (x, y)

= |v(x)| (by Law of Total Probability).

So |λv(x)| ≤ |v(x)|, so |λ| ≤ 1.
As λ was an arbitrary eigenvalue, it follows that every eigenvalue λi, i ∈
{0, . . . , n− 1}, satisfies |λi| ≤ 1.
So λ∗ ≤ 1.
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Proposition 4. If P (x, y) > 0, ∀x, y ∈ X , then we get the strict inequality
λ∗ < 1.

Proof. Assume that P (x, y) > 0, ∀x, y ∈ X .
Assume initially that P is diagonalizable.
We have already seen in Proposition 2 that if v ∈ span{(1, . . . , 1)}, then the
associated eigenvalue of v is the trivial eigenvalue.
So assume v /∈ span{(1, . . . , 1)}.
If there exists x, y ∈ X such that |v(x)| > |v(y)|, then

∑
y∈X P (x, y)|v(y)| <∑

y∈X P (x, y)|v(x)|, and thus the strict inequality follows, following the same
line of inequalities as in the proof of Proposition 3.
If there doesn’t exist x, y ∈ X such that |v(x)| > |v(y)|, then ∀x, y ∈ X
|v(x)| = |v(y)|.
Then as v /∈ span{(1, . . . , 1)}, there exists x, y ∈ X such that v(x) = −v(y).
So |

∑
y∈X P (x, y)v(y)| <

∑
y∈X P (x, y)|v(y)|, and the strict inequality fol-

lows.

Now assume P is not diagonalizable.
If λ0 is part of Jordan block of size greater than one, then there exists vectors
not in the span of u = (1, . . . , 1), such that it is an associated eigenvector of
λ0.
So, we must show the Jordan block of λ0 cannot be greater than one, and the
result will follow from the previous work on P when it was diagonalizable.
So, assume for a contradiction that the Jordan block of λ0 is of size greater
than one.
Then there exists a generalized eigenvector v such that Pv = v+ u, where u
is an ordinary eigenvector of λ0.
As from Proposition 2 u = (1, . . . , 1) is an eigenvector of λ0, there exists v
such that Pv = v + u where u = (1, . . . , 1).
Similarly to earlier, choose x ∈ X such that Rev(x) ≥ Rev(y), ∀y ∈ X ,
where Rev(x) is the real part of v(x).
Again, this is equivalent to choosing x ∈ X such thatRev(x) = maxy∈XRev(y).
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Then,

1 + Rev(x) = Re(u+ v)(x) (as u(x) = 1 ∀x ∈ X )

= Re(Pv)x (by definition)

= Re
∑
y∈X

P (x, y)v(y)

≤ Re
∑
y∈X

P (x, y)v(x) (by assumption)

= Rev(x)
∑
y∈X

P (x, y)

= Rev(x). (as
∑
y∈X

P (x, y) = 1)

But obviously 1 + Rev(x) ≰ Rev(x) (as Rev(x) < ∞, so otherwise 1 ≤ 0),
so we get a contradiction, and thus the Jordan block of λ0 must be of size 1.
So, the work done earlier, showing that if v /∈ span{(1, . . . , 1)} and v was
an eigenvector of P then there exists x ∈ X such that |λv(x)| < |v(x)| still
holds, so it follows that λ∗ < 1.

Now we begin to see why λ∗ is an important value for us in studying the
convergence of these Chains.

Lemma 5. If P is a stochastic matrix such that λ∗ < 1 and P is diago-
nalizable, then there exists a unique stationary distribution, π = a0v0, such
that

|µk(x)− π(x)| ≤ (
n−1∑
i=1

|aivi(x)|)(λ∗)
k,

∀x ∈ X , where the vi are a basis of right-eigenvectors corresponding to λi, and
the ai are the unique complex numbers such that µ0 = a0v0 + · · ·+ an−1vn−1.

Proof. Assume λ∗ < 1, and P is diagonalizable.
As P is diagonalizable, there exists a set of right-eigenvectors v0, v1, . . . , vn−1

corrsponding to the eigenvalues λ0, λ1, . . . , λn−1 respectively, such that {v0, . . . , vn−1}
is a basis for the vector space.
As µ0 is a vector in this vector-space, there exists unique a0, . . . , an−1 ∈ C
such that µ0 = a0v0 + · · ·+ an−1vn−1.
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So, as µk = µ0P
k,

µk = µ0P
k = (a0v0 + · · ·+ an−1vn−1)P

k

= a0v0P
k + · · ·+ an−1vn−1P

k

= a0v0λ
k
0 + · · ·+ an−1vn−1λ

k
n−1.

As λ0 = 1, µk = a0v0 + a1v1λ
k
1 + · · ·+ an−1vn−1λ

k
n−1.

As λ∗ < 1, |λm| ≤ λ∗ < 1, ∀m ∈ {1, . . . , n − 1}. So (λm)
k → 0 as k → ∞,

∀m ∈ {1, . . . , n− 1}.
So µk → a0v0 as k → ∞.
So let π = limk→∞ µk.
Then π = limk→∞ µk = limk→∞ µk−1P = πP , so π = limk→∞ µk = a0v0 is a
stationary distribution.
So ∀x ∈ X , we get

|µk(x)− π(x)| = |a0v0(x) + · · ·+ an−1vn−1(x)λ
k
n−1 − a0v0(x)|

= |
n−1∑
i=1

aivi(x)(λi)
k|

≤
n−1∑
i=1

|aivi(x)(λi)
k| (by the triangle ineq.)

=
n−1∑
i=1

|aivi(x)||(λi)
k|

≤ (
n−1∑
i=1

|aivi(x)|)(λ∗)
k (as λ∗ = max

1≤i≤n−1
|λi|).

Note that even if the matrix P is not diagonalizable, a similar upper
bound is achievable, only requiring keeping track of some extra terms.

This result leads us to our bound on the convergence rates of finite space
Markov Chains.

Theorem 6. Given a finite space Markov Chain, if λ∗ < 1, then the Markov
Chain converges geometrically quickly to the stationary distribution π = a0v0,
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where the terms a0v0 are the same as in Lemma 5. If additionally P is
diagonalizable, then ∀k ∈ N,

||µk − π|| ≤ 1

2
[
∑
x∈X

(
n−1∑
i=1

|aivi(x)|)](λ∗)
k.

Proof. Assume that P is diagonalizable and that λ∗ < 1.
Then by Lemma 5, ∀x ∈ X , |µk(x) − π(x)| ≤ (

∑n−1
i=1 |aivi(x)|)(λ∗)

k where
π = a0v0. So,

||µk − π|| = 1

2

∑
x∈X

|µk(x)− π(x)|

≤ 1

2

∑
x∈X

(
n−1∑
i=1

|aivi(x)|)(λ∗)
k

=
1

2
[
∑
x∈X

(
n−1∑
i=1

|aivi(x)|)](λ∗)
k.

As ∀x ∈ X and ∀i ∈ {1, . . . , n− 1} |aivi(x)| < ∞, because X is finite,

1

2
[
∑
x∈X

(
n−1∑
i=1

|aivi(x)|)] < ∞.

So 1
2
[
∑

x∈X (
∑n−1

i=1 |aivi(x)|)](λ∗)
k → 0, as k → ∞ geometrically quickly.

So, as 0 ≤ ||µk−π|| ≤ 1
2
[
∑

x∈X (
∑n−1

i=1 |aivi(x)|)](λ∗)
k, ||µk−π|| also converges

at least geometrically quickly.
A similar result follows for non-diagonalizable P .

Now we take a step in a slightly different direction, to prove a result which
will be of help to us in the next chapter.

Definition. L2(π) := {v : ⟨v, v⟩ < ∞}, such that ⟨v, w⟩ :=
∑

x∈X v(x)w(x)π(x).

Definition (Kronecker Delta). The Kronecker Delta is δij : X ×X → {0, 1}

such that δij =

{
0 if i ̸= j

1 if i = j.
More generally X can be just about any

space.
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Lemma 7. Under the conditions of Lemma 5, if additionially the vectors
v0, . . . , vn−1 are orthonormal in L2(π), then

∑
x∈X |µk(x) − π(x)|2π(x) =∑n−1

i=1 |ai|2|λi|2k ≤ (
∑n−1

i=1 |ai|2)(λ∗)
2k.

Proof. From the proof of Lemma 5, we have that |µk(x)−π(x)| = |
∑n−1

i=1 aivi(x)(λi)
k|,

where a1, . . . , an−1 and v1, . . . , vn−1 are defined as earlier, but now we further
assume they are orthonormal in L2(π).
So, ⟨vi, vj⟩ = δij, ∀i, j ∈ {1, . . . , n − 1}. So as P is diagonalizable and only
has real coefficients, v0, . . . , vn−1 ∈ Rn, and thus we get

∑
x∈X

|µk(x)− π(x)|2π(x) =
∑
x∈X

|
n−1∑
i=1

aivi(x)(λi)
k|2π(x)

=
∑
x∈X

[
n−1∑
i=1

aivi(x)(λi)
k]2π(x)

=
∑
i ̸=j

aiajλ
k
i λ

k
j

∑
x∈X

vi(x)vj(x)π(x) +
n−1∑
i=1

a2iλ
2k
i

∑
x∈X

vi(x)vi(x)π(x)

=
∑
i ̸=j

aiajλ
k
i λ

k
j

∑
x∈X

vi(x)vj(x)π(x) +
n−1∑
i=1

a2iλ
2k
i

∑
x∈X

vi(x)vi(x)π(x)

(as v0, . . . , vn−1 ∈ Rn)

=
∑
i ̸=j

aiajλ
k
i λ

k
j δij +

n−1∑
i=1

a2iλ
2k
i δii (by assumption)

=
n−1∑
i=1

a2iλ
2k
i (by definition of δij)

≤
n−1∑
i=1

a2iλ
2k
∗ (by def. of λ∗)

= (
n−1∑
i=1

a2i )λ
2k
∗ .

Now coming back to a more general result, we prove sufficient and nec-
essary conditions for λ∗ < 1, which is in turn a sufficient condition for con-
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vergence, as proved earlier.
First the conditions:

Definition. Periodicity

A Markov Chain with state space X is said to be periodic if ∃χ1, . . . , χn ⊆
X such that each χj is a subspace, and P (x, χj) = 1, ∀x ∈ χj−1, ∀j ∈
{2, . . . , n}, and P (x, χ1) = 1, ∀x ∈ χn. In words, a Markov Chain is periodic
if it jumps from one subspace to another, then from that subspace to another,
and so on, eventually coming back to the original subspace, then starting the
cycle over again.
Conversely, a Markov Chain is said to be aperiodic if ∀x ∈ X , Sx ⊆ N such
that Sx := {k ∈ N : P k(x, x) > 0} has a gcd of 1. In words, a Markov Chain
is aperiodic if it can go from any state back to itself in a number of steps
that isn’t part of a pattern.

Definition. Decomposability

AMarkov Chain with state space X is said to be decomposable if ∃χ1, χ2 ⊆
X such that χ1 and χ2 partition X , and ∀(x, y) ∈ χ1 × χ2 and χ2 × χ1,
P (x, y) = 0, where P is the transition kernel. In words, a Markov Chain is
decomposable if there are two distinct subsets of the state space, such that
the Markov Chain will never jump from one to the other.
Conversely, a Markov Chain is said to be indecomposable if ∀χ1, χ2 ⊆ X such
that χ1 and χ2 partition X , ∃(x, y) ∈ χ1 × χ2 or ∃(x, y) ∈ χ2 × χ1 such that
P (x, y) > 0, where P is the transition kernel. In words, given any partition
of X , there always exists a way to jump from one of the subsets to the other.

Finally, the result.

Theorem 8. Given a Finite Markov Chain, λ∗ < 1 iff the Chain is inde-
composable and aperiodic.

Proof. =⇒: Assume for a contradiction the Markov Chain is not indecom-
posable, so decomposable.
Then there exists χ1, χ2 ⊆ X such that χ1 and χ2 partition X , and ∀(x, y) ∈
χ1 × χ2 or χ2 × χ1, P (x, y) = 0, where P is the transition kernel.
Then define µi for i = 1, 2, such that ∀x ∈ X , µi(x) = 1 if x ∈ χi

and µi(x) = 0 if x /∈ χi. Then as Pµi =


∑

x∈X P (x0, x)µi(x)
...∑

x∈X P (xn−1, x)µi(x)

, for
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0 ≤ j ≤ n− 1, by definition of µi,∑
x∈X

P (xj, x)µi(x) =
∑
x∈χi

P (xj, x)µi(x) +
∑
x/∈χi

P (xj, x)µi(x) =
∑
x∈χi

P (xj, x).

As χ1 and χ2 partition X , xj corresponds to a state in χ1 or χ2 exclusively.
In other words, xj ∈ χ1 ∪ χ2, and xj /∈ χ1 ∩ χ2.
So, if xj ∈ χi, then

∑
x/∈χi

P (xj, x) = 0, as the Markov Chain is decompos-
able.
So, 1 =

∑
x∈X P (xj, x) =

∑
x∈χi

P (xj, x) +
∑

x/∈χi
P (xj, x) =

∑
x∈χi

P (xj, x).
If xj /∈ χi, then

∑
x∈χi

P (xj, x) = 0 as the Markov Chain is decomposable.
So, ∀j ∈ {0, . . . , n−1},

∑
x∈X P (xj, x)µi(x) = 1 if xj ∈ χi and

∑
x∈X P (xj, x)µi(x) =

0 if xj /∈ χi.
So, Pµi = µi, ∀i. So µ1 is an eigenvector for the eigenvalue λ = 1, and µ2 is
an eigenvector for λ = 1. So λ = 1 is an eigenvalue with multiplicity two, as
µ1 and µ2 are linearly independent. So ∃i ∈ {1, . . . , n− 1} such that λi = 1.
So 1 = λi ≤ λ∗ ≤ 1 (by Proposition 3), so λ∗ = 1.

Assume for a contradiction that the Markov chain is not aperiodic, so peri-
odic.
Then by definition of periodicity, ∃χ1, . . . , χn ⊆ X such that each χj is a
subspace, and P (x, χj) = 1, ∀x ∈ χj−1, ∀j ∈ {2, . . . , n}, and P (x, χ1) = 1,
∀x ∈ χn.
Note that this implies P (x, χC

j ) = 0, ∀x ∈ χj−1, for j ∈ {2, . . . , n}, and
P (x, χC

1 ) = 0, ∀x ∈ χC
n .

Then let v be the vector such that v(x) = exp(2πij
n
), ∀x ∈ χj, where i is the

imaginary constant, ∀j ∈ {1, . . . , n}.
Note that although this vector seems like an odd choice, Euler’s formula and
the cycle like behavior of Chains with periodicity make it a natural one.
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Let ȷ ∈ {1, . . . , n} and y ∈ X such that y ∈ χj. Then∑
x∈X

P (y, x)v(x) =
∑

x∈χj+1

P (y, x)v(x) +
∑

x∈χC
j+1

P (y, x)v(x)

=
∑

x∈χj+1

P (y, x) exp(
2πi(j + 1)

n
) (as each P (y, x) = 0 as y ∈ χj and x ∈ χC

j )

= exp(
2πi(j + 1)

n
)

∑
x∈χj+1

P (y, x)

= exp(
2πi(j + 1)

n
)P (y, χj+1)

= exp(
2πi(j + 1)

n
) = exp(

2πi

n
) exp(

2πij

n
). (as y ∈ χj)

So, as the above equality holds ∀j ∈ {1, . . . , n}, and consequently ∀y ∈ X ,
Pv = exp(2πi/n)P .
And as | exp(2πi/n)| = 1, and v /∈ span{(1, . . . , 1)}, 1 ≤ λ∗ ≤ 1 by Proposi-
tion 3 , so λ∗ = 1.

⇐=: Assume that the Markov Chain is aperiodic and indecomposable.
Further, assume that the Markov Chain has no transient states. So, ∀x, y ∈
X , ∃rxy ∈ {1, . . . , n} such that P(Xrxy = y|X0 = x) > 0.
In other words, as X is finite, P rxy(x, y) > 0.
Let x ∈ X . Let Sx = {k ∈ N : P k(x, x) > 0}.
By Lemma 61 in the appendix, as the Markov Chain is aperiodic and inde-
composable, ∃kx > 0 such that ∀k ≥ kx ∈ N, k ∈ Sx.
So, ∀x ∈ X , ∃kx ∈ N such that ∀k ≥ kx ∈ N, k ∈ Sx.
So, let k0 = maxx∈X (kx) + n, where n = |X |.
Then let x, y ∈ X . Then as the Markov Chain has no transient states,
∃rxy ∈ {1, . . . , n} such that P rxy(x, y) > 0. Then,

14



P k0(x, y) = P(Xk0 = y|X0 = x)

=
∑
j∈X

P(Xk0 = y|Xk0−rxy = j)P(Xk0−rxy = j|X0 = x)

=
∑
j∈X

P k0−k0+rxy(j, y)P k0−rxy(x, j)

=
∑
j∈X

P rxy(j, y)P k0−rxy(x, j)

≥ P rxy(x, y)P k0−rxy(x, x)

> 0,

as k0 − rxy ≥ kx so P k0−rxy(x, x) > 0, and P rxy(x, y) > 0.
In other words, the probability that we go from x to y in k0 steps is greater
than or equal to the probability that we go from x to x in k0− rxy steps then
from x to y in rxy steps. And as we know both the latter probabilities are
greater than zero, so is the former.
As x, y ∈ X were arbitrary, ∀x, y ∈ X , P k0(x, y) > 0. So by Proposition 4 ,
λ∗ < 1 for P k0 .
Notice that if λ∗ = 1, then for the associated eigenvector, lets call µ,

P k0µ = P k0−1(Pµ) = P k0−1(±µ) = · · · = ±µ.

But then obviously λ∗ = 1 for P k0 , so λ∗ < 1 for P as well.
Now we must show that Markov Chains with transient states simplify to this
solution as well.
Let x ∈ X such that x is a transient state.
Then by definition ∃y ∈ X and r ∈ N such that P r(x, y) > 0 and ∀m ∈
N ∪ {0}, Pm(y, x) = 0.
Let T = {j ∈ X : ∃m ∈ N ∪ {0}s.t.Pm(j, x) > 0}. Then obviously y /∈ T .
So, ∑

j∈T

|(vP r)j| =
∑
j∈T

|
∑
l∈X

v(l)P r(l, j)|

≤
∑
j∈T

∑
l∈X

|v(l)|P r(l, j) (by the triangle ineq.)

=
∑
l∈X

|v(l)|
∑
j∈T

P r(l, j).

15



Now if ∃l ∈ T c and j ∈ T such that P r(l, j) > 0, then as j ∈ T , ∃m ∈
N ∪ {0} such that Pm(j, x) > 0. So, P r+m(l, x) =

∑
k∈X P r(l, k)Pm(k, x) ≥

P r(l, j)Pm(j, x) > 0.
So ∃n ∈ N ∪ {0} such that P n(l, x) > 0, so l ∈ T by definition of T .
But we have that l ∈ T c, so we have a contradiction.
So, ∀l ∈ T c and ∀j ∈ T , P r(l, j) = 0. So,∑
l∈X

|v(l)|
∑
j∈T

P r(l, j) =
∑
l∈T

|v(l)|
∑
j∈T

P r(l, j) +
∑
l∈T c

|v(l)|
∑
j∈T

P r(l, j)

=
∑
l∈T

|v(l)|
∑
j∈T

P r(l, j)

(by the fact just proved)

=
∑

l∈T−{x}

|v(l)|
∑
j∈T

P r(l, j) + |v(x)|
∑
j∈T

P r(x, j)

(as x ∈ T , as P 0(x, x) = 1. I.e. x will be at x in 0 steps.)

≤
∑

l∈T−{x}

|v(l)|+ |v(x)|
∑
j∈T

P r(x, j)

(as
∑
j∈T

P r(l, j) = P r(l, T ) ≤ 1.)

≤
∑

l∈T−{x}

|v(l)|+ |v(x)|(1− P r(x, y))

(as y /∈ T , so 1 = P r(x,X ) =
∑
j∈T

P r(x, j)

+
∑
j∈TC

P r(x, j) ≥
∑
j∈T

P r(x, j) + P r(x, y).)

=
∑
l∈T

|v(l)| − P r(x, y)|v(x)|,

As P r(x, y) > 0, if v is an eigenvector of P with |λ| = 1 as it’s associated
eigenvalue, then it must satisfy v(x) = 0.
Then λ is also an eigenvalue of the same chain on the state space X − {x}.
Thus, as x was an arbitrary transient state, every eigenvalue of P with |λ| = 1
is also an eigenvalue of the same chain with the state space X − A, where
A = {x ∈ X : x is a transient state}. So, it reduces to the earlier case, and
the result follows.
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Combining Theorems 6 and 8, we see that if a Markov Chain with a finite
state space is indecomposable and apriodic, then it converges geometrically
quickly to a unique stationary distribution, and we get a bound on the total
variation distance for such Chains.

4 Efficiency Results

Once we know approximately how long to run a Markov Chain for it to con-
verge, we then take samples from that time T and onwards, sayXT , XT+1, . . . ,
which allows us to approximate Eπ(f) for any f : X → R using an important
estimator,

f̂N = (
1

N
)
N+T∑
i=T

f(Xi). (1)

But in order for this estimate to be accurate, not only do we need to know
that each Xi is approximately distributed by π, i.e. that the total variation
distance of the Markov Chain and the stationary distribution are sufficiently
low, ||µT − π|| ≤ chosen small number, but also that the variance of f̂N is
sufficiently low. So when choosing between Markov Chains with the same
stationary distributions, say two Markov Chains with transition kernels P
and Q respectively, if Var(f̂N) ≤ Var(ĝN), ∀N , where f̂N is sampled from
Xi ∼ P i and ĝN is sampled from Yi ∼ Qi, then it’s obvious the Markov
Chain with transition kernel P would be a better estimate most of the time.
This section deals with how to know when one Markov Chain with transition
kernel P is a better choice than that of Q.

We continue to assume that X is finite, and X = {x0, . . . , xn−1}, so |X | = n.
We further assume that P and Q are the transition matrices of two Markov
Chains of X , with stationary distribution π. For the purposes of this variance
comparison, we will assume the first esimate, T is equal to 1, and we take N
estimates.
Now we introduce some new definitions.

Definition (Asymptotic Variance). The asymptotic variance of the estima-
tor (1) of a function f : X → R using the Markov Chain P , is

v(f, P ) := lim
N→∞

NVar(f̂N).
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Notice that by properties of Var and by defintion of the estimator (1),

v(f, P ) = lim
N→∞

NVar(f̂N)

= lim
N→∞

NVar((1/N)
N∑
i=1

f(Xi))

= lim
N→∞

N(1/N)2Var(
N∑
i=1

f(Xi))

= lim
N→∞

(1/N)Var(
N∑
i=1

f(Xi)).

The asymptotic method will be our tool for deciding on the better Markov
Chain, which will be decided according to the following definition.

Definition (Efficiency Dominance). We say that the Markov Chain with
transition matrix P efficiency dominates that with transition matrix Q if

v(f, P ) ≤ v(f,Q) ∀f ∈ L2
0(π),

where L2
0(π) ⊆ L2(π) such that ∀f ∈ L2

0(π),Eπ(f) = 0.

Recall the definition of L2(π) := {f : ⟨f, f⟩ < ∞}, and ⟨f, g⟩ :=
∑n−1

i=0 f(xi)g(xi)π(xi).
For the rest of our current discussion, we will restrict L2(π) to the set of func-
tions in RX . Notice that this means

⟨f, g⟩ :=
n−1∑
i=0

f(xi)g(xi)π(xi) =
n−1∑
i=0

f(xi)g(xi)π(xi),

as g(xi) ∈ R, ∀xi ∈ X .
We will also, for most of our further discussion, restrict to functions f ∈ L2(π)
such that Eπ(f) = 0, denoted as L2

0(π), so in otherwords L2
0(π) := {f ∈ RX :

⟨f, f⟩ < ∞ and Eπ(f) = 0}. This will not affect our results about the asymp-
totic variance of functions, as the asymptotic variance is expressed as a scalar
multiple of variance, which is not affected by any finite mean.

Notation. For the rest of this section, we shall refer to the transition ker-
nel/matrix, say P of a Markov Chain as the Markov Chain. Note that this
is just short for the Markov Chain whose transition matrix is P .
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Definition. Let D be the diagonal matrix with D(i, i) = π(xi), ∀i ∈ {0, . . . , n−
1}.

Definition. The Markov Chain P is called reversible with respect to π if
π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ X .

We now get into some preliminary results about the transition matrices,
that will serve as the backbone for the rest of the theory.

Definition (Irreducibility). A Markov Chain with transition matrix P is
irreducible if ∀x, y ∈ X , ∃r ∈ N such that P r(x, y) > 0.

Proposition 9. If P is an irreducible Markov Chain and π is it’s stationary
distribution, then π(x) > 0, ∀x ∈ X .

Proof. Assume for a contradiction that xi ∈ X such that π(xi) = 0.
As P is irreducible, ∃xj ∈ X such that xj ̸= xi and P (xj, xi) > 0. So, as π
is a stationary distribution,

0 = π(xi) =
n∑

l=1

P (xl, xi)π(xl) =
∑
l ̸=j

P (xl, xi)π(xl) + P (xj, xi)π(xj).

So, π(xj) = 0. If n = 2, then as π is a probability distribution, 1 =∑2
l=1 π(xl) = π(xj) + π(xi) = 0.

So we get a contradiction. For any n > 2, an inductive argument, will get
that for any n, if π(x) = 0 for any x ∈ X , then we must have π(y) = 0,
∀y ∈ X , which contradicts that π is a probability disrtibution.

Proposition 10. If P is reversible wrt π, then ⟨f, Pg⟩ = ⟨Pf, g⟩, ∀f, g ∈
RX . I.e. P is hermitian wrt ⟨·, ·⟩.
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Proof. Let f, g ∈ RX . Then

⟨f, Pg⟩ =
n−1∑
i=0

f(xi)(Pg)(xi)π(xi)

=
n−1∑
i=0

f(xi)
n−1∑
k=0

P (xi, xk)g(xk)π(xi)

=
n−1∑
i=0

f(xi)
n−1∑
k=0

P (xk, xi)g(xk)π(xk)

=
n−1∑
k=0

g(xk)
n−1∑
i=0

P (xi, xk)f(xi)π(xk)

= ⟨Pf, g⟩.

This next Lemma will be foundational for the rest of the theory, as it
shows that if Markov Chains that are reversible wrt their stationary matrices
are very simple and easy to work with.

Lemma 11. Assume that P is irreducible and reversible wrt to π. Then P is
diagonalisable with real eigenvalues, and with a set of orthonormal wrt ⟨·, ·⟩
real eigenvectors.

Proof. Notice that ∀f, g ∈ RX , as P is reversible,

⟨f, Pg⟩ : =
n−1∑
i=0

f(xi)
n−1∑
k=0

P (xi, xk)g(xk)π(xi)

=
n−1∑
i=0

f(xi)
n−1∑
k=0

P (xk, xi)π(xk)g(xk)

=: f · (DP )g.

So, by Proposition 10, it follows that DP is self-adjoint wrt the dot product,
and thus DP is symmetric.
So, as DP is symmetric, DP = (DP )T . And as D is diagonal, (DP )T =
P TD, and thus DP = P TD.
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As P is hermitian, it is diagonalisable. So let v ∈ RX such that Pv = λv,
where λ ∈ C, and v is non-zero. Then λvT = vTP T . So,

λ(vTDv) = vTP TDv = vTDPv = λ(vTDv).

So, as v is non-zero and D is diagonal with all diagonal entries non-zero by
Proposition 9 as P is irreducible, vTDv is also non-zero. Thus λ = λ, so
λ ∈ R.
As λ ∈ R, if v is an eigenvector, then notice

P (Re(v))+iP (Im(v)) = P (Re(v)+iIm(v)) = Pv = λv = λRe(v)+iλIm(v).

Also, as v is an eigenvector by definition it is non-zero, so at least one of
Re(v) or Im(v) is non-zero, and hence by the above also an eigenvector of P
with associated eigenvalue λ. So, we can take all eigenvectors to be real.
Let vi and vj be real eigenvectors of P with eigenvectors λi and λj respec-
tively. Then as λi, λj ∈ R, and vi and vj are real,

λj(v
T
j Dvi) = vTj P

TDvi = vTj DPvi = λiv
T
j Dvi.

So, if λj ̸= λi, then 0 = vTj Dvi = ⟨vj, vi⟩.
Notice that if λj = λi, and vi ̸= vj, then we have an eigenvalue λ with
multiplicity greater than one. So, assuming the dimension of the eigenspace
of λ is k, we can take any k orthogonal vectors in the eigenspace, and they
will by the above still all be orthogonal to the other eigenvectors.
We can then just scale the orthogonal set of eigenvectors to 1 to make it
orthonormal.

Notation. We will from now on additionally write the eigenvalues of P is
descending order. I.e. λ0 ≥ λ1 ≥ · · · ≥ λn−1. Let v0, . . . , vn−1 ∈ RX be the
real eigenvectors associated to the eigenvalues λ0, . . . , λn−1.

Note that this doesn’t contradict any of the earlier work, as λ0 = 1 found
in Proposition 2 is still the biggest eigenvalue, as by Proposition 3, λ∗ ≤ λ0.

As {v0, . . . , vn−1} is an orthormal basis, ∀f, g ∈ RX , we have f =
∑n−1

i=0 aivi
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where ai ∈ R, and similarly g =
∑n−1

i=0 bivi for bi ∈ R. So, this gives us that

⟨f, g⟩ = ⟨
n−1∑
i=0

aivi,
n−1∑
j=0

bjvj⟩

=
n−1∑
i=0

⟨aivi,
n−1∑
j=0

bjvj⟩

=
n−1∑
i=0

ai⟨vi,
n−1∑
j=0

bjvj⟩

=
n−1∑
i=0

ai

n−1∑
j=0

⟨vi, bjvj⟩

=
n−1∑
i=0

ai

n−1∑
j=0

⟨vi, bjvj⟩

=
n−1∑
i=0

ai

n−1∑
j=0

bj⟨vi, vj⟩

=
n−1∑
i=0

ai

n−1∑
j=0

bjδij

=
n−1∑
i=0

(ai)(bi).

Importantly, as Pf = P (
∑n−1

i=0 aivi) =
∑n−1

i=0 aiPvi =
∑n−1

i=0 aiλivi,

⟨f, Pf⟩ =
n−1∑
i=0

(ai)
2λi.

5 Efficiency Dominance, the Inner Product,

and more Eigenvalues

Lemma 12. If h : X → R is a function, then ∀i ∈ N, Eπ,P (h(Xi)) = Eπ(h).

Proof. This follows because π is a stationary distribution. This Lemma may
be very unnecessary.
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When i = 1, it is trivial.
When i = 2, notice

Eπ,P (h(X2)) =
∑
x∈X

∑
y∈X

h(y)P (x, y)π(x)

=
∑
y∈X

∑
x∈X

h(y)P (x, y)π(x)

=
∑
y∈X

h(y)
∑
x∈X

P (x, y)π(x)

=
∑
y∈X

h(y)π(y)

= Eπ(h).

So, we can continue inductively. Assume Eπ,P (h(Xi)) = Eπ(h), ∀h ∈ RX .
Notice this implies∑

y∈X h(y)
∑

x ∈ XP i(x, y)π(x) = Eπ,P (h(Xi)) = Eπ(h) =
∑

y∈X h(y)π(y).
Then

Eπ,P (h(Xi+1)) =
∑
x∈X

∑
y∈X

h(y)P i+1(x, y)π(x)

=
∑
y∈X

h(y)
∑
x∈X

P i+1(x, y)π(x)

=
∑
y∈X

h(y)
∑
x∈X

∑
z∈X

P (z, y)P i(x, z)π(x)

=
∑
y∈X

h(y)
∑
z∈X

P (z, y)
∑
x∈X

P i(x, z)π(x)

=
∑
y∈X

h(y)
∑
z∈X

P (z, y)π(z)

=
∑
y∈X

h(y)π(y)

= Eπ(h).

Lemma 13. ∀f ∈ L2
0(π), (1/N)Var(

∑N
i=1 f(Xi)) = ⟨f, f⟩+2

∑N
k=1

N−k
N

⟨f, P kf⟩.

23



Proof. Let f ∈ L2
0(π). Then by a theorem about the variance of a random

variable, we know

Var(
N∑
i=1

f(Xi)) = Eπ,P [(
N∑
i=1

f(Xi))
2]− [Eπ,P (

N∑
i=1

f(Xi))]
2.

But notice by properties of the expected value function, Lemma 12, and as
Eπ(f) = 0 as f ∈ L2

0(π),

Eπ,P (
N∑
i=1

f(Xi)) =
N∑
i=1

[Eπ,P (f(Xi))]

=
N∑
i=1

[Eπ(f)]

= 0.

So, we get Var(
∑N

i=1 f(Xi)) = Eπ,P [(
∑N

i=1 f(Xi))
2].

Now, by expanding the square, Lemma 12, and using the linearity of E,

Eπ,P [(
N∑
i=1

f(Xi))
2] = Eπ,P [(

N∑
i=1

f(Xi)
2) + 2

N∑
i=1

i−1∑
j=1

f(Xi)f(Xj)]

= [
N∑
i=1

Eπ,P (f(Xi)
2)] + 2

N∑
i=1

i−1∑
j=1

Eπ,P (f(Xi)f(Xj))

= NEπ(f
2) + 2

N∑
i=1

i−1∑
j=1

Eπ,P (f(Xi)f(Xj)).

So, in 2
∑N

i=1

∑i−1
j=1 Eπ,P (f(Xi)f(Xj)), i > j for all i and j, using i = j + k,

we can rewrite this as

2
N∑
k=1

N−k∑
j=1

Eπ,P (f(Xj+k)f(Xj)).

As π is stationary and P is time-homogeneous, this is the same as 2
∑N

k=1(N−
k)Eπ,P (f(Xj+k)f(Xj)) for some j ∈ N.
So, as ⟨f, f⟩ = Eπ(f

2),
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⟨f, P kf⟩ =
∑

x∈X
∑

y∈X f(x)P k(x, y)f(y)π(x) = Eπ,P (f(Xj+k)f(Xj)), and
the above work,

1

N
Var(

N∑
i=1

f(Xi)) =
1

N
(NEπ(f

2) + 2
N∑
k=1

(N − k)Eπ,P (f(Xj+k)f(Xj))

= ⟨f, f⟩+ 2
N∑
k=1

N − k

N
⟨f, P kf⟩.

Theorem 14. If P is irreducible, then P is indecomposable.

Proof. Let P be irreducible, and assume for a contradiction that P is decom-
posable.
By definition of decomposability, ∃X1,X2 ⊆ X such that X1 and X2 partition
X , and ∀(x, y) ∈ X1 ×X2, P (x, y) = 0.
Let x1 ∈ X1 and x2 ∈ X2 (as X1 and X2 are non-empty).
As P is irreducible, by definition, ∃r ∈ N such that P r(x1, x2) > 0. So,

P r(x1, x2) =
∑
k1

P (x1, k1)P
r−1(k1, x2)

=
∑
k1

· · ·
∑
kr−1

P (x1, k1)P (k1, k2) · · ·P (kr−1, x2). (1)

As P is decomposable and x1 ∈ X1, if k1 /∈ X1 (i.e. k1 ∈ X2) then P (x1, k1) =
0. So (1) is equal to

∑
k1∈X1

· · ·
∑

kr−1
P (x1, k1)P (k1, k2) · · ·P (kr−1, x2) (2).

As k1 ∈ X1, if k2 /∈ X1 then P (k1, k2) = 0, so (2) equals∑
k1∈X1

∑
k2∈X1

· · ·
∑

kr−1
P (x1, k1)P (k1, k2) · · ·P (kr−1, x2).

This argument continues inductively to give us∑
k1∈X1

· · ·
∑

kr−1∈X1

P (x1, k1)P (k1, k2) · · ·P (kr−1, x2) = P r(x1, x2) > 0.

But as P is decomposable, ∀kr−1 ∈ X1, P (kr−1, x2) = 0 as x2 ∈ X2. But then

0 =
∑
k1∈X1

· · ·
∑

kr−1∈X1

P (x1, k1)P (k1, k2) · · ·P (kr−1, x2) > 0.

A contradiction.
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We know show the relation between the eigenvalues and eigenvectors of
P with the asymptotic variance.

Proposition 15. If P is irreducible and reversible wrt π, then ∀f ∈ L2
0(π),

v(f, P ) =
n−1∑
i=1

(ai)
2 + 2

n−1∑
i=1

(ai)
2 λi

1− λi

=
n−1∑
i=1

(ai)
2 1 + λi

1− λi

,

where ai ∈ R such that f =
∑n−1

i=1 aivi, ∀i, where {v0, . . . , vn−1} is the earlier
discussed real orthonormal basis of P .

Proof. Let f ∈ L2
0(π). Then by Lemma 13, we know that

1

N
Var(

N∑
i=1

f(Xi)) = ⟨f, f⟩+ 2
N∑
k=1

N − k

N
⟨f, P kf⟩.

As P is a stochastic matrix that is irreducible and reversible wrt π, by Lemma
11, there exists an set of real orthormal eigenvectors {v0, . . . , vn−1} corre-
sponding to the eigenvalues {λ0, . . . , λn−1}, as defined in Notation 5.
So, as f ∈ L2

0(π), f ∈ RX , ∃a0, . . . , an−1 ∈ R such that f =
∑n−1

i=0 aivi. So,
we get that

1

N
Var(

N∑
i=1

f(Xi)) =
n−1∑
i=0

(a2i ) + 2
N∑
k=1

N − k

N

n−1∑
i=0

a2iλ
k
i . (1)

Notice that as f ∈ L2
0(π), by definition 0 = Eπ(f) = ⟨f, 1⟩ = ⟨f, v0⟩, so

a0 = 0. Furthermore, if we let Ik≤N−1 : N → {0, 1} be the indicator function
for the set {1, . . . , N − 1}, then this is equivalently

n−1∑
i=1

(a2i ) + 2
∞∑
k=1

n−1∑
i=1

Ik≤N−1(k)
N − k

N
a2iλ

k
i .

If P is also aperiodic, then as P is irreducible by Theorem 14 it is also
indecomposable. So, as P is indecomposable and aperiodic, by Theorem 8
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λ∗ < 1. So, using the triangle inequality,

∞∑
k=1

|
n−1∑
i=1

Ik≤N−1(k)
N − k

N
a2iλ

k
i | ≤

∞∑
k=1

n−1∑
i=1

|Ik≤N−1(k)
N − k

N
a2iλ

k
i |

≤
∞∑
k=1

n−1∑
i=1

|a2iλk
i |

≤
∞∑
k=1

n−1∑
i=1

|a2iλk
∗|

=
∞∑
k=1

n−1∑
i=1

a2iλ
k
∗

=
∞∑
k=1

[λk
∗(

n−1∑
i=1

a2i )]

=
n−1∑
i=1

a2i
λ∗

1− λ∗

< ∞,

as Ik≤N−1
N−k
N

< 1. So, as it is absolutely summable, we can freely swap the
order of the sums and any limits herein. So using this and Lemma 13 gives
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us

v(f, P ) = lim
N→∞

1

N
Var(

N∑
i=1

f(Xi))

= lim
N→∞

[
n−1∑
i=1

(a2i ) + 2
∞∑
k=1

n−1∑
i=1

Ik≤N−1(k)
N − k

N
a2iλ

k
i ]

=
n−1∑
i=1

(a2i ) + 2 lim
N→∞

[
∞∑
k=1

n−1∑
i=1

Ik≤N−1(k)
N − k

N
a2iλ

k
i ]

=
n−1∑
i=1

(a2i ) + 2
∞∑
k=1

n−1∑
i=1

lim
N→∞

[Ik≤N−1(k)
N − k

N
a2iλ

k
i ]

=
n−1∑
i=1

(a2i ) + 2
∞∑
k=1

n−1∑
i=1

a2iλ
k
i

=
n−1∑
i=1

(a2i ) + 2
n−1∑
i=1

∞∑
k=1

a2iλ
k
i

=
n−1∑
i=1

(a2i ) + 2
n−1∑
i=1

a2i
λi

1− λi

=
n−1∑
i=1

[(a2i )(
1− λi

1− λi

+ 2
λi

1− λi

)]

=
n−1∑
i=1

(a2i )
1 + λi

1− λi

.

Now assume P is periodic. Notice that if λ∗ < 1, then by the above work,
the result follows.
By Lemma 62 in the appendix, as P is irreducible and reversible, λi < 1,
∀i ∈ {1, . . . , n− 1}.
Thus the only case we need to consider, is when λi = −1 for some i ∈
{1, . . . , n−1}. We assume λi = −1 for i ∈ {l, l+1, . . . , n−1} ⊆ {1, . . . , n−1}.
Note that in (1), we can seperate out the {l, . . . , n− 1} terms to get

1

N
Var(

N∑
i=1

f(Xi)) =
n−1∑
i=0

(a2i )+2
N∑
k=1

N − k

N

l−1∑
i=0

a2iλ
k
i+2

n−1∑
i=l

(a2i )
N∑
k=1

N − k

N
(−1)k.
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Then in
∑N

k=1
N−k
N

(−1)k, replacing k with 2m− 1 if k is even and 2m− 1 if
k is odd, and setting E = {k ∈ N : k is even} and O = {k ∈ N : k is odd},

N∑
k=1

N − k

N
(−1)k = (

1

N
)

N∑
k=1

(N − k)(−1)k

= (
1

N
)

N∑
k=1

[IE(k)(N − k) + IO(k)(−N + k)]

= (
1

N
)

⌊N/2⌋∑
m=1

[(N − 2m) + (−N + 2m− 1)]

(as if N is odd, then the last term is −N +N = 0)

= (
1

N
)

⌊N/2⌋∑
m=1

−1

=
⌊−N/2⌋

N
.

Note that in Efficiency of Reversible MCMC Methods: Elementary Deriva-
tions and Applications to Composite Methods by Jeffrey Rosenthal and Rad-
ford Neal, they write

∑N
k=1

N−k
N

(−1)k = − ⌊(N−1)/2⌋
N

− 1
N
IO(N−1), though we

find here that this can be simplified to the above, ⌊−N/2⌋
N

.

Now notice that

−1/2 = lim
k→∞

(N − 1)/2

N
≤ lim

k→∞

⌊N/2⌋
N

≤ lim
k→∞

N/2

N
= −1/2,

so limk→∞
⌊N/2⌋
N

= −1/2, thus for i ∈ {l, . . . , n− 1},

lim
k→∞

N∑
k=1

N − k

N
(−1)k = −1/2 =

−1

1− (−1)
=

λi

1− λi

.
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So, using this and the work done earlier when λi < 1, we get

v(f, P ) = lim
N→∞

[
n−1∑
i=1

(a2i ) + 2
N∑
k=1

N − k

N

l∑
i=1

a2iλ
k
i + 2

N∑
k=1

N − k

N

n−1∑
i=l

(a2i )λ
k
i ]

= lim
N→∞

[
n−1∑
i=1

(a2i ) + 2
N∑
k=1

N − k

N

l∑
i=1

a2iλ
k
i + 2

N∑
k=1

n−1∑
i=l

(a2i )
N − k

N
(−1)k]

= lim
N→∞

[
n−1∑
i=1

(a2i ) + 2
N∑
k=1

N − k

N

l∑
i=1

a2iλ
k
i + 2

n−1∑
i=l

(a2i )
N∑
k=1

N − k

N
(−1)k]

=
n−1∑
i=1

(a2i ) + 2
n−2∑
i=1

a2i
λi

1− λi

+ 2
n−1∑
i=l

a2i
λi

1− λi

=
n−1∑
i=1

(a2i )
1 + λi

1− λi

.

Lemma 16. If h : R → R, and A is hermitian wrt ⟨·, ·⟩ with real orthonor-
mal basis of eigenvectors {v0, . . . , vn−1}, then h(A) :=

∑n−1
i=0 h(λi)viv

T
i D is

also hermitian, and has the same real orthonormal basis of eigenvectors with
associated eigenvalues h(λ0), . . . h(λn−1).

Proof. Let h : R → R.
Let λ0, . . . , λn−1 be the real eigenvalues of A and let {v0, . . . , vn−1} be the
assiciated orthonormal basis of real eigenvalues. Then as A is hermitian wrt
⟨·, ·⟩, A has a spectral representation, i.e.

A =
n−1∑
i=0

λiviv
T
i D.
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So, ∀j ∈ {0, . . . , n− 1}, notice

h(A)vj : =
n−1∑
i=0

h(λi)viv
T
i Dvj

=
n−1∑
i=0

h(λi)(vi(1)⟨vi, vj⟩, . . . , vi(n)⟨vi, vj⟩)

=
n−1∑
i=0

h(λi)(vi(1)δij, . . . , vi(n)δij)

= h(λj)vj.

The above formula for the asymptotic variance (Proposition 15) gives us
our first key theorem about Efficiency-Dominance.

Theorem 17. If P is irreducible and reversible wrt π, then ∀f ∈ L2
0(π),

v(f, P ) = ⟨f, f⟩+ 2⟨f, P (I − P )−1f⟩.

Proof. Let f ∈ L2
0(π). Then by Proposition 15, we know that

v(f, P ) =
n−1∑
i=0

(ai)
2 + 2

n−1∑
i=0

(ai)
2 λi

1− λi

,

where f =
∑n−1

i=0 aivi, and {v0, . . . , vn−1} is the real orthonormal basis of
eigenvectors for P .
As f ∈ L2

0(π), we know that 0 = Eπ(f) = ⟨v0, f⟩ =
∑n−1

i=0 ai⟨v0, vi⟩ =∑n−1
i=0 aiδ0i = a0, so we can restrict the rest of this to the subspace W =

span({v1, . . . , vn−1}).
Let h : R\{1} → R such that h(x) = x/(1− x).
Then as ∀i ∈ {1, . . . , n−1}, λi ̸= 1, on the restricted subspace W , h(P )|W =
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P (I − P )−1|W . So,

⟨f, f⟩+ 2⟨f, P (I − P )−1f⟩ =
n−1∑
i=0

(ai)
2 + 2⟨

n−1∑
j=0

ajvj, P (I − P )−1(
n−1∑
i=0

aivi)⟩

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

aj

n−1∑
i=0

ai⟨vj, P (I − P )−1vi⟩

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

aj

n−1∑
i=1

ai⟨vj, P (I − P )−1|Wvi⟩

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

aj

n−1∑
i=1

ai⟨vj, h(P )vi⟩

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

aj

n−1∑
i=1

ai⟨vj, h(λi)vi⟩

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

aj

n−1∑
i=1

ai⟨vj, λi(1− λi)
−1vi⟩

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

aj

n−1∑
i=1

aiλi(1− λi)
−1⟨vj, vi⟩

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

aj

n−1∑
i=1

aiλi(1− λi)
−1δji

=
n−1∑
i=0

(ai)
2 + 2

n−1∑
j=0

a2jλj(1− λj)
−1.

So by Proposition 15, ⟨f, f⟩+ 2⟨f, P (I − P )−1f⟩ = v(f, P ).

This gives us our first conditions for efficiency dominance.

Corollary 18. Given irreducible and reversible Markov Chains P and Q wrt
π, P efficiency-dominates Q iff ⟨f, P (I − P )−1f⟩ ≤ ⟨f,Q(I −Q)−1f⟩ for all
f ∈ L2

0(π).

Remark. Note that this result is actually stronger, that for each f ∈ L2
0(π),

v(f, P ) ≤ v(f,Q) iff ⟨f, P (I − P )−1f⟩ ≤ ⟨f,Q(I −Q)−1f⟩.
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Proof. By Theorem 17, v(f, P ) = ⟨f, f⟩ + 2⟨f, P (I − P )−1f⟩ for each f ∈
L2
0(π), and similarly for v(f,Q).

Then ∀f ∈ L2
0(π), v(f,Q) − v(f, P ) ≥ 0 iff ⟨f,Q(I − Q)−1f⟩ − ⟨f, P (I −

P )−1f⟩ ≥ 0 iff ⟨f,Q(I −Q)−1f⟩ ≥ ⟨f, P (I − P )−1f⟩.

Lemma 19. Given linear transformations X, Y , and Z on any finite vector
space V and F : V × V → R, if Z is hermitian wrt F and F (v,Xv) ≤
F (v, Y v) for all v ∈ V , then F (v, ZXZv) ≤ F (v, ZY Zv) for all v ∈ V .

Proof. Notice that as Z is linear and V is a finite vector space, for any v ∈ V ,
w = Zv ∈ V . So, for any v ∈ V ,

F (v, ZXZv) = F (Zv,XZv) = F (w,Xw) ≤ F (w, Y w) = F (Zv, Y Zv) = F (v, ZY Zv).

Definition. A hermitian matrix A is strictly positive if ⟨v, Av⟩ > 0 for every
non-zero vector v ∈ V .

Remark. Note that because we are assuming the matrix A to be hermitian,
there exists an orthormal basis of real eigenvectors {v0, . . . , vn−1} of A, with
associated real eigenvalues {λ0, . . . , λn−1}. So for any v ∈ V , ∃a0, . . . , an−1 ∈
R such that v =

∑n−1
i=0 aivi. So, ⟨v, Av⟩ =

∑n−1
i=0 (ai)

2λi, and thus if A is
a hermitian matrix, then A is strictly positive iff every eigenvalue of A is
strictly positive.

Lemma 20. Given any α ∈ R, if A is a symmetric matrix wrt ⟨·, ·⟩ with
real eigenvalues and eigenvectors on the finite vector space V , then ⟨v, Av⟩ ≤
α⟨v, v⟩ for every v ∈ V iff every eigenvalue λ of A is less than or equal to α.
Similarly for ≥.

Proof. Let α ∈ R and v ∈ V . Let {w0, . . . , wn−1} be the basis of real or-
thonormal eigenvectors of A with associated eigenvalues λ0, . . . , λn−1 ∈ R.
Then ∃a0, . . . , an−1 ∈ R such that v =

∑n−1
i=0 aiwi.

So, ⟨v, Av⟩ =
∑n−1

i=0 (ai)
2λi. So, if all the λi ≤ α, then

∑n−1
i=0 (ai)

2λi ≤
α
∑n−1

i=0 (ai)
2 = α⟨v, v⟩.

And if ⟨v, Av⟩ ≤ α⟨v, v⟩ for every v ∈ V , then for each i ∈ {0, . . . , n − 1},
picking the eigenvector wi,

λi⟨wi, wi⟩ = ⟨wi, λiwi⟩ = ⟨wi, Awi⟩ ≤ α⟨wi, wi⟩,

so λi ≤ α (as wi is orthonormal wrt ⟨·, ·⟩).
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Lemma 21. If A and B are strictly positive hermitian matrices on the finite
vector space V , then ⟨v, Av⟩ ≤ ⟨v,Bv⟩ for every v ∈ V iff ⟨v, A−1v⟩ ≥
⟨v,B−1v⟩ for every v ∈ V .

Proof. Let A and B be strictly positive hermitian matrices on V . Assume
⟨v, Av⟩ ≤ ⟨v,Bv⟩ for every v ∈ V .
As A and B are both strictly positive, all the eigenvalues of A and B are in
(0,∞) by the earlier remark.
So, for every eigenvalue β of B, h(β) = 1/

√
β is defined for h : (0,∞) → R

such that h(x) = 1/
√
x for all x ∈ (0,∞). So, by Lemma 16, B−1/2 = h(B)

is hermitian wrt ⟨·, ·⟩, and as each β > 0, 1/
√
β = h(β) > 0, so B−1/2 is also

strictly positive.
To show that B−1/2AB−1/2 is also strictly positive, notice for any non-zero
v ∈ V ,

⟨v,B−1/2AB−1/2v⟩ = ⟨B−1/2v, AB−1/2v⟩ (as B−1/2 is hermitian)

= ⟨w,Aw⟩
(where w = B−1/2v, notice w ̸= 0 as B−1/2 is strictly positive)

> 0. (as w is non-zero and A is strictly positive)

Now, as B−1/2 is hermitian wrt ⟨·, ·⟩, ⟨·, ·⟩ : V × V → R, choosing X = A,
Y = B and Z = B−1/2 in Lemma 19, by our assumption we get for every
v ∈ V ,

⟨v,B−1/2AB−1/2v⟩ ≤ ⟨v,B−1/2BB−1/2v⟩ = ⟨v, v⟩.
So by Lemma 20, the eigenvalues of B−1/2AB−1/2, say λ0, . . . , λn−1 ∈ R, are
less than or equal to 1.
And as B−1/2AB−1/2 is strictly positive, λi > 0 for every i ∈ {0, . . . , n− 1}.
So, ∀i ∈ {0, . . . , n− 1}, λi ∈ (0, 1].
So, letting g : R\{0} → R such that g(x) = 1/x for every x ∈ R\{0},
as {λ0, . . . , λn−1} ⊆ (0, 1] ⊆ R\{0}, by Lemma 16, g(B−1/2AB−1/2) =
(B−1/2AB−1/2)−1 has all eigenvalues g(λ0), . . . , g(λn−1) ∈ [1,∞).
So again by Lemma 19, we get that for every v ∈ V , ⟨v, (B−1/2AB−1/2)−1v⟩ ≥
⟨v, v⟩. So,

⟨v, Iv⟩ = ⟨v, v⟩ ≤ ⟨v, (B−1/2AB−1/2)−1v⟩ = ⟨v,B1/2A−1B1/2v⟩.

Now again by Lemma 19, using X = I, Y = B1/2A−1B1/2 and Z = B−1/2,
for every v ∈ V ,

⟨v,B−1v⟩ = ⟨v,B−1/2IB−1/2v⟩ ≤ ⟨v,B−1/2(B1/2A−1B1/2)B−1/2v⟩ = ⟨v, A−1v⟩.
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For the other direction, note that from earlier using g : R\{0} → R such
that g(x) = x−1 for every x ∈ R\{0} on A and B create by Lemma 16
h(A) = A−1 and h(B) = B−1 that are strictly positive and hermitian on V .
Thus it follows by replacing A with B−1 and B with A−1 from the start of
this proof.

Proposition 22. If P and Q are Markov Chains that are irreducible and
reversible wrt π, then ∀f ∈ L2

0(π), ⟨f, P (I − P )−1f⟩ ≤ ⟨f,Q(I − Q)−1f⟩ iff
∀f ∈ L2

0(π), ⟨f, Pf⟩ ≤ ⟨f,Qf⟩.

Proof. Note that ⟨f, Pf⟩ ≤ ⟨f,Qf⟩ for all f ∈ L2
0(π) iff ⟨f, (I − P )f⟩ =

⟨f, f⟩ − ⟨f, Pf⟩ ≥ ⟨f, f⟩ − ⟨f,Qf⟩ = ⟨f, (I −Q)f⟩ for all f ∈ L2
0(π).

Next, notice that as ∀f ∈ L2
0(π), 0 = Eπ(f) = ⟨f, 1⟩, and as 1 is an eigen-

vector of both P and Q with associated eigenvector λ0 = 1, on the subspace
L2
0(π), the eigenvalues of P and Q both exist in [−1, 1).

So, using h : R → R such that h(x) = 1 − x for every x ∈ R, by Lemma 16
the eigenvalues of h(P ) = I − P and h(Q) = I − Q are both contained in
(0, 2], so I − P and I −Q are both strictly positive and hermitian.
Thus, by the above Lemma 21, ⟨f, (I − P )−1f⟩ ≤ ⟨f, (I − Q)−1f⟩ for all
f ∈ L2

0(π).
And as (I − P )−1 = P (I − P )−1 + (I − P )(I − P )−1 = P (I − P )−1 + I and
similarly for (I −Q)−1, this is equivalent to

⟨f, P (I − P )−1f⟩ ≤ ⟨f,Q(I −Q)−1f⟩, ∀f ∈ L2
0(π).

We now get to our biggest theorems on efficiency dominance, which will
serve as the backbone for the rest of the discussion on the topic.

Theorem 23. Given irreducible reversible wrt π Markov Chains P and Q,
P efficiency dominates Q iff ⟨f, Pf⟩ ≤ ⟨f,Qf⟩ for all f ∈ L2

0(π).

Proof. By Corollary 18, we get that P efficiency dominates Q iff ⟨f, P (I −
P )−1f⟩ ≤ ⟨f,Q(I −Q)−1f⟩ for all f ∈ L2

0(π).
By Proposition 22, this is iff ⟨f, Pf⟩ ≤ ⟨f,Qf⟩ for all f ∈ L2

0(π).

Theorem 24. Given irreducible and reversible wrt π Markov Chains P and
Q, P efficiency dominates Q iff Q− P has all non-negative eigenvalues.
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Proof. By Theorem 23, P efficiency dominates Q iff ⟨f, Pf⟩ ≤ ⟨f,Qf⟩ for
all f ∈ L2

0(π).
This is iff ⟨f, (Q− P )f⟩ ≥ 0 for every f ∈ L2

0(π).
So by Lemma 20, as 0 = 0⟨f, f⟩ for every f ∈ L2

0(π), the result follows.

Theorem 25. Efficiency dominance is a partial order on irreducible re-
versible chains, meaning efficiency dominance is reflexive, antisymmetric and
transitive.

Proof. For any P and any f : X → R, v(f, P ) ≤ v(f, P ), so it is reflexive.
If P andQ are irreducible reversible wrt π Markov Chains, then if P efficiency
dominates Q and Q effieciency dominates P , then by Theorem 24, Q − P
and P − Q have all nonnegative eigenvalues, and thus Q − P must have all
eigenvalues zero. So, as Q − P is hermitian, it is diagonalizable, and thus
Q − P = A(diag(0))A−1 = 0 for some change of basis matrix A, so Q = P .
Thus, it is antisymmetric.
As ≤ is transitive, we see that if P efficiency dominates Q and Q efficiency
dominates R, then ∀f ∈ L2

0(π), v(f, P ) ≤ v(f,Q) and v(f,Q) ≤ v(f,R), so
by the transitivity of ≤, v(f, P ) ≤ v(f,R). And thus P efficiency dominates
R, and it is thus transitive.

6 New Results on Efficiency Dominance on

Subspaces and Answer to Open Problem

All the results presented in this section are new. We first explore an ex-
plicit function in L2

0(π), f , such that v(f, P ) > v(f,Q) when Q − P has a
negative eigenvalue, as well as explore efficiency dominance on perpendicular
subspaces of L2

0(π).

Lemma 26. v0 = (1, . . . , 1) is an eigenvector of Q−P with eigenvalue Λ = 0,
for any stochastic matrices Q and P .
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Proof.

(Q− P )v0 =

 Q(0, 0)− P (0, 0) · · · Q(0, n− 1)− P (0, n− 1)
...

. . .
...

Q(n− 1, 0)− P (n− 1, 0) · · · Q(n− 1, n− 1)− P (n− 1, n− 1)


1...
1


=


∑

x∈X [Q(0, x)− P (0, x)]
...∑

x∈X [Q(n− 1, x)− P (n− 1, x)]


=


∑

x∈X Q(0, x)−
∑

x∈X P (0, x)
...∑

x∈X Q(n− 1, x)−
∑

x∈X P (n− 1, x)


=

1− 1
...

1− 1


=

0...
0


= 0v0.

Proposition 27. If z is an eigenvector of Q− P such that (Q− P )z = β0z
where β0 ∈ (−∞, 0) and Q and P are both reversible wrt π and irreducible,
then z ∈ L2

0(π).

Proof. By Lemma 26, v0 is an eigenvector of Q, P and Q− P , the last with
eigenvalue 0. So, let {v0, p1, . . . , pn−1} be a basis of real orthonormal eigenvec-
tors of P , guaranteed to exist by Lemma 11. Similarly, let {v0, q1, . . . , qn−1}
be such a basis for Q.
Then we can write z as a linear combination of these vecotrs, so let z =
Λv0 + a1p1 + · · ·+ an−1pn−1 = Λv0 + b1q1 + · · ·+ bn−1qn−1.
Then let ρ be the associated eigenvalue for z for P , and let η be the associated
eigenvalue for z for Q. Then,

ρΛv0+ρ
n−1∑
i=1

aipi = ρz = P (z) = P (Λv0+
n−1∑
i=1

aipi) = ΛP (v0)+P (
n−1∑
i=1

aipi) = Λv0+
n−1∑
i=1

λiaipi.
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As the vectors are linearly independent, either ρ = 1 or Λ = 0 and thus z is
orthogonal to v0 and z ∈ L2

0(π).
If ρ = 1, as P is diagonalizable by Lemma 11, either z = v0 or the eigenspace
of the eigenvalue λ0 = 1 has dimension 2.
Notice that (Q − P )(z) = β0z and (Q − P )(v0) = 0 by Lemma 26, so as
β0 ̸= 0, (Q− P )(z) = β0z ̸= 0 = (Q− P )(v0). So z ̸= v0.
If the dimension of the eigenspace of the eigenvalue λ0 = 1 has dimension 2,
then λ1 = 1. But by Lemma 37, λ1 < 1. So another contradiction.
Thus ρ ̸= 1, and z ∈ L2

0(π).

Lemma 28. If v is an eigenvector of X,X − Y ∈ Mn×n then z is an eigen-
vector of Y .

Proof. Let v ∈ V be an eigenvector of X with eigenvalue λX and of X − Y
with eigenvalue λX−Y . Then

λX−Y v = (X − Y )(v) = X(v)− Y (v) = λXv − Y (v).

So,
Y (v) = λXv − λX−Y v = (λX − λX−Y )v.

In particular, this shows that if an eigenvector of Q−P , say z, is also an
eigenvector of either Q or P , then it is also an eigenvector of both Q and P .

Using this fact and the remark after Lemma 21 in the efficiency domi-
nance paper by Rosenthal and Neal, we provide a partial answer to the open
problem left by Rosenthal and Neal.

Theorem 29. If z is an eigenvector of Q − P with associated eigenvalue
β < 0 and z is also an eigenvector of P or Q, then v(z, P ) > v(z,Q).

Proof. As z is an eigenvector of Q− P and of either P or Q, by Lemma 28
it is an eigenvector of both Q and P .
By Proposition 27, z ∈ L2

0(π).
And as (Q − P )(z) = βz, ⟨z, (Q − P )(z)⟩ = ⟨z, βz⟩ = β⟨z, z⟩. So, ⟨z, (Q −
P )(z)⟩ < 0, as z is not the zero vector as it is an eigenvector so ⟨z, z⟩ > 0.
So, ⟨z, P (z)⟩ > ⟨z,Q(z)⟩. Let c = ⟨z, z⟩−1/2 > 0. Then

⟨cz, P (cz)⟩ = c2⟨z, P (z)⟩ > c2⟨z,Q(z)⟩ = ⟨cz,Q(cz)⟩.
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This is equivalent to ⟨cz, (I − P )(cz)⟩ = ⟨cz, cz⟩ − ⟨cz, P (cz)⟩ < ⟨cz, cz⟩ −
⟨cz,Q(cz)⟩ = ⟨cz, (I −Q)(cz)⟩.
Further notice as I − P = h(P ) where h : R → R such that h(x) = 1 − x,
by Lemma 16, cz is also an eigenvector of h(P ) = I − P . Similarly cz is an
eigenvector of Q.
By Lemma 62 in the appendix, if cz is an eigenvector of P and cz ̸= v0 =
(1, . . . , 1), then the associated eigenvalue of cz, λ < 1. Similary for Q, the
associated eigenvalue of cz, α < 1.
Thus, h(λ), h(α) < 0, so ⟨cz, (I − P )(cz)⟩ = h(λ)⟨cz, cz⟩ ̸= 0. Similarly for
I −Q.
Also, as (I − P )−1 = u(I − P ) where u : R\{0} → R such that u(x) = x−1,
as the associated eigenvalue of cv wrt I − P h(λ) ̸= 0, by Lemma 16 cz is
also an eigenvector of (I − P )−1 with eigenvalue u(h(λ)) = (h(λ))−1, and
similarly for I −Q with eigenvalue u(h(α)) = (h(α))−1.
So, we get

⟨cz, (I − P )−1(cz)⟩ = c2⟨z, (I − P )−1(z)⟩
= c2⟨z, (h(λ))−1z⟩
= (h(λ))−1c2⟨z, z⟩
= (h(λ))−1

= (h(λ)c2⟨z, z⟩)−1

= (⟨cz, (I − P )(cz)⟩)−1

> (⟨cz, (I −Q)(cz)⟩)−1

= (h(α)c2⟨z, z⟩)−1

= (h(α))−1

= (h(α))−1c2⟨z, z⟩
= ⟨cz, (I −Q)−1(cz)⟩.

So, ⟨cz, (I − P )−1(cz)⟩ > ⟨cz, (I −Q)−1(cz)⟩.
Notice that (I − P )−1 = P (I − P )−1 + (I − P )(I − P )−1 = P (I − P )−1 + I,
so this becomes

⟨cz, P (I − P )−1(cz)⟩+ ⟨cz, cz⟩ = ⟨cz, (I − P )−1(cz)⟩
> ⟨cz, (I −Q)−1(cz)⟩
= ⟨cz,Q(I −Q)−1(cz)⟩+ ⟨cz, cz⟩.
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So, we get that

⟨cz, P (I − P )−1(cz)⟩ > ⟨cz,Q(I −Q)−1(cz)⟩.

Thus by Theorem 17, v(cz, P ) > v(cz,Q).
Further notice that

v(cz, P ) = lim
N→∞

(1/N)Var(
N∑
i=1

cz(Xi)) = c2 lim
N→∞

(1/N)Var(
N∑
i=1

(z(Xi)) = c2v(z, P ).

Similarly, v(cz,Q) = c2v(z,Q).
So, c2v(z, P ) = v(cz, P ) > v(cz,Q) = c2v(z,Q), and as c2 > 0,

v(z, P ) > v(z,Q).

Proposition 30. If v ∈ N ⊆ L2
0(π) where N := span{wl, . . . , wn−1}⊥|L2

0(π)
=

{v ∈ L2
0(π) : ⟨v, w⟩, ∀w ∈ span{wl, . . . , wn−1}}, then Pv,Qv ∈ N . I.e. N is

closed under P and Q.

Proof. Let v ∈ N . Then ∀w ∈ span{wl, . . . , wn−1}, ∃αl, . . . , αn−1 ∈ R such
that w = αlwl + · · · + αn−1wn−1. Let λi denote the eigenvalue of wi wrt P .
Then,

⟨P (v), w⟩ = ⟨v, P (w)⟩

= ⟨v, P (
n−1∑
i=l

αiwi)⟩

=
n−1∑
i=l

αi⟨v, P (wi)⟩

=
n−1∑
i=l

αi⟨v, λiwi⟩

=
n−1∑
i=l

αiλi⟨v, wi⟩

= 0.

Similarly for Q.
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We now generalize another few Lemmas, in order to try and apply them
to a specific subspace of L2

0(π).

Lemma 31. Given linear transormations X, Y , and Z on any finite vector
space V , and F : V ×V → R, if Z is hermitian wrt F , F (v,Xv) ≤ F (v, Y v)
for all v ∈ E ⊆ V where E is a subspace of V , and E is closed wrt Z, then
F (v, ZXZv) ≤ F (v, ZY Zv) for all v ∈ E.

Proof. As E is closed wrt Z, by definition for any v ∈ E, Zv = w ∈ E. So
for any v ∈ E,

F (v, ZXZv) = F (Zv,XZv) = F (w,Xw) ≤ F (w, Y w) = F (Zv, Y Zv) = F (v, ZY Z).

Lemma 32. If A and B are strictly positive hermitian matrices on a subspace
E of the vector space V , and E is closed wrt A and B, then ⟨v, Av⟩ ≤ ⟨v,Bv⟩
for every v ∈ E iff ⟨v, A−1v⟩ ≥ ⟨v,B−1v⟩ for every v ∈ E.

Proof. Let E ⊆ V be a subspace of V and let A and B be strictly posi-
tive hermitian matrices on E such that E is closed wrt A and B. Assume
⟨v, Av⟩ ≤ ⟨v,Bv⟩ for every v ∈ E.
As A and B are both strictly positive, all the eigenvalues of A and B for eigen-
vectors in E are in (0,∞).So, for every eigenvalue on E, β of B, h(β) = 1/

√
β

is defined for h : (0,∞) → R such that h(x) = 1/
√
x for all x ∈ (0,∞). So,

by Lemma 16, B−1/2 = h(B) is hermitian wrt ⟨·, ·⟩.
As E is closed under B, matrix decomposition simply affects the scalar val-
ues of vectors multiplied, but not the geometric propoerties of vectors coming
from B. So, E is also closed wrt B−1/2. And as each β > 0, 1/

√
β = h(β) > 0,

so B−1/2 is also strictly positive on E.
To show that B−1/2AB−1/2 is also strictly positive on E, notice for any non-
zero v ∈ E,

⟨v,B−1/2AB−1/2v⟩ = ⟨B−1/2v, AB−1/2v⟩
(as B−1/2 is hermitian)

= ⟨w,Aw⟩
(where w = B−1/2v, notice w ̸= 0 as B−1/2 is strictly positive on E)

> 0.

(as w is non-zero and A is strictly positive on E)
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Now, as B−1/2 is hermitian wrt ⟨·, ·⟩, ⟨·, ·⟩ : V × V → R, choosing X = A,
Y = B and Z = B−1/2 in Lemma 31, by our assumption we get for every
v ∈ E,

⟨v,B−1/2AB−1/2v⟩ ≤ ⟨v,B−1/2BB−1/2v⟩ = ⟨v, v⟩.

So by Lemma 20, the eigenvalues of B−1/2AB−1/2 on the restricted subspace
E, say λ0, . . . , λk−1 ∈ R, are less than or equal to 1.
And as B−1/2AB−1/2 is strictly positive, λi > 0 for every i ∈ {0, . . . , k − 1}.
So, ∀i ∈ {0, . . . , k − 1}, λi ∈ (0, 1].
So, letting g : R\{0} → R such that g(x) = 1/x for every x ∈ R\{0},
as {λ0, . . . , λk−1} ⊆ (0, 1] ⊆ R\{0}, by Lemma 16, g(B−1/2AB−1/2) =
(B−1/2AB−1/2)−1 has all eigenvalues g(λ0), . . . , g(λk−1) ∈ [1,∞).
So again by Lemma 31, we get that for every v ∈ E, ⟨v, (B−1/2AB−1/2)−1v⟩ ≥
⟨v, v⟩. So,

⟨v, Iv⟩ = ⟨v, v⟩ ≤ ⟨v, (B−1/2AB−1/2)−1v⟩ = ⟨v,B1/2A−1B1/2v⟩.

Now again by Lemma 31, using X = I, Y = B1/2A−1B1/2 and Z = B−1/2,
for every v ∈ E,

⟨v,B−1v⟩ = ⟨v,B−1/2IB−1/2v⟩ ≤ ⟨v,B−1/2(B1/2A−1B1/2)B−1/2v⟩ = ⟨v, A−1v⟩.

For the other direction, note that from earlier using g : R\{0} → R such that
g(x) = x−1 for every x ∈ R\{0} on A and B create by Lemma 16 h(A) = A−1

and h(B) = B−1 that are strictly positive and hermitian on E, and E is still
closed wrt A−1 and B−1. Thus the result follows by replacing A with B−1

and B with A−1 from the start of the proof.

Proposition 33. If P and Q are Markov Chains that are irreducible and
reversible wrt π and E ⊆ L2

0(π) is a subspace that is closed wrt P and Q, then
∀f ∈ E, ⟨f, P (I−P )−1f⟩ ≤ ⟨f,Q(I−Q)−1f⟩ iff ∀f ∈ E, ⟨f, Pf⟩ ≤ ⟨f,Qf⟩.

Proof. Note that ⟨f, Pf⟩ ≤ ⟨f,Qf⟩ for all f ∈ E iff ⟨f, (I − P )f⟩ = ⟨f, f⟩ −
⟨f, Pf⟩ ≥ ⟨f, f⟩ − ⟨f,Qf⟩ = ⟨f, (I −Q)f⟩ for all f ∈ E.
Next, notice that as ∀f ∈ E ⊆ L2

0(π), 0 = Eπ(f) = ⟨f, 1⟩, and as 1 is an
eigenvector of both P and Q with associated eigenvector λ0 = 1, on the
subspace L2

0(π), the eigenvalues of P and Q both exist in [−1, 1), as by
Lemma 62 in the appendix, they are all less than one.
So, using h : R\{0} → R such that h(x) = 1 − x for every x ∈ R\{0}, by
Lemma 16 the eigenvalues of h(P ) = I − P and h(Q) = I − Q on E are
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both contained in (0, 2], so I − P and I − Q are both strictly positive and
hermitian on E.
Thus, as E is closed wrt P , Q, and I (and thus also I−P and (I−P )−1 and
similarly for Q), by the above Lemma 32, ⟨f, (I − P )−1f⟩ ≤ ⟨f, (I −Q)−1f⟩
for all f ∈ E.
And as (I − P )−1 = P (I − P )−1 + (I − P )(I − P )−1 = P (I − P )−1 + I and
similarly for (I −Q)−1, this is equivalent to

⟨f, P (I − P )−1f⟩ ≤ ⟨f,Q(I −Q)−1f⟩, ∀f ∈ E.

We now prove why span{wl, . . . , wn−1}⊥|L2
0(π)

is a special subspace.

Proposition 34. If P and Q are irreducible and reversible wrt π Markov
Chains, all the eigenvalues of Q − P , β0, . . . , βn−1, that are negative, say
βl, . . . , βn−1, have associated eigenvalues wl, . . . , wn−1 that are also eigenval-
ues of either Q or P , then ∀v ∈ N ⊆ L2

0(π) such that N := span{wl, . . . , wn−1}⊥|L2
0(π)

=

{v ∈ L2
0(π) : ⟨v, w⟩, ∀w ∈ span{wl, . . . , wn−1}}, ⟨v, Pv⟩ ≤ ⟨v,Qv⟩.

Proof. Let v ∈ N . Then as Q and P are hermitian, so is Q − P . So by an
argument similar to why Q and P have real eigenvalues and an orthonormal
basis, so does Q− P on L2

0(π).
By assumption, the wl, . . . , wn−1 are also eigenvectors of either Q or P , so
by Lemma 28, they are also an eigenvector of both P and Q. Thus we can
assume they are orthonormal.
Then by a process like the Gram-Schmidt process, we can find other eigen-
vectors w0, . . . , wl−1 that complete the orthonormal basis for Q− P .
So, ∃α0, . . . , αn−1 ∈ R such that v =

∑n−1
i=0 αiwi.

But as v ∈ N , αl, . . . , αn−1 = 0. So,

⟨v, (Q− P )(v)⟩ =
l−1∑
i=0

α2
iβi.

And as α2
i ≥ 0 for every i, and βi ≥ 0 for every i ∈ {0, . . . , l − 1}, ⟨v, (Q −

P )(v)⟩ =
∑l−1

i=0 α
2
iβi ≥ 0.

So, ⟨v, P (v)⟩ ≤ ⟨v,Q(v)⟩.

Theorem 35. If P and Q are irreducible reversible wrt π Markov Chains and
all the eigenvalues of Q−P , β0, . . . , βn−1, that are negative, say βl, . . . , βn−1,
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have associated eigenvalues wl, . . . , wn−1 that are also eigenvalues of either
Q or P , then P efficiency dominates Q on the subspace N ⊆ L2

0(π) such that
N := span{wl, . . . , wn−1}⊥|L2

0(π)
= {v ∈ L2

0(π) : ⟨v, w⟩, ∀w ∈ span{wl, . . . , wn−1}}.

Proof. We know that P efficiency dominates Q on N if ⟨v, P (I − P )−1v⟩ ≤
⟨v,Q(I −Q)−1v⟩ for every v ∈ N .
We know that N is closed wrt P and Q and thus also Q− P by Proposition
30.
By Proposition 34, we know that ⟨v, Pv⟩ ≤ ⟨v,Qv⟩ for every v ∈ N .
So, by Proposition 33 with E = N , we know that ⟨v, P (I−P )−1v⟩ ≤ ⟨v,Q(I−
Q)−1v⟩ for every v ∈ N , completing the proof.

7 Combinations of Chains

We now move to using the results in the earlier section to apply to combina-
tions of chains.

Proposition 36. If P is an irreducible Markov Chain, and Q is another
Markov chain, then for any α ∈ (0, 1], P ′ = αP + (1− α)Q is an irreducible
Markov Chain.

Proof. Let x ∈ X . Let A ⊆ X . Then as P is irreducible, ∃r ∈ N such that
P r(x,A) > 0.
So, P ′r(x,A) ≥ αrP r(x,A) > 0. I.e., the probability that P ′ gets to A from
x in r steps is at least the probability that we get P r times, and get to A
the same way P can.

Theorem 37. If P , P ′ and Q are reversible wrt π Markov Chains such that
P and P ′ are irreducible, if α ∈ (0, 1], then P ′ efficiency dominates P iff
αP ′ + (1− α)Q efficiency dominates αP + (1− α)Q.

Proof. By the above Proposition 36, both αP ′+(1−α)Q and αP +(1−α)Q
are irreducible.
As P ′ efficiency dominates P iff the eigenvalues of P−P ′ are all non-negative,
by combining Theorem 24, P ′ efficiency dominates P iff α(P − P ′) has all
eigenvalues non-negative as α > 0. So, as

α(P − P ′) = (αP + (1− α)Q)− (αP ′ + (1− α)Q),

the result follows.
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Theorem 38. For any l ∈ N, let P1, . . . , Pl, P
′
1, . . . , P

′
l be reversible Markov

Chains wrt π. Assume P = α1P1 + · · · + αlPl and P ′ = α1P
′
1 + · · · + αlP

′
l

are irrducible Markov Chains, with α1, . . . , αl > 0 and
∑l

i=1 αi = 1. Then if
∀i ∈ {1, . . . , l}, the eigenvalues of Pi−P ′

i are non-negative, then P ′ efficiency
dominates P .

Proof. Let f ∈ L2
0(π). Then by Lemma 20, ∀i ∈ {1, . . . , l}, ⟨f, (Pi −P ′

i )f⟩ ≥
0⟨f, f⟩ = 0, so

⟨f, (P − P ′)f⟩ = ⟨f,
l∑

i=1

(Pi − P ′
i )f⟩ =

l∑
i=1

⟨f, (Pi − P ′
i )f⟩ ≥ 0.

So equivalently, ⟨f, P ′f⟩ ≤ ⟨f, Pf⟩. So by Theorem 23, P ′ efficiency domi-
nates P .

8 Not Dominatable Chains

We now present results showing chains that don’t dominate each other.

Definition (Eigen Dominance). Given two reversible wrt π Markov Chains
P and Q, and their eigenvalues written in non-increasing order, α0, . . . , αn−1

for P and β0, . . . , βn−1 for Q, P is said to eigen dominate Q if ∀i ∈ {0, . . . , n−
1}, αi ≤ βi.

We shall now see that with irreducible Markov Chains, efficiency domi-
nance implies eigen dominance.

Proposition 39. If P and Q are irreducible, reversible wrt π Markov Chains,
such that P efficiency dominates Q, then P eigen-dominates Q.

Proof. By Theorem 23, as P efficiency dominates Q, ∀f ∈ L2
0(π), ⟨f, Pf⟩ ≤

⟨f,Qf⟩.
So, by the ”min-max” characterisation of eigenvalues, or the Courant-Fischer
Theorem (Theorem 4.2.6) in Matrix Analysis by Horn and Johnson, we see
that ∀i ∈ {0, . . . , n − 1}, letting α0, . . . , αn−1 be the eigenvalues of P and
β0, . . . , βn−1 be the the eigenvalues of Q,

αi = min
w1,...,wi−1

[ max
v∈RX :∀j,⟨v,wj⟩=0

⟨v, Pv⟩
⟨v, v⟩

],
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and similarly for βi and Q.
So, assume for a contradiction that ∃i ∈ {0, . . . , n− 1} such that αi > βi.
Notice that i ̸= 0, as αi = βi = 1 by Proposition 3.
Then by the above,

min
w1,...,wi−1

[ max
v∈RX :∀j,⟨v,wj⟩=0

⟨v, Pv⟩
⟨v, v⟩

] > min
w1,...,wi−1

[ max
v∈RX :∀j,⟨v,wj⟩=0

⟨v,Qv⟩
⟨v, v⟩

].

So let z ∈ RX be the vector such that

⟨z,Qz⟩
⟨z, z⟩

= min
w1,...,wi−1

[ max
v∈RX :∀j,⟨v,wj⟩=0

⟨v,Qv⟩
⟨v, v⟩

].

And as i ̸= 0, we have z ∈ L2
0(π). So, we get

⟨z,Qz⟩
⟨z, z⟩

≥ ⟨z, Pz⟩
⟨z, z⟩

.

But then

min
w1,...,wi−1

[ max
v∈RX :∀j,⟨v,wj⟩=0

⟨v, Pv⟩
⟨v, v⟩

] >
⟨z, Pz⟩
⟨z, z⟩

.

Note however the converse is not true. But, this lets us see that if P
doesn’t eigen-dominate Q, then P doesn’t efficiency dominate Q.

Proposition 40. Given irreducible reversible wrt π Markov Chains P and
Q, if the eigenvalues of P and Q are identical, then P ̸= Q iff P doesn’t
efficiency dominate Q and Q doesn’t efficiency dominate P .

Proof. If P = Q, then as efficiency dominance is relfexive P efficiency domi-
nates Q and Q efficiency dominates P .
If P ̸= Q, then assume P efficiency dominates Q. Then by Theorem 24,
Q− P has all non-negative eigenvalues.
But Q−P cannot have all zero eigenvalues, as then because Q−P is hermi-
tian and thus diagonalizable, Q − P = A(diag(0))A−1 = 0 for some change
of basis matrix A, so Q = P .
So, there must be at least one positive eigenvalue of Q− P .
As the sum of eigenvalues of a matrix including multiplicity is equal to the
trace of a matrix, we get that trace(Q− P ) > 0.
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But as trace is linear, trace(Q−P ) = trace(Q)−trace(P ) > 0, so trace(Q) >
trace(P ).
But as P and Q have the same eigenvalues, trace(Q) = trace(P ). So we get
a contradiction.
The argument for why Q doesn’t efficiency dominate P follows by replacing
Q with P and P with Q.

Lemma 41. For any Markov Chain P with π as it’s stationary distribution,
trace(P ) ≥ max(0, 2− 1/πmax) where πmax = maxx π(x).

Proof. If π(x) ≤ 1/2 for all x ∈ X , then trace(P ) ≥ 0 as each entry of P is
non-negative.
If ∃x∗ ∈ X such that π(x∗) > 1/2, then assume without loss of generality
that x∗ = xn−1. Then

π(xn−1) =
n−1∑
i=0

π(xi)P (xi, xn−1) (as π is a stationary dis.)

= π(xn−1)P (xn−1, xn−1) +
n−2∑
i=0

π(xi)P (xi, xn−1)

≤ π(xn−1)P (xn−1, xn−1) +
n−2∑
i=0

π(xi) (as each P (xi, xn−1) ≤ 1.)

= π(xn−1)P (xn−1, xn−1) + (1− π(xn−1)). (as
n−1∑
i=0

π(xi) = 1).

So, P (xn−1, xn−1) ≥ 2−1/π(xn−1) = 2−1/πmax (as if π(xn−1) > 1/2, then no
other xi can have π(xi) > π(xn−1) as then

∑n−1
j=0 π(xj) ≥ π(xn−1)+π(xi) > 1).

So, trace(P ) ≥ P (xn−1, xn−1) ≥ 2− 1/πmax.

Lemma 42. If P is a Markov Chain with stationary distribution π and
trace(P ) = max(0, 2 − 1/πmax), then every entry on the diagonal is zero
unless ∃x ∈ X such that π(x) > 1/2. In that case every diagonal entry is
zero except for P (x, x) = 2− 1/π(x).

Proof. We continue from the proof of the above Lemma 41. If π(x) ≤ 1/2
for every x ∈ X , then trace(P ) = 0, and as all entries are non-negative all
diagonal entries are zero.
If xn−1 ∈ X such that π(xn−1) > 1/2, then 2− 1/π(xn−1) > 0, so trace(P ) =
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max(0, 2− 1/π(xn−1)) = 2− 1/π(xn−1).
From the proof of the above Lemma 41, P (xn−1, xn−1) ≥ 2− 1/π(xn−1). But
notice

2− 1/π(x) = trace(P ) ≥ P (xn−1, xn−1) ≥ 2− 1/π(xn−1),

so trace(P ) = P (xn−1, xn−1) = 2− 1/π(xn−1).

Theorem 43. If P is an irreducible reversible wrt π Markov Chain and
trace(P ) = max(0, 2− 1/πmax) where πmax = maxx∈X π(x), then P cannot be
efficiency dominated by any other irreducible reversible wrt π Markov Chain.

Proof. Assume for a contradiction that Q is an irreducible reversible wrt π
Markov Chain that efficiency dominates P and Q ̸= P .
Then by Proposition 39, Q also eigen-dominates P .
If Q has the same eigenvalues as P , then by Proposition 40, as Q ̸= P , Q
doesn’t efficiency dominate P .
So, Q must have at least one eigenvalue strictly less than one of P . But then
trace(Q) < trace(P ), as the trace is equal to the sum of the eigenvalues of
the matrix. But by Lemma 41, trace(Q) ≥ max(0, 2− 1/πmax. So,

max(0, 2− 1/πmax) ≤ trace(Q) < trace(P ) = max(0, 2− 1/πmax).

So we get a contradiction.

9 Peskun versus Efficiency Dominance

We now move to show the relationship between Efficiency Dominance and
Peskun Dominance.

Definition (Peskun Dominance). Given two Markov Chains, P Peskun-
dominates Q if ∀x, y ∈ X such that x ̸= y, P (x, y) ≥ Q(x, y).

Now to show Peskun-dominance implies efficiency-dominance.

Lemma 44. If P Peskun-dominates Q, then Q − P has all non-negative
values on the diagonal and all non-positive entries off the diagonal, and the
sum of each row is 0. I.e. ∀x, y ∈ X , if x = y then (Q− P )(x, y) ≥ 0 and if
x ̸= y then (Q− P )(x, y) ≤ 0, and ∀x ∈ X ,

∑n
i=1(Q− P )(xi, x) = 0.
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Proof. As P Peskun-dominates Q, by definition ∀x, y ∈ X , P (x, y) ≥ Q(x, y)
if x ̸= y.
So, if x, y ∈ X such that x ̸= y, then (Q− P )(x, y) = Q(x, y)− P (x, y) ≤ 0.
Now, assume for a contradiction that ∃x ∈ X such that (Q− P )(x, x) < 0.
Then 0 > (Q− P )(x, x) = Q(x, x)− P (x, x), so Q(x, x) < P (x, x).
So, as P Peskun-dominates Q,

∑
y∈X ,y ̸=x P (y, x) ≥

∑
y∈X ,y ̸=x Q(y, x). So,∑

y∈X

P (y, x) =
∑

y∈X ,y ̸=x

P (y, x)+P (x, x) >
∑

y∈X ,y ̸=x

Q(y, x)+Q(x, x) =
∑
y∈X

Q(y, x) = 1.

So we get a contradiction to the Law of Total Probability. Let x ∈ X . Then
by the Law of Total Probability,

n−1∑
i=0

(Q−P )(xi, x) =
n−1∑
i=0

[Q(xi, x)−P (xi, x)] =
n−1∑
i=0

Q(xi, x)−
n−1∑
i=0

P (xi, x) = 1−10.

Lemma 45. If X ∈ Mn×n such that ∀i, j ∈ {0, . . . , n − 1} and i ̸= j,
X(i, i) ≥ 0 and X(i, j) ≤ 0, and

∑n−1
l=0 X(l, i) = 0, then all the eigenvalues

of X are non-negative.

Proof. Let v ∈ Rn and λ ∈ R such that Xv = λv. Then let j ∈ {0, . . . , n−1}
such that |vj| ≥ |vi| for all i ∈ {0, . . . , n− 1}.
Without loss of generality, assume vj > 0. Then as −

∑
i ̸=j |X(j, i)| =∑

i ̸=j X(j, i) as they’re all non-positive, as the sum of the rows of X is equal
to 0, and by the triangle inequality,

λvj = (Xv)j =
n−1∑
i=0

X(j, i)vj = X(j, j)vj +
∑
i ̸=j

X(j, i)vi

≥ X(j, j)vj − |
∑
i ̸=j

X(j, i)vi|

≥ X(j, j)vj −
∑
i ̸=j

|X(j, i)||vi|

≥ X(j, j)vj −
∑
i ̸=j

|X(j, i)|vj

= vj(X(j, j) +
∑
i ̸=j

X(j, i))

= vj(0) = 0.
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As vj > 0, this means λ ≥ 0.

Proposition 46. If P and Q are irreducible reversible wrt π Markov Chains,
and P Peskun-dominates Q, then P efficiency-dominates Q.

Proof. By Lemma 44, Q−P has all diagonal entries non-negative and all off
diagonal entries non-positive, and has the sum of each row equal to zero.
So by Lemma 45, all the eigenvalues of Q−P are non-negative, and thus by
Theorem 24, P efficiency dominates Q.

10 Group state spaces and Random Walks

We move our discussion to a special type of Markov Chain on a special
type of state space. The special properties these assumptions bring give us
an easy, simple bound on the total variation distance of such Markov Chains.

So, we begin this chapter with the definition on the type of state space
we will be working with.

Definition (Groups). A Group is a non-empty set G together with an oper-
ation, denoted (G, ·), that satisfies the following.

� ∃1 ∈ G such that ∀x ∈ G, 1 · x = x · 1 = x

� ∀x ∈ G, ∃y ∈ G such that y · x = x · y = 1

� ∀x, y ∈ G, x · y ∈ G

� · is associative, i.e. ∀x, y, z ∈ G, (x · y) · z = x · (y · z).

When working with groups, often the · is ommitted, and we simply write
xy instead of x · y, where it is understood it is the group operation.
For notation, x−1 represents the inverse of x ∈ G. In other words, x−1 ∈ G
such that x−1x = 1.
It can be shown that x−1 is unique in G.

Proof. Let G be a group. Let x ∈ G. Let y, z ∈ G such that yx = zx = 1.
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Then

xy = 1

z(xy) = z

(zx)y = z

y = z.

Now we move on to define the special type of Markov Chains we’ll be
working with.

Definition (Simple Random Walks). A simple Random Walk is a sequence
of random variables {Xi}i=0, such that for random variables Zi, i ∈ N, satis-
fying P(Zi = 1) = p and P(Zi = −1) = 1− p for a p ∈ (0, 1),

� X0 = 0,

� Xn = Xn−1 + Zn, ∀n ∈ N.

And now, we put them together!

Definition (Groups and random walks). If X is a group, then Q(·) is a
probability distribution on X , such that ∀x, y ∈ X , P (x, y) = Q(x−1y).
Q is called the step distribution.

From here until the end of the chapter, we will assume that X is a finite
Group.

Our first result should help to show that these special types of distribu-
tions vastly simplify everything we are studying, reducing the stationary
distribution in such cases to arguably the simplest form, uniform.

Proposition 47. The distribution π(x) = 1/n, ∀x ∈ X , where n = |X |, is
stationary for every random walk on X where X is a finite group.

Proof. Let P be the transition matrix of the random walk on X . Let y ∈ X .
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Then

(πP )y =
∑
x∈X

π(x)P (x, y)

= (1/n)
∑
x∈X

P (x, y) (by def. of π)

= (1/n)
∑
x∈X

Q(x−1y) (as X is a group)

= (1/n)
∑
z∈X

Q(z) (as X is a group)

= 1/n (as Q is a prob. dis.)

= π(y). (by def. of π)

An important note here is that all finite abelian groups, groups whose
operation is also commutative, can be expressed as the cartesian product of
finite groups of modular integers for some base. In other words, given a finite
abelian group X , ∃r ∈ N, ∃n0, . . . , nr ∈ Z such that X = Z/(n0) × · · · ×
Z/(nr), where Z/(ni) for i ∈ {0, . . . , r} is the integers mod ni.
Furthermore, for abelian groups, we use addition and subtraction signs to
denote the function of the group. So instead of xy, we would write x + y.
Similarly for x−1y, we would write y − x.

We continue with a set of very helpful functions in our discussion of finite
groups, characters.

Definition (Characters). Let X be a finite abelian group, in the form above.
(Here i is the imaginary constant.)
Then ∀m = (m0, . . . ,mr) ∈ X , let χm : X → C such that ∀x ∈ X

χm(x) := exp[2πi(
m0x0

n0

+ · · ·+ mrxr

nr

)].

Proposition 48 (Facts about characters). ∀m, j, x, y ∈ X ,

1. χm(x+ y) = χm(x)χm(y).

2. χm(0) = 1.|χm(x)| = 1.χm(−x) = χm(x).
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3. ⟨χm, χj⟩ = δmj.

4.
∑

m∈X χm(x) = nδx0.

Proof. The first two items can be easily verified using properties of exponents,
Euler’s formula, and trigonometric identities.
Letm, j, x, y ∈ X , such that zi is the ith coordinate of z ∈ X for z = m, j, x, y
and i ∈ {0, . . . , r}.
Using the first two facts and Proposition 47,

⟨χm, χj⟩ =
∑
x∈X

χm(x)χj(x)π(x)

=
∑
x∈X

χx(m)χx(j)(1/n)

= (1/n)
∑
x∈X

χx(m)χx(−j)

= (1/n)
∑
x∈X

χx(m− j).

So if m = j, then

⟨χm, χj⟩ = (1/n)
∑
x∈X

χx(m− j) = (1/n)
∑
x∈X

χx(0) = (1/n)
∑
x∈X

1 = 1.

If m ̸= j, then

⟨χm, χj⟩ = (1/n)
∑
x∈X

χx(m− j)

= (1/n)
∑
x∈X

χx(k)

(where k = m− j ∈ X )

= (1/n)[
∑
x∈X

cos(2π(
k0x0

n0

+ · · ·+ krxr

nr

)) + i
∑
x∈X

sin(2π(
k0x0

n0

+ · · ·+ krxr

nr

))]

= (1/n)[0 + i0] = 0.

So, ⟨χm, χj⟩ = δmj, ∀m, j ∈ X .
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Then for fact 4, notice∑
m∈X

χm(x) =
∑
m∈X

χm(x)χm(0)

(as χm(0) = 1.)

=
∑
m∈X

χm(x)χm(0)

(as 0 = −0, and by item 2. above)

=
∑
m∈X

χx(m)χ0(m)

(by direct computation)

= (n)(1/n)
∑
m∈X

χx(m)χm(0)

= (n)
∑
m∈X

χx(m)χm(0)(1/n)

= (n)
∑
m∈X

χx(m)χm(0)π(m)

(as π(m) = 1/n, ∀m ∈ X is stationary by Proposition 47 )

= nδx0.

(by item 3 above)

Now on to how characters relate to groups and random walks.

Proposition 49. ∀m ∈ X , χmP = EQ(χm)χm = λmχm, where λm =
EQ(χm), Q is the step distribution, and E is the expected value function.
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Proof. Let m ∈ X . Then ∀y ∈ X ,

(χmP )y =
∑
x∈X

χm(x)P (x, y)

=
∑
x∈X

χm(−x)Q(y − x) (by def. of Q)

=
∑
z∈X

χm(z − y)Q(z) (by setting z = y − x, and as it is a group)

=
∑
z∈X

χm(z)χm(−y)Q(z) (by Prop. 48)

=
∑
z∈X

χm(z)χm(y)Q(z) (by Prop. 48)

= χm(y)
∑
z∈X

χm(z)Q(z)

= χm(y)EQ(χm). (by definition of E)

So, as the equality is satisfied for each column, our final equality is satisfied.

This Proposition shows us that for each m ∈ X , χm is an eigenvector of
P for the eigenvalue EQ(χm).
This and the fact that {χm}m∈X is an orthonormal basis in L2(π), gives us
the following result.

Theorem 50. For any random walk on any finite abelian group, ||µk−π|| ≤
1
2

√∑n−1
j=1 |λj|2k ≤ (

√
n− 1/2)(λ∗)

k. In particular, λj = EQ(χj).

Proof. As {χm}m∈X is an orthonormal basis for L2(π) by Proposition 48, so
too must {χm}m∈X be an orthonormal basis for L2(π). And by Proposition
49 as each is also an eigenvector, P must be diagonalizable.
Notice further that EQ(χm) < 1, ∀m ̸= 0, and EQ(χ0) = 1.
So as λj = EQ(χj) by Proposition 49, by Lemma 7,

∑
x∈X |µk(x)−π(x)|2π(x) =∑n−1

j=1 |aj|2|λj|2k.
Now as we are working with a random walk on a finite group, by Proposition
47, π(x) = 1/n, ∀x ∈ X .
Notice that in Theorem 6 and Lemma 7 as π = a0v0, we get that a0v0(x) =
1/n, ∀x ∈ X .
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So, v0 is the vector such that v0(x) = 1/(a0n), ∀x ∈ X . So, as the only
character satisfying this condition is χ0, we get that v0 = χ0. So, a0 = 1/n.
So, as π(x) = 1/n = aj, ∀j ∈ {1, . . . , n− 1},

∑
x∈X

|µk(x)− π(x)|2(1/n) =
n−1∑
j=1

|(1/n)|2|λj|2k

∑
x∈X

|µk(x)− π(x)|2 = (1/n)
n−1∑
j=1

|λj|2k.

Let u = (1, . . . , 1) ∈ Rn. Then, as ||µk − π|| = 1
2

∑
x∈X |µk(x)− π(x)| as X is

finite,

(2||µk − π||)2 = (
∑
x∈X

|µk(x)− π(x)|)2

= |(u · |µk − π|)|2

(where · is the inner product s.t. u · v =
∑
x∈X

u(x)v(x))

≤ (u · u)(|µk − π| · |µk − π|)
(by the Cauchy-Schwarz inequality)

= (
∑
x∈X

1)(
∑
x∈X

|µk(x)− π(x)|2)

= n
∑
x∈X

|µk(x)− π(x)|2

= (n)(1/n)
n−1∑
j=1

|λj|2k

=
n−1∑
j=1

|λj|2k

≤
n−1∑
j=1

|λ∗|2k

= (n− 1)|λ∗|2k.
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So, taking square root and dividing by two,

||µk − π|| ≤ 1

2

√√√√n−1∑
j=1

|λj|2k ≤ (
√
n− 1/2)(λ∗)

k.

Remark. Note that in Markov Chains, Eigenvalues and Coupling by Jeffrey

Rosenthal, the above theorem is presented as ||µk − π|| ≤ 1
2

√∑n−1
j=1 |λj|2k ≤

(
√
n/2)(λ∗)

k, though as we found in the above, the slightly stronger inequality,
with

√
n− 1/2 holds.

So Group space states and RandomWalks give us an easy and clear upper
bound on the variation distance between the random walk, and the uniform
stationary distribution.

11 Coupling and Uniform Minorization Con-

ditions

Stepping away from linear algebra and towards general state spaces, in this
chapter we use coupling to attain bounds on the total variation distance of
not only finite state space Markov Chains, but of General stat space Markov
Chains.

We start with a fact that will be the basis for the idea of coupling.

Proposition 51. Let X and Y be two random variables defined on the state
space X , with probability distributions L(X) and L(Y ) respectively. Then
||L(X)− L(Y )|| ≤ P(X ̸= Y ).

Proof.

||L(X)− L(Y )|| : = supA⊆X |P(X ∈ A)− P(Y ∈ A)|
= supA⊆X |P(X ∈ A,X = Y ) + P(X ∈ A,X ̸= Y )

− P(Y ∈ A,X = Y )− P(Y ∈ A,X ̸= Y )|
= supA⊆X |P(X ∈ A,X ̸= Y )− P(Y ∈ A,X ̸= Y )|

(as if X = Y , then X,Y ∈ A)

≤ P(X ̸= Y ).

57



So. given a Markov Chain {Xi}i=0 with transition kernel P (·, ·), state
space X , and initial distribution µ0, if we find another Markov Chain {(Xi, Yi)}i=0

on the state space X × X where

� ∀i ∈ N, Xi, Yi follow the transition kernel P (·, ·),

� X0 ∼ µ0,

� Y0 ∼ π where π is a stationary distribution,

� there exists a random variable T such that ∀k ∈ N such that k ≥ T ,
Xk = Yk,

then ||µk − π|| ≤ P(T > k). T is called the coupling time, and any Markov
Chain with these properties is called a coupling.
We shall see how in the following:

Theorem 52. Let there be Markov Chains as in the above statement. Then
||µk − π|| ≤ P(T > k).

Proof. As {Xi}i=0 follows the transition kernel P (·, ·), ∀k ∈ N, L(Xk) = µk

by definition of µk.
As {Yi}i=0 follows the same transition kernel, and starts at the stationary
distribution π, ∀k ∈ N, L(Yk) = π as π is stationary.
So, ||µk −π|| = ||L(Xk)−L(Yk)|| ≤ P(Xk ̸= Yk) ≤ P(T > k), by Proposition
51 and as ∀k ≥ T , Xk = Yk.

We can use coupling to find bounds on the variation distance with the
stopping time, T , however finding such a coupling is not always easy.

We now define and use a condition which we can use to find such a cou-
pling.

Definition (Uniform Minorization Conditions). A minorization condition
for a Markov Chain is the existence of a β ∈ (0, 1] and a probability distri-
bution on X , ζ, such that ∃k0 ∈ N such that for every x ∈ X and for every
measurable subset A ⊆ X ,

P k0(x,A) ≥ βζ(A).
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This Uniform Minorization Condition gives us a coupling to produce the
following.

Theorem 53. Given a Markov Chain on a state space X with transition
kernel P (·, ·), if there exists β ∈ (0, 1] and a probability distribution ζ on
X such that P (x,A) ≥ βζ(A) for all x ∈ X and all measurable subsets
A ⊆ X , then given any initial distribtution µ0 and any stationary distribution
π, ||µk − π|| ≤ (1− β)k.

Proof. Let X be a state space, P (·, ·) be a transition kernel on X , µ0 a
probability distribution on X , and π be a stationary distribution on X .
Let β ∈ (0, 1] and ζ be a probability distribution on X such that ∀x ∈ X
and for all measurable subsets A ⊆ X , P (x,A) ≥ βζ(A).
Let {(Xi, Yi)}i=0 be a Markov Chain as follows.
Let X0 ⊥⊥ Y0 (X0 be independent from Y0) such that X0 ∼ µ0 and Y0 ∼ π.
Then let {Wi}i=1 be a sequence of i.i.d. random variables such that P(Wi =
1) = β, and P(Wi = 0) = 1− β, ∀i.
Then ∀k ∈ N, if Wk = 1, choose z ∈ X randomly by ζ, and set z = Xk = Yk.
So, P(Xk ∈ A|Wk = 1) = ζ(A), and similarly for Yk.
If Wk = 0, then pick Xk and Yk such that Xk ⊥⊥ Yk, and

P(Xk ∈ A) =
P (Xk−1, A)− βζ(A)

1− β
,P(Yk ∈ A) =

P (Yk−1, A)− βζ(A)

1− β
.

Notice we can only do this because we know P (x,A) ≥ βζ(A), ∀x ∈ X and all

measureable subsets A ⊆ X , as this ensures P(Xk ∈ A) = P (Xk−1,A)−βζ(A)

1−β
≥

0, ∀k ∈ N, and similarly for {Yi}i=0.
So for X0 as well as Y0,

P(Xk ∈ A|Wk = 0) =
P (Xk−1, A)− βζ(A)

1− β
.

Then, ∀k ∈ N,

P(Xk ∈ A|Xk−1) = P(Wk = 1)P(Xk ∈ A|Wk = 1) + P(Wk = 0)P(Xk ∈ A|Wk = 0)

= P(Wk = 1)ζ(A) + P(Wk = 0)
P (Xk−1, A)− βζ(A)

1− β

= βζ(A) + (1− β)
P (Xk−1, A)− βζ(A)

1− β

= P (Xk−1, A).
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Similary for Yk, P(Yk ∈ A|Yk−1) = P (Yk−1, A).
Let T be the first k such that Wk = 1.
Then define a new Markov Chain {(Xi, Zi)}i=0 on X × X , such that

Zk =

{
Yk, if k < T

Xk, if k ≥ T
.

Then

P(Zk ∈ A|Zk−1) = P(T > k)P(Xk ∈ A|Xk−1) + P(T ≤ k)P(Yk ∈ A|Yk−1)

= P(T > k)P (Xk−1, A) + P(T ≤ k)P (Yk−1, A)

= P(T > k)P (Zk−1, A) + P(T ≤ k)P (Zk−1, A)

(as when T ≤ k, Zk−1 = Yk−1, and when T > k, Zk−1 = Xk−1)

= P (Zk−1, A).

So, as X0 ∼ µ0, Z0 ∼ π, P(Xk ∈ A|Xk−1) = P (Xk−1, A), P(Zk ∈ A|Zk−1) =
P (Zk−1, A), and ∀k ≥ T , Xk = Zk, the Markov Chain {(Xk, Zk)}i=0 is a
coupling as defined earlier.
So by Theorem 52,

||µk − π|| ≤ P(T > k)

= P(W1, . . . ,Wk = 0)

= P(W1 = 0) · · ·P(Wk = 0)

= (P(W1 = 0))k = (1− β)k.

This theorem gives us a bound on the variation distance of any Markov
Chain that satisfies a uniform minorization condition, restricted to the first
step. Later the result will be generalized to any uniform minorization condi-
tion without too much trouble.

But for now, let us go back to the finite case. The above theorem allows
us to require only a column of the matrix P to be greater than zero in order
to find a bound.

Proposition 54. Given a Markov Chain {Xi}i=0 on a finite state space X
with transition kernel P (·, ·) and transition matrix P , if a column of P has
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all positive entries, then the Markov Chain satisfies P (x,A) ≥ βζ(A) for
some β ∈ (0, 1] and probability distribution on X , ζ, for every x ∈ X and for
every measureable subset A ⊆ X .

Proof. Let i ∈ {0, . . . , n−1} be the column such that all entries are positive,
and let y = xi.
Then let ζ : X → [0, 1] such that ∀x ∈ X , ζ(x) = δyx.
Then obviously ζ is a probability distribution on X .
Furthermore, as P (x, y) > 0, ∀x ∈ X , let β ∈ (0,minx∈XP (x, y)].
Let A be any subset of X .
Then if y ∈ A, then βζ(A) = β

∑
x∈X ζ(x) = β.

So, ∀x ∈ X , P (x,A) =
∑

z∈A P (x, z) ≥ P (x, y) ≥ β = βζ(A), by construc-
tion of β.
If y /∈ A, then βζ(A) = β

∑
z∈A ζ(z) = 0.

So, ∀x ∈ X , P (x,A) ≥ 0 = βζ(A).

So, given any Markov Chain on a finite state space X , if P has a column
of positive entries, then the total variation distance is bounded by (1 − β)k,
for some β ∈ (0, 1].

Now we show why β =
∫
X infx∈XP (x, dy) is the largest beta we can use.

Proposition 55. The largest such β that can be used is β =
∫
X infx∈XP (x, dy).

Proof. First we show such a β satisfies the condition.
Let β =

∫
X infx∈XP (x, dy). Let ζ be a function such that for every measurable

subset A ⊆ X ,

ζ(A) =

∫
A
infx∈XP (x, dy)∫

X infx∈XP (x, dy)
.

Notice that ζ(X ) = 1, ζ(∅) = 0, and for every measurable subset A ⊆ X
ζ(A) ≥ 0.
So by the linearity of integrals, ζ is a probability distribution on X .
Then ∀x ∈ X and for every measurable subset A ⊆ X ,

P (x, dy) ≥ infj∈XP (j, dy) (by def. of inf)∫
A

P (x, dy) ≥ [

∫
A

infj∈XP (j, dy)]

∫
X infx∈XP (x, dy)∫
X infx∈XP (x, dy)

(by monotonicity of integration)

P (x,A) ≥βζ(A). (by definitions)
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So β =
∫
X infx∈XP (x, dy) satisfies the inequality.

Now let β′ ∈ (0, 1] and let ζ ′ be another probability distribution on X such
that β′ζ ′(A) ≤ P (x,A) for every x ∈ X and for every measureable subset
A ⊆ X . Then notice

β′ =

∫
X
infx∈Xβ

′ζ ′(dy)

(as β′ and ζ ′ don’t depend on x, and

∫
X
ζ ′(dy) = 1 as ζ ′ is a prob. dis.)

≤
∫
X
infx∈XP (x, dy).

(by assumption)

So every β that satisfies this uniform minorization condition is less than or
equal to

∫
X infx∈XP (x, dy), making it the maximum.

We now prove that the total variation distance is non-increasing, in efforts
to generalize Theorem 53. Note here we only present the finite case, but the
following Proposition holds for general state space chains as well.

Proposition 56. The distance to stationarity is weakly decreasing. I.e. for
any Markoc chain P and any k ≥ 0, if π is a stationary distribution of P ,
then ||µk+1 − π|| ≤ ||µk − π||. (Finite case)

Proof. Let k ≥ 0.
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As X is finite,

||µk+1 − π||var =
1

2

∑
x∈X

|µk+1(x)− π(x)|

(by Proposition 1)

=
1

2

∑
x∈X

|
∑
y∈X

P (y, x)µk(y)−
∑
y∈X

P (y, x)π(y)|

(as X is discrete and π is a stationary distribution)

=
1

2

∑
x∈X

|
∑
y∈X

P (y, x)(µk(y)− π(y))|

≤ 1

2

∑
x∈X

∑
y∈X

P (y, x)|µk(y)− π(y)|

(by the triangle inequality)

=
1

2

∑
y∈X

∑
x∈X

P (y, x)|µk(y)− π(y)|

=
1

2
|
∑
y∈X

|µk(y)− π(y)|(
∑
x∈X

P (y, x))

=
1

2
|
∑
y∈X

|µk(y)− π(y)|

(as
∑
x∈X

P (y, x)) = 1)

= ||µk − π||var.

Theorem 57 (Generalization of convergence given uniform minorization
conditions (Ex 6)). Given a Markov Chain with state space X , transition
kernel P (·, ·), any initial distribution µ0 and any stationary distribution π, if
there exists β > 0 and a probability distribution ζ on X such that for every
x ∈ X and for every measurable subset A ⊆ X , P k0(x,A) ≥ βζ(A) for some
k0 ∈ N, then ||µk−π|| ≤ (1−β)⌊k/k0⌋, where ⌊k/k0⌋ is the largest integer not
surpassing k/k0.

Proof. Let k0 ∈ N+, µ0 be an initial disrtibution, and π be a stationary
distribution.

63



Let X0 ∼ µ0 and Y0 ∼ π such that X0 ⊥⊥ Y0.
Let {Wi}i=1 be a sequence of i.i.d. random variables such that P(Wk = 1) = β
and P(Wk = 0) = 1− β ∀k ∈ N+.
Then ∀k ∈ N such that k0 ∤ k, choose Xk such that P(Xk ∈ A|Xk−1) =
P (Xk−1, A) for every measurable subset A ⊆ X . Choose Yk similarly.
Then ∀k ∈ N+ such that k0|k, choose Xk and Yk such that
if Wk/k0 = 1, choose a z ∈ X according to ζ, so Xk = Yk = z, so P(Xk ∈
A|Wk/k0 = 1) = ζ(A), and similarly for Yk,
and if Wk/k0 = 0, then choose Xk and Yk such that for any measurable subset
A ⊆ X ,

P(Xk ∈ A) =
P k0(Xk−k0 , A)− βζ(A)

1− β
,P(Yk ∈ A) =

P k0(Yk−k0 , A)− βζ(A)

1− β
,

so P(Xk ∈ A|Wk/k0 = 0) =
Pk0 (Xk−k0

,A)−βζ(A)

1−β
, and similarly for Yk.

Then ∀k ∈ N+ such that k0|k, P(Xk ∈ A|Xk−k0) = P(Wk/k0 = 1)P(Xk ∈
A|Wk/k0 = 1) + P(Wk/k0 = 0)P(Xk ∈ A|Wk/k0 = 0) = βζ(A) + (1 −
β)

Pk0 (Xk−k0
,A)−βζ(A)

1−β
= P k0(Xk−k0 , A).

So P(Xk ∈ A|Xk−k0) = P k0(Xk−k0 , A), and similarly for Yk.
As after Xk−k0 , Xj−k0 gets updated by P (·, ·) for k ≤ j < k, and P(Xk ∈
A|Xk−k0) = P k0(Xk−k0 , A) for every measurable set A ⊆ X , it follows that
P(Xk ∈ A|Xk−1) = P (Xk, A), and similarly for Yk.
So, let T be the first k ∈ N such that Wk = 1.
Then let {(Xk, Zk)}i=0 be the Markov Chain on X × X such that ∀k ∈ N,

Zk =

{
Yk, if k < T

Xk, if k ≥ T
.

Then

P(Zk ∈ A|Zk−1) = P(T > k)P(Xk ∈ A|Xk−1) + P(T ≤ k)P(Yk ∈ A|Yk−1)

= P(T > k)P (Xk−1, A) + P(T ≤ k)P (Yk−1, A)

= P(T > k)P (Zk−1, A) + P(T ≤ k)P (Zk−1, A)

(as when T ≤ k, Zk−1 = Yk−1, and when T > k, Zk−1 = Xk−1)

= P (Zk−1, A).

So, as X0 ∼ µ0, Z0 ∼ π, P(Xk ∈ A|Xk−1) = P (Xk−1, A), P(Zk ∈ A|Zk−1) =
P (Zk−1, A), and ∀k ≥ T , Xk = Zk, the Markov Chain {(Xk, Zk)}i=0 is a
coupling as defined earlier.
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So by Theorem 52, ||µk −π|| ≤ P(T > k) = P(W1, . . . ,Wk/k0 = 0) = P(W1 =
0) . . .P(Wk/k0 = 0) = (P(W1 = 0))k/k0 = (1− β)k/k0 .
For k ∈ N such that k0 ∤ k, by Proposition 56, as the largest integer multiple
of k0 not exceeding k, ⌊k/k0⌋, satisfies ||µ⌊k/k0⌋ − π|| ≤ (1 − β)⌊k/k0⌋, as
k ≥ ⌊k/k0⌋, and Xj such that ⌊k/k0⌋ ≤ j ≤ k get updated by P (·, ·),
||µk − π|| ≤ ||µ⌊k/k0⌋ − π|| ≤ (1− β)⌊k/k0⌋.

12 Bounds on the Total Variation Distance

of Finite Product Measures

For this section, let X1 and X2 be finite state spaces. Let X = X1 ×X2.
Let µ1 and v1 be probability distributions on X1, and let µ2 and v2 be prob-
ability distributions on X2.
Let µ1×µ2 be the probability distribution on X such that (µ1×µ2)(x, y) :=
µ1(x)µ2(y), ∀(x, y) ∈ X , and similarly let v1 × v2 be the probability distri-
bution on X such that (v1 × v2)(x, y) := v1(x)v2(y), ∀(x, y) ∈ X

Proposition 58 (Upper Bound).

||µ1 − v1||var + ||µ2 − v2||var ≤ 2||µ1 × µ2 − v1 × v2||var.

Proof. As X1 and X2 are finite sample spaces,

||µ1 − v1||var + ||µ2 − v2||var =
1

2
(
∑
x∈X1

|µ1(x)− v1(x)|+
∑
y∈X2

|µ2(y)− v2(y)|).
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So,

1

2
(
∑
x∈X1

|µ1(x)− v1(x)|+
∑
y∈X2

|µ2(y)− v2(y)|)

=
1

2
(
∑
x∈X1

|
∑
y∈X2

µ1(x)µ2(y)−
∑
y∈X2

v1(x)v2(y)|+
∑
y∈X2

|
∑
x∈X1

µ1(x)µ2(y)−
∑
x∈X1

v1(x)v2(y)|)

(as they are probability distributions, so 1 =
∑
s∈S

µ(s))

=
1

2
(
∑
x∈X1

|
∑
y∈X2

(µ1(x)µ2(y)− v1(x)v2(y))|+
∑
y∈X2

|
∑
x∈X1

(µ1(x)µ2(y)− v1(x)v2(y))|)

≤ 1

2
(
∑
x∈X1

∑
y∈X2

|µ1(x)µ2(y)− v1(x)v2(y)|+
∑
y∈X2

∑
x∈X1

|µ1(x)µ2(y)− v1(x)v2(y)|)

(by the triangle inequality)

=
1

2
(
∑

(x,y)∈X

|µ1(x)µ2(y)− v1(x)v2(y)|+
∑

(x,y)∈X

|µ1(x)µ2(y)− v1(x)v2(y)|)

(grouping sums)

= (2)(
1

2
)

∑
(x,y)∈X

|µ1(x)µ2(y)− v1(x)v2(y)|

= 2||µ1 × µ2 − v1 × v2||var.

Proposition 59 (Lower Bound).

||µ1 × µ2 − v1 × v2||var ≤ ||µ1 − v1||var + ||µ2 − v2||var.

Proof. As X1 and X2 are finite state spaces, X1 × X2 = X is a finite state
space.
So, as X is a finite state space, ||µ1×µ2−v1×v2||var = 1

2

∑
(x,y)∈X |µ1(x)µ2(y)−

v1(x)v2(y)|.
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So,

1

2

∑
(x,y)∈X

|µ1(x)µ2(y)− v1(x)v2(y)|

=
1

2

∑
(x,y)∈X

|µ1(x)µ2(y)− µ1(x)v2(y) + µ1(x)v2(y)− v1(x)v2(y)|

=
1

2

∑
(x,y)∈X

|µ1(x)(µ2(y)− v2(y)) + v2(y)(µ1(x)− v1(x))|

≤ 1

2

∑
(x,y)∈X

(|µ1(x)(µ2(y)− v2(y))|+ |v2(y)(µ1(x)− v1(x))|

(by the triangle inequality)

=
1

2
(
∑

(x,y)∈X

|µ1(x)(µ2(y)− v2(y))|+
∑

(x,y)∈X

|v2(y)(µ1(x)− v1(x))|)

=
1

2
(
∑

(x,y)∈X

µ1(x)|µ2(y)− v2(y)|+
∑

(x,y)∈X

v2(y)|µ1(x)− v1(x)|)

(as µ ≥ 0 as a prob. dis.)

=
1

2
(
∑
y∈X2

∑
x∈X1

µ1(x)|µ2(y)− v2(y)|+
∑
x∈X1

∑
y∈X2

v2(y)|µ1(x)− v1(x)|)

=
1

2
(
∑
y∈X2

|µ2(y)− v2(y)|+
∑
x∈X1

|µ1(x)− v1(x)|)

(as
∑
s∈S

µ = 1 as prob. dis.)

= ||µ1 − v1||var + ||µ2 − v2||var.

Combining these bounds, we get the following.

Theorem 60.

||µ1×µ2−v1×v2||var ≤ ||µ1−v1||var+ ||µ2−v2||var ≤ 2||µ1×µ2−v1×v2||var.

Examples.
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1. Trivial Example: X1 = {x11, . . . , x1n}, X2 = {x21, . . . , x2m}, µ1 and v1
are probability distributions on X1 such that µ1(x) = v1(x), ∀x ∈ X1,
and µ2 and v2 are probability disrtibutions on X2 such that µ2(x) =
v2(x), ∀x ∈ X2. Then

||µ1×µ2−v1×v2|| = ||µ1−v1||+ ||µ2−v2|| = 2||µ1×µ2−v1×v2|| = 0.

2. X1 = X2 = {a, b}, µ1 = µ2 = (1, 0), v1 = v2 = (0, 1). Then

1 = ||µ1×µ2−v1×v2|| = ||µ1−v1||+||µ2−v2|| < 2||µ1×µ2−v1×v2|| = 2.

3. X1 = X2 = {a, b}, µ1 = µ2 = (3/4, 1/4), v1 = v2 = (1/4, 3/4). Then

1/2 = ||µ1×µ2−v1×v2|| < ||µ1−v1||+||µ2−v2|| = 2||µ1×µ2−v1×v2|| = 1.

4. X1 = {x11, x12}, X2 = {x21, x22, x23}, µ1 = (3/4, 1/4), v1 = (1, 0),
µ2 = (1/3, 1/3, 1/3), v2 = (1/3, 0, 2/3). Then

||µ1 × µ2 − v1 × v2|| = 11/24 <

||µ1 − v1||+ ||µ2 − v2|| = 1/4 + 1/3 = 7/12 <

2||µ1 × µ2 − v1 × v2|| = 11/12.

13 Appendix

Lemma 61. If a finite state space Markov Chain is indecomposable and
aperiodic, then ∀x, y ∈ X , ∃kx ∈ N such that ∀k ≥ kx, P

k(x, y) > 0.

Proof. Let x, y ∈ X . Let Sx = {k ∈ N : P k(x, x) > 0}.
As the Markov Chain is aperiodic, by definition gcd(Sx) = 1.
As gcd(Sx) = 1, by the Euclidean Algorithm, ∃m ∈ N, a0, . . . , am ∈ Z, and
s0, . . . , sm ∈ Sx such that 1 = a0s0 + · · ·+ amsm.
Let M = |a0|s0 + · · · + |am|sm. Let p ∈ Sx, and let q ∈ N such that
P q(x, y) > 0 (guaranteed by irreducibility).
Then let kx = pM + q. Then let k ∈ N such that k ≥ kx.
Then let c ∈ N such that c is the largest integer such that p|c and c ≤ k− q.
Then k = pc+ q + r, where 0 ≤ r < p (think of as a remainder), and c ≥ M
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(as k ≥ kx, and if k = kx, then c = M).
So,

k = pc+ q + r

= pc− pM + pM + r(
m∑
i=0

aisi) + q (as
m∑
i=0

aisi = 1)

= p(c−M) + p(
m∑
i=0

|ai|si) + r(
m∑
i=0

aisi) + q (by def. of M)

= p(c−M) +
m∑
i=0

[(p|ai|+ rai)si] + q.

Using the fact for any i > 1 and any i > j ≥ 1, P i(x, y) =
∑

x∈X P j(x, x)P i−j(x, y),

P k(x, y) ≥ (P p(x, x))(c−M)[
m∏
i=0

(P si(x, x))(p|ai|+rai)](P q(x, y)) > 0.

As k is arbitrary except that k ≥ kx, the result is proven.

Lemma 62. If P is irreducible and reversible wrt π, then λi < 1 for every
i ∈ {1, . . . , n− 1}.

Proof. By Proposition 4, λi ≤ 1 for every i.
So assume for a contradiction that λ1 = 1. As P is reversible, by Lemma 11,
P is diagonalizable.
As P is diagonalizable, and λ0 = λ1 = 1, the eigenspace of 1, E(1), has at
dimension at least 2.
So, as π is a stationary distribution, πP = π. (This is because for 0 ≤ j ≤
n− 1, πj =

∑n−1
i=0 π(xi)P (xi, xj) = (πP )j).

So, ∃v ∈ RX such that {π, v} is linearly independent and span({π, v}) ⊆
E(1).
As π(y) > 0, ∀y ∈ X by Proposition 9, let M ∈ R such that Mπ(x) > |v(x)|,
∀x ∈ X .
Then let w ∈ RX such that w = Mπ + v, so w(x) > 0, ∀x ∈ X . Now let
µ : 2X → R such that

µ(A) =

∑
x∈A w(x)∑
x∈X w(x)

, ∀A ∈ 2X .
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Notice that µ is now a probability distribution on X .
Let C = 1/[

∑
x∈X w(x)]. Then notice

µP = (Cw)P = C(Mπ + v)P = C(M(πP ) + vP ) = C(Mπ + v) = Cw = µ,

so µ is also a stationary distribution.
And as µ = Cw = C(Mπ + v), and v and π are linearly independent, µ and
π are linearly independent, and hence not equal.
But, as P is an irreducible Markov Chain, P can have at max one stationary
distribution, and thus we have arrived at a contradiction.

If instead of wanting to believe that an irreducible Markov Chain has
at most one stationary distribution, we can instead introduce the Perron-
Frobenius Theorem for non-negative matrices, in order to show Lemma 62.

Theorem 63 (Perron-Frobenius). If X ∈ Mn×n(R) such that each entry of
X is non-negative, and X is irreducible, then the maximum eigenvalue of
X, call it λ0, satisfies λ0 ≥ |λ| for all other eigenvalues λ of X, and λ0 has
algebraic multiplicity one.

Easier proof of Lemma 62.

Proof. As P is irreducible, nonnegative, square, and only has real entries,
by Perron-Frobenius, the max eigenvalue, which by Proposition 3 and 4 is
λ0 = 1, has algebraic multiplicity one. As P is reversible, it is diagonalizable,
and thus λ0 also has geometric multiplicity equal to one.
So for every other eigenvalue λ of P , as |λ| ≤ λ0 and λ ̸= λ0 as it has
multiplicity one, λ < λ0 = 1.
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