
Rejection-Free and Partial Neighbor Search MCMC Algorithms

by

Sigeng Chen

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Department of Statistical Science
University of Toronto

© Copyright 2023 by Sigeng Chen

Rejection-Free and Partial Neighbor Search MCMC Algorithms

Sigeng Chen
Doctor of Philosophy

Department of Statistical Science
University of Toronto

2023

Abstract

The Metropolis algorithm [39], [59] involves producing a Markov chain to converge in distribution

to a specified target density π. To improve its efficiency, we can use the Rejection-Free version

of the Metropolis algorithm, which avoids the inefficiency of rejections by evaluating all neighbors.

Rejection-Free can be made more efficient through parallel hardware. However, for some specialized

hardware, such as Digital Annealing Unit [57], the number of neighbors being considered at each

step is limited. Hence, we propose an enhanced version of Rejection-Free known as Partial Neighbor

Search, which only considers a portion of the neighbors. Partial Neighbor Search can be applied

efficiently despite the number of neighbors. Especially for continuous cases with uncountable many

neighbors, Partial Neighbor Search can be applied easily and samples efficiently while Rejection-Free

is not feasible, and the Metropolis algorithm is slow. Both algorithms can be used in many other

circumstances as well, such as the optimization question. In combinatorial optimization, Simulated

Annealing using Metropolis steps at decreasing temperatures are widely used to solve complex

problems [47]. In order to improve its efficiency, we can also use the Rejection-Free version of the

Metropolis algorithm, which avoids the inefficiency of rejections by considering all the neighbors at

every step. In addition, in optimization questions, Partial Neighbor Search can not only be helpful

when being applied on parallel hardware, but it can also avoid the algorithm from becoming stuck

in local extreme areas, and thus Partial Neighbor Search for optimization finds the optimal solution

much faster than the other two algorithms. For both sampling and optimization, we demonstrate

the superior performance of the Rejection-Free and Partial Neighbor Search algorithms by applying

these methods to several examples, such as the Ising mode, the QUBO question, the Knapsack

problem, the 3R3XOR problem, the quadratic programming, etc.

ii

To my parents.

iii

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Professor Jeffrey S.

Rosenthal, for his invaluable guidance, mentorship, and support throughout my studies. Professor

Rosenthal provided me with a relaxed and stimulating research environment, allowing me to pursue

my interests and develop as a researcher. His insightful comments and suggestions have significantly

improved the quality of my work.

I would also like to extend my sincere thanks to Professor Ali Sheikholeslami and Professor

Michael Evans, both of whom served as members of my thesis committee. Their comments, feedback,

and suggestions were instrumental in shaping the direction and content of this thesis.

I would like to express my deepest appreciation to my parents, Haiyan Chen and Sujuan Zhang,

for their unwavering love and support throughout my academic journey. Their encouragement and

guidance have been invaluable in helping me overcome obstacles and achieve my goals.

I am also grateful to my peers, Miaoshiqi Liu, Siyue Yang, and Kevin Zhang, for their friendship,

support, and collaboration throughout my Ph.D. program. Together, we shared ideas, discussed our

research, and worked hard to achieve our goals.

I would like to express my heartfelt thanks to my close friends, including Jiayi Liu, Zihan Chen,

Xingyu Zhang, Fanzhe Meng, and others, for their emotional support, entertainment, and care.

Their presence in my life has made my journey more colorful and enjoyable.

Finally, I would like to acknowledge the financial support provided by Fujitsu Ltd. and Fujitsu

Consulting (Canada) Inc., and thank Professor Sheikholeslami for arranging the meetings between

us and the Fujitsu team. I am grateful to Hirotaka Tamura and Aki Dote for their engineering

insights and great ideas.

Thank you all for your contributions and support in making this thesis possible.

iv

Contents

1 Introduction 1

2 Background Review 5

2.1 Markov chain Review . 5

2.1.1 Markov Chain Definitions . 5

2.1.2 Recurrence and Transience . 7

2.1.3 Markov Chain Convergence . 9

2.2 Monte Carlo method Review . 13

2.3 Markov chain Monte Carlo Review . 14

2.3.1 Hybrid Chains . 16

2.3.2 Parallel Tempering . 16

2.4 Parallel Computing Review . 19

3 Jump Markov chains and Rejection-Free Metropolis algorithm 20

3.1 The Uniform Selection Algorithm . 20

3.2 The Jump Chain . 22

3.3 Using the Jump Chain for Estimation . 26

3.4 Application to the Metropolis-Hastings Algorithm 28

3.5 Hybrid Chains . 29

3.6 Application to Parallel Tempering . 31

3.7 Numerical Examples . 32

3.7.1 A Bayesian Inference Problem with Real Data 32

3.7.2 Apply Rejection-Free to the Ising model . 34

3.7.3 Extend Rejection-Free to Pseudo-marginal Metropolis-Hastings 37

3.8 A Efficient Method to Sample Proportionally . 37

4 Sampling via Partial Neighbor Search 40

4.1 Basic Partial Neighbor Search algorithm . 40

4.2 Unbiased Partial Neighbor Search algorithm . 44

4.2.1 Hybrid Chains for Partial Neighbor Search 44

4.3 Application to QUBO model . 46

4.4 Continuous Models and the Donuts Example . 47

4.5 Convergence Theorem . 52

4.6 QUBO Revisited: Choices for the Partial Neighbors 56

v

4.6.1 Systematic Or Random . 56

4.6.2 The choice of the Partial Neighbor Sets sizes 58

4.6.3 The choice of L0 . 58

4.6.4 The choice of L0 when the Partial Neighbor Sets have different sizes 61

4.6.5 The choice of Partial Neighbor Sets sizes given L0 63

4.6.6 Two Flips . 66

4.7 Use the information of QUBO matrix . 69

4.8 Irreversible Assumptions for Partial Neighbor Sets 74

4.9 Combine PNS with other MCMC Techniques . 77

4.9.1 Multiple Try Metropolis . 77

4.9.2 Barker’s Rule . 78

5 Optimization via Rejection-Free and Partial Neighbor Search 80

5.1 Optimization questions and Simulated Annealing Review 80

5.2 Rejection-Free algorithm for optimization . 81

5.3 Partial Neighbor Search for Optimization . 83

5.4 Application to the QUBO question . 84

5.5 Understanding the improvement of PNS . 86

5.6 Optimal subset choice for Partial Neighbor Search 88

5.7 Comparison with Tabu Rejection-Free algorithm . 89

5.8 Application to Knapsack problem . 91

5.9 Application to 3R3XOR problem . 93

5.10 Application to Continuous State Space . 98

5.11 Burn-In by Partial Neighbor Search . 100

6 Conclusion 102

A Notation Used and Their Meanings 104

Bibliography 105

vi

List of Tables

2.1 Number of steps needed for Markov chains with and without parallel tempering to

get good samples . 18

3.1 Median of Effective Sample Sizes from 100 Runs each of the Metropolis and Rejection-

Free algorithms . 33

3.2 Average time used for each iteration of MCMC in four scenarios: Metropolis and

Rejection-Free, both with and without Parallel Tempering 36

3.3 Median of Normalized Effective Sample Sizes for four scenarios: Metropolis and

Rejection-Free, both with and without Parallel Tempering 37

vii

List of Figures

2.1 The Traveling Merchant, a starting example for the Markov chain 6

3.1 The transition probabilities from the Metropolis chain in Example 7 21

3.2 The transition probabilities from the Uniform Selection chain in Example 7 22

3.3 The transition probabilities from the Metropolis chain in Example 8 23

3.4 The transition probabilities from the Uniform Selection chain in Example 8 23

3.5 Average of total variation distance between sampled and actual distributions as a

function of the number of iterations for four scenarios: Metropolis versus Rejection-

Free without Parallel Tempering (left) and with Parallel Tempering (right) 35

3.6 Average of total variation distance between sampled and actual distributions as a

function of the average of time cost in four scenarios: Metropolis versus Rejection-

Free without Parallel Tempering (left) and with Parallel Tempering (right) 36

3.7 Average of total variation distance between sampled and actual distributions as a

function of the number of iterations for probability with noise Gamma(10, 10) in four

scenarios: Metropolis versus Rejection-Free without Parallel Tempering (left) and

with Parallel Tempering (right) . 38

4.1 Diagram of Example 1 showing non-convergence property of the Basic PNS. 42

4.2 Diagram of Example 2 showing non-convergence property of the Basic PNS. 43

4.3 Average values of TVD between samples and the target density π for Example 2 as

a function of average CPU time in seconds for four scenarios: Rejection-Free and

Basic PNS with three different Partial Neighbor Set sizes. Each dot within the plot

represents the result of the average TVD value and average CPU time in seconds

from 1000 simulation runs given a certain original sample size, where the sizes are

{50, 100, 150, 200, . . . , 500, 1000, 1500, 2000, . . . , 7500}. 44

viii

4.4 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for three methods:

Metropolis algorithm, Rejection-Free, and Unbiased PNS. We used an upper triangu-

lar 16×16 QUBO matrix, generated randomly by Qi,j ∼ N(0, 102) for upper triangu-

lar elements. Each dot within the plot represents the result of the average TVD value

and time used for 1000 simulation runs given certain original sample sizes. The orig-

inal sample sizes for the Metropolis algorithm are {100, 200, 400, 800, . . . , 1024000}.
The original samples from Rejection-Free are 40x more than those from Metropolis,

and the original samples from Unbiased PNS are 30x more than those from Metropo-

lis. We choose these sizes to get a close average CPU time for all three methods. For

Unbiased PNS, we used |Nk| = 8 and L0 = 100. 46

4.5 The scaled probability density plot for the Donuts Example with µ0 = 9 and σ = 10.

The density is scaled to [0, 1]. We used large σ to show the shape of our distribution.

With small σ, it is hard to see the shape of a sharply peaked distribution. 48

4.6 Sum of the Average Bias of X1 and X2 between sampling and target density π as

a function of the number of iterations (left) and average time in seconds (right)

for two methods: Metropolis algorithm and Unbiased PNS. We used the Donuts

example with µ0 = 9 and σ = 0.1. Each dot within the plot represents the re-

sult of the average bias value and time used for 1000 simulation runs given certain

original sample sizes. The original sample sizes for the Metropolis algorithm are

{50000, 100000, 150000, 300000, 450000, . . . , 1500000}. The sizes for Unbiased PNS

are 20x more than the sizes for the Metropolis. We choose these sizes to get a close

average CPU time for both methods. For Unbiased PNS, we used |Nk| = 50 and

L0 = 1000. 51

4.7 Sum of the average bias from the second-degree terms Bias(X2
1)+Bias(X2

2) (left), the

fourth-degree terms Bias(X4
1)+Bias(X4

2) (middle), and the positive rate Bias(1(X1 >

0))+Bias(1(X1 > 0)) (right) between sampling and target density π as a function of

average time in seconds for two methods: Metropolis algorithm and Unbiased PNS. I
means the indicator function. We used the Donuts example with µ0 = 9 and σ = 0.1.

Each dot within the plot represents the result of the average bias value and time used

for 1000 simulation runs given certain original sample sizes. The original sample sizes

for the Metropolis algorithm are {50000, 100000, 150000, 300000, 450000, . . . , 1500000}.
The sizes for Unbiased PNS are 20x more than the sizes for the Metropolis. We choose

these sizes to get a close average CPU time for both methods. For Unbiased PNS, we

used |Nk| = 50 and L0 = 1000. 53

4.8 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for four scenarios:

Systematic PNS and Random PNS, each with Partial Neighbor Set sizes of 4 and 8.

Random upper triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼
N(0, 102) for upper triangular elements. Each dot within the plot represents the

average TVD value and time used for 1000 simulation runs given a certain original

sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. For all PNS,

we used L0 = 100. 57

ix

4.9 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for four scenarios:

Unbiased PNS with different partial neighbor set sizes {2, 4, 6, . . . , 14}. Random

upper triangular 16×16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for

upper triangular elements. Each dot within the plot represents the average TVD value

and time used for 1000 simulation runs given a certain original sample size, where the

sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. For all PNS, we used L0 = 100. . . 59

4.10 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased Par-

tial Neighbor Search with different sizes of L0. Random upper triangular 16 × 16

QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper triangular ele-

ments. Each dot within the plot represents the average TVD value and time used

for 1000 simulation runs given a certain original sample size, where the sizes are

{300, 600, 1200, 2400, . . . , 3072000}. For all PNS, we used |Ni| = 8. 60

4.11 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS with

different L0 values chosen for two partial neighbor sets. Random upper triangular

16×16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper triangular

elements. Each dot within the plot represents the average TVD value and time

used for 300 simulation runs given a certain original sample size, where the sizes are

{3000, 6000, 12000, 24000, . . . , 3072000}. For all PNS, we used two partial neighbor

sets, where each of them considers flipping 8 entries. 61

4.12 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS

with the sizes for Partial Neighbor Sets being 4 and 12. Random upper triangular

16×16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper triangular

elements. Each dot within the plot represents the average TVD value and time

used for 300 simulation runs given a certain original sample size, where the sizes are

{3000, 6000, 12000, 24000, . . . , 3072000}. 62

4.13 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS

with the sizes for Partial Neighbor Sets being 2 and 6. Random upper triangular

8 × 8 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper trian-

gular elements. Each dot within the plot represents the average TVD value and

time used for 1000 different QUBO matrix Q, and for each QUBO matrix Q, we

did 100 simulation runs given a certain original sample size, where the sizes are

{3000, 6000, 12000, 24000, 48000, 96000}. 63

4.14 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS

with L0 = {100, 100}. Random upper triangular 16× 16 QUBO matrix is generated

randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the

plot represents the average TVD value and time used for 1000 simulation runs given a

certain original sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. 64

x

4.15 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS

with L0 = {100, 300}. Random upper triangular 16× 16 QUBO matrix is generated

randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the

plot represents the average TVD value and time used for 1000 simulation runs given a

certain original sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. 65

4.16 Average values of TVD between sampling and target density π as a function of

the number of iterations (left) and average time in seconds (right) for Unbiased

PNS with L0 = 100 for both Partial Neighbor Sets. Random upper triangular

8 × 8 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper trian-

gular elements. Each dot within the plot represents the average TVD value and

time used for 1000 different QUBO matrix Q, and for each QUBO matrix Q, we

did 100 simulation runs given a certain original sample size, where the sizes are

{300, 600, 1200, 2400, 4800, 9600, 19200, 38400}. 66

4.17 Two-flip: Average values of TVD between sampling and target density π as a function

of the number of iterations (left) and average time in seconds (right) for Unbiased

PNS with different selections of neighbor sets. Random upper triangular 16 × 16

QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper triangular ele-

ments. Each dot within the plot represents the average TVD value and time used

for 1000 simulation runs given a certain original sample size, where the sizes are

{3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100. 67

4.18 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS with

different selections of neighbor sets: one flip and two flips. Random upper triangular

16×16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 0.42) for upper triangular

elements. Each dot within the plot represents the average TVD value and time used

for 1000 simulation runs given a certain original sample size, where the sizes are

{3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100. 68

4.19 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS with

different selections of neighbor sets: one flip and two flips. Random upper triangular

16×16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 0.42) for upper triangular

elements. Each dot within the plot represents the average TVD value and time used

for 1000 simulation runs given a certain original sample size, where the sizes are

{3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100. 69

4.20 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS with

different selections of neighbor sets: one flip and two flips. Random upper triangular

16×16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 0.42) for upper triangular

elements. Each dot within the plot represents the average TVD value and time used

for 1000 simulation runs given a certain original sample size, where the sizes are

{3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100. 70

xi

4.21 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS

with and without using the information of matrix Q. PNS Modified means proposal

distribution based on the QUBO matrix Q as wi ∝
∑N

j=1[|Qi,j |+ |Qj,i|]− |Qi,i|. The
upper two plots are the same as the bottom two plots except for the scales. Modified

1: Q(X,Y) ∝ 1
wi

if |Xi−Yi| = 1; Modified 2: Q(X,Y) ∝ 1
w2

i
if |Xi−Yi| = 1; Modified

3 : Q(X,Y) ∝ wi if |Xi−Yi| = 1; Modified 4: Q(X,Y) ∝ w2
i if |Xi−Yi| = 1. Random

upper triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102)

for upper triangular elements. Each dot within the plot represents the average TVD

value and time used for 100 simulation runs given a certain original sample size, where

the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. 72

4.22 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for Unbiased PNS

with and without using the information of matrix Q. PNS Modified means proposal

distribution based on the QUBO matrix Q as wi ∝
∑N

j=1[|Qi,j |+ |Qj,i|]− |Qi,i|. The
upper two plots are the same as the bottom two plots except for the scales. Modified

1: Q(X,Y) ∝ 1
wi

if |Xi−Yi| = 1; Modified 2: Q(X,Y) ∝ 1
w2

i
if |Xi−Yi| = 1; Modified

3 : Q(X,Y) ∝ wi if |Xi−Yi| = 1; Modified 4: Q(X,Y) ∝ w2
i if |Xi−Yi| = 1. Random

upper triangular 4× 4 given QUBO matrix. Each dot within the plot represents the

average TVD value and time used for 100 simulation runs given a certain original

sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. 73

4.23 Sum of the Average Bias of Xi’s between sampling and target density π as a function

of the number of iterations (left) and average time in seconds (right) for two methods:

Metropolis algorithm and Unbiased PNS with the reversible and non-reversible partial

neighbor set. We used the Donuts example with µ0 = 9 and σ = 0.1. Each dot within

the plot represents the result of the average bias value and time used for 30 simulation

runs given certain original sample sizes. L0 = 1000. 75

4.24 Sum of the average bias from the second-degree terms (left), the fourth-degree terms

(middle), and the positive rate (right) between sampling and target density π as

a function of average time in seconds for two methods: Metropolis algorithm and

Unbiased PNS with the reversible and non-reversible partial neighbor set. We used

the Donuts example with µ0 = 9 and σ = 0.1. Each dot within the plot represents

the result of the average bias value and time used for 30 simulation runs given certain

original sample sizes. L0 = 1000. 76

4.25 Sum of the Average Bias of Xi’s between sampling and target density π as a function

of the number of iterations (left) and average time in seconds (right) for two methods:

Metropolis algorithm and Unbiased PNS with the reversible and non-reversible partial

neighbor set, where the proposal distribution is asymmetric with δ ∼ Normal(0.1, 1).

We used the Donuts example with µ0 = 9 and σ = 0.1. Each dot within the plot

represents the result of the average bias value and time used for 30 simulation runs

given certain original sample sizes. L0 = 1000. According to the results here, we

conclude that the non-reversible partial neighbor set is not always converging to the

correct distribution. 76

xii

4.26 Asymmetric Proposal δ ∼ Normal(0.1, 1): Sum of the average bias from the second-

degree terms (left), the fourth-degree terms (middle), and the positive rate (right)

between sampling and target density π as a function of average time in seconds for

two methods: Metropolis algorithm and Unbiased PNS with the reversible and non-

reversible partial neighbor set, where the proposal distribution is asymmetric with

δ ∼ Normal(0.1, 1). We used the Donuts example with µ0 = 9 and σ = 0.1. Each

dot within the plot represents the result of the average bias value and time used for

30 simulation runs given certain original sample sizes. L0 = 1000. 77

4.27 Average values of TVD between sampling and target density π as a function of the

number of iterations (left) and average time in seconds (right) for two methods: Unbi-

ased PNS with regular transition rule and Barker’s transition rule. We used an upper

triangular 16 × 16 QUBO matrix, generated randomly by Qi,j ∼ N(0, 12) for upper

triangular elements. Each dot within the plot represents the result of the average TVD

value and time used for 100 simulation runs given certain original sample sizes. The

original sample sizes for both algorithms are {2000, 4000, 8000, 16000, . . . , 2048000}.We

choose these sizes to get a close average CPU time for all three methods. For Unbiased

PNS, we used |Nk| = 8 and L0 = 100. 79

5.1 Illustration of the local maximum area in an optimization problem where both Sim-

ulated Annealing and Rejection-Free may get stuck. The target distribution π has

the following function values: π(A) = π(B) = 100, π(A1) = π(A2) = · · · = π(An) =

π(B1) = π(B2) = · · · = π(Bn) = 0.01. 82

5.2 Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest

(log) target distribution value log π(x) = xTQx being found, for a random upper

triangular QUBO matrix Q where the non-zero elements are generated by Qi,j ∼
N(0, 1002). Four different cooling schedules where T (k) = 0.1, 1 and 10 constantly,

and T (k) being geometric from 10 to 0.1 are used here. The number of iterations for

Simulated Annealing is 200,000, and the numbers of iterations for Rejection-Free and

PNS are 1000. The three black lines inside the violin plots are 25%, 50%, and 75%

quantile lines. The colored segments represent the mean values. 85

5.3 The detailed Markov Chains from Rejection-Free (the pink chain in the second plot)

and PNS (the light blue chain in the first and the third plot). The red box plots in the

first plot represent the target distribution values for all neighbors, and the blue box

plots represent the partial neighbors. Most of these values are useless because they

are too small to be picked by the Markov chain. The second and the third plots only

show the important neighbors, defined as those whose transition probability is larger

than exp(−10) times the highest transition probability among all neighbors. Here, red

points represent all important neighbors, and blue points mean important neighbors

of a random subset of all neighbors used for PNS. The Rejection-Free Chain switches

between three local maximum states all the time while the PNS chain escapes from

the local maximum area after five iterations. 87

xiii

5.4 Comparison of different methods to choose the subsets for PNS, in terms of the

highest (log) target density value log π(x) = xTQx found. Method A: random subset

every step; method B: random subset every ten steps; method C: systematic subset

every step; method D: systematic subset every ten steps. Random upper triangular

QUBO matrix where the non-zero elements are generated by Qi,j ∼ N(0, 1002). Four

different cooling schedules where T = 0.1, 1, and 10 for all n, and T being geometric

from 10 to 0.1, are used here. The number of iterations for all methods is 1000. The

three black lines inside the violin plots are 25%, 50%, and 75% quantile lines. The

colored segments represent the mean values. 89

5.5 Comparison of different sizes of the random subsets for PNS, in terms of the high-

est (log) target density value log π(x) = xTQx being found. Subset sizes are N ×
{1, 3

4 ,
2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8}. Random upper triangular QUBO matrix where the non-

zero elements are generated by Qi,j ∼ N(0, 1002). Four different cooling schedules

where T = 0.1, 1, and 10 for all n, and T being geometric from 10 to 0.1, are used

here. The number of iterations for all methods is 1000. The three black lines inside

the violin plots are 25%, 50%, and 75% quantile lines. The colored segments represent

the mean values. 90

5.6 Comparison of PNS, Rejection-Free, and 1-Step to 9-steps Simplified Tabu Rejection-

Free, in terms of the highest (log) target density value log π(x) = xTQx found. Ran-

dom upper triangular QUBO matrix where the non-zero elements are generated by

Qi,j ∼ N(0, 1002). Four different cooling schedules where T = 0.1, 1, and 10 con-

stantly, and T being geometric from 10 to 0.1, are used here. The run time for all

algorithms on a single-core implementation is about the same. The number of itera-

tions for PNS is 400, and the number of iterations for all other methods is 100. The

colored segments represent the mean values. 92

5.7 Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest

target density values found in Knapsack Problem with W = 100, 000, N = 1000,

wi, vi ∼ Poisson(1000). Four different cooling schedules where T = 0.1, 1, and 10

constantly, and T being geometric from 10 to 0.1, are used there. The number of

iterations for Simulated Annealing is 1,000,000, while the number for Rejection-Free

and PNS is 1000. The three black lines inside the violin plots are 25%, 50%, and 75%

quantile lines. The colored segments represent the mean values. 94

5.8 Comparison of the minimum value for the time used to find the optimal state by

Rejection-Free and PNS with 25%, 50%, and 75% of the neighbors being considered

at each step for a random Ising model generated by 3R3XOR. Each dot represents

the median of 50 repeated simulations for a given problem size N = 12, 24, 48 and 96. 97

xiv

5.9 Comparison of Simulated Annealing and PNS in terms of the highest (log) target

distribution value log π(x) = xTQx being found, for a random upper triangular matrix

Q and x ∈ RN subject to xi ≥ 0, ∀i = 1, 2, . . . , N , and
∑N

i=1 xi = 1. The non-zero

elements are generated by Qi,j ∼ N(0, 1002). Four different cooling schedules where

T (k) = 0.1, 1 and 10 constantly, and T (k) being geometric from 10 to 0.1 are used

here. The number of iterations for Simulated Annealing is 600, 000, and the number of

iterations for PNS is 72, 000. The run times for these two algorithms on a single-core

implementation are both around 80 seconds. The three black lines inside the violin

plots are 25%, 50%, and 75% quantile lines. The colored segments represent the mean

values. 99

5.10 Average total variation distance (TVD) between the starting distribution from 100, 000

chains and target density as a function of average time for the chains in seconds for

four methods: Rejection-Free, Optimization PNS plus Rejection-Free, Unbiased PNS,

and Optimization PNS plus Unbiased PNS. Random upper triangular 16×16 QUBO

matrix is generated randomly by Qi,j ∼ N(0, 12) for upper triangular elements. The

original sample sizes for Rejection Free are K1 = {20, 30, 40, 50, . . . , 1000}, and the

number of steps for the corresponding Optimization PNS is K0 = ⌊K1

20 ⌋}. The original
sample sizes for Unbiased PNS are K1 = {40, 50, 60, . . . , 1500}, and the number of

steps the corresponding Optimization PNS is K0 = ⌊K1

40 ⌋. Each dot within the plot

represents the TVD value between the target distribution π and the distribution of

the last state of 100, 000 Markov chains. 101

xv

Chapter 1

Introduction

The Monte Carlo method involves the deliberate use of random numbers in a calculation with the

structure of a stochastic process [46]. Monte Carlo techniques are based on repeating experiments

sufficiently many times to obtain many quantities of interest using the Law of Large Numbers and

other statistical inference methods [50]. The three main applications of Monte Carlo methods are

sampling, optimization, and numerical integration[50]. This thesis focuses on the Markov chain

Monte Carlo method for both sampling and optimization.

From the sampling perspective, the Markov chain Monte Carlo method (MCMC) simulates

observations from a target distribution to obtain a chain of states that eventually converges in

distribution to the target density itself. The Metropolis-Hastings algorithm [39], [59], an MCMC

method, is one of the most popular techniques among its kind [43]. The Metropolis-Hastings algo-

rithm produces a Markov chain {X0, X1, X2, . . . } on the state space S and target density function

π, as follows: given the current state xk, the Metropolis algorithm first proposes a new state y from

a proposal distribution Q(xk, ·); it then accepts the new state by setting xk+1 = y with probability

min
(
1, π(y)Q(y,xk)

π(xk)Q(xk,y)

)
; otherwise, it rejects the proposal by setting xk+1 = xk. This simple algorithm

ensures that the Markov chain has π as a stationary distribution. A more detailed review will be

given in Section 2.3.

However, the Metropolis-Hastings algorithm may suffer from the inefficiency of rejections. We

have a probability of
[
1−min

(
1, π(y)Q(y,xk)

π(xk)Q(xk,y)

)]
to remain at the current state, even though we have

spent time proposing a state, computing a ratio of target probabilities, generating a random variable,

and deciding not to accept the proposal. Therefore, we proposed the Rejection-Free algorithm in

Chapter 3 to improve the Metropolis algorithm’s performance

Furthermore, the parallel hardware can significantly increase the efficiency of Rejection-Free.

The use of parallel in Rejection-Free combined with simple techniques such as parallel tempering

can yield 100x to 10,000x speedups [76]. It is possible to use processors designed for general purposes,

such as Intel and AMD cores, for parallel computing to accelerate the algorithm to some extent.

However, these chips were not built for parallel computing, and off-chip communication significantly

slows the data transfer rate to and from the cores [77]. On the other hand, parallel hardware

designed specifically for MCMC trials has been proposed. For example, the second generation of

Fujitsu Digital Annealer uses a dedicated processor called Digital Annealing Unit (DAU) [57] to

achieve high speed. This dedicated processor is designed to minimize communication overhead in

1

CHAPTER 1. INTRODUCTION 2

arithmetic circuitry and with memory. On the other hand, there is a limit to the number of parallel

tasks that can be executed simultaneously on most specialized parallel hardware. For example,

the current version of Digital Annealing Unit (DAU) [57] can process the Rejection-Free algorithm

efficiently up to 8,192 neighbors simultaneously with on-chip memory, and otherwise, Rejection-Free

will be significantly slowed down due to the use of external memory. Accordingly, the ceiling on

the number of neighbors that can be evaluated at each step can be a problem. Consequently, we

present an enhanced version of the Rejection-Free called Partial Neighbor Search (PNS) in Chapter 4,

which only considers part of the neighbors when applying the Rejection-Free technique, whereas the

Rejection-Free technique means considering all selected neighbors and calculating the next state

when ignoring any immediately repeated states.

In addition, MCMC for optimization is also important. For optimization questions, our goal is

no longer to generate a set of samples to approximate a certain distribution, we turn our attention

to finding one optimal solution given a set of constraints or limitations. After Metropolis and

Hastings proposed the Metropolis-Hasting algorithm [39], [59], Kirkpatrick et al. [47] introduced

an interesting variation called the Simulated Annealing algorithm, which can be used to find the

optimal values for optimization questions. Regarding the implementation, the Simulated Annealing

algorithm is different from the Metropolis-Hastings algorithm by adding temperatures that keep

decreasing along the process. Thus, for the high-temperature cases at the very beginning of the

Markov chain, the chain accepts the proposed new state with a higher probability, allowing the

chain to move around. As the temperature decreases, the probability of accepting the proposed

states with target density values lower than the current state becomes low, and the Markov chain

will eventually converge to a local optimum, and hopefully, such local optimum solution is close to the

global optimum. Therefore, the Simulated Annealing algorithm may also be inefficient with respect

to rejections, especially when the temperature becomes low. In order to improve the performance

of Simulated Annealing by reducing rejections, we adopt the Rejection-Free algorithm for sampling

into an optimization version in Chapter 5. Additionally, Rejection-Free for optimization may also

experience inefficiency when it enters local extreme areas. Therefore, we propose Partial Neighbor

Search(PNS) again in the optimization version to further enhance its efficiency in Chapter 5. Unlike

the sampling problems, even when applied to a single-core implementation, PNS is much more

efficient in many optimization problems compared to Rejection-Free, while Rejection-Free is better

than the Simulated Annealing.

Our PNS algorithm was originally designed to assist Fujitsu Limited, a Japanese multinational

information and communications technology equipment and services corporation that designed DAU

[57], to apply sampling or optimization algorithms on the parallel hardware efficiently. As discussed

before, DAU [57] can only handle a limited number of tasks, and thus it cannot perform the full

Rejection-Free algorithm in parallel on large state spaces. Therefore, we proposed PNS where the

number of neighbors being considered at each step can be controlled. Fujitsu Limited has recently

applied for several patents for PNS. Just like Rejection-Free, PNS for both sampling and optimization

also has a limitation of 8,192 neighbors being considered at each step for on-chip memory. However,

PNS can be applied to cases with infinitely many neighbors, and we only need to pick partial neighbor

sets with at most 8,192 neighbors. Thus, the PNS algorithm has great utility in extending DAU

technology to even more significant problems in an industrial setting, and our algorithm is already

well-used in an industrial setting.

CHAPTER 1. INTRODUCTION 3

For Chapter 2, we first review the basic definitions and theorems for the Markov chains in Section

2.1. Then we review the meaning of the Monte Carlo method by two examples in Section 2.2. Finally,

we review the MCMC and the well-known Metropolis-Hastings algorithm as well as their variant in

Section 2.3.

Then for Chapter 3, we try to solve the problem of rejection by first proposing a new algorithm

called the Uniform Selection algorithm in Section 3.1. However, such the algorithm will not converge

in distribution to the target density, and thus we introduce a more promising algorithm called

Rejection-Free. Section 3.2 to Section 3.4 talks about the properties and convergence theorems for

Rejection-Free as well as its application in the Metropolis-Hastings algorithm. Then Section 3.5

introduces how to adapt Rejection-Free to hybrid chain cases, and Section 3.6 applied Rejection-

Free to parallel tempering. Then in Section 3.7, we used two examples, the Bayesian inference,

and the Ising model, to illustrate the performance of Rejection-Free sampling questions. Finally,

in Section, 3.8, we introduce an efficient method to help us sample proportionally, especially for

parallel hardware. For this chapter and the corresponding paper [69], I only did the simulation part.

Moreover, for Chapter 4, in Section 4.1, we introduce our Basic Partial Neighbor Search (Basic

PNS) sampling algorithm, which considers subsets of neighbor states for possible moves and calcu-

lates the multiplicity list directly from the subsets. Unfortunately, this version of the Markov chain

does not converge in distribution to the target density. In Section 4.2, we introduce our unbiased

version of Partial Neighbor Search (Unbiased PNS), where the sampling distribution will converge

in distribution to the target density correctly; see Section 4.5 for the proof. Unlike Rejection-Free,

Unbiased PNS can always use the advantage of the parallel hardware to improve the sampling effi-

ciency, no matter the dimension of the problem. We apply the Unbiased PNS to the QUBO question

to illustrate its performance in Section 4.3. In addition, we discuss the choice of subsets of the Un-

biased PNS for the QUBO question in Section 4.6. We further illustrate that we can apply the

Unbiased PNS to continuous models, and we compare the Metropolis algorithm and Unbiased PNS

in a continuous example called the Donuts example to demonstrate the performance of Unbiased

PNS in Section 4.4.

In addition, for chapter 5, we introduce what is optimization questions and review the Simu-

lated Annealing in Section 5.1. Following that, Section 5.2 describes how to use the Rejection-Free

algorithm to solve optimization problems. Our next point is that the local maximum may lead

to another kind of inefficiency for Rejection-Free, and Section 5.3 introduces our Partial Neighbor

Search (PNS) algorithm for optimization, which considers just subsets of neighbor states for possible

moves. In Section 5.4, we demonstrate how PNS can be applied to quadratic unconstrained binary

optimization (QUBO) questions and its effectiveness in solving them. We then discuss why this

improvement occurs (Section 5.5), and how its subsets of partial neighbors should be chosen (Sec-

tion 5.6), as well as its relation to the Tabu Search algorithm (Section 5.7). Moreover, we present

several other examples, such as the Knapsack problem (Section 5.8) and the 3R3XOR problem

(Section 5.9), to illustrate the advantages of the PNS algorithm in discrete optimization problems.

Furthermore, Section 5.10 illustrates another advantage of PNS over Rejection-Free by providing a

continuous optimization example known as quadratic programming. PNS can easily be adapted to

the general state space by selecting only a finite subset, and it outperforms Simulated Annealing,

whereas Rejection-Free cannot be applied in this case due to the need to consider all neighbors at

each step. Furthermore, since the performance of PNS in optimization questions is much better

CHAPTER 1. INTRODUCTION 4

than Rejection-Free and Simulated Annealing, we can adapt the Optimization PNS and use it as

the burn-in part for sampling in Chapter 5.11. Geyer [33] stated that burn-in until converging to

stationarity is not necessary for MCMC. If we take Geyer’s [33] argument, then we can use Opti-

mization PNS to replace the burn-in. On the other hand, we can combine the Optimization PNS

and the regular burn-in to get a better algorithm that will converge in distribution to the target

density faster.

Finally, in Chapter 6, we summarize our whole thesis, talk about the potential future works and

illustrate why our thesis is useful.

Chapter 2

Background Review

2.1 Markov chain Review

Markov chain, made by Andrei Andreevich Markov, is a milestone in the probability theory. In the

Bernoulli model, the outcome from the previous events does not change the outcome of current or

future events, and a colleague of Markov, namely Pavel Nekrasov started to assume that indepen-

dence is a condition for the law of large numbers [28]. After the dispute with Pavel, Markov started

to address the issue of dependent variables and the law of large numbers[28], [40]. As the first paper

for the Markov chain, Markov showed that the average from the states of the Markov chain will

converge correctly to the target fixed values under certain conditions [55]. Later, the Markov chain

has been applied to a wide variety of problems such as the study of DNA sequences [82], the analysis

of economic systems [17], and the design of algorithms in machine learning and artificial intelligence

[3].

In this section, we review the basic definitions and the most important theorems such as the

Markov chain convergence theorem as well as their proofs for the Markov chain. Note that, the

theorems and proofs for this section follow the book A First Look at Stochastic Processes [68].

2.1.1 Markov Chain Definitions

Definition 2.1.1. A (discrete-time, discrete-space, time-homogeneous) Markov Chain is specified

by three ingredients:

1. a state space S, any non-empty finite or countable set;

2. initial probabilities {vi}i∈S , where vi represents the probability of starting at i (at time 0), so

vi ≥ 0,∀i ∈ S, and
∑

i∈S vi = 1;

3. transition probabilities {pi,j}i,j∈S , where pi,j is the probability of jumping to j if you start from

i, so pi,j ≥ 0, ∀i, j ∈ S, and
∑

j∈S pi,j = 1; we use the notation p
(n)
i,j to represent the transition

probability from state i to state j in exactly n jumps.

Example 1. Travel Merchant. Suppose there is a traveling merchant, and at the beginning

of each month, the merchant is either residing in the current city or moving to adjacent cities.

The map of the cities and probabilities of moving are shown in figure 2.1. Accordingly, a Markov

5

CHAPTER 2. BACKGROUND REVIEW 6

Figure 2.1: The Traveling Merchant, a starting example for the Markov chain

chain is formed by the merchant’s stays in each city for each month. The state space contains

7 states S = {A,B,C,D,E, F,G}. Each month, the merchant either stays in the same city or

moves to adjacent cities, each with a probability of 1/3. This leads to the transition probabilities as

pA,B = 1/3, pB,A = 1/3, pA,A = 1/3, . . .

Let Xn represent the state of the Markov chain at time n. As a result, X0, X1, X2, . . . are random

variables. The initial state of the Markov chain is X0, so P(X0 = i) = vi, ∀i ∈ S. Additionally, the

transition probabilities can be interpreted as conditional probabilities pi,j = P(Xn+1 = j | Xn = i),

∀i, j ∈ S, n = 0, 1, 2, In other words, the probability at time n+1 depends only on the state at

time n, called the Markov property.

Furthermore, we can calculate the joint probabilities based on conditional probabilities. For

instance, P(X0 = i,X1 = j) = P(X0 = i)P(X1 = j | X0 = i) = vipi,j . Similarly, P(X0 = i0, X1 =

i1, X2 = i2, . . . Xn = in) = vi0pi0,i1pi1,i2 . . . pin−1,in . This completely defines the probabilities of the

sequence {Xn}∞n=0

Now let µ
(n)
i = P(Xn = i) be the probabilities at time n. Then µ

(0)
i = vi. Moreover, let s = |S|

be the number of elements in S, which can be infinite. We can write

µ(n) =
(
µ

(n)
A ,µ

(n)
B ,µ

(n)
C , . . .

)
(2.1)

as a 1× s row vector. In addition, we can also define

p =

pA,A pA,B pA,C . . .

pB,A pB,B pB,C . . .

pC,A pC,B pC,C . . .
...

...
...

. . .

 (2.2)

CHAPTER 2. BACKGROUND REVIEW 7

as an s× s matrix. Then we have µ(n) = µ(0)pn in terms of matrix multiplication.

Example 1 (continuing from p. 5). For the Travel Merchant example as shown in Figure 2.1, we

have

p =

1/3 1/3 0 0 0 0 1/3

1/3 1/3 1/3 0 0 0 0

0 1/3 1/3 1/3 0 0 0

0 0 1/3 1/3 1/3 0 0

0 0 0 1/3 1/3 1/3 0

0 0 0 0 1/3 1/3 1/3

1/3 0 0 0 0 1/3 1/3

. (2.3)

If we let the merchant start his journey at state A, then

µ(0) =
(
1, 0, 0, 0, 0, 0, 0

)
. (2.4)

As a result, we can easily calculate the probabilities distribution of the merchant’s destination at

month n by µi
(n) = µ(0)pn.

Proposition 2.1.1. Chapman-Kolmogorov Inequality. p
(m+n)
i,j ≥ p

(m)
i,k p

(n)
k,j for any fixed k ∈ S,

p
(m+n+s)
i,j ≥ p

(m)
i,k p

(n)
k,ℓ p

(s)
ℓ,j for any fixed k, l ∈ S, etc.

Proof. Immediate by p(m+n) = p(m)p(n).

2.1.2 Recurrence and Transience

Before we define the Markov chain to be either recurrent or transient, we first define several shorthand

notations:

1. p
(n)
i,j = P(Xn = j | X0 = i), which means the probability that the Markov chain moves from

state i to state j in n steps; thus p
(1)
i,j = pi,j , where pi,j represents the element at the i-th row

and j-th column from matrix p;

2. Pi(. . .) = P(· · · | X0 = i); for example, Pi(Xn = j) = p
(n)
i,j ;

3. Ei(. . .) = E(· · · | X0 = i), where E represents the expectation;

4. N(i) = #{n ≥ 1 : Xn = i} represents the total number of times that the chain hits i (without

counting time 0);

5. fi,j := Pi(∃n ≥ 0 s.t. Xn = j) = Pi(N(j) ≥ 1), which is the return probability from i to j.

For the above notations, we have the following trivial properties immediately from the definitions:

1. 1 − fi,j = Pi(Xn ̸= j,∀n ≥ 1), which represents the probability that the Markov chain never

hits state j after state i;

2. Pi(the chain will visit j, and then eventually visit k) = fi,jfj,k;

3. Pi(N(i) ≥ k) = fk
i,i, and Pi(N(j) ≥ k) = fi,jf

k−1
j,j ;

4. fi,k ≥ fi,jfj,k

CHAPTER 2. BACKGROUND REVIEW 8

Definition 2.1.2. A state i of a Markov chain is recurrent if fi,i = 1, i.e. Pi(∃n ≥ 1 s.t. Xn = i).

Otherwise, if fi,i < 1, then i is transient.

Definition 2.1.3. A state i of Markov chain communicates with state j written i→ j, if fi,j > 0.

Definition 2.1.4. A Markov chain is irreducible if fi,j > 0, ∀i, j ∈ S.

Example 2. Travel Merchant on Integer Axis. The traveling merchant on the integer

axis with notation {Ai}i∈Z presenting the cities. Suppose the merchant starts at city A0, and at

each month n, the merchant moves to the cities with the subscript number either +1 or −1 with

probabilities p and 1− p. Then the Markov chain is recurrent if and only if p = 0.5.

To make this review section not so redundant, we show the final theorems for the recurrence and

transient directly here. For the proof of these two theorems and all related lemmas and propositions,

please see [68].

Theorem 2.1.2. If a chain is irreducible, the following are equivalent:

1. There are k, ℓ ∈ S with
∑∞

n=1 p
(n)
k,ℓ =∞

2. For all i, j ∈ S, we have
∑∞

n=1 p
(n)
i,j =∞.

3. There is k ∈ S with fk,k = 1, i.e. with k recurrent.

4. For all j ∈ S, we have fj,j = 1, i.e. all states are recurrent.

5. For all i, j ∈ S, we have fi,j = 1.

6. There are k, ℓ ∈ S with Pk(N(ℓ) =∞) = 1.

7. For all i, j ∈ S, we have Pi(N(j) =∞) = 1.

Theorem 2.1.3. If a chain is irreducible, the following are equivalent:

1. For all k, ℓ ∈ S,
∑∞

n=1 p
(n)
k,ℓ <∞.

2. There is i, j ∈ S with
∑∞

n=1 p
(n)
i,j <∞.

3. For all k ∈ S, fk,k < 1, i.e. k is transient.

4. There is j ∈ S with fj,j < 1, i.e. some state is transient.

5. There are i, j ∈ S with fi,j < 1.

6. For all k, ℓ ∈ S, Pk(N(ℓ) =∞) = 0.

7. There are i, j ∈ S with Pi(N(j) =∞) = 0.

CHAPTER 2. BACKGROUND REVIEW 9

2.1.3 Markov Chain Convergence

Now we have a rudimentary understanding of the Markov chain, and let us shift our attention to

the long-run probabilities limn→∞ P (Xn = j). Here we only prove the Markov chain convergence

theorem for the discrete case. The proof of the convergence theorem for the general state space

version is too long to be reviewed here, so please see [61] for details. Later, we will also prove the

convergence theorem for our algorithm in Section 4.5.

Definition 2.1.5. For a probability distribution π on S, π is called stationary for a Markov chain

with transition probabilities {pi,j} if
∑

i∈S πipi,j = πj, ∀j ∈ S. We can also write this formula in

matrix notation as πp = π. Equivalently: π is a left eigenvector for the matrix p with eigenvalue 1.

Intuitively, if the chain starts with probabilities {πi}, then it will always keep the same proba-

bilities. In particular, if the starting distribution v = π, then µ(n) = πpn = π, ∀n ∈ N.

Example 1 (continuing from p. 5). For the Travel Merchant example as shown in Figure 2.1, π is

the uniform distribution on S, i.e. πi =
1
6 for all i ∈ S. We can check that πi ≥ 0 and

∑
i πi =

1. Suppose, for instance, for state A, then
∑

i∈S πipi,A = πF pF,A + πApA,A + πBpB,A = 1
6 (

1
3)+

1
6 (

1
3)+

1
6 (

1
3) =

1
6 = πA. Similarly, we can prove that ∀j ∈ S,

∑
i∈S πipi,j = πj. So, π is a stationary

distribution.

To find the stationary distributions, or decide if they exist, one helpful technique is as follows:

Definition 2.1.6. A Markov chain is reversible with respect to a probability distribution {πi} if

πipi,j = πjpj,i, ∀i, j ∈ S.

The usefulness of reversibility is:

Proposition 2.1.4. If a chain is reversible with respect to π, then π is a stationary distribution.

If the state space S is infinite, can there be a stationary distribution? Yes!

Example 3. Let S = N = {1, 2, 3, . . . } with πi = 2× 3−i for ∀i ∈ S. We can check that πi ≥ 0 and∑
i∈S πi = 1.. In addition, the transition probabilities are specified by:

• p1,1 = p2,2 = 9
10 ;

• pi,i+2 = 1
10 , ∀i ∈ N;

• pi,i−2 = 9
10 , ∀i > 2;

• pi,j = 0, for all other i, j ∈ N.

Then we have ∀i ∈ S, πipi,i+2 = 2×3−i(1/10) = 2×3−i−2(9/10) = πi+2pi+2,i. Moreover, πipi,j = 0

if i ̸= j and |j−i| ≠ 2. Therefore, the chain is reversible with respect to π, and thus π is a stationary

distribution.

However, does Example 3 have the property that limn→∞ P(Xn = j) = πj = 2 × 3−j , ∀j ∈ S?

The answer is no! For example, π′, where π′
i = 8 × 9−i for odd i and π′

i = 0 for even i, is also a

stationary distribution. This illustrates that limn→∞ P(Xn = j) may converge to other distributions

even if π is a stationary distribution.

CHAPTER 2. BACKGROUND REVIEW 10

Proposition 2.1.5. If a Markov chain’s transition probabilities have limn→∞ p
(n)
i,j = 0 for all i, j ∈

S, then the chain does NOT have a stationary distribution.

Proof. If there were such stationary distribution π, then we would have πj =
∑

i∈S πip
(n)
i,j , ∀n ∈ N.

Thus,

πj = lim
n→∞

πj = lim
n→∞

∑
i∈S

πip
(n)
i,j . (2.5)

In addition, since
∑∞

i=1 supn|πip
(n)
i,j | ≤

∑∞
i=1|πi| = 1 <∞, thus we can exchange the sum and limit.

Hence,

πj = lim
n→∞

∑
i∈S

πip
(n)
i,j =

∑
i∈S

lim
n→∞

πip
(n)
i,j =

∑
i∈S

(0) = 0. (2.6)

Thus, πj = 0, ∀j ∈ S. However, this means that
∑

j πj = 0, which is a contradiction. Therefore,

there is no stationary distribution.

Lemma 2.1.6. If ∃k, ℓ ∈ S with limn→∞ p
(n)
k,ℓ = 0, then ∀i, j ∈ S with k → i and j → ℓ,

limn→∞ p
(n)
i,j = 0.

Proof. Since k → i and j → ℓ , we can find n1, n2 ∈ N with p
(n1)
k,i > 0 and p

(n2)
j,ℓ > 0.

Since p
(n0+n1+n2)
k,ℓ ≥ p

(n1)
k,i p

(n0)
i,j p

(n2)
j,ℓ , thus for n = n0 + n1 + n2, limn→∞ p

(n)
k,ℓ = 0 must imply

limn0→∞ p
(n0)
i,j = 0

Corollary 2.1.7. An irreducible and transient Markov chain cannot have a stationary distribution.

Proof. If a chain is irreducible and transient, then by the Transience Equivalences Theorem (2.1.3),∑∞
n=1 p

(n)
i,j < ∞ for all i, j ∈ S. Thus we must have limn→∞ p

(n)
i,j = 0 for all i, j ∈ S. Thus, by

Proposition 2.1.5, there is no stationary distribution.

Theorem 2.1.8. If a Markov chain is irreducible and has a stationary distribution, then it is

recurrent.

Proof. Corollary 2.1.7 says that a chain cannot be irreducible and transient and have a stationary

distribution.

Definition 2.1.7. The period of a state i is the greatest common divisor of the set {n ≥ 1, p
(n)
i,i > 0}.

If the period of every state is 1, then we call this Markov chain aperiodic.

Proposition 2.1.9. If a state i has fii > 0 and is aperiodic, then there is Ni ∈ N such that p
(n)
i,i > 0

for all n ≥ Ni.

Proof. Let A =
{
n ≥ 1 : p

(n)
ii > 0

}
. Note that A is non-empty since fi,i > 0.

First of all, if m ∈ A and n ∈ A, then p
(m)
i,i > 0 and p

(n)
i,i > 0, so p

(m+n)
i,i ≥ p

(m)
i,i p

(n)
i,i > 0, which

implies m+ n ∈ A. This shows that A satisfies additivity. In addition, by aperiodicity, gcd(A) = 1.

Therefore, ∃Ni ∈ N such that for all n ≥ Ni we have n ∈ A, which proves p
(n)
i,i > 0.

Proposition 2.1.10. If a chain is irreducible and aperiodic, then for any states i, j ∈ S, there is

Ni,j ∈ N such that p
(n)
i,j > 0 for all n ≥ Ni,j.

Proof. Find Ni as Proposition 2.1.9, and find m ∈ N such that p
(m)
i,j > 0. Then let Ni,j = Ni +m.

Thus, if n ≥ Ni,j , then n−m ≥ Ni, so p
(n)
i,j ≥ p

(n−m)
i,i p

(m)
i,j > 0.

CHAPTER 2. BACKGROUND REVIEW 11

Lemma 2.1.11. If a Markov chain is irreducible and aperiodic and has stationary distribution {πi},
then for all i, j, k ∈ S,

lim
n→∞

|p(n)i,k − p
(n)
j,k | = 0. (2.7)

Proof. Define a new Markov chain {(Xn, Yn)}∞n=0, with state space S̄ = S × S, and transition

probabilities p̄(i,j)(k,ℓ) = pi,kpj,ℓ.

Intuitively, the new chain has two independent coordinates, and both of them are copies of the

original Markov chain. Thus, this new chain has a joint stationary distribution given by π̄i,j = πiπj

for i, j ∈ S. In addition, whenever n ≥ max[Ni,k, Nj,ℓ] from Proposition 2.1.10, we must have

p̄
(n)
(i,j)(k,ℓ) = p

(n)
i,j p

(n)
k,ℓ > 0. Hence, this new chain is irreducible. In addition, note that the period for

the chain is obviously 1, so the chain is also aperiodic. Thus, by Theorem 2.1.8, the new chain is

recurrent.

Next, ∀i0 ∈ S and let τ = inf{n ≥ 0 : Xn = Yn = i0} be the first time that the new chain

hits the state (i0, i0). Since the new chain is irreducible and recurrent, Theorem 2.1.2 says that

f̄(i,j)(i0,i0) = 1. This means that, starting from (i, j), the new chain must eventually hit (i0, i0), so

P(i,j)(τ <∞) = 1.

Then, using the Law of Total Probability, we have

p
(n)
i,k = P(i,j)(Xn = k)

=

∞∑
m=1

P(i,j)(Xn = k, τ = m)

=

n∑
m=1

P(i,j)(Xn = k, τ = m) +P(i,j)(Xn = k, τ > n)

(2.8)

Similarly,

p
(n)
j,k =

n∑
m=1

P(i,j)(Yn = k, τ = m) +P(i,j)(Yn = k, τ > n) (2.9)

On the other hand, if n ≥ m, then

P(i,j)(Xn = k, τ = m) = P(i,j)(τ = m)P(i,j)(Xn = k | τ = m)

= P(i,j)(τ = m)P(i,j)(Xn = k | Xm = Ym = i0)

= P(i,j)(τ = m)P(Xn = k | Xm = i0)

= P(i,j)(τ = m)p
(n−m)
i0,k

(2.10)

Similarly,

P(i,j) (Yn = k, τ = m) = P(i,j)(τ = m)p
(n−m)
i0,k

. (2.11)

So, P(i,j)(Xn = k, τ = m) = P(i,j)(Yn = k, τ = m).

CHAPTER 2. BACKGROUND REVIEW 12

Hence, for all i, j, k ∈ S,

|p(n)i,k − p
(n)
j,k | =|

n∑
m=1

P(i,j)(Xn = k, τ = m) +P(i,j)(Xn = k, τ > n)

−
n∑

m=1

P(i,j)(Yn = k, τ = m)−P(i,j)(Yn = k, τ > n)|

=|P(i,j)(Xn = k, τ > n)−P(i,j)(Yn = k, τ > n)|

≤|P(i,j)(Xn = k, τ > n)|+ |P(i,j)(Yn = k, τ > n)|

≤P(i,j)(τ > n) +P(i,j)(τ > n) = 2P(i,j)(τ > n).

(2.12)

Since P(i,j)(τ < ∞) = 1, we have limn→∞ 2P(i,j)(τ > n) = 2P(i,j)(τ = ∞) = 0. Therefore,

limn→∞|p(n)i,k − p
(n)
j,k | = 0

This Lemma illustrates that after a long time n, the chain forgets the starting point.

Having the above Propositions and Lemmas, we can now start to prove the Markov chain Con-

vergence Theorem.

Theorem 2.1.12. Markov chain Convergence Theorem. If a Markov chain is irreducible

and aperiodic and has a stationary distribution π, then limn→∞ p
(n)
i,j = πj for all i, j ∈ S, and

limn→∞ P(Xn = j) = πj for any initial distribution v.

Proof. Let’s assume we start with v = π first.

lim
n→∞

∣∣p(n)i,j − πj

∣∣ = lim
n→∞

∣∣∑
k∈S

πk × p
(n)
i,j −

∑
k∈S

πkp
(n)
kj)

∣∣
= lim

n→∞

∣∣∑
k∈S

πk × (p
(n)
i,j − p

(n)
k,j)

∣∣
≤ lim

n→∞

∑
k∈S

πk

∣∣p(n)i,j − p
(n)
k,j

∣∣.
(2.13)

Note that supn
∣∣p(n)i,j − p

(n)
kj

∣∣ ≤ 1, so
∑

k∈S supn πk

∣∣p(n)i,j − p
(n)
k,j

∣∣ ≤ 2 <∞. Thus,

lim
n→∞

∣∣p(n)i,j − πj

∣∣ ≤ lim
n→∞

∑
k∈S

πk

∣∣p(n)i,j − p
(n)
k,j

∣∣
=

∑
k∈S

πk × lim
n→∞

∣∣p(n)i,j − p
(n)
k,j

∣∣
=

∑
k∈S

πk × 0, by Lemma 2.1.11

= 0.

(2.14)

Hence, limn→∞ p
(n)
i,j = πj for all i, j ∈ S, as claimed.

Finally, ∀v, we have:

CHAPTER 2. BACKGROUND REVIEW 13

lim
n→∞

P(Xn = j) = lim
n→∞

∑
i∈S

Pt(X0 = i,Xn = j)

= lim
n→∞

∑
i∈S

vip
(n)
i,j

=
∑
i∈S

vi lim
n→∞

p
(n)
i,j

=
∑
i∈S

viπj

= 1× πj

= πj .

(2.15)

Corollary 2.1.13. If a Markov chain is irreducible and aperiodic, then it has at most one stationary

distribution.

2.2 Monte Carlo method Review

The Monte Carlo method is a statistical analysis based on the generation of random objects or

processes repeatedly to obtain numerical results [50]. Without using the name of the Monte Carlo

method, scientists have been using methods of stochastic sampling back a long time ago. Buffon’s

needle experiment posed in 1777 is the signature one. Later, Laplace suggested that we can use this

experiment to estimate the approximate value of π by throwing needles of length L in a random

fashion onto a smooth table ruled with parallel lines separated by a distance of 2L, and the percentage

of needles interacting with one of the ruled lines can be an estimate for 1
π [74]. After that, the idea

of using stochastic sampling methods first occurred to Stanislaw Ulam, who wanted to estimate

the success probability of solitaire by playing a large number of games and tallying the number of

successful plays [58]. Ulam immediately thought of problems of neutron diffusion and other questions

of mathematical physics [23], and then he communicated this idea with John von Neumann, who

was working on the theoretical calculations related to the development of thermonuclear weapons

[75]. Von Neumann was intrigued by this idea, and they start to think of using random sampling

to simulate the behavior of neutron transport to make predictions about the behavior of the atomic

bomb by ENIAC [75], the world’s first electronic digital computer [81]. Then in 1949, Metropolis

and Ulam published their breakthrough paper named ”The Monte Carlo method” [60], which was

the first unclassified paper on the Monte Carlo methods, and the first to have the name Monte

Carlo associated with stochastic sampling [75]. It is named after the Monte Carlo Casino, located

in Monaco, where Ulam’s uncle borrowed money from relatives for gambling [58].

examples In the years that followed, the Monte Carlo method was used in a wide variety of ap-

plications including industrial engineering and operations research, physical processes and materials

science, random graphs and combinatorial structures, economics and finance, and computational

statistics [50]. Under different scenarios, the Monte Carlo methods can be applied differently but

usually follows the following logic:

1. determines the basic elements of the problem such as what random variables are we considering,

what value are we estimating, what is the domain for the corresponding random variables, etc;

CHAPTER 2. BACKGROUND REVIEW 14

for example, we can estimate the probability of a given coin being head when tossing, the

random variable is the tossing results, the domain is {head, tail};

2. generates samples randomly by the random variables; for example, we can toss the given coin

a certain number of times and record the results;

3. performs necessary computation and aggregates the results; for example, we can calculate the

percentage of the heads, and consider it as an estimation of the probability of tossing heads

with the given coin.

Here we use some additional examples to illustrate how the Monte Carlo method works further.

Example 4. Suppose we want to estimate E[1
Z2 sin(Z) exp(Z2)], where Z ∼ Normal(0, 1). The

classical way of the Monte Carlo solution is to generate {z1, z2, . . . , zn} from Normal(0, 1), and then

let 1
n

∑n
i=1

1
z2
i
sin(zi) exp(z

2
i) to be an estimate of E[1

Z2 sin(Z) exp(Z2)]

The Monte Carlo method can also be used to calculate integration. The key to doing so is to

re-write the integration as an expectation.

Example 4 (continuing from p. 14). It can be hard for us to calculate the numerical integration∫∞
−∞

1
z2 sin(z)dz directly. On the other hand, we have

E[
1

Z2
sin(Z) exp(Z2)] =

∫ ∞

−∞

1

z2
sin(z) exp(z2)f(z)dz, where f is the density for Normal(0, 1)

=

∫ ∞

−∞

1

z2
sin(z) exp(z2)

1√
2π

exp(−z2)dz

=
1√
2π

∫ ∞

−∞

1

z2
sin(z)dz

(2.16)

Thus, we can use
√
2π times the average value 1

n

∑n
i=1

1
z2
i
sin(zi) exp(z

2
i) from the previous Markov

chain to be an approximation for such integration.

Example 5. Suppose we want to calculate
∫ 1

x=0

∫ 1

y=0
g(x, y)dydx. If we define X,Y ∼ Uniform[0, 1],

then
∫ 1

x=0

∫ 1

y=0
g(x, y)dydx = E

(
g(X,Y)

)
. Thus, if we generate {x1, x2, . . . , xn} and {y1, y2, . . . , yn}

from Uniform[0, 1] independently, then 1
n

∑n
i=1 g(xi, yi) is an estimate of such integration.

2.3 Markov chain Monte Carlo Review

Markov chain Monte Carlo (MCMC) is essentially Monte Carlo integration using Markov chains [34].

Monte Carlo integration draws samples from the required distribution by running a cleverly con-

structed Markov chain for a long time and then forms sample averages to approximate expectations

[34]. As introduced when we reviewed the Monte Carlo method, Ulam came up with the original idea

of the Monte Carlo method in 1946 [58], this idea was adopted by von Neumann for the application

in neuron diffusion[75], and the name Monte Carlo was suggested by Nicholas Metropolis [58]. All

these occurrences are closely related to the very first general-purpose digital computer, the ENIAC,

and with it, scientists have invented a lot of methods related to random sampling [75]. The first

MCMC algorithm, on the other hand, is associated with a second computer, namely MANIAC, built

CHAPTER 2. BACKGROUND REVIEW 15

in Los Alamos under the direction of Metropolis in early 1952 [12]. Metropolis et al. [59] demon-

strated the validity of the first MCMC algorithm named after Metropolis himself. The number of

iterations of the Metropolis algorithm used in this paper seems to be limited with only 16 iterations

for burn-in and up to 64 subsequent steps for sampling, which took 4-5 hours on the Los Alamos

computer [12]. In addition, the Metropolis algorithm has also been generalized by Hastings [39].

Later, Kirkpatrick et al. [47] introduced an interesting variation called the Simulated Annealing

algorithm, which can be used to find the optimal values for optimization questions, and we will talk

more about the optimization in Chapter 5.

In the MCMC, the Metropolis algorithm has been the most successful and influential one [6]. It

is designed to generate a Markov chain that converges to a given target distribution π on a state

space S. The Metropolis-Hastings algorithm is a generalized version of the Metropolis algorithm,

including the possibility of an asymmetric proposal distribution Q [43].

Here, we first introduce the essential elements for the discrete sampling questions by MCMC:

1. a state space S, any non-empty finite or countable set;

2. a real-valued target distribution π : S → [0, 1] where
∑

x∈S π(x) = 1;

3. ∀x ∈ S, ∃ a proposal distribution Q(x, ·) where
∑

y∈S\{x}Q(x, y) = 1, and Q(x, y) > 0 ⇐⇒
Q(y, x) > 0, ∀x, y ∈ S; if ∀x, y ∈ S, Q(x, y) = Q(y, x), then Q is symmetric;

4. ∀x ∈ S, ∃ a neighbor set N (x) := {y ∈ S | Q(x, y) > 0} ⊂ S\{x};

5. initial probabilities {vx}x∈S represent the probability at time 0, so vx ≥ 0,∀x ∈ S, and∑
x∈S vx = 1; we usually start our MCMC at a certain state by a given state x0, and then we

can set vx0
= 1 and vx = 0, ∀x ∈ S\{x0}.

Here, we focus on discrete cases first, and we will discuss the general state space in Section 4.5. The

Metropolis-Hastings algorithm is described in Algorithm 1.

Algorithm 1 the Metropolis-Hastings algorithm

initialize X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y)Q(Y,Xk−1)
π(Xk−1)Q(Xk−1,Y) then

▷ accept with probability min
{
1, π(Y)Q(Y,Xk−1)

π(Xk−1)Q(Xk−1,Y)

}
Xk ← Y ▷ accept and move to state Y

else
Xk ← Xk−1 ▷ reject and stay at Xk−1

end if
end for

Algorithm 1 ensures the Markov chain {X0, X1, X2, . . . , XK} has π as stationary distribution.

Assuming irreducibility, it follows that the expected value Eπ(h) of a functional h : S → R with

respect to π can be estimated by 1
K

∑K
i=1 h(Xi) for sufficiently large run length K.

CHAPTER 2. BACKGROUND REVIEW 16

2.3.1 Hybrid Chains

Consider k different Markov chain updating schemes {p1,p2, . . . ,pk} as defined in Equation 2.2, all

of which leave π stationary. There are various ways to combine the chains to form a hybrid chain

that still leaves π stationary. We can, for example, run the schemes sequentially to produce the

systematic-scan Markov chain p = p1p2 . . .pk. As an alternative, we can select one uniformly at

random in each iteration, resulting in the random-scan Markov chain p = (p1 + p2 + · · · + pk)/k.

Combining strategies such as these can be used to build hybrid Markov chains. Hybrid chains may

have superior convergence properties under many circumstances such as [64], [65]. This combining

technique also forms the basis of the Gibbs sampler.

For the Metropolis-Hastings algorithm, we can be more specific. An example of the Metropolis-

Hastings algorithm with alternating chains for every L0 step among I proposal distributions Q0, Q1,

. . . , QI−1 is shown as Algorithm 2. Note that, we used superscripts as the index for the proposal

distribution Qi for different proposals. Later for Partial Neighbor Search, we will be using proposal

distributions with subscripts like Qi, and we use different notations for proposal distributions under

different circumstances to illustrate their difference as we will discuss later in Section 4.2.1.

Algorithm 2 Metropolis-Hasting algorithm with Alternating Chains

initialize i← 0 ▷ start with proposal distribution Q0

initialize L← L0 ▷ start with L0 remaining samples
initialize X0

for k in 1 to K do
random Y based on Qi(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y)Qi(Y,Xk−1)
π(Xk−1)Qi(Xk−1,Y) then

▷ accept with probability min
{
1, π(Y)Qi(Y,Xk−1)

π(Xk−1)Qi(Xk−1,Y)

}
Xk ← Yk ▷ accept and move to state Y

else
Xk ← Xk−1 ▷ reject and stay at Xk−1

end if
L← L− 1 ▷ one less remaining sample from the proposal distribution
if L = 0 then ▷ if we don’t have enough remaining samples

i← i+ 1 mod I ▷ switch to the next proposal distribution
L← L0 ▷ L0 remaining states for the next proposal distribution

end if
end for

2.3.2 Parallel Tempering

Parallel tempering can be traced to a 1986 paper by Swendsen and Wang [79], and they used the

name replica Monte Carlo simulation. In this paper, the authors use replicas at different temper-

atures to study the system of spin-glasses. By partial exchanges of configuration information, the

authors greatly reduce the long correlation times characteristic of standard methods, allowing the

investigation of lower temperatures with less computer time than previously necessary [79]. Later,

Geyer extended this idea and made complete exchanges of configuration information [31]. Initially,

applications of the new method were limited to problems in statistical physics [22]. Then Hansmann

CHAPTER 2. BACKGROUND REVIEW 17

[38], Falcioni and Deem [25], and Okamoto and Sugita [78], etc. extended such method to the field

of spanning physics, chemistry, biology, engineering, materials science and so on.

The intuition behind parallel tempering is simple. For some sampling questions at low tem-

peratures, the distribution may have very separate but equally important local extreme areas, and

it can be hard for us to travel between those local extreme areas. The high-temperature systems

are generally able to sample large volumes of phase space, whereas low-temperature systems, which

can sample precisely in a local region of phase space, may become trapped in local extreme areas

[79]. Thus, we can use two or more Markov chains at different temperatures to make use of the

advantages of both high and low temperatures. The Markov chains at different temperatures may

swap the current state with each other by some given probability, usually following the Metropolis-

Hastings criterion. Thus, the Markov chain at low temperatures is more likely to travel between

local maximum areas and samples more efficiently. Although parallel tempering can be applied in a

variety of ways, it usually contains the following steps:

1. choose the number of replicas and the corresponding temperatures; usually, temperature T = 1

must be chosen since this is our target distribution to sample from; the highest temperature

should be chosen to be high enough to explore the entire state space; we may also need several

intermediate temperatures since if the difference between T = 1 and the highest temperature is

too large, the probability of direct swapping between these two replicas is low; the total number

of temperatures being chosen should not be too large to make the algorithm computationally

infeasible;

2. initialize a Markov chain for each replica, and choose initial states for them;

3. run the Markov chains under different temperatures for a specified number of steps under their

respective temperatures;

4. perform exchange between temperatures based on some probability; usually the exchange can

only be made between the adjacent temperatures, and the probability of exchange can be

based on the Metropolis-Hastings criterion or any other suitable method;

5. repeat step 3 and 4 for sufficient times to make sure the Markov chains are converging to the

corresponding distribution;

6. the Markov chain for the temperature T = 1 contains the samples which approximate the

target distribution; generally, parallel tempering will result in faster convergence than using a

single Markov chain with a temperature of 1.

An example algorithm with two temperatures is shown as Algorithm 3. Suppose the two temper-

atures are T1 and T2 where T1 = 1 and the high temperature T2 is at our choice. Here we define the

{X1,0, X1,1, X1,2, . . . } and {X2,0, X2,1, X2,2, . . . } are the two chains corresponding to the two tem-

peratures accordingly. We use π1 and π2 to describe the target density of these two temperatures.

π1 ∝ π1/T1 = π is the same as the target density. π2 ∝ π1/T2 is a flatter target density, and it is

easy for the Markov chain to explore the whole state space. Here, we propose exchange after every

L steps, and we exchange the states with the Metropolis-Hastings criterion, which swaps the states

with probability p = min
[
1, π1(X2)π2(X1)

π1(X1)π2(X2)

]
.

We will illustrate the power of parallel tempering with a simple example.

CHAPTER 2. BACKGROUND REVIEW 18

Algorithm 3 the Metropolis-Hastings algorithm with parallel tempering of two temperatures

initialize X1,0 and X2,0, set T1 = 1, and choose T2 ▷ T2 is the high temperature at our choice
choose L ▷ we propose exchange after every L states
for k in 1 to K do

random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y)Q(Y,Xk−1)
π(Xk−1)Q(Xk−1,Y) then

▷ accept with probability min
{
1, π(Y)Q(Y,Xk−1)

π(Xk−1)Q(Xk−1,Y)

}
Xk ← Y ▷ accept and move to state Y

else
Xk ← Xk−1 ▷ reject and stay at Xk−1

end if
if k mod L = 0 then

random U ′
k ∼ Uniform(0, 1)

if U ′
k <

π1(X2,k)π2(X1,k)
π1(X1,k)π2(X2,k)

then

swap X1,k and X2,k.
end if

end if
end for

the number of steps needed Min. 1st Qu. Median Mean 3rd Qu. Max.
without parallel tempering 7195 151134 452958 3463047 1755254 52555384
with parallel tempering 962 24660 95310 1316368 276162 96479112

Table 2.1: Number of steps needed for Markov chains with and without parallel tempering to get
good samples

Example 6. Suppose S = A,B,C,D,E, F with π(A) = π(F) = 0.4, π(B) = π(E) = 0.099,

πC = π(D) = 0.001. Suppose the proposal distribution Q is uniform on the adjacent states. If

we want to sample from the case with temperature T = 1, then the probability of the Markov chain

moving from state B to state C with one step is about Q(B,C) × π(C)
π(B) = 0.5 × 0.001

0.099 ≈ 0.005.

On the other hand, for a high-temperature case such as T = 100, the corresponding probability is

Q(B,C) ×
[
π(C)
π(B)

]1/100
= 0.5 ×

[
0.001
0.099

]1/100
≈ 0.5. We care about the probability from state B to

state C because we have to switch between the two local maximum areas {A,B} and {E,F} for many

times to make sure the empirical distribution from the samples is close to the target distribution,

and thus, we have to move from B to C for many times.

In addition, we can also check the converging speed by simulation. Suppose we call samples where

the empirical distribution Psampled is different from the target distribution for at most 0.0001 for

all states to be good samples. That is, ∀i ∈ S, |π(i) − Psampled| < 0.0001. How many steps do we

need to get good samples? We simulate the Markov chain with and without parallel tempering both

100 times and record the number of steps needed to reach good samples. Note that, for the parallel

tempering case with two temperatures, two Markov chains with 100 states will be recorded as 200

steps, and swapping between chains will also be considered as one step. The result is shown in Table

2.1.

Table 2.1 shows that with parallel tempering, the number of steps needed by the Markov chains

to reach good samples is significantly reduced.

CHAPTER 2. BACKGROUND REVIEW 19

2.4 Parallel Computing Review

Moore’s Law states that the number of transistors on a microchip doubles every two years, though

the cost of computers is halved. This law, holding for more than 50 years, is approaching its end,

and the improvements from the general processors are slowing down [16]. Thus, the market and the

researchers have turned their attention to domain-specific computing that improves performance by

applying dedicated hardware and algorithms to specific application domains [57]. Parallel computing

is one of this kind. It is the use of multiple calculations or execution threads simultaneously to solve

problems [2]. It usually involves dividing large-scale problems into smaller sub-problems that can

be solved independently and then distributing these small sub-problems onto different processors.

Parallel computing can increase processing speed and improve efficiency for a lot of algorithms, but

developing parallel software can be challenging, and requires specialized skills and tools to ensure

that the computations are executed efficiently and correctly.

Suppose we want to sample from a target distribution by a programming language like C++

on a personal computer. It is easy for us to write code to generate a single Markov chain to

approximate the target distribution. This can be done in serial order by one processor. In addition,

if we have several processors, we can use tools like Message Passing Interface (MPI) to help our

processors to communicate with each other. For example, for my personal desktop, I can generate

16 Markov chains from the target distribution at the same time, and thus, the sampling efficiency

is greatly improved. However, this example is very simple, and the chains being generated by each

processor are independent. We almost fully parallelize the program, and thus we don’t need frequent

communications among processors during the process. But for other problems, some portion of the

program cannot be parallelized, and frequent communications among processors is necessary.

According to Amdahl’s law, the speedup of a parallel program is limited by the portion of the

program that cannot be parallelized. In this case, not only the part of the program that cannot be

parallelized but also the communication time used by the processors will take a lot of time. For

example, for some parallel computing tasks done by my personal computer, using 16 processors

can only reduce 50% of the time needed by the program. For the general-designed processors like

Intel and AMD cores, off-chip communication significantly slows down the transfer rate of data to

and from the cores [77]. Thus, other people like Fujitsu have designed specialized chips for parallel

computing.

For example, the second generation of Fujitsu Digital Annealer uses a dedicated processor called

a Digital Annealing Unit (DAU) [57] to achieve high speed. This dedicated processor is designed

to minimize communication overhead in arithmetic circuitry and with memory. With fully coupled

bit connectivity and high coupling resolution as a major feature, the DAU can be used to solve a

wide variety of combinatorial optimization problems [57]. All the algorithms introduced in the thesis

were designed purposefully for DAU at the very beginning. On the other hand, we also find these

algorithms useful when being applied to serial computing with regular processors. For example, in

all later simulations, using serial computing with a single processor, the speed to solve the sampling

and optimization question by Rejection-Free and Partial Neighbor Search, as we will introduce later,

is faster than the Metropolis-Hastings algorithm and the Simulated Annealing algorithm.

Chapter 3

Jump Markov chains and

Rejection-Free Metropolis

algorithm

The Metropolis algorithm might reject many proposals during the sampling process, and too many

rejections will lead to inefficiencies in convergence. In certain contexts, the optimal Metropolis

algorithm should reject over three-quarters of its proposals [30], [66]. After each rejection, the

Markov chain will remain at the current state even though we have sampled a proposed state,

computed a ratio of target probabilities, and decided not to accept the proposal. These rejections are

normally considered to be a necessary evil of the Metropolis algorithm. However, recent technological

advances have allowed for exploiting parallel in computer hardware. We are now able to compute all

potential acceptance probabilities at once, and thus the Markov chain has the possibility of skipping

the rejection steps and instead accepting a move for every step. Such Rejection-Free algorithms

can be very efficient, but the algorithm must be executed correctly. Otherwise, the corresponding

Markov chain will be biased, as we now explain.

3.1 The Uniform Selection Algorithm

Suppose we are sampling from an MCMC with the current state x and the neighbor set is N =

{y1, y2, . . . , yk} which is a large but finite set, and all yi’s are distinct from x. The proposal distri-

bution is uniformly on the neighbor set. Then, we can do the following for the current step:

1. sample U ∼ Uniform[0, 1];

2. consider the subset of the neighbors NU := {yi | U < π(yi)
π(x) } that would have been accepted if

given U in the Metropolis algorithm;

3. (a) if NU is not empty, pick one of the states in NU uniformly at random;

(b) otherwise, re-start from step 1 and try again.

Technically speaking, the method involves rejection when we move to case 3 (b), though its proba-

bility is small. On the other hand, compared to the Metropolis algorithm, this algorithm will mostly

20

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 21

Figure 3.1: The transition probabilities from the Metropolis chain in Example 7

move somewhere else, so there is almost no rejection. However, this algorithm is different from true

MCMC, and might not converge to the true density π, as we now show

Example 7. Suppose the state space S = {A,B,C}, with the true density π being π(A) = 1/2,

π(B) = 1/3, and π(C) = 1/6. In addition, suppose that from each state x, the chain proposes

to move either to the adjacent state with probability 1/2 each, and if the state has only one adja-

cent state, then for the other 1/2, the proposal will always be rejected. We can calculate that the

Metropolis algorithm would have Markov chain transition probabilities as in Figure 3.1. The limiting

stationary distribution from the Metropolis algorithm is π = (1/2, 1/3, 1/6), which is the same as the

true density π as they must. However, the Uniform Selection algorithm would have Markov chain

transition probabilities as in Figure 3.2, with limiting stationary distribution being (3/5, 4/15, 2/15)

which is significantly different from the true density.

For example, from state B, the Metropolis algorithm would accept a proposed move to state A

with probability 1 and would accept a proposed move to state C with probability π(B)
π(C) = 1/6

1/3 = 1/2,

so the Markov chain at state B would be twice as likely to move to state A as to move to state C.

However, for the above Uniform Selection version, NU = {A} for u > 1
2 . Moreover, NU = {A,C}

for u ≤ 1/2, and the Markov chain would move to state A or state C with probability 1/2 each. Thus

the Markov chain would move to state A with probability (1/2)(1) + (1/2)(1/2) = 3/4, and for state

C, the probability is (1/2)(0) + (1/2)(1/2) = 1/4. That is, from state B, the Markov chain would

now be three times as likely to move to state A as to move to state C, not twice. This illustrates

that this Uniform Selection algorithm will fail to converge to the true density π but to some other

distribution.

Example 8. Suppose now that the state space is the set S = A0, A1, A2, A3, . . . of all non-negative

integers, with target distribution π defined by writing

π(4a+ b) =
1

135

(
8

9

)a

2b, b = 0, 1, 2, 3 and a = 0, 1, 2, . . .

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 22

Figure 3.2: The transition probabilities from the Uniform Selection chain in Example 7

As a check,

∑
Ai∈S

π(Ai) =

∞∑
a=0

1

135

(
8

9

)a

(20 + 21 + 22 + 23) =
1

135
× 1

1− 8/9
× 15 = 1

Thus, π is a valid probability distribution. The Metropolis algorithm chain for this example is given

by Figure 3.3, and it has the correct limiting stationary distribution π, as it must. However, the

Uniform Selection chain is instead given by Figure 3.4. It is easy to prove that the Uniform Selection

chain is transient in this case. For example, if the Uniform Selection chain for this example begins

at state A4a for some positive integer a ≥ 2, then the probability it will ever reach the state A3 is

less or equal to
(
8
9

)a−1
, which is strictly smaller than 1. That is, the Uniform Selection chain might

fail to ever reach the optimal value. For instance, if X0 = A100, then a = 25 and the probability of

failure is at least 1−
(
8
9

)24
> 0.94 = 94%.

Examples 7 and Example 8 show that the Uniform Selection algorithm may converge to the

wrong limiting distribution, and thus should not be used for sampling purposes.

Furthermore, Example 8 also has implications for optimization. Any Markov chain which gives

consistent estimators can be used to find the mode of π, either by running the chain for a long time

and taking its empirical sample mode or by keeping track of the largest value π(x) over all samples

visited. However, Example 8 shows that a Uniform Selection chain could be transient and thus fail

to find or converge to the maximum value at all. We will talk more about the optimization questions

in Chapter 5.

3.2 The Jump Chain

Due to the problems with the Uniform Selection Algorithm identified above, we instead turn at-

tention to a more promising avenue, the Jump Chain. Our definitions are as follows. Let {Xn}
be an irreducible Markov chain on a state space S, and we call it the original chain. For ease of

exposition, we initially assume that S is finite or countable, though we later extend this to general

Markov chains with densities. To avoid trivialities, we assume throughout that |S| > 1. Given a run

{Xn} of the Markov chain, we define the Jump Chain {Jk} to be the same chain except omitting

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 23

Figure 3.3: The transition probabilities from the Metropolis chain in Example 8

Figure 3.4: The transition probabilities from the Uniform Selection chain in Example 8

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 24

any immediately repeated states, and the Multiplicity List {Mk} to count the number of times the

original chain remains at the same state. For example, if the original chain {Xn} was

{Xn} = {a, b, b, b, a, a, c, c, c, c, d, d, a, . . . },

then the jump chain {Jk} would be

{Jk} = {a, b, a, c, d, a, . . . },

and the corresponding multiplicity list {Mk} would begin

{Mk} = {1, 3, 2, 4, 2, . . . }.

The concept of jump chains arises frequently for Markov processes, especially for continuous time

processes where they are often defined in terms of infinitesimal generators; see Section 4.4 of [21] or

Proposition 4.4.20 of [68] for examples. Here we develop the essential properties that we will use

below. Most of these properties are already known in the context of Metropolis-Hastings algorithms.

To continue, define

P(y | x) = P[Xn+1 = y|Xn = x], x, y ∈ S (3.1)

to be the transition probabilities for the original chain {Xn}. And, let

α(x) = P[Xn+1 ̸= x|Xn = x] =
∑
y ̸=x

P(y | x) = 1−P(x | x) (3.2)

be the probability that the original chain will move away from x on the next step. Note that since

the chain is irreducible and |S| > 1, we must have α(x) > 0 for all x ∈ S. We then verify the

following properties of the jump chain.

Proposition 3.2.1. The jump chain {Jk} is itself a Markov chain, with transition probabilities

P̂(y | x) specified by P̂(x | x) = 0, and for y ̸= x,

P̂(y | x) := P[Jk+1 = y|Jk = x] =
P(y | x)∑
z ̸=x P(z | x)

=
P(y | x)
α(x)

(3.3)

Proof. It follows from the definition of {Jk} that P̂(x | x) = 0. For x, y ∈ S with y ̸= x, we compute

that
P̂(y | x) := P[Jk+1 = y|Jk = x]

:= P[Xn+1 = y|Xn = x,Xn+1 ̸= Xn]

:=
P[Xn+1 = y,Xn+1 ̸= Xn|Xn = x]

P[Xn+1 ̸= Xn|Xn = x]

=
P(y | x)∑
z ̸=x P (z | x)

=
P(y | x)
α(x)

(3.4)

as claimed.

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 25

Proposition 3.2.2. The conditional distribution of Mk given Jk is equal to the distribution of 1+G

where G is a geometric random variable with success probability p = α(Jk), i.e.

P[Mk = m|Jk] = (1− p)m−1p = [1− α(Jk)]
m−1α(Jk), for m = 1, 2, 3, . . . (3.5)

and furthermore E[Mk | Jk] = 1/p = 1/α(Jk).

Proof. If the original chain is at state x, then it has probability p = α(x) of leaving x on the next

step, or probability 1 − α(x) of remaining at x. Hence, the probability that it will remain at x for

m steps total (i.e., m− 1 additional steps), and then leave at the next step, is equal to (1− p)m−1p,

as claimed.

Proposition 3.2.3. If the original chain P is irreducible, then so is the jump chain P̂

Proof. Let x, y ∈ S. Since P is irreducible, there is a path x = x0, x1, x2, ..., xm = y with P (xi+1 |
xi) > 0 for all i. Without loss of generality, we can assume the {xi} are all distinct. But if

P(xi+1 | xi) > 0, then Proposition 3.2.1 implies that also P̂(xi+1 | xi) > 0. Hence, P̂ is also

irreducible.

Proposition 3.2.4. If the original chain P has stationary distribution π, then the jump chain P̂

has stationary distribution π̂ given by π̂(x) = cα(x)π(x) where c =
(∑

y α(y)π(y)
)−1

.

Proof. Recall that on a discrete space, π is stationary for P if and only if
∑

x π(x)P(y | x) = π(y)

for all yS. In that case, we compute that∑
x

π̂(x)P̂(y | x) =
∑
x

(
cα(x)π(x)

)(
P(y | x)/α(x)1y ̸=x

)
= c

∑
x ̸=y

(
π(x)P(y | x)

)
= c

∑
x

(
π(x)P(y | x)

)
− π(y)P (y | y)

= cπ(y)− π(y)P(y | y)

= cπ(y)
(
1−P(y | y)

)
= cπ(y)α(y)

= π̂(y)

(3.6)

so that π̂ is stationary for P̂, as claimed.

Remark 3.2.5. Most of the results presented in this section are already known in the Metropolis-

Hastings context: the geometric distribution of the holding times is noted in Lemma 1(3) of [19]

and Proposition 1(a) of [45]; the modified transition probabilities of the jump chain are stated in

Proposition 1(b) of [45]; and the relationship between the stationary distributions of the original and

jump chains is used in Lemma 1(4) of [19], Proposition 1(c) of [45], and Proposition 2.1 of [54],

Lemma 1 of [20], and Section 2 of [18].

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 26

Remark 3.2.6. It is common that simple modifications of reversible chains lead to simple modifi-

cations of their stationary distributions. For example, if a reversible chain is restricted to a subset

of the state space, so any moves out of the subset are rejected with the chain staying where it is,

then its stationary distribution is equal to the original stationary distribution conditional on being

in that subset since the detailed balance equation still holds on the subset. However, that prop-

erty does not hold without reversibility. For a simple counter-example, let S = {A,B,C}, with

P(B|A) = P(C|B) = P(A|C) = 3/4, and P(C|A) = P(A|B) = P(B|C) = 1/4. Then if S0 = A,B,

then the stationary distribution of the original chain is (1/3, 1/3, 1/3), but the stationary distribution

of the chain restricted to S0 is (1/4, 3/4). We were thus surprised that Proposition 3.2.4 holds even

for non-reversible chains.

3.3 Using the Jump Chain for Estimation

The Jump Chain can be used for estimation, as we now discuss. This approach has also been taken

by others; see Remarks 9 and 14 below.

Theorem 3.3.1. Given an irreducible Markov chain {Xn} with transition probabilities P(y | x)
and stationary distribution π on a state space S, and a function h : S → R, suppose we simulate

the jump chain {Jk} with the transition probabilities as in Proposition 3.2.1, and then simulate the

multiplicities list {Mk} from the conditional probabilities as in Proposition 3.2.2, and set

ēK =

∑K
k=1 Mkh(Jk)∑K

k=1 Mk

(3.7)

Then ēK is a consistent estimator of the expected value Eπ(h), i.e. limK→∞ ēK = Eπ(h) with

probability 1.

Proof. Recall (e.g. [61]) that the usual estimator êN =
∑N

n=1 h(Xn) is consistent. That is,

limK→∞ êN = Eπ(h) with probability 1. Then, it is seen that ēK =
∑K

k=1 Mkh(Jk)∑K
k=1 Mk

= ê∑K
k=1 Mk

=

êN(K) where N(K) =
∑K

k=1 Mk. Since each Mk ≥ 1, limK→∞ êN = Eπ(h), so limK→∞ ēK =

limK→∞ êN(K) = limK→∞ êNEπ(h) with probability 1, as claimed.

Remark 3.3.2. The consistency of the estimate 3.7, and similarly those of Theorems 12 and 13

below, is already known in the Metropolis-Hastings context; see equation (3) of [54], Section 2 of

[19], and equation (2) of [45].

On the other hand, combining the Markov chain Law of Large Numbers with Proposition 3.2.3

and Proposition 3.2.4 immediately gives:

Proposition 3.3.3. Under the above assumptions, if we simulate the jump chain {Jk} with the

transition probabilities P̂ , then for any function g : S → R with π̂|g| <∞, we have

lim
k→∞

1

K

K∑
k=0

g(Jk) = π̂(g) :=
∑
x∈S

g(x)π̂(x) = c
∑
x∈S

g(x)α(x)π(x), with probability 1 (3.8)

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 27

Corollary 3.3.4. Under the above assumptions, if we simulate the jump chain {Jk} with the tran-

sition probabilities P̂ , then for any function h : S → R with π̂|h| <∞, we have

lim
k→∞

1

cK

K∑
k=0

h(Jk)

α(Jk)
= π(h) =

∑
x∈S

h(x)π(x), with probability 1 (3.9)

Proof. Let g(x) = h(x)
cα(x) .Then since π̂|h| <∞, we have

π̂|g| =
∑
x∈S
|g(x)×|π̂(x)

=
∑
x∈S

|h(x)|
cα(x)

× cα(x)π(x)

=
∑
x∈S

|h(x)|
cα(x)

× cα(x)π(x)

=
∑
x∈S
|h(x)| × π(x)

= π|h| <∞

(3.10)

So, the result follows upon plugging this g into Proposition 3.3.3.

Theorem 3.3.5. Under the above assumptions, if we simulate the jump chain {Jk} with the tran-

sition probabilities P̂ , then for any function h : S → R with π̂|h| <∞, we have

lim
K∈∞

∑K
k=1[h(Jk)/α(Jk)]∑K

k=1[1/α(Jk)]
= π(h), with probability 1. (3.11)

Proof. Setting h ≡ 1 in Corollary 3.3.4 gives that with probability 1, limk→∞
1
cK

∑K
k=0

1
α(Jk)

= 1.

We then compute that

lim
K∈∞

∑K
k=1[h(Jk)/α(Jk)]∑K

k=1[1/α(Jk)]
= lim

K∈∞

1
cK

∑K
k=1[h(Jk)/α(Jk)]

1
cK

∑K
k=1[1/α(Jk)]

= lim
K∈∞

∑
x∈S h(x)π(x)

1

= π(h)

(3.12)

as claimed.

Comparing Theorems 3.3.1 and 3.3.5, we see that they coincide except that each multiplicity

random variable Mk has been replaced by its mean 1/α(Jk). Proposition 3.2.2. Finally, we note

that although our computer hardware does not allow us to exploit it, most of the above carries over

to Markov chains with densities on general state spaces, as follows. Note that the proofs are very

similar to the discrete case and are thus omitted.

Theorem 3.3.6. Let S be a general state case, and µ be a σ-finite reference measure on S. Suppose

a Markov chain on S has transition probabilities P(x, dy) ∝ q(x, y)µ(dy) for q : S × S → [0, 1].

Again let P̂ be the transitions for the corresponding jump chain Jk with multiplicities Mk. Then:

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 28

1. P̂ (x, {x}) = 0, and for x ̸= y, P̂(x, dy) = q(x,y)∫
q(x,z)µ(dz)

µ(dy)

2. The conditional distribution of Mk given Jk is equal to the distribution of 1 + G where G is

a geometric random variable with success probability p = α(Jk) where α(x) = P[Xk+1 ̸= x |
Xk = x] =

∫
q(x, z)µ(dz) = 1− r(x) = 1−P(x | x)

3. If the original chain is ϕ-irreducible (see, e.g., [61]) for some positive σ-finite measure ϕ on

X , then the jump chain is also ϕ-irreducible for the same ϕ.

4. If the original chain has stationary distribution π(x)µ(dx), then the jump chain has stationary

distribution given by π̂(x) = cα(x)π(x)µ(dx) where c−1 =
∫
α(y)π(y)µ(dy)

5. If h : S → R has finite expectation, then with probability 1,

lim
K→∞

∑K
k=1 Mkh(Jk)∑K

k=1 Mk

= lim
K→∞

∑K
k=1[

h(Jk)
α(Jk)

]∑K
k=1[

1
α(Jk)

]
= π(h) :=

∫
h(x)π(x)µ(dx)

3.4 Application to the Metropolis-Hastings Algorithm

Suppose now that the original chain {Xn} is a Metropolis-Hastings algorithm, with proposal proba-

bilities Q(x, y). Then for x ̸= y, P(y | x) = Q(x, y)min{1, π(y)Q(y,x)
π(x)Q(x,y)}. Hence, by Proposition 3.2.1,

the jump chain transition probabilities have P̂(x | x) = 0 and for x ̸= y are given by

P̂(y | x) := P[J1 = y | J0 = x]

=
Q(x, y)min

{
1, π(y)Q(y,x)

π(x)Q(x,y)

}
∑

z ̸=xQ(x, z)min
{
1, π(z)Q(z,x)

π(x)Q(x,z)

} .
(3.13)

Also, here

α(x) =
∑
y ̸=x

P(y | x) =
∑
z ̸=x

Q(x, z)min

{
1,

π(z)Q(z, x)
π(x)Q(x, z)

}
. (3.14)

A special case is where the proposal probabilities Q(x, ·) are uniform over all neighbors of x, where

each state has the same number N of neighbors. We assume that x is not a neighbor of itself and that

x is a neighbor of y if and only if y is a neighbor of x. Then for x ̸= y, P(y | x) = 1
N min{1, π(y)

π(x)}.
And, by Proposition 3.2.1, the jump chain transition probabilities have P̂(x | x) = 0 and for x ̸= y

are given by

P̂(y | x) =
min

{
1, π(y)

π(x)

}
∑

z∈N (x) min
{
1, π(z)

π(x)

} . (3.15)

Note that, N (x) represents the set of all neighbors of x. Also, here

α(x) =
1

N

∑
z ̸=x

min

{
1,

π(z)

π(x)

}
. (3.16)

The use of the Theorems 3.3.1 and 3.3.5 in the context of uniform Metropolis algorithms can be

carried out very efficiently using special parallelized computer hardware, which will be discussed in

Section 3.7, and was our original motivation for this investigation.

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 29

Remark 3.4.1. The “n-fold way” of [10] considers the Ising model and selects the next site to

flip proportional to its probability of flipping, by first classifying all sites in terms of their spin and

neighbor counts. This creates a rejection-free Metropolis-Hastings algorithm in the same spirit as

our approach, though specific to the Ising model. Later authors parallelized their algorithm, still for

the Ising model; see e.g. [52] and [49].

Given the above properties of the jump chain, the Rejection-Free algorithm is a sampling method

that produces the jump chain as described by Algorithm 4. Note that the Rejection-Free algorithm

described here can only deal with the discrete cases with at most a finite number of neighbors for

all states.

Algorithm 4 Rejection-Free algorithm for discrete case

initialize J0
for k in 1 to K do

calculate multiplicity list Mk−1 ← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈N (Jk−1)

Q(Jk−1, z)min

{
1,

π(z)Q(z, Jk−1)

π(Jk−1)Q(Jk−1, z)

}

choose the next jump chain State Jk ∈ N (Jk−1) such that

P̂(Jk = y | Jk−1) ∝ Q(Jk−1, y)min

{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(Jk−1, y)

}

end for

Note that, in Algorithm 4, when we need to pick our next state Jk according to the given proba-

bilities, we can use the technique shown in Section 3.8, which is designed to sample proportionally by

parallel hardware. In addition, even when the Rejection-Free is applied to a single core implementa-

tion, such a technique is still faster than other methods to sample proportionally, since calculating

argmin is much faster than calculating the summation.

Again, Algorithm 4 ensures (assuming irreducibility) that the expected value Eπ(h) of a func-

tional h : S → R with respect to π can be estimated by
∑K

k=1 Mk h(Jk)∑K
k=1 Mk

for sufficiently large run

length K, while avoiding any rejections. Rejection-Free can lead to great speedup in examples

where rejections frequently happen for the Metropolis-Hastings algorithm.

3.5 Hybrid Chains

Sometimes we have two or more different Markov chains and we wish to alternate between them in

some pattern to form a hybrid Markov chain. We reviewed the hybrid chains for regular MCMC

in Section 2.3.1. In addition, we might wish to use rejection-free sampling for some or all of the

individual chains. However, if this is done naively, it can lead to bias:

Example 9. Let S = {1, 2, 3, 4}, and π = (1− ϵ, 3ϵ, 1− ϵ, 1− ϵ)/3 for some small positive number

ϵ. For example, ϵ = 0.001. Let Q1(x, x+1) = Q1(x, x− 1) = 1/2 and Q2(x, x+1) = Q2(x, x+2) =

Q2(x, x − 1) = Q2(x, x − 2) = 1/4 be two different proposal kernels, and let p1 and p2 be usual

Metropolis algorithms for π with proposals Q1 and Q2 respectively. Then, each of p1 and p2 will

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 30

converge to π, as will the algorithm of alternating between p1 and p2 any fixed number of times.

However, if we instead alternate between doing one jump step of p1 and then one jump step of p2,

then this combined chain will not converge to the correct distribution. Indeed, the corresponding

escape probabilities α1(x) and α2(x) are all reasonably large (at least 1/4) except for α1(1) = ϵ/2

which is extremely small. This means that when our algorithm uses p1 from state 1 then it will

have an extremely large multiplicity Mk which will lead to an extremely large weight of the state A.

Indeed, if we use the alternating jump chains algorithm, then the estimators ēK as in Theorem 3.3.1

will have the property that as ϵ ↓ 0, their limiting value converges to h(1) instead of π(h), i.e.

lim
ϵ↓0

lim
K→∞

ēK = h(1). (3.17)

Hence, convergence to π fails in this case.

Thus, if we proceed with alternating chains naively for Rejection-Free, it can lead to bias. For

each proposal distribution Qi, we need to get the same amount of samples by the original sample size

(
∑K

k=1 Mk) instead of the jump sample size (K) to fix the bias problem. For I proposal distributions

Q0,Q1, . . . ,QI−1, the corresponding neighbor sets are N 0,N 1, . . . ,N I−1 where N i(x) = {y : y ∈
S,Qi(x, y) > 0} for i = 0, 1, . . . , I − 1. Then, if we choose to switch between proposal distributions

for L0 original samples, we can do alternating chains in a Rejection-Free manner as Algorithm 5.

Again, note that we used superscripts here for the proposal distribution Qi and neighbor sets N i

for Rejection-Free here as the index for different proposals and neighbor sets. Later for Partial

Neighbor Search, we will be using proposal distributions with subscripts like Qi, and we will discuss

their difference later in Section 4.2.1.

Algorithm 5 Rejection Free algorithm with Alternating Chains

initialize i← 0 ▷ start with proposal distribution Q0

initialize L← L0 ▷ start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈N i(Jk−1)

Qi(Jk−1, z)min

{
1,

π(z)Qi(z, Jk−1)

π(Jk−1)Qi(Jk−1, z)

}

if m ≤ L then ▷ if we have enough remaining original samples
Mk−1 ← m, L← L−m
choose the next jump chain State Jk ∈ N i(Jk−1) such that

P̂(Jk = y | Jk−1) ∝ Qi(Jk−1, y)min

{
1,

π(y)Qi(y, Jk−1)

π(Jk−1)Qi(Jk−1, y)

}

else ▷ if we don’t have enough remaining original samples
Mk−1 ← L, L← L0, Jk ← Jk−1, i← (i+ 1 mod I)

▷ stay at Jk−1 for L times and switch to the next N i

end if
end for

Algorithm 5 is equivalent to Algorithm 2 except that algorithm 5 computes immediate repeated

state for each proposal distribution all at once. As such, it has no bias, is consistent, and will

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 31

converge to the target distribution correctly. Again, in Algorithm 5, when we need to pick our next

state Jk according to the given probabilities, we can use the technique shown in Section 3.8.

3.6 Application to Parallel Tempering

Parallel tempering [32], [79] proceeds by considering different versions of the target distribution π

powered by different inverse-temperatures β, of the form π(β) ∝
(
π(x)

)β
. It runs separate MCMC

algorithms on each target π(β), for some fixed number of iterations, and then proposes to swap

pairs of values X(β1) ↔ X(β2). This swap proposal is accepted with the usual Metropolis algorithm

probability

min

[
1,

π(β1)(X(β2))π(β2)(X(β1))

π(β1)(X(β1))π(β2)(X(β2))

]
(3.18)

which preserves the product target measure Πβπ
(β).

But suppose we instead want to run parallel tempering using jump chains, i.e. using a rejection-

free algorithm within each temperature. If we run a fixed number of rejection-free moves of each

within-temperature chain, followed by one “usual” swap move, then this can lead to bias, as the

following example shows.

Example 10. Let S = {1, 2, 3}, with π(1) = π(3) = 1/4 and π(2) = 1/2. Suppose there are just two

inverse-temperature values, β0 = 1 and β1 = 5. Suppose each within the temperature chain proceeds

as a Metropolis algorithm, with proposal distribution given by Q(x, y) = 1/2 whenever y ̸= x. (That

is, we can regard the three states of S as being in a circle, and the chain proposes to move one

step clockwise or counter-clockwise with probability 1/2 each, and then accepts or rejects this move

according to the usual Metropolis procedure.) If we run a usual parallel tempering algorithm, then

the within-temperature moves will converge to the corresponding stationary distributions π(1) = π =

(1/4, 1/2, 1/4) and π(5) = (1/34, 32/34, 1/34) respectively. Then, given current chain values X(1)

and X(5), if we attempt a usual swap move, it will be accepted with a probability

min

[
1,

π(1)(X(5))π(5)(X(1))

π(1)(X(1))π(5)(X(5))

]
(3.19)

These steps will all preserve the product stationary distribution π(1)×π(5), as they should. However,

if we instead run a rejection-free within-temperature chain, then convergence fails.

Indeed, from each state, the jump chain is equally likely to move to either of the other two states,

so each jump chain will converge to the uniform distribution on S. The acceptance probability

as in Equation 3.19 will then lead to incorrect distributional convergence, e.g. if X(1) = 2 and

X(5) = 3, then a proposal to swap X(1) and X(5) will always be accepted, leading to an excessively

large probability that X(1) = 3. Indeed, if we run a simple simulation in R the fraction of time that

X(1) = 3 right after a swap proposal is about 44%, much larger than the 1/3 probability it should be.

To get rejection-free parallel tempering to converge correctly, we recall from Proposition 3.3.3

that the rejection-free chains actually converge to the modified stationary distributions π̂, not π.

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 32

We should thus modify the acceptance probability in Equation 3.19 to:

min

[
1,

π̂(β1)(X(β2))π̂(β2)(X(β1))

π̂(β1)(X(β1))π̂(β2)(X(β2))

]

=min

[
1,

α(β1)(X(β2))π(β1)(X(β2))α(β2)(X(β1))π(β2)(X(β1))

α(β1)(X(β1))π(β1)(X(β1))α(β2)(X(β2))π(β2)(X(β2))

] (3.20)

Such swaps will preserve the product modified stationary distribution Πβ π̂
(β), rather than trying

to preserve the unmodified stationary distribution Πβπ
(β). Note that, if necessary, the escape

probabilities α(x) can be estimated from a preliminary run. The rejection-free parallel tempering

algorithm will thus converge to Πβ π̂
(β), thus still allowing for valid inference as in Theorems 3.3.1

and 3.3.5.

Example 10 (continuing from p. 31). In this example, α(1)(A) = α(1)(C) = α(5)(A) = α(5)(C) = 1,

α(1)(B) = 1/2, and α(5)(B) = 1/32. So, if X(1) = 2 and X(5) = 3, then according to Equation 3.20,

a proposal to swap X(1) and X(5) will be accepted with probability

min

[
1,

α(1)(X(5))π(1)(X(5))α(5)(X(1))π(5)(X(1))

α(1)(X(1))π(1)(X(1))α(5)(X(5))π(5)(X(5))

]

=min

[
1,

(1)(1/4)(1/32)(1/2)

(1/2)(1/2)(1)(1/34)

]

=min

[
1,

17

32

]

=
17

32

(3.21)

and such swaps will instead preserve the product stationary distribution π̂(1) × π̂(5). Indeed, if we

run this simulation in R, the fraction of time that X(1) = 3 right after a swap proposal with this

modified acceptance probability becomes about 1/3, as it should be.

3.7 Numerical Examples

In this section, we introduce applications and simulations to illustrate the advantage of Rejection-

Free algorithm. We compare the efficiency of the Rejection-Free and standard Metropolis algorithms

in three different examples. The first example is a Bayesian inference model on a real data set taken

from the Education Longitudinal Study of [11]. The second example involves sampling from a two-

dimensional ferromagnetic 4 × 4 Ising model. The third example is a pseudo-marginal [4] version

of the Ising model. All three simulations show that the introduction of the Rejection-Free method

leads to significant speedup. This provides concrete numerical evidence for the efficiency of using

the rejection-free approach to improve the convergence to stationarity of the algorithms.

3.7.1 A Bayesian Inference Problem with Real Data

For our first example, we consider the Education Longitudinal Study [11] real data set consisting of

final course grades of over 9, 000 students. We take a random subset of 200 of these 9, 000 students

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 33

ESS per Iteration ESS per second
Metropolis 0.0074 47

Rejection-Free 0.9100 4, 261

Ratio 123.0 90.7

Table 3.1: Median of Effective Sample Sizes from 100 Runs each of the Metropolis and Rejection-
Free algorithms

and denote their scores as x1, x2 . . . , x200. (Note that all scores in this data set are integers between

0 and 100.)

Our parameter of interest θ is the true average value of the final grades for these 200 students,

rounded to 1 decimal place, so θ ∈ {0.1, 0.2, 0.3, . . . , 99.7, 99.8, 99.9} is still discrete and can be

studied using specialized computer hardware. The likelihood function for the grade x of a single

student is the binomial distribution

L(x | θ) =
(
100

x

)(θ

100

)x(1− θ

100

)100−x

. (3.22)

For our prior distribution, we take

θ ∼ Unif{0.1, 0.2, 0.3, . . . , 99.7, 99.8, 99.9} (3.23)

The posterior distribution π(θ) is then proportional to the prior probability function as Equation

3.23 times the likelihood function as Equation 3.22. Note that, this is a simple model used to

illustrate how Rejection-Free works, and this model is somehow unrealistic since we assumed a

common underlying parameter θ for all students.

We ran an Independence Sampler for this posterior distribution, with a fixed proposal distribution

equal to the prior as Equation 3.23, either with or without the Rejection-Free modification. For each

of these two algorithms, we calculated the effective sample size, defined as

ESS(θ) =
N

1 + 2
∑∞

k=1 ρk(θ)
(3.24)

where N is the number of posterior samples, ρk(θ) represents autocorrelation at lag k for the posterior

samples of θ. For an MCMC chain with finite length, the sum
∑∞

k=1 ρk(θ) cannot be taken over all

k, so instead we just sum until the values of ρk(θ) become negligible. In Addition, to calculate the

autocorrelation for the Rejection-Free chain, we have to convert it back to the original chain. For a

fair comparison, we consider both the ESS per iteration and the ESS per second of CPU time.

Table 3.1 presents the median ESS per iteration, and median ESS per second, from 100 runs of

100, 000 iterations each, for each of the two algorithms. We see from Table 3.1 that Rejection-Free

outperforms the Metropolis algorithm by a factor of approximately one hundred, in terms of both

ESS per iteration and ESS per second. This clearly illustrates the efficiency of the Rejection-Free

algorithm.

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 34

3.7.2 Apply Rejection-Free to the Ising model

We next present a simulation study of a ferromagnetic Ising model on a two-dimensional 4×4 square

lattice. The energy function for this model is given by

E(S) = −
∑
i<j

Ji,jsisj (3.25)

where each spin si, sj ∈ {−1, 1}, and Ji,j represents the interaction between the i-th and j-th

spins. To make only the neighboring spins in the lattice interact with each other, we take Ji,j = 1

for all neighbors i and j, and Ji,j = 0 otherwise. The Ising model then has probability distribution

proportional to the exponential of the energy function:

π(S) ∝ exp{−E(S)}. (3.26)

We investigate the efficiency of the samples produced in four different scenarios: Metropolis

algorithm and Rejection-Free, both with and without Parallel Tempering. For the Parallel Tempering

versions, we set

πT (S) ∝ exp{−E(S)

T
}. (3.27)

Here T = 1 is the temperature of interest (which we want to sample from). We take T = 2 as

the highest temperature, since when T = 2 the probability distribution for magnetization is quite

flat (with highest probability P[M(S) = 14] = 0.083, and lowest probability P[M(S) = 2] =

0.037). Including the one additional temperature T =
√
2 gives three temperatures T ∈ {1,

√
2, 2}

in geometric progression, with an average swap acceptance rate 31.6% which is already higher than

the 23.4% recommended in [67], indicating that three temperatures are enough.

In this example, we measure the distance to stationarity by the total variation distance. Given the

Markov chain {Xk}Kk=1 generated by the Metropolis algorithm, the sampling distribution is defined

as PSampled(x) =
∑K

k=1 1(Xk=x)

K , ∀x ∈ S, where 1 represents the indicator function. In addition, for

the jump chain {Jk,Mk}Kk=1 generated by Rejection-Free, the sampling distribution is defined as

PSampled(x) =
∑K

k=1 Mk×1(Jk=x)∑K
k=1 Mk

, ∀x ∈ S. The corresponding total variation distance (TVD) in both

cases is defined as

TVD(PSampled, π) =
1

2

∑
x∈S

∣∣∣PSampled(x)− π(x)
∣∣∣. (3.28)

According to the definition, TVD is strictly between [0, 1]. When the sampling distribution PSampled

gets closer to the target distribution π, TVD will decrease to 0. In other words, convergence to

stationarity is described by how quickly TVD(n) decreases to 0.

In addition, we study the convergence of the magnetization value, where the magnetization of a

given state S of the Ising model is defined as:

M(S) =

N∑
i=1

si (3.29)

For our 4× 4 Ising model,

M(S) ∈M = {−16,−14,−12, . . . ,−2, 0, 2, . . . , 12, 14, 16} (3.30)

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 35

0.0

0.2

0.4

0.6

1e+02 1e+03 1e+04 1e+05 1e+06
Number of iterations (log scale)

A
ve

ra
ge

 T
V

D
 v

al
ue

s

Algorithm Metropolis w/o PT Rejection Free w/o PT

TVD versus the number of iterations

0.0

0.2

0.4

0.6

1e+02 1e+03 1e+04 1e+05 1e+06
Number of iterations (log scale)

A
ve

ra
ge

 T
V

D
 v

al
ue

s

Algorithm Metropolis w/ PT Rejection Free w/ PT

TVD versus the number of iterations

Figure 3.5: Average of total variation distance between sampled and actual distributions as a function
of the number of iterations for four scenarios: Metropolis versus Rejection-Free without Parallel
Tempering (left) and with Parallel Tempering (right)

Thus, the corresponding TVD between the sampled and the actual magnetization distributions after

K iterations can also be written as

TVD(K) =
1

2

∑
m∈M

|P(M(Xk) = m)− π{S : M(S) = m}| (3.31)

where M(Xk) is the magnetization of the chain at iteration k, and π{S : M(S) = m} represents the
stationary probability of magnetization value m.

Figure 3.5 lists the average total variation distance TVD(n) for each version, as a function of the

number of iterations n, based on 100 runs of each of the four scenarios, of 106 iterations each. It

illustrates that, with or without Parallel Tempering, the use of the Rejection-Free provides significant

speedup, and TVD decreases much more rapidly with the Rejection-Free method than without it.

This provides concrete numerical evidence for the efficiency of using Rejection-Free to improve the

convergence to stationarity of the algorithm.

We next consider the issue of computational cost. The Rejection-Free method requires computing

probabilities for all neighbors of the current state. However, with specialized computer hardware,

Rejection-Free can be very efficient since the calculation of the probabilities for all neighbors and the

selection of the next state can both be done in parallel. The computational cost of each iteration of

Rejection-Free is therefore equal to the maximum cost used on each neighbor. Similarly, for Parallel

Tempering, we can calculate all of the different temperature chains in parallel. The average CPU

time per iteration for each of the four different scenarios is presented in Table 3.2. It illustrates that

the computational cost of Rejection-Free without Parallel Tempering was comparable to that of the

usual Metropolis algorithm, though Rejection-Free with Parallel Tempering does require up to 50%

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 36

Algorithms Average Time (nanoseconds)
Metropolis w/o PT 420

Rejection-Free w/o PT 407
Metropolis w/ PT 463

Rejection-Free w/ PT 611

Table 3.2: Average time used for each iteration of MCMC in four scenarios: Metropolis and
Rejection-Free, both with and without Parallel Tempering

0.0

0.2

0.4

0.6

1e+05 1e+06 1e+07 1e+08
Average Time (nanoseconds)

A
ve

ra
ge

 T
V

D
 v

al
ue

s

Algorithm Metropolis w/o PT Rejection Free w/o PT

TVD versus Time

0.0

0.2

0.4

0.6

1e+05 1e+06 1e+07 1e+08
Average Time (nanoseconds)

A
ve

ra
ge

 T
V

D
 v

al
ue

s

Algorithm Metropolis w/ PT Rejection Free w/ PT

TVD versus Time

Figure 3.6: Average of total variation distance between sampled and actual distributions as a function
of the average of time cost in four scenarios: Metropolis versus Rejection-Free without Parallel
Tempering (left) and with Parallel Tempering (right)

more time than the other three scenarios.

Figure 3.6 shows the average total variation distance as a function of the total CPU time used

for each algorithm. Figure 3.6 is quite similar to Figure 3.5 and gives the same overall conclusion:

with or without Parallel Tempering, the use of Rejection-Free provides significant speedup, even

when computational cost is taken into account.

As a final check, we also calculated the effective sample size, similar to the first example. First,

we generated 100 MCMC chains of 100, 000 iterations each, from all four algorithms. Then, we

calculated the effective sample size for each chain and normalized the results by either the number

of iterations or the total CPU time for each algorithm. Table 3.3 shows the median of ESS per

iteration and ESS per CPU second. It again illustrates that Rejection-Free can produce great

speedups, increasing the ESS per CPU second by a factor of over 50 without Parallel Tempering, or

a factor of 2 with Parallel Tempering.

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 37

ESS per Iteration ESS per second
Metropolis w/0 PT 0.0003 77.76

Rejection-Free w/o PT 0.0016 4227
Metropolis w/ PT 0.0057 11830

Rejection-Free w/ PT 0.0138 23459

Table 3.3: Median of Normalized Effective Sample Sizes for four scenarios: Metropolis and Rejection-
Free, both with and without Parallel Tempering

3.7.3 Extend Rejection-Free to Pseudo-marginal Metropolis-Hastings

If the target density itself is not available analytically, but an unbiased estimate exists, then pseudo-

marginal MCMC [4] can still be used to sample from the correct target distribution. We next apply

the Rejection-Free method to a pseudo-marginal algorithm to show that Rejection-Free can provide

speedups in that case, too.

In the previous example of the 4×4 Ising model, the target probability distributions were defined

as

π(S) ∝ exp{−E(S)

T
}. (3.32)

We now pretend that this target density is not available, and we only have access to an unbiased

estimator is given by

π0(S) ∝ π(S)×A = exp{E(S)

T
} ×A (3.33)

where A ∼ Gamma(α = 10, β = 10) is a random variable (which is sampled independently every

time we try to compute the target distribution). Note that E(a) = 10/10 = 1, so E[π0(S)] = π(S),

and the estimator is unbiased (though A has variance 10/102 = 1/10 > 0).

Using this unbiased estimate of the target distribution for pseudo-marginal MCMC, we again

investigated the convergence of samples produced by the same four scenarios:

Metropolis and Rejection-Free, both with and without Parallel Tempering. Figure 3.7 shows

the average total variation distance TVD(n) between the sampled and the actual magnetization

distributions, for 100 chains, as a function of the iteration n, keeping all the other settings the

same as before. This figure is quite similar to Figure 8, again showing that with or without Parallel

Tempering, the use of Rejection-Free provides significant speedup, even in the pseudo-marginal case.

3.8 A Efficient Method to Sample Proportionally

Given Ai > 0, for i = 1, 2, . . . , N , how can we sample Z so that P(Z = i) = Ai∑
j Aj

? We could choose

U ∼ Uniform[0, 1], and then set Z = min{i,
∑i

j=1 Aj > U ×
∑N

j=1 Aj}. However, this involves

summing all of the Aj , which is inefficient. If
∑N

j=1 Aj = 1, then we could choose U ∼ Uniform[0, 1]

and just set Z = min{i,
∑i

j=1 Aj > U}, which is slightly easier and can be done by binary searching.

However, it still requires summing lots of the Aj , which could still be inefficient. If
∑N

j=1 Aj < 1,

then we could choose U ∼ Uniform[0, 1], and then still set Z = max{i,
∑i

j=1 Aj > U}, except if no
such i exists then we reject that choice of U and start again. In addition to the previous problems,

this could involve lots of rejection if
∑N

j=1 Aj is much smaller than 1, which is again inefficient.

Another option is the following method, based on [24]; see also the n-fold way approach to kinetic

Monte Carlo in [10].

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 38

0.0

0.2

0.4

0.6

1e+02 1e+03 1e+04 1e+05 1e+06
Number of iterations (log scale)

A
ve

ra
ge

 T
V

D
 v

al
ue

s

Algorithm Metropolis w/o PT Rejection Free w/o PT

TVD versus the number of iterations

0.0

0.2

0.4

0.6

1e+02 1e+03 1e+04 1e+05 1e+06
Number of iterations (log scale)

A
ve

ra
ge

 T
V

D
 v

al
ue

s

Algorithm Metropolis w/ PT Rejection Free w/ PT

TVD versus the number of iterations

Figure 3.7: Average of total variation distance between sampled and actual distributions as a function
of the number of iterations for probability with noise Gamma(10, 10) in four scenarios: Metropolis
versus Rejection-Free without Parallel Tempering (left) and with Parallel Tempering (right)

Proposition 3.8.1. Let A1, A2, . . . , AN be positive numbers, Let {Rj}Nj=1 be i.i.d. ∼ Uniform[0, 1],

and let dj = − log(Rj)
Aj

for j = 1, 2, . . . , N . Finally, set Z = argminj dj. Then P[Z = i] = Ai∑
j Aj

, i.e.

Z selects i from {1, 2, . . . , N} with probability proportional to Ai.

Proof.

P[Z = i] = P[dj > di,∀j ̸= i]

= P[− log(Rj)

Aj
> − log(Ri)

Ai
,∀j ̸= i]

= P[Rj < R
Aj/Ai

i ,∀j ̸= i]

=

∫ 1

0

P[Rj < R
Aj/Ai

i ,∀j ̸= i | Ri = x]dx

=

∫ 1

0

P[Rj < xAj/Ai ,∀j ̸= i]dx

=

∫ 1

0

∏
j ̸=i

xAj/Aidx

=

∫ 1

0

x
∑

j ̸=i Aj/Aidx

=
x[

∑
j ̸=i Aj/Ai+1]∑

j ̸=i Aj/Ai + 1

∣∣∣∣∣
1

x=0

=
Ai∑
j Aj

(3.34)

CHAPTER 3. JUMP MARKOV CHAINS AND REJECTION-FREE METROPOLIS ALGORITHM 39

Proposition 3.8.1 is useful, especially when we apply Rejection-Free and PNS to parallel hardware.

Each processor can calculate dj for different j separately, and we only need to find the argmin to get

a sample with probability proportional to the given values. On the other hand, for other methods

of sampling, usually we have to calculate the summation from P[Z = i] = Ai∑
j Aj

which is much

slower than finding argmin. In addition, such a method is much faster even when we apply it to a

single-core implementation.

Chapter 4

Sampling via Partial Neighbor

Search

We talked about how to deal with the inefficiency of rejections from the Metropolis algorithm by

the Rejection-Free algorithm. However, the Rejection-Free algorithm cannot be applied to all cases.

For example, there is a limit to the number of parallel tasks that can be executed simultaneously on

most specialized parallel hardware. The current version of Digital Annealing Unit (DAU) [57] can

process the Rejection-Free algorithm efficiently up to 8,192 neighbors simultaneously with on-chip

memory, and otherwise, Rejection-Free will be significantly slowed down due to the use of external

memory. Accordingly, the ceiling on the number of neighbors that can be evaluated at each step can

be a problem. Consequently, we present an enhanced version of the Rejection-Free called Partial

Neighbor Search (PNS), which only considers part of the neighbors when applying the Rejection-

Free technique, whereas the Rejection-Free technique means considering all selected neighbors and

calculating the next state when ignoring any immediately repeated states.

4.1 Basic Partial Neighbor Search algorithm

In Algorithm 4, we can do this algorithm with parallel in computer hardware to produce more

efficient samples. However, the number of tasks that can be computed simultaneously by the parallel

hardware is not unlimited, while the number of neighbors |N (x)| can be super large. How can we

take full advantage of the Rejection-Free with limited parallel hardware?

Assume the number of neighbors in Rejection-Free is at most N. That is, for ∀x ∈ S, |N (x)| ≤ N .

In addition, assume the number of tasks that can be computed simultaneously by the parallel

hardware is M. If M > N , then we can compute the transition probability of the original chain

simultaneously by the parallel hardware, where the transition probability is

P(Jk = y | Jk−1) ∝ Q(Jk−1, y)min
{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(Jk−1, y)

}
. (4.1)

Then the transition probability P̂ defined in Proposition 3.2.1 for the Rejection-Free algorithm as

stated in Algorithm 4 is propositional to P, ∀y ̸= Jk−1. On the other hand, if M ≤ N , the simplest

way to take advantage of parallel hardware is to evenly distribute the calculation tasks of the

40

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 41

transition probabilities to each unit. In this case, each unit of parallel hardware needs to calculate

the probabilities for either ⌊NM ⌋ (the floor function) or ⌈NM ⌉ (the ceiling function) times, and then

we can put the information from all these parts together for the next step of the algorithm. This

method works for processors designed for general purposes, such as Intel and AMD cores. However,

as we introduced in Section 2.4, these chips are not specially designed for parallel computing, and

off-chip communication significantly slows down the transfer rate of data to and from the cores [77].

Therefore, using Intel and AMD cores as parallel hardware is applicable but not ideal.

Moreover, several types of parallell hardware specialized for MCMC trials have been proposed.

For example, the DAU we introduced in Section 2.4 is designed to minimize communication overhead

in arithmetic circuitry and with memory. In addition, the dedicated processor provides a virtually

Rejection-Free process, resulting in a throughput that is orders of magnitude faster than that of

a general-purpose processor. The problem with this Fujitsu chip is that it is rigidly constrained

by on-chip memory capacity relative to the problem size M that can be processed in parallel. For

problem sizes N > M , it is impossible to compute transition probabilities for all neighborhoods to

achieve Rejection-Free or similar parallel trials. The number of neighbors considered in each step

must be limited to be within the on-chip memory capacity.

Intuitively, we can calculate everything the same as Rejection-Free while only considering some

of the neighbors. The Basic Partial Neighbor Search algorithm (Basic PNS) is shown in Algorithm

6. Again, we focus on discrete cases with at most a finite number of neighbors here. We will talk

about PNS for general state space in Section 4.4.

Algorithm 6 Basic Partial Neighbor Search algorithm

initialize J0
for k in 1 to K do

pick the Partial Neighbor Set Nk(Jk−1) ⊂ N (Jk−1)
choose the next jump chain State Jk ∈ Nk(Jk−1) such that

P̂(Jk = y | Jk−1) ∝ Q(Jk−1, y)min

{
1,

π(y)Q(y, Jk−1)

π(Jk−1)Q(Jk−1, y)

}

calculate multiplicity list Mk−1 ← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈Nk(Jk−1)

Q(Jk−1, z)min

{
1,

π(z)Q(z, Jk−1)

π(Jk−1)Q(Jk−1, z)

}

end for

Again, in Algorithm 6, when we need to pick our next state Jk according to the given probabilities,

we can use the technique shown in Section 3.8. In addition, the only difference between the Basic PNS

(Algorithm 6) and Rejection-Free (Algorithm 4) is that we only calculate the transition probability

and all the corresponding values for a subset Nk of all the neighbors for each step within the loop.

Here, Nk(Jk−1) is a subset of N (Jk−1) at our choice, and the subscript k in Nk represents the

subset of neighbors for step k. For example, we can simply say that Nk(Jk−1) is a random subset of

N (Jk−1) with half of the elements. In addition, Qk(X,Y) is the corresponding proposal distribution

satisfying Qk(x, y) ∝ Q(x, y) for Y ∈ Nk(x) and Qk(x, y) = 0 otherwise. However, the Markov chain

produced by Algorithm 6 is different from the true MCMC, and it might not converge to the true

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 42

Figure 4.1: Diagram of Example 1 showing non-convergence property of the Basic PNS.

density π, as we now show.

Example 11. The example illustrating the non-convergence property of Basic PNS is shown in

Figure 4.1, from which we have π(A) ∝ 1, π(B) ∝ 2, and π(C) ∝ 3. We consider the Basic PNS

algorithm with a uniform proposal distribution Q. In addition, only half of the neighbors are chosen

for Nk at each step. That is, we only need to consider one neighbor each time.

Then, if the MCMC is located at state A, then N (A) = {B,C}. Nk(A) = {B} or {C} each

with 50% probability, and thus, the algorithm will force the chain to move to either B or C with 50%

probability. Similarly, when the Markov chain is located at state B, the next state will be A or C

with 50% probability, and when the Markov chain is located at state C, the next state will be A or B

with 50% probability.

On the other hand, we can calculate the corresponding multiplicity lists MA, MB, and MC at

state A as follows:

1. P̂[B | A] ∝ P[B | A] = Q(A,B)min{1, π(B)Q(B,A)
π(A)Q(A,B)} = 0.5;

2. P̂[C | A] ∝ P[C | A] = Q(A,C)min{1, π(C)Q(C,A)
π(A)Q(A,C)} = 0.5;

3. the transition probabilities P̂ from A to either B or C in Rejection-Free are both 50%;

4. MA = 1 +G where G ∼ Geom(P[B | A] +P[C | A]) = Geom(1)

5. E(MA) = 1

6. Similarly, we have E(MB) =
5
4 , E(MA) =

9
4

Thus, for the Basic PNS Chain {Jk,Mk}Kk=1 with large K, the proportions P of state A, B, and

C in the Markov chain are

PBasic PNS(A) =

∑
Jk=A Mk∑K
k=1 Mk

=
1

1 + 5
4 + 9

4

=
2

9
̸= π(A) =

1

6
;

PBasic PNS(B) =
5

18
̸= π(B) =

1

3
;

PBasic PNS(C) =
1

2
= π(C).

(4.2)

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 43

Figure 4.2: Diagram of Example 2 showing non-convergence property of the Basic PNS.

This example shows that the samples from Basic PNS are not converging to the target density π.

Example 12. The other example illustrating the non-convergence property of Basic PNS is shown

in Figure 4.2, which is a much larger problem compared to the first example. We have 16 states

in example 2. All States are connected to exactly four states. The target density is described as

π(A) ∝ 1, π(B1) = π(B2) = π(B3) = π(B4) ∝ e, π(C1) = π(C2) = · · · = π(C6) ∝ e2, π(D1) =

π(D2) = π(D3) = π(D4) ∝ e3, and π(E) ∝ e4. This example is too large to be calculated by hand,

so we use simulations to calculate the limiting distribution of the samples. The convergence of the

sampling distribution is measured by the Total Variation Distance (TVD) again, where

TVD(PSampled, π) =
1

2

∑
x∈S

∣∣∣PSampled(x)− π(x)
∣∣∣. (4.3)

Convergence to stationarity is described by how quickly TVD decreases to 0.

The simulation results are shown in Figure 4.3. For a given amount of samples (K = 50, 100,

150, 200, . . . , 500, 1000, 1500, 2000, . . . , 7500), we did 1000 simulations for each of them. The

TVD values and the times here are the average values from these 1000 simulations. We compared

four methods: Rejection Free and Basic PNS with three different subset sizes. The Markov chains,

produced by Rejection-Free, will converge to the target density, so the TVD value gets close to 0

at last. For PNS with |N0| = 1, we select one random neighbor among all four neighbors at a

time, forcing the chain to move to that state. This method is the worst, and it converges at around

0.3. PNS with |N0| = 2 means that we randomly select two neighbors at every step and apply the

Rejection-Free technique (select from these two states by probability proportional to the transition

probability, and calculate the multiplicity list by the average of the transition probabilities). All three

PNS algorithms are not converging to the target density π.

Both Examples show that the samples from Basic PNS will not converge to the target distribution

π. Thus, we turn attention to a more promising avenue, the unbiased version of the Partial Neighbor

Search algorithm, where convergence to stationarity is guaranteed.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 44

Figure 4.3: Average values of TVD between samples and the target density π for Example 2 as a
function of average CPU time in seconds for four scenarios: Rejection-Free and Basic PNS with three
different Partial Neighbor Set sizes. Each dot within the plot represents the result of the average
TVD value and average CPU time in seconds from 1000 simulation runs given a certain original
sample size, where the sizes are {50, 100, 150, 200, . . . , 500, 1000, 1500, 2000, . . . , 7500}.

4.2 Unbiased Partial Neighbor Search algorithm

4.2.1 Hybrid Chains for Partial Neighbor Search

We talked about the hybrid chains technique for the Metropolis-Hastings algorithm in Section 2.3.1

and the Rejection-Free algorithm in Section 3.5. The technique from the hybrid chains can also

help us to make PNS chains converge to the target density correctly. We first define the meaning of

Partial Neighbor Sets here. For simplicity, we focus on discrete cases here and will define the Partial

Neighbor Sets for general state space in Section 4.5.

Before we start our Markov chain, we have a proposal distribution Q with a corresponding

neighbor set N where N (x) := {y ∈ S | Q(x, y) > 0}. A Partial Neighbor Set means any function

Ni satisfies the following conditions:

1. Ni : S → P(S), where S is the state space, and P(S) is the power set of S;

2. Ni(x) ⊂ N (x), ∀x ∈ S;

3. y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S;

Usually, we want to pickNi such that |Ni(x)| < |N (x)| to perform proper PNS. In addition, to ensure

irreducibility, we need to make sure ∪I−1
i=0 Ni(x) = N (x) for all x ∈ S. Note that, ∪I−1

i=0 Ni(x) = N (x)

for all x ∈ S is sufficient to prove that the irreducibility, but not necessary. The corresponding

proposal distribution is defined to be Qi(x, y) : S × S → R, where Qi(x, y) ∝ Q(x, y) for y ∈
Ni(x) and Qi(x, y) = 0 otherwise. Note that, we used superscripts in Section 3.5 for the proposal

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 45

distribution Q for Rejection-Free, and we use subscripts for the corresponding proposal distribution

Q for Partial Neighbor Search. We used different notations for the proposal distributions to show

their difference. For Rejection-Free, the Markov chain produced by each proposal distribution Qi

with superscripts will converge to the target distribution with just themselves, and we want to

use the combination of them to improve the efficiency of convergence. On the other hand, the

proposal distribution Qi with subscripts for Partial Neighbor Search will not converge to the target

distribution with only themselves, and we need to combine all of them to make the samples converge

to the target distribution. Both of these two notations Qi and Qi use i as the index for different

proposal distributions. The same thing happens to the corresponding neighbor sets Ni

Therefore, we propose the Unbiased Partial Neighbor Search (Unbiased PNS) with Hybrid Chains

for every L0 original samples as shown in Algorithm 7. The proof that the Markov chain produced

by Unbiased PNS will converge to the target distribution π is shown in Section 3.8. Note that, the

partial neighbor set Ni(Jk−1) used at each step are defined by two things, the current state Jk−1 ∈ S
and the partial neighbor set function Ni : S → P(S), where S is the state space, and P(S) is the

power set of S. At each step, our current state Jk−1 will be different. In addition, after we obtain

a certain number of original samples, we will need to switch to a new partial neighbor set function

Ni for i = 0, 1, . . . , I − 1, where all functions Ni are determined at the very beginning.

Algorithm 7 Unbiased Partial Neighbor Search

select Ni for i = 0, 1, . . . , I − 1 where ∪I−1
i=0 Ni(X) = N (X)

initialize i← 0 ▷ start with proposal distribution Q0

initialize L← L0 ▷ start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈Ni(Jk−1)

Qi(Jk−1, z)min

{
1,

π(z)Qi(z, Jk−1)

π(Jk−1)Qi(Jk−1, z)

}

if m ≤ L then ▷ if we have enough remaining original samples
Mk−1 ← m, L← L−m
choose the next jump chain State Jk ∈ Ni(Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Qi(Jk−1, y)min

{
1,

π(y)Qi(y, Jk−1)

π(Jk−1)Qi(y, Jk−1)

}

else ▷ if we don’t have enough remaining original samples
Mk−1 ← L, L← L0, Jk ← Jk−1, i← (i+ 1 mod I)

▷ stay at Jk−1 for L times and switch to the next Ni

end if
end for

Again, in Algorithm 7, when we need to pick our next state according to the given probabilities,

we can use the technique shown in Section 3.8, which is faster than other methods to sample

proportionally. The Markov chains produced by Algorithm 7 will converge to the target distribution,

but how is its efficiency compared to the Metropolis-Hasting algorithm and Rejection-Free? We will

compare these three algorithms in Section 4.3.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 46

0.00

0.03

0.06

0.09

1e+02 1e+03 1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.03

0.06

0.09

0.01 0.10 1.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method Metropolis PNS Rejection−Free

Figure 4.4: Average values of TVD between sampling and target density π as a function of the num-
ber of iterations (left) and average time in seconds (right) for three methods: Metropolis algorithm,
Rejection-Free, and Unbiased PNS. We used an upper triangular 16× 16 QUBO matrix, generated
randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the plot represents the
result of the average TVD value and time used for 1000 simulation runs given certain original sample
sizes. The original sample sizes for the Metropolis algorithm are {100, 200, 400, 800, . . . , 1024000}.
The original samples from Rejection-Free are 40x more than those from Metropolis, and the original
samples from Unbiased PNS are 30x more than those from Metropolis. We choose these sizes to get
a close average CPU time for all three methods. For Unbiased PNS, we used |Nk| = 8 and L0 = 100.

4.3 Application to QUBO model

Quadratic unconstrained binary optimization (QUBO) has been rising in importance in combina-

torial optimization because of its wide range of applications in finance and economics to machine

learning [48]. It can also be used as a sampling question, which aims to sample from the distribution

π(x) = exp{xTQx}, where x ∈ {0, 1}N (4.4)

for a given N by N matrix Q (usually symmetric or upper triangular).

To run our algorithm, we used uniform proposal distributions among all neighbors where the

neighbors are defined as binary vectors with Hamming distance 1. That is, Q(x, y) = 1
N for ∀y such

that |x−y| =
∑N

i=1|xi−yi| = 1, ∀x, y ∈ {0, 1}N . Thus, the neighbors are all binary vectors different

by one flip. For the first simulation here, the PNS neighbor sets N0, N1 are chosen systematically,

where N0 represents flip entries from 1 to ⌊N2 ⌋, and N1 represents flip entries from ⌊N2 ⌋ + 1 to N .

We will discuss many other choices for the PNS neighbor sets in Section 4.6

Figure 4.4 shows the results for comparing the Metropolis algorithm, Rejection-Free, and Unbi-

ased PNS by sampling from a 16× 16 QUBO question to a single-core implementation. The QUBO

matrix Q is an upper triangular matrix, where the non-zero elements were generated randomly

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 47

by Qi,j ∼ Normal(0, 102), ∀i ≤ j. We compare the TVD values from the Metropolis Algorithm,

Rejection-Free, and Unbiased PNS with different original sample sizes. For the Metropolis algo-

rithm, the numbers of original samples are {100, 200, 400, 800, . . . , 102400}. The number of original

samples for Rejection-Free is 40 times more than the number for the Metropolis algorithm, and the

number for Unbiased PNS is 30 times more. We used these many numbers of original samples to

make the run-time for all three algorithms to be about the same. For each given number of original

sample sizes, we simulated 1000 runs, recorded the corresponding TVD values and times used for

the sampling part, and calculated the average values given the number of original samples. Note

that the average time represents the CPU time for where the algorithm is calculated by running the

algorithm on a single-core implementation. In addition, before we generate the samples, we apply

the algorithm for the same number of steps for burn-in. For example, when we create a Markov

chain with 102400 original samples, we first generate 102400 original samples for burn-in.

From Figure 4.4, we can see that the quality of the samples by the Metropolis algorithm and

Rejection-Free are the same given the original sample sizes. This result is consistent with our con-

clusion that Rejection-Free is identical to the Metropolis algorithm, except Rejection-Free generates

the same states simultaneously with all immediately repeated states. Thus, these two algorithms are

different only by the CPU time. In addition, the quality of the samples by Unbiased PNS is worse

than both the Metropolis algorithm and Rejection-Free given a certain number of original samples

because each Partial Neighbor Set is biased within its L0 original samples, while the combination

of them is unbiased. Thus, the average TVD value from Unbiased PNS is more larger given the

same amount of original samples. However, for a given amount of CPU time, the performance of

Unbiased PNS is much better than the Metropolis algorithm and worse than Rejection-Free.

In this case, Unbiased PNS can provide significant speedups compared to the Metropolis algo-

rithm. On the other hand, we did not expect the Unbiased PNS can beat Rejection-Free under this

circumstance. Unbiased PNS is worse than Rejection-Free in two aspects. First, the Unbiased PNS

is biased within each L0 original samples. In addition, at the end of each L0 original samples, the

algorithm is very likely to reject once and stay in the same state. Thus, Unbiased PNS is not entirely

rejection-free anymore and usually rejects once for every L0 original samples.

However, we need the Unbiased PNS because we may not have as many circuit blocks in the

parallel hardware as we want. Thus, we can, at most, consider a limited number of neighbors for

some specialized hardware, such as DA. Thus, Rejection-Free is not applicable in this case, and we

would need the help of Unbiased PNS, which is better than applying the Metropolis algorithm.

Again, parallel hardware can increase the speed for both Rejection-Free and Unbiased PNS by

mapping the calculation of the transition probabilities for different neighbors onto different cores.

Besides that, we can also use multiple replicas at different temperatures, such as in parallel temper-

ing, or deploy a population of replicas at the same temperature [76]. Combining these methods by

parallel can yield 100x to 10,000x speedups for both Rejection-Free and Unbiased PNS [76].

4.4 Continuous Models and the Donuts Example

We talked about the application of Unbiased PNS to discrete cases in the previous sections. Can we

apply Unbiased PNS on continuous models? We first review how to apply Rejection-Free on general

(continuous) state space as in Theorem 3.3.6.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 48

Figure 4.5: The scaled probability density plot for the Donuts Example with µ0 = 9 and σ = 10.
The density is scaled to [0, 1]. We used large σ to show the shape of our distribution. With small
σ, it is hard to see the shape of a sharply peaked distribution.

Although we have a solid theory base for Rejection-Free on general state space, applying Rejection-

Free to the continuous sampling questions efficiently on most computer hardware is pretty hard. The

biggest challenge is the calculation of integration
∫
q(x, z)µ(dz). We need many calculations for the

numerical integration. In addition, such tasks can hardly be split efficiently into specialized hard-

ware with a reasonable amount of parallel calculating units. At the same time, Unbiased PNS can

be surprisingly helpful in this case. As long as the Metropolis algorithm can be applied, PNS can

be applied straightforwardly without any calculation of integration. We need to choose the Partial

Neighbors Sets Ni(x) to be a finite subset of all the neighbors N (x) in Algorithm 7. We check the

performance of our Unbiased PNS on a simple continuous sampling question: the Donuts Example.

Inspired by [26], we use a donuts example to show Unbiased PNS’s performance on continuous

state space. Suppose we have two independent random variables µ and θ where

µ ∼ Normal+(µ0, σ
2), θ ∼ Uniform[0, π). (4.5)

Here, Normal+ means the Truncated Normal distribution without the negative tail, and π in the

Uniform distribution means the circular constant instead of the target density. Then we define two

random variables X1 and X2 to be

X1 =
√
µ sin θ, X2 =

√
µ cos θ. (4.6)

The determinant of the Jacobian matrix is 1
2 . Thus we have

fX1,X2(x1, x2) ∝
1

σ
exp

[
− (x2

1 + x2
2 − µ0)

2

2σ2

]
, (4.7)

For example, a 3-D map for the density for X1 and X2 with µ0 = 9, and σ = 10 is shown in Figure

4.5. The density is scaled to [0, 1]. In our later simulation, we use µ0 = 9 and σ = 0.1 instead. We

use large σ to show the shape of our distribution because it is hard to see its shape when it sharply

peaks with a small σ. However, for the simulation, PNS can outperform the Metropolis algorithm

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 49

when there are many rejections, so we use a small σ to get a sharply peaked distribution to increase

the rejection rate in the Metropolis algorithm. Note that Unbiased PNS and Rejection-Free are not

always better than the Metropolis algorithm. For an extreme example, when we have a distribution

where all the states have the same target density values, there will be no rejection for the Metropolis

algorithm. At each step, the Metropolis algorithm will uniformly pick a random neighbor from the

current state and move to that neighbor, while (Rejection-Free / PNS) will calculate the transition

probabilities for (all / part) of the neighbors and uniformly pick a random one. The Metropolis

algorithm will be far better than Rejection-Free and PNS in this case. In practice, the higher the

dimension of the problem and the more sharply peaked the distribution is, the better the Rejection-

Free and Unbiased PNS will be. Thus, we use σ = 0.1 for the simulation to create a sharply peaked

distribution for later simulation.

In addition, the proposal distribution is defined to be the standard normal distribution for both

dimensions. That is, for x = (x1, x2), y = (y1, y2) ∈ R2, Q(x, y) = ϕ(y1 − x1)ϕ(y2 − x2) where ϕ is

the density function of the standard normal distribution. Then for any x ∈ R2, we have N (x) = R2.

For PNS, L0 is selected to be 1000. Using L0 = 100 to 1000 will not affect the sampling speed too

much, similar to the conclusion in Section 4.6.

Since the Partial Neighbor Sets are always the whole space of R2, it is tough for us to apply

Rejection-Free here since the integration of the whole space needs too many computational resources.

Even if we limit the neighbors to a small area around the current state, integration is needed as

long as the problem is continuous, and the Rejection-Free will be consequentially slow. At the same

time, Unbiased PNS can be applied to continuous cases without calculating integration by making

minor changes to Algorithm 7. The Unbiased PNS algorithm for continuous is stated as Algorithm

8.

In Algorithm 8, we did not define the systematic Partial Neighbor Sets as we had for the discrete

cases. We want to use Unbiased PNS with finite many partial neighbors being considered at each

step, but we have uncountable neighbors. It is impossible to divide these uncountable neighbors

into finite partial neighbor sets with finite sizes. Thus, unlike for the discrete case, we divide the

whole neighbor set into I Partial Neighbor Sets, for the continuous case, we use the random Partial

Neighbor Set, which randomizes a new finite partial neighbor set for every L0 original samples. The

notation here is then different as well. For discrete cases, we divide the whole neighbor set N into

Ni for i ∈ {0, 1, 2, . . . , I − 1} with ∪I−1
i=0 Ni = N . On the other hand, we use one single notation

N0 to represent our Partial Neighbor Set in continuous cases, and it will be redrawn for every L0

original samples. In the later simulation, we use partial neighbor sets with |N0| = 50. That is,

we consider 50 partial neighbors at each step. Note that, in Section 4.2.1, we defined the Partial

Neighbor Sets, and according to the third condition, we must have reversibility for N0(x), which

means y ∈ N0(x) ⇐⇒ x ∈ N0(y), ∀x, y ∈ S. Therefore, we choose the Partial neighbor Set N0(x)

as follows:

1. generate δ1, δ2 ∼ Normal(0, 1);

2. for state x = (x1, x2), put y = (x1 + δ1, x2 + δ2) into the Partial Neighbor Set Ni(x);

3. to ensure the reversibility, also put y′ = (x1− δ1, x2− δ2) into the Partial Neighbor Set Ni(x);

4. repeats the above steps 25 times to generate a total of 50 neighbors for the Partial Neighbor

Set N0(x).

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 50

Algorithm 8 Unbiased PNS for Continuous Case

select one Partial Neighbor Set N0

initialize L← L0 ▷ start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m← 1 +G where G ∼ Geometric(p) with

p =
∑

z∈N0(Jk−1)

Q0(Jk−1, z)min

{
1,

π(z)Q0(z, Jk−1)

π(Jk−1)Q0(Jk−1, z)

}

if m ≤ L then ▷ if we have enough remaining original samples
Mk−1 ← m, L← L−m
choose the next jump chain State Jk ∈ N0(Jk−1) such that

P̂ (Jk = y | Jk−1) ∝ Q0(Jk−1, y)min

{
1,

π(y)Q0(y, Jk−1)

π(Jk−1)Q0(y, Jk−1)

}

else ▷ if we don’t have enough remaining original samples
Mk−1 ← L, L← L0, Jk ← Jk−1,

▷ stay at Jk−1 for the remaining L times
select a new Partial Neighbor Set N0

end if
end for

Moreover, we measure the sampling results by bias instead of the TVD. The calculation of TVD

in the continuous case also needs much integration, which is hard to calculate. On the other hand,

given samples {X1, X2. . . . , XK}, we usually use the MCMC to approximate the expected value

Eπ(h) of a function h : S → R by the usual estimator, êK(h) = 1
K

∑K
k=1 h(X1,k, X2,k). The Strong

Law of Large Numbers for Markov chains says that assuming that Eπ(h) is finite and that the

Markov chain is irreducible with stationary distribution π, we must have limK→∞ êK = Eπ(h).

Therefore, Bias(h) = |êK(h) − Eπ(h)|= | 1K
∑K

k=1 h(Xk) − Eπ(h)| can also be a good measurement

for the quality of the samples. According to the definition, bias is greater or equal to 0. When the

samples {X1, X2. . . . , XK} gets closer to the target distribution π, the bias will decrease to 0. Thus,

convergence to stationarity is described by how quickly the bias decreases to 0 for all function h.

This property is similar to TVD from Section 4.3. In fact, for any probability distribution P1 and

P2, TVD(P1,P2) = supS
(
P1(S),P2(S)

)
[13].

For example, we check the sum of the bias from the first-degree terms X1 and X2. Since the

Donuts example is centered at 0, thus Eπ(X1) = Eπ(X2) = 0. Thus, we have

Bias(X1) + Bias(X2) = |êK(X1)− Eπ(X1)|+ |êK(X2)− Eπ(X2)|

=

∣∣∣∣ 1K
K∑

k=1

X1,k

∣∣∣∣+ ∣∣∣∣ 1K
K∑

k=1

X2,k

∣∣∣∣, (4.8)

Note that both biases will decrease to 0 since our Markov chain converges to the target density

π. In addition, for the Rejection-Free Chain {J1,k, J2,k,Mk}Kk=1 generated by the Unbiased PNS

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 51

0.0

0.2

0.4

0e+00 1e+07 2e+07 3e+07
Number of Samples

M
ea

n
fo

r
th

e
B

ia
s

Bias of the First Degree Terms versus Number of Samples

0.0

0.2

0.4

0 20 40 60
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the First Degree Terms versus Time

Method Metropolis Unbiased PNS

Figure 4.6: Sum of the Average Bias of X1 and X2 between sampling and target density π as a
function of the number of iterations (left) and average time in seconds (right) for two methods:
Metropolis algorithm and Unbiased PNS. We used the Donuts example with µ0 = 9 and σ = 0.1.
Each dot within the plot represents the result of the average bias value and time used for 1000
simulation runs given certain original sample sizes. The original sample sizes for the Metropolis
algorithm are {50000, 100000, 150000, 300000, 450000, . . . , 1500000}. The sizes for Unbiased PNS
are 20x more than the sizes for the Metropolis. We choose these sizes to get a close average CPU
time for both methods. For Unbiased PNS, we used |Nk| = 50 and L0 = 1000.

algorithm, the bias is defined to be

Bias(J1) + Bias(J2) =

∣∣∑K
k=1 Mk × J1,k

∣∣∑K
k=1 Mk

+
|
∑K

k=1 Mk × J2,k
∣∣∑K

k=1 Mk

(4.9)

The result for comparing the Metropolis algorithm and Unbiased PNS by the bias of first-degree

term is shown in Figure 4.6. Each dot within the plot represents the average value of 100 simulation

runs. For each run, we generate a Markov chain for a given number of samples for both algorithms.

The average time represents the CPU time we apply the algorithm by a single-core implementation.

Again, parallel hardware such as DA can yield 100x to 10,000x speedups for Unbiased PNS [76].

From Figure 4.6, we can see that the quality of the samples by Unbiased PNS is again worse than

the Metropolis algorithm because each Partial Neighbors Set is biased within L0 original samples,

while the combination of them is unbiased. Thus, the average bias values for Unbiased PNS are

more significant for the same amount of samples. However, for a given amount of CPU time, the

performance of Unbiased PNS is much better than the Metropolis algorithm. For this example, the

Unbiased PNS can get 30x more samples than the Metropolis algorithm within the same time by a

single-core implementation. Rejections slow down the Metropolis algorithm while Unbiased PNS is

not influenced, and thus, Unbiased PNS works much better in this simulation.

In addition, we can also check the sum of the bias from the second-degree terms Bias(X2
1) +

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 52

Bias(X2
2), the sum of the bias from the fourth-degree terms Bias(X4

1)+Bias(X4
2), and the sum of the

bias from the positive rate Bias(1(X1 > 0))+Bias(1(X1 > 0)), where 1means the indicator function.

To calculate the bias of the second-degree terms, we have X2
1 +X2

2 = µ ∼ Normal+(µ0, σ
2). Note

that, for the Truncated normal distribution with mean 9 and standard deviation 0.1, the probability

for a negative tail is too small, so we can treat it as a normal distribution. Thus,

Eπ(X
2
1) =

1

2
Eπ(X

2
1 +X2

2) =
1

2
Eπ(µ

2) ≈ 1

2
µ2
0. (4.10)

Bias(X2
1) + Bias(X2

2) = |êK(X2
1)− Eπ(X

2
1)|+ |êK(X2

2)− Eπ(X
2
2)|

≈ | 1
K

K∑
k=1

X2
1,k −

1

2
µ2
0|+ |

1

K

K∑
k=1

X2
2,k −

1

2
µ2
0|.

(4.11)

Similarly,

Bias(X4
1) + Bias(X4

2) =|êK(X4
1)− Eπ(X

4
1)|+ |êK(X4

2)− Eπ(X
4
2)|

≈| 1
K

K∑
k=1

X4
1,k −

3

8
(µ4

0 + σ2)|+

| 1
K

K∑
k=1

X4
2,k −

3

8
(µ4

0 + σ2)|;

(4.12)

Bias(1(X1 > 0)) + Bias(1(X2 > 0)) =|êK(1(X1 > 0))− Eπ(1(X1 > 0))|+

|êK(1(X2 > 0))− Eπ(1(X2 > 0))|

=| 1
K

K∑
k=1

1(X1,k > 0)− 1

2
|+

| 1
K

K∑
k=1

1(X2,k > 0)− 1

2
|.

(4.13)

The results for the comparison of the Metropolis algorithm and Unbiased PNS by the sum

of the average bias from the second-degree terms Bias(X2
1) + Bias(X2

2), the fourth-degree terms

Bias(X4
1) + Bias(X4

2), and the positive rate Bias(I(X1 > 0)) + Bias(I(X1 > 0)) are shown in Figure

4.7. From the result for different choices of the terms, we can conclude that Unbiased PNS performs

better than the Metropolis algorithm in this continuous Donuts example.

4.5 Convergence Theorem

Now, we will prove the convergence of the PNS algorithm in the general state space case.

Definition 4.5.1. For sampling questions in general state space, we usually have the following

elements:

1. a state space S;

2. a σ-finite reference measure µ on S, where µ could be a counting measure for discrete cases,

and µ could be a Lebesgue measure for continuous cases;

3. a target density π : S → [0, 1], where
∫
x∈S π(x)µ(dx) = 1;

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 53

0.0

0.2

0.4

0.6

0 20 40 60
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Second Degree Terms versus Time

0

2

4

6

0 20 40 60
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Fourth Degree Terms versus Time

0.00

0.05

0.10

0.15

0 20 40 60
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Positive Rate versus Time

Method Metropolis Unbiased PNS

Figure 4.7: Sum of the average bias from the second-degree terms Bias(X2
1) + Bias(X2

2) (left),
the fourth-degree terms Bias(X4

1) + Bias(X4
2) (middle), and the positive rate Bias(1(X1 >

0)) + Bias(1(X1 > 0)) (right) between sampling and target density π as a function of average
time in seconds for two methods: Metropolis algorithm and Unbiased PNS. I means the indi-
cator function. We used the Donuts example with µ0 = 9 and σ = 0.1. Each dot within
the plot represents the result of the average bias value and time used for 1000 simulation runs
given certain original sample sizes. The original sample sizes for the Metropolis algorithm are
{50000, 100000, 150000, 300000, 450000, . . . , 1500000}. The sizes for Unbiased PNS are 20x more
than the sizes for the Metropolis. We choose these sizes to get a close average CPU time for both
methods. For Unbiased PNS, we used |Nk| = 50 and L0 = 1000.

4. a target distribution π : P(S)→ [0, 1], where π(A) :=
∫
A π(x)µ(dx), ∀A ⊂ S, and P means the

power set;

5. a proposal density q(x, y) : S × S → [0, 1], where
∫
S q(x, y)µ(dy) = 1, ∀x, y ∈ S;

6. a proposal distribution Q(x, dy) ∝ q(x, y)µ(dy);

7. a corresponding neighbor set N (x) := {y ∈ S | q(x, y) > 0} ⊂ S\{x};

8. the transition probabilities P(x, dy) = q(x, y)min
(
1, π(y)q(y,x)

π(x)q(x,y)

)
µ(dy); P(x, dy) = q(x, y)µ(dy)

if the denominator π(x)q(x, y) = 0.

Given the above elements, assume irreducibility and aperiodicity, we can generate a Markov chain

{X0, X1, . . . , XK} such that the limiting distribution of limn→∞ Xn converges to the stationarity

distribution π(x)µ(dx) by Algorithm 1.

Definition 4.5.2. Suppose we have a state space S, a reference measure µ, and a target density π,

the proposal distribution Q and the corresponding neighbor set N . Then, a Partial Neighbor Set Ni

means a function Ni satisfying the following conditions:

1. Ni : S → P(S), where S is the state space, and P(S) is the power set of S;

2. Ni(x) ⊂ N (x), ∀x ∈ S, and we must pick a finite subset Ni(x) to ensure a finite for loop in

Algorithm 7;

3. y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S;

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 54

Given a Partial Neighbor Set Ni, the proposal distribution for Ni is defined to be Qi : S×P(S)→
R, where Qi(x, dy) =

∑
r∈Ni(x) q(x,r)δr(dy)∑

z∈Ni(x) q(x,z)
, where δr means the point mass at r. On the other

hand, since we will only pick a finite subset Ni(x), Qi(x, dy) can also be expressed as Qi(x, y) =
q(x,y)1(y∈Ni(x))∑

z∈Ni(x) q(x,z)
, where 1 means indicator function.

Here, before we prove the convergence theorem of the Unbiased PNS as stated in Algorithm

7, we first prove it for another version of the Unbiased PNS as stated in Algorithm 9. It is easy

to see that the only difference between Algorithm 9 and Algorithm 7 is that we are not using the

Rejection-Free technique here, where we calculate all the transition probabilities at once, pick the

next jump chain state, and calculate the multiplicity list according to the transition probabilities.

Algorithm 9 Unbiased Partial Neighbor Search without Rejection-Free technique

select Ni for i = 0, 1, . . . , I − 1 where ∪I−1
i=0 Ni(X) = N (X)

initialize i = 0 ▷ start with neighbor set N0

initialize L = L0 ▷ start with L0 remaining samples
initialize X0 ▷ initial the starting state
for k in 1 to K do

random Y ∈ Ni(Jk−1) based on Qi(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < π(Y)Qi(Y,Xk−1)
π(Xk−1)Qi(Xk−1,Y) then

▷ accept with probability min
{
1, π(Y)Qi(Y,Xk−1)

π(Xk−1)Qi(Xk−1,Y)

}
Xk = Y ▷ accept and move to state Y

else
Xk = Xk−1 ▷ reject and stay at Xk−1

end if
L = L - 1 ▷ a new sample from Ni

if L = 0 then ▷ if we don’t have enough remaining samples
L = L0, and i = i+ 1 mod I ▷ switch to the next Ni

end if
end for

Proposition 4.5.1. Suppose we have a state space S, a reference measure µ, and a target density

π, the proposal distribution Q and the corresponding neighbor set N . In addition, suppose the

Partial Neighbor Set {Ni}I−1
i=0 satisfies all the conditions in Definition 4.5.1. Then π(x)µ(dx) is the

stationary distribution for Algorithm 9 with the partial neighbor set Ni.

Proof. Let Pi(x, dy) be the transition probability for Partial Neighbor Set Ni.

Then, ∀y ∈ Ni(x), we have

Pi(x, dy) = Qi(x, y)min

(
1,

π(y)Qi(y, x)µ(dy)

π(x)Qi(x, y)µ(dx)

)

=
q(x, y)∑

z∈Ni(x)
q(x, z)

min

(
1,

π(y) q(y,x)∑
z∈Ni(y) q(y,z)

µ(dy)

π(x) q(x,y)∑
z∈Ni(x) q(x,z)

µ(dx)

)

= min

(
q(x, y)∑

z∈Ni(x)
q(x, z)

,
π(y) q(y,x)∑

z∈Ni(y) q(y,z)
µ(dy)

π(x)µ(dx)

)
(4.14)

Note that, ∀y ∈ Ni(x), we have x ∈ Ni(y). Thus, we have

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 55

π(x)µ(dx)Pi(x, dy)

=π(x)µ(dx)min

(
q(x, y)∑

z∈Ni(x)
q(x, z)

,
π(y) q(y,x)∑

z∈Ni(y) q(y,z)
µ(dy)

π(x)µ(dx)

)
=min

(
π(x)

q(x, y)∑
z∈Ni(x)

q(x, z)
µ(dx), π(y)

q(y, x)∑
z∈Ni(y)

q(y, z)
µ(dy)

)
=π(y)µ(dy)Pi(y, dx)

(4.15)

On the other hand, ∀y /∈ Ni(x), π(x)µ(dx)Pi(x, dy) = 0 = π(y)µ(dy)Pi(y, dx).

Thus, by reversibility, Ni is stationary with π(x)µ(dx).

Proposition 4.5.2. Suppose we have a state space S, a reference measure µ, a target density π,

and a Markov chain {X0, X1, X2, . . . } produced by algorithm 9. In addition, suppose π(x)µ(dx) is

the stationary distribution for Algorithm 9 with all {Ni}I−1
i=0 , and

⋃I−1
i=0 Ni makes the Markov chain

irreducible. Moreover, suppose there are rejections for the Markov chain, and thus the Markov chain

is aperiodic. Then the Markov chain converges in total variation distance; i.e.:

lim
k→∞

sup
A⊂S

∣∣∣P(Xk ∈ A)−
∫
A
π(y)µ(dy)

∣∣∣ = 0 (4.16)

Proof. This follows immediately from Theorem 13.0.1 in [61].

We have proved the Markov chain Convergence Theorem (2.1.12) for discrete cases only in Section

2.1. This is the most fundamental theorem for the Markov chain, and thus we used a lot of space to

review it. Here, we cited the Markov chain Convergence Theorem for general state space from [61].

To prove the theorem in general state space, it will need even much more steps than the discrete

case, and thus we didn’t review it in our thesis. Please see the proof of Theorem 13.0.1 in [61] for

the details.

Theorem 4.5.3. Suppose we have a state space S, a reference measure µ, a target density π, a

Markov chain {X0, X1, X2, . . . } produced by Algorithm 9, and a jump chain {(J0,M0), (J1,M1),

(J2,M2), . . . } produced by Algorithm 7. Meanwhile, suppose the proposal distribution Q and the

corresponding neighbor set N ensure the Markov chain produced by the Metropolis-Hastings algorithm

converges to the stationarity π(x)µ(dx). In addition, suppose π(x)µ(dx) is the stationary distribution

for all {Ni}I−1
i=0 , and

⋃I−1
i=0 Ni makes both chains irreducible. Moreover, suppose both chains are

aperiodic. Then the jump chain has the following properties:

1. The conditional distribution of Mk given Jk is equal to the distribution of 1 +G where G is a

geometric random variable with success probability αi(Jk) where αi(x) := 1 − Pi(x, {x}), and
Pi is the transition probability for partial neighbor set Ni;

2. the transition probability P̂i from the jump chain satisfy P̂i(x, dy) =
1

αi(x)
Pi(x, dy)1(x ̸= y),

and P̂i(x, {x}) = 0;

3. If the original chain is ϕ-irreducible (see, e.g., [61]) for some positive σ-finite measure ϕ on

S, then the jump chain is also ϕ-irreducible for the same ϕ.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 56

4. If the Markov chain has stationary distribution π(x)µ(dx) given Ni, then the jump chain has

stationary distribution π̂(x) = ciαi(x)π(x)µ(dx) where c−1
i =

∫
αi(y)π(y)µ(dy)

5. If h : S → R has finite expectation, then with probability 1,

lim
K→∞

∑K
k=1 Mkh(Jk)∑K

k=1 Mk

= π(h) :=

∫
h(x)π(x)µ(dx).

Proof. The proof is trivial given the Proposition 4.5.2 and Theorem 3.3.6.

4.6 QUBO Revisited: Choices for the Partial Neighbors

4.6.1 Systematic Or Random

In the section 4.3, we used two systematically pre-selected neighbor sets N0, N1. However, there

can be various ways to select the Partial Neighbor Sets, all of which, as long as the Partial Neighbor

selected satisfies the PNS Convergence Theorem 4.5.3, will converge to the target density π. To

start with, we compare two ways of choosing partial neighbor sets here: systematic and random.

For simplicity, assume that we have N neighbors for all states, and we use partial neighbor sets of

size n. Therefore, we have
(
N
n

)
different partial neighbor sets. For systematic method, we choose I

partial neighbor sets {Ni}Ii=1, where ∪Ii=1Ni(x) = N (x). We proceed with each Partial Neighbor Set

for L0 original samples and then move on to the next until we reach the I-th one and then go back

to the first one. We use the notation Ni(x) for systematic Partial Neighbor Sets because Ni(x) is

pre-determined for i = 1, 2, . . . , I. On the other hand, for random Partial Neighbor Sets, we choose

a new set Nk from all
(
N
n

)
potential Partial Neighbor Sets after each L0 original samples. We use

the notation Nk(x) for random partial neighbor sets because Nk(x) can be different for every PNS

step, and the subscript k represents the special partial neighbor set for step k. For both methods,

Qi(x, y),Qk(x, y) ∝ Q(x, y) for y ∈ Ni(x), and Qi(x, y) = Qk(x, y) = 0 otherwise.

To compare the above two methods of selecting Partial Neighbor Sets, we apply them to the

previous 16× 16 QUBO question, and we test the following four scenarios:

1. two systematic partial neighbor sets where the first set considers flipping the first half of the

bits, and the second set considers flipping the second half of the bits;

2. four systematic partial neighbor sets where each set considers flipping a quarter of the bits;

3. random partial neighbor sets with N
2 partial neighbors; that is, each set considers flipping a

random set of bits with size N
2 ;

4. random partial neighbor sets with N
4 partial neighbors; that is, each set considers flipping a

random set of bits with size N
4 ;

The result is shown in Figure 4.8; for this case, systematic Partial Neighbor Sets are better than

random Partial Neighbor Sets. However, random Partial Neighbor Sets can be better when we run

the same code with a different random seed. After running this simulation for 100 different random

seeds, the systematic neighbor sets are better 56 times. Thus, we conclude that the performance of

these two Partial Neighbor Sets is close to each other. We will continue using the systematic Partial

Neighbor Sets in our later simulation.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 57

0.00

0.02

0.04

0.06

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.02

0.04

0.06

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method Random with |N_k| = 4 Random with |N_k| = 8 Systematic with |N_i| = 4 Systematic with |N_i| = 8

Figure 4.8: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for four scenarios: Systematic PNS
and Random PNS, each with Partial Neighbor Set sizes of 4 and 8. Random upper triangular 16×16
QUBO matrix is generated randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot
within the plot represents the average TVD value and time used for 1000 simulation runs given
a certain original sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. For all
PNS, we used L0 = 100.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 58

4.6.2 The choice of the Partial Neighbor Sets sizes

In previous simulations, we naively use we used |Ni(x)| = 4 or 8 and L0 = 100 in previous examples.

What is the optimal choice for |Ni(x)|? We want to compare |Ni(x)| = 2, 4, 6, 8, . . . , 14 by the

QUBO question. In previous cases, we only used the systematic Partial Neighbor Set size n that

can be divided evenly by N . For other n’s that cannot be divided evenly such as 14, we create the

Partial Neighbor Sets in loops to make the sets have the same size and include all entries for the

same amount of time. For example, we create the following 8 Partial Neighbor Sets for |Ni(x)| = 14:

• N1(x) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; that is, we consider flipping entries 1 to 14;

• N2(x) = {15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

• N3(x) = {13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• N4(x) = {11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8};

• N5(x) = {9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6};

• N6(x) = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4};

• N7(x) = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2};

• N8(x) = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};

Figure 4.9 shows the results for comparing the Unbiased PNS with |Ni| ≡ 2, 4, 6, 8, 10, 12, and

14 for ∀X ∈ {0, 1}16. Every other simulation setting is the same as the previous simulations for the

QUBO question. The choice of L0 is still 100. According to the left plot, we can say that given the

same amount of original samples, the Markov chain from |Ni| = 14 is the least biased. On the other

hand, from the right plot, we can conclude that, given the same amount of CPU time, the sample

quality from |Ni| = 14 is the best. In addition, the performances are close to each other for all cases

where |Ni| ≥ 8. Note that a single-core implementation makes all these comparisons by the CPU

time, and parallel hardware can provide speedups. Intuitively, the more tasks that can be calculated

simultaneously, the greater the speedup. Thus, if we apply our Unbiased PNS on parallel hardware

with a limited number of parallel tasks that can be computed simultaneously, we should choose the

largest possible partial neighbor set size |Ni|.

4.6.3 The choice of L0

Furthermore, Figure 4.10 shows the results for comparing the Unbiased PNS with L0 = 10, 50,

100, 500, and 1000. Again, every other setting of the simulation is the same, and |Ni| is still 8,

∀x ∈ {0, 1}16. The left plot shows that given the same samples, the Markov chain from L0 = 10 is

the least biased. However, the right plot shows that, given the same amount of CPU time, the TVD

values are about the same except L0 = 10. The case with L0 = 100 is slightly better than the other

cases, but the difference is not too large. L0 = 10 becomes the worst since such L0 has too many

rejections (about one rejection for every ten samples). Thus, for a single-core implementation, the

choice of L0 is not that important as long as it is not extreme. In addition, for parallel hardware,

when we change the partial neighbors being chosen, we have to bring the new neighbors to the

memory. This can be a waste of time if we are doing this very frequently. Thus, L0 should not be

too small for parallel computing.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 59

0.00

0.02

0.04

0.06

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.02

0.04

0.06

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method
|N_i| = 10

|N_i| = 12

|N_i| = 14

|N_i| = 2

|N_i| = 4

|N_i| = 6

|N_i| = 8

Figure 4.9: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for four scenarios: Unbiased PNS
with different partial neighbor set sizes {2, 4, 6, . . . , 14}. Random upper triangular 16× 16 QUBO
matrix is generated randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within
the plot represents the average TVD value and time used for 1000 simulation runs given a certain
original sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. For all PNS, we
used L0 = 100.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 60

0.000

0.025

0.050

0.075

0.100

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.000

0.025

0.050

0.075

0.100

1e−02 1e−01 1e+00 1e+01 1e+02
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method L_0 = 10 L_0 = 50 L_0 = 100 L_0 = 500 L_0 = 1000

Figure 4.10: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased Partial Neighbor Search
with different sizes of L0. Random upper triangular 16 × 16 QUBO matrix is generated randomly
by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the plot represents the average
TVD value and time used for 1000 simulation runs given a certain original sample size, where the
sizes are {300, 600, 1200, 2400, . . . , 3072000}. For all PNS, we used |Ni| = 8.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 61

0.00

0.02

0.04

0.06

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.02

0.04

0.06

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method
L_0 = 100 and 100

L_0 = 100 and 200

L_0 = 200 and 100

L_0 = 100 and 300

L_0 = 300 and 100

L_0 = 100 and 500

L_0 = 500 and 100

Figure 4.11: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with different L0

values chosen for two partial neighbor sets. Random upper triangular 16 × 16 QUBO matrix is
generated randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the plot
represents the average TVD value and time used for 300 simulation runs given a certain original
sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. For all PNS, we used two
partial neighbor sets, where each of them considers flipping 8 entries.

4.6.4 The choice of L0 when the Partial Neighbor Sets have different sizes

In the previous section, we found the best choices for L0 and Partial Neighbor Sets sizes by controlling

the other parameter, and we also used Partial Neighbor Sets of the same size. Here, we try to

explore the sampling efficiency with Partial Neighbor Sets of different sizes, and the best choice of

the corresponding L0. Since Partial Neighbor Sets have different sizes, L0 is a vector with a size

equal to the total number of all Partial Neighbor Sets. We only use two Partial Neighbor Sets N1

and N2 here. where |N1| = n, and |N2| = N − n. We can choose different L0 for different Partial

Neighbor Sets. For example, we first let n = 8, then the |N1| = |N2| = 8, and we check the sampling

efficiency when L0(N1) = 100 and L0(N2) = 100. We also check the combinations for L0 like

{100, 10}, {100, 50}, {200, 100}, etc. The result is shown in Figure 4.11. Similarly, we use n = 4, so

|N1| = 4 and |N2| = 12, and do the same simulation again. The results are shown in Figure 4.12.

First of all, Figure 4.12 confirms that the Markov chain will converge to the correct stationarity

given that the sizes of the Partial Neighbor Sets are different. In addition, by Figure 4.11 and

Figure 4.12, the best strategies are both using L0 = 100 and 500 accordingly for N1 and N2.

However, logically, this is not true for all QUBO questions, and this result only occurs because of

the randomness of the QUBO matrix Q.

To eliminate the influence from the randomness of the QUBO matrix Q, we create one thousand

QUBO matrices Q. For each of these QUBO matrices Q, we compare the methods of choosing L0

by 100 runs, and we average the results from these 1000× 100 simulations to get the average TVD

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 62

0.00

0.02

0.04

0.06

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.02

0.04

0.06

0.01 0.10 1.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method
L_0 = 100 and 100

L_0 = 100 and 200

L_0 = 200 and 100

L_0 = 100 and 300

L_0 = 300 and 100

L_0 = 100 and 500

L_0 = 500 and 100

Figure 4.12: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with the sizes for
Partial Neighbor Sets being 4 and 12. Random upper triangular 16× 16 QUBO matrix is generated
randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the plot represents
the average TVD value and time used for 300 simulation runs given a certain original sample size,
where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 63

0.2

0.4

0.6

0.8

300 1000 3000 10000 30000
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.2

0.4

0.6

0.8

0.001 0.010 0.100
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method
L_0 = 100 and 100

L_0 = 100 and 200

L_0 = 200 and 100

L_0 = 100 and 300

L_0 = 300 and 100

L_0 = 100 and 500

L_0 = 500 and 100

Figure 4.13: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with the sizes for
Partial Neighbor Sets being 2 and 6. Random upper triangular 8 × 8 QUBO matrix is generated
randomly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the plot represents
the average TVD value and time used for 1000 different QUBO matrix Q, and for each QUBO
matrix Q, we did 100 simulation runs given a certain original sample size, where the sizes are
{3000, 6000, 12000, 24000, 48000, 96000}.

values as well as the average time in seconds used by the program. Since this simulation has much

more simulation runs than before, we use an 8 × 8 QUBO matrix here, and the sizes for Partial

Neighbor Sets are 2 and 6. The result is shown in Figure 4.13, and we can conclude that when

comparing the TVD values by time in seconds, the choice of L0 does not matter too much even

when the sizes for the Partial Neighbor Sets are different.

4.6.5 The choice of Partial Neighbor Sets sizes given L0

We compared the sampling efficiency with different combinations for L0 when the Partial Neighbor

Sets have different sizes in Section 4.6.4. On the other hand, if we have a vector L0 for different

numbers of samples with respect to the original chain, what will be the best choice for the Partial

Neighbor Set sizes? For both L0 = {100, 100} and L0 = {100, 300}, we check the sampling efficiency

for different combinations of the sizes for two Partial Neighbor Sets N1 and N2. The result is shown

in Figure 4.14. In addition, the results for L0 = {100, 300} is shown in Figure 4.15.

From Figure 4.14 and Figure 4.15, the results are similar to what we had in Section 4.6.4. We

conclude that, for given sizes L0, the choice of PNS sets does not make a big difference. Similar to

Section 4.6.4, we can also try to eliminate the influence of the QUBO matrix Q. Again, we create one

thousand QUBO matrices Q, and for each of these QUBO matrices Q, we compare the methods of

choosing Partial Neighbor Sets by 100 runs. We average the results from these 1000×100 simulations

to get the average TVD values as well as the average time in seconds used by the program. Again,

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 64

0.00

0.01

0.02

0.03

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.01

0.02

0.03

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method N_0 = 2 and 14 N_0 = 4 and 12 N_0 = 6 and 10 N_0 = 8 and 8

Figure 4.14: Average values of TVD between sampling and target density π as a function of the num-
ber of iterations (left) and average time in seconds (right) for Unbiased PNS with L0 = {100, 100}.
Random upper triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102)
for upper triangular elements. Each dot within the plot represents the average TVD value and
time used for 1000 simulation runs given a certain original sample size, where the sizes are
{3000, 6000, 12000, 24000, . . . , 3072000}.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 65

0.00

0.01

0.02

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.01

0.02

0.01 0.10 1.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method N_0 = 2 and 14 N_0 = 4 and 12 N_0 = 6 and 10 N_0 = 8 and 8

Figure 4.15: Average values of TVD between sampling and target density π as a function of the num-
ber of iterations (left) and average time in seconds (right) for Unbiased PNS with L0 = {100, 300}.
Random upper triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼ N(0, 102)
for upper triangular elements. Each dot within the plot represents the average TVD value and
time used for 1000 simulation runs given a certain original sample size, where the sizes are
{3000, 6000, 12000, 24000, . . . , 3072000}.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 66

0.10

0.15

0.20

0.25

300 1000 3000 10000 30000
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.10

0.15

0.20

0.25

0.003 0.010 0.030 0.100
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method
|N_0| = 1 and 7

|N_0| = 2 and 6

|N_0| = 3 and 5

|N_0| = 4 and 4

|N_0| = 5 and 3

|N_0| = 6 and 2

|N_0| = 7 and 1

Figure 4.16: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with L0 = 100
for both Partial Neighbor Sets. Random upper triangular 8 × 8 QUBO matrix is generated ran-
domly by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the plot represents
the average TVD value and time used for 1000 different QUBO matrix Q, and for each QUBO
matrix Q, we did 100 simulation runs given a certain original sample size, where the sizes are
{300, 600, 1200, 2400, 4800, 9600, 19200, 38400}.

we use an 8× 8 QUBO matrix here, and the size for L0 is 100 for both Partial Neighbor Sets. The

result is shown in Figure 4.16, and we can conclude that when comparing the TVD values by time

in seconds, the choice of Partial Neighbor Sets does not matter too as well.

4.6.6 Two Flips

In previous simulations, we used uniform proposal distributions among all neighbors where the

neighbors are defined as binary vectors with Hamming distance 1. That is, Q(x, y) = 1
N for ∀y such

that |x−y| =
∑N

i=1|xi−yi| = 1, ∀x, y ∈ {0, 1}N . Thus, the neighbors are all binary vectors different

by one flip. We usually did not include two flips because of two reasons. First of all, the acceptance

rate by the Metropolis-Hastings algorithm on two flips is low, since two flips usually have larger

energy differences than one flip. In addition, there are too many of them. For example, for a 16×16

QUBO question, if we only consider one flip, then for each state, there are 16 neighbors. However,

considering two flips, there will be 256 neighbors. Then for Rejection-Free, the number of neighbors

is too many to be applied efficiently.

However, with the help of PNS, we can now try to include two flips into the Partial Neighbor

Sets. For the first simulation, we use the same settings as before, except we choose the following

proposal distribution and neighbors:

1. One Flip with four neighbors chosen randomly. That is, for each step, we randomly choose

four entries from 1 to 16, and apply Partial Neighbor Search on these four neighbors.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 67

0.00

0.05

0.10

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.05

0.10

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method One Flip with |N_i| = 4 One Flip with |N_i| = 8 Two Flips with |N_i| = 4 Two Flips with |N_i| = 8

Figure 4.17: Two-flip: Average values of TVD between sampling and target density π as a function
of the number of iterations (left) and average time in seconds (right) for Unbiased PNS with different
selections of neighbor sets. Random upper triangular 16× 16 QUBO matrix is generated randomly
by Qi,j ∼ N(0, 102) for upper triangular elements. Each dot within the plot represents the average
TVD value and time used for 1000 simulation runs given a certain original sample size, where the
sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100.

2. One Flip with eight neighbors chosen randomly.

3. Two Flip with four neighbors chosen randomly. We first randomly choose eight entries from 1

to 16, and apply Partial Neighbor Search on these four neighbors, to make one flip with four

neighbors first for L0 original samples. Then we randomly choose four groups of two different

entries from 1 to 16 and apply Partial Neighbor Search on these four groups of two flips.

4. Two Flip with eight neighbors chosen randomly.

Note that, we can not only apply the pure two flips since the Markov chain will become reducible

then, so we mix the one flip and two flips to make a hybrid chain. The results for the simulations

are shown in Figure 4.17. Note that, the mean for the multiplicity list Mk (before considering L0)

is 7 × 1013, which is super large. This is understandable since the energy difference for two flips is

large. As a result, the two flip algorithms sample less efficiently than one flip. In addition, we did

another simulation by generating Qi,j ∼ N(0, 0.42) instead of using the standard deviation of 10.

The simulation result is shown in Figure 4.18. It seems that even if the energy difference for two

flips is not that large, two flips are still a little bit worse than one flip. Technically, we think two

flips can be very helpful when escaping from the local mode, but in our simulation, we didn’t find

it to be more efficient.

In addition to the previous comparison, we have more ways to apply two flips. We can define the

neighbors to state with Hamming distance less or equal to 2. That is, Q(x, y) = 1
N2 for ∀y such that

|x − y| =
∑N

i=1|xi − yi| ≤ 2, ∀x, y ∈ {0, 1}N . Then we choose |Ni| neighbors as Partial Neighbor

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 68

0.00

0.25

0.50

0.75

1.00

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.25

0.50

0.75

1.00

0.1 1.0 10.0 100.0
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method One Flip with |N_i| = 4 One Flip with |N_i| = 8 Two Flips with |N_i| = 4 Two Flips with |N_i| = 8

Figure 4.18: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with different
selections of neighbor sets: one flip and two flips. Random upper triangular 16× 16 QUBO matrix
is generated randomly by Qi,j ∼ N(0, 0.42) for upper triangular elements. Each dot within the plot
represents the average TVD value and time used for 1000 simulation runs given a certain original
sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 69

Figure 4.19: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with different
selections of neighbor sets: one flip and two flips. Random upper triangular 16× 16 QUBO matrix
is generated randomly by Qi,j ∼ N(0, 0.42) for upper triangular elements. Each dot within the plot
represents the average TVD value and time used for 1000 simulation runs given a certain original
sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100.

Set randomly from all N2 neighbors. The result of the comparison is shown in Figure 4.19. Again,

the two flips are worse than one flip. This is easy to understand as well since most of the two flips

have higher energy differences, and thus the two flips are not making as much contribution as one

flip when being included in the Partial Neighbor Sets. Moreover, we can try to adjust the proposal

distribution Q to make our Partial Neighbor Sets consider one flip more. We choose Q(x, y) = 1
2N

for |x−y| =
∑N

i=1|xi−yi| = 1 and Q(x, y) = 1
2(N2−N) for |x−y| =

∑N
i=1|xi−yi| = 2, and the result

is shown in Figure 4.20. The difference between one flip and two flips is not as much as before, but

two flips are still worse than one flip. Thus, here we conclude that for the situation we have here,

the two flips may not be that useful.

4.7 Use the information of QUBO matrix

We already talked about using different proposal distributions other than a uniform proposal dis-

tribution on all neighbors in Section 4.6.6. We believe that uniform proposal distribution can be a

good choice generally, but when we are given some extra information about the sampling question,

there must exist some other efficient ways to create better proposal distribution. For example, for

the QUBO question, maybe we can make use of the information of the QUBO matrix Q to get a

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 70

Figure 4.20: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with different
selections of neighbor sets: one flip and two flips. Random upper triangular 16× 16 QUBO matrix
is generated randomly by Qi,j ∼ N(0, 0.42) for upper triangular elements. Each dot within the plot
represents the average TVD value and time used for 1000 simulation runs given a certain original
sample size, where the sizes are {3000, 6000, 12000, 24000, . . . , 3072000}. L0 = 100.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 71

better proposal distribution. First, we define a parameter weight wi for each entry of xi to be:

wi ∝
N∑
j=1

[|Qi,j |+ |Qj,i|]− |Qi,i| (4.17)

Then, based on the vector w, we consider four types of Modified PNS

1. Q(X,Y) ∝ 1
wi

if |Xi − Yi| = 1

2. Q(X,Y) ∝ 1
w2

i
if |Xi − Yi| = 1

3. Q(X,Y) ∝ wi if |Xi − Yi| = 1

4. Q(X,Y) ∝ w2
i if |Xi − Yi| = 1

The result of the simulation is shown in Figure 4.21. From the top two figures, we can see that

Modified 3 and Modified 4 are less efficient. To see the difference between regular PNS, Modified

1, and Modified 2, we make two more plots for them on a smaller scale as the bottom two figures.

From these two figures, we can see that, for this circumstance, the Modified PNS with proposal

distribution being propositional to the inverse of the weights is better than the regular PNS. This

is understandable, since usually for sampling questions, we care more about the states around the

highest density values. For example, if we are sampling from space with only four density values

{100, 99, 0.1, 0.09}, then the two small states do not matter too much. To get better samples, we

probably want our Markov chain to be switching between state 100 and 99. A similar thing can

happen here, for this QUBO question, we want our Markov chain to switch among states with

large density values, and those large density values states are different by the flips with less weight.

Therefore, the Modified versions of PNS can help.

Although the Modified PNS is better when we used a randomly generated QUBO matrix Q,

there can be some other problems for some special Q. For example, we define the following 4 by 4

QUBO matrix Q:
2.5 3 −5.0 −6.0
0.0 4 −6.0 −7.0
0.0 0 5.5 6.5

0.0 0 0.0 7.0

 (4.18)

For target density from this QUBO matrix, there are two separate local maximum (1, 1, 0, 0)T and

(0, 0, 1, 1)T . Then, in this case, we probably don’t want to be stuck at one local maximum and thus

Modified 1 and 2 may not be that good. Note that, the weights are {0.4232, 0.461, 0.077, 0.038}
accordingly.

The result of the simulation is shown in Figure 4.22. From the figures, Modified 1 and 2 are a

little bit worse than the regular PNS. This shows that the Modified version of the PNS is not always

better than the regular PNS. However, we still believe that the Modified PNS can be useful in most

unimodal cases.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 72

0.0

0.1

0.2

0.3

0.4

0.5

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s
TVD versus Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

0.00

0.01

0.02

0.03

0.04

0.05

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.00

0.01

0.02

0.03

0.04

0.05

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s
TVD versus Time

Method PNS Modified 1 Modified 2 Modified 3 Modified 4

Figure 4.21: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with and without
using the information of matrix Q. PNS Modified means proposal distribution based on the QUBO
matrix Q as wi ∝

∑N
j=1[|Qi,j |+ |Qj,i|]−|Qi,i|. The upper two plots are the same as the bottom two

plots except for the scales. Modified 1: Q(X,Y) ∝ 1
wi

if |Xi − Yi| = 1; Modified 2: Q(X,Y) ∝ 1
w2

i

if |Xi − Yi| = 1; Modified 3 : Q(X,Y) ∝ wi if |Xi − Yi| = 1; Modified 4: Q(X,Y) ∝ w2
i if

|Xi − Yi| = 1. Random upper triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼
N(0, 102) for upper triangular elements. Each dot within the plot represents the average TVD
value and time used for 100 simulation runs given a certain original sample size, where the sizes are
{3000, 6000, 12000, 24000, . . . , 3072000}.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 73

0.0

0.1

0.2

0.3

0.4

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s
TVD versus Number of Samples

0.0

0.1

0.2

0.3

0.4

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

0.0

0.1

0.2

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.0

0.1

0.2

0.01 0.10 1.00 10.00
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method PNS Modified 1 Modified 2 Modified 3 Modified 4

Figure 4.22: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for Unbiased PNS with and without
using the information of matrix Q. PNS Modified means proposal distribution based on the QUBO
matrix Q as wi ∝

∑N
j=1[|Qi,j |+ |Qj,i|]−|Qi,i|. The upper two plots are the same as the bottom two

plots except for the scales. Modified 1: Q(X,Y) ∝ 1
wi

if |Xi− Yi| = 1; Modified 2: Q(X,Y) ∝ 1
w2

i
if

|Xi−Yi| = 1; Modified 3 : Q(X,Y) ∝ wi if |Xi−Yi| = 1; Modified 4: Q(X,Y) ∝ w2
i if |Xi−Yi| = 1.

Random upper triangular 4×4 given QUBO matrix. Each dot within the plot represents the average
TVD value and time used for 100 simulation runs given a certain original sample size, where the
sizes are {3000, 6000, 12000, 24000, . . . , 3072000}.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 74

4.8 Irreversible Assumptions for Partial Neighbor Sets

In section 4.4, we compared PNS with the Metropolis-Hastings algorithm by a two-dimensional

donut example. In that example, we used a reversible proposal. That is, for Partial Neighbor Set

Ni, y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S. Thus, we chose the Partial neighbor Set Ni(x) as follows:

1. generate δ1, δ2 ∼ Normal(0, 1);

2. for state x = (x1, x2), put y = (x1 + δ1, x2 + δ2) into the Partial Neighbor Set Ni(x);

3. to ensure the reversibility, also put y′ = (x1− δ1, x2− δ2) into the Partial Neighbor Set Ni(x);

4. repeat the above steps 25 times to generate a total of 50 neighbors for the Partial Neighbor

Set Ni(x).

In Section 4.5, we proved that this reversible PNS chain will converge to the target density correctly.

However, is reversibility necessary for the Partial Neighbor Set?

We use a four-dimension of donuts example to show the results from a PNS chain with irreversible

Partial Neighbor Sets. Suppose we have four independent random variables µ, θ1, θ2, θ3 where

µ ∼ Normal+(µ0, σ
2), θ1, θ2, θ3 ∼ Uniform[0, π). (4.19)

Here, Normal+ means the Truncated Normal distribution without the negative tail, and π in the

Uniform distribution means the circular constant instead of the target density. Then we define two

random variables X1 and X2 to be

X1 =
√
µ sin θ1 sin θ2, X2 =

√
µ sin θ1 cos θ2,

X3 =
√
µ cos θ1 sin θ3, X4 =

√
µ cos θ1 cos θ3.

(4.20)

Thus we have

fX1,X2,X3,X4
(x1, x2, x3, x4) ∝

1

σ
exp

[
− (x2

1 + x2
2 + x3 + x4 − µ0)

2

2σ2

]
, (4.21)

In addition, the proposal distribution for the Metropolis-Hastings algorithm is defined to be the

standard normal distribution for both dimensions. That is, for x = (x1, x2, x3, x4), y = (y1, y2, y3, y4)

∈ R4, Q(x, y) = ϕ(y1 − x1)ϕ(y2 − x2)ϕ(y3 − x3)ϕ(y4 − x4) where ϕ is the density function of the

standard normal distribution. Then for any x ∈ R4, we have N (x) = R4.

For reversible Partial Neighbor Sets, we must have reversibility for all Ni(x), which means

y ∈ Ni(x) ⇐⇒ x ∈ Ni(y), ∀x, y ∈ S. Thus, we consider 50 + 50 neighbors for each reversible

Partial Neighbor Set Ni(x), and we pick our neighbors by repeating the following steps for 50 times:

1. generates δ1, δ2, δ3, δ4 ∼ Normal(0, 1)

2. for state x = (x1, x2, x3, x4), put y = (x1+δ1, x2+δ2, x3+δ3, x4+δ4) into the Partial Neighbor

Set Ni(x);

3. to ensure the reversibility, also put y′ = (x1 − δ1, x2 − δ2, x3 − δ3, x4 − δ4) into the Partial

Neighbor Set Ni(x);

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 75

0.0

0.1

0.2

0.3

0.4

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07
Number of Samples

M
ea

n
fo

r
th

e
B

ia
s

Bias of the First Degree Terms versus Number of Samples

0.0

0.1

0.2

0.3

0.4

0 50 100 150
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the First Degree Terms versus Time

Method Irreversible 100 Irreversible 50 Reversible 50+50

Figure 4.23: Sum of the Average Bias of Xi’s between sampling and target density π as a function
of the number of iterations (left) and average time in seconds (right) for two methods: Metropolis
algorithm and Unbiased PNS with the reversible and non-reversible partial neighbor set. We used
the Donuts example with µ0 = 9 and σ = 0.1. Each dot within the plot represents the result of
the average bias value and time used for 30 simulation runs given certain original sample sizes.
L0 = 1000.

After repeating the above steps 50 times, we can get a total of 50 + 50 neighbors for the reversible

Partial Neighbor Set Ni(x). For irreversible Partial Neighbor Sets, we don’t need step 3. To make

a fair comparison, we use two sizes of the Partial Neighbor Sets |Ni| = 50 and 100.

The results are shown in Figure 4.23 and Figure 4.24. From the figures, we can see that the

biases of the Markov chains by the irreversible Partial Neighbor Sets do decrease to near 0, which

means such Markov chains do converge. In addition, it also performs better than the reversible ones.

Does that mean we should use the irreversible Partial Neighbor Sets? Let’s look at more simulation

results.

In the previous simulation, we used a symmetric proposal distribution for the increment part of

the states. That is, we generated δ1, δ2, δ3, δ4 ∼ Normal(0, 1), which is symmetric around 0. How

about other proposal distribution? For example, Normal(0.1, 1) can be a workable proposal distri-

bution for the Metropolis-Hastings algorithm. Although Normal(0.1, 1) is not symmetric around 0,

the Markov chain by the Metropolis-Hastings algorithm will still converge to the target density. Will

the irreversible PNS chain converge correctly?

The results are shown in Figure 4.25 and Figure 4.26. From the figures, we can see that the

biases of the Markov chains by the irreversible Partial Neighbor Sets are not converging to 0, which

means such Markov chains do not converge. This result illustrates that such an irreversible PNS

chain will not always converge correctly. People need to be very careful when using irreversible

PNS. We include this simulation because naturally, people prefer irreversible PNS to reversible ones

since reversible ones include one more step of including the negative increment, and such a step

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 76

0.0

0.1

0.2

0.3

0.4

0 50 100 150
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Second Degree Terms versus Time

0

1

2

3

0 50 100 150
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Fourth Degree Terms versus Time

0.00

0.05

0.10

0.15

0 50 100 150
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Positive Rate versus Time

Method Irreversible 100 Irreversible 50 Reversible 50+50

Figure 4.24: Sum of the average bias from the second-degree terms (left), the fourth-degree terms
(middle), and the positive rate (right) between sampling and target density π as a function of average
time in seconds for two methods: Metropolis algorithm and Unbiased PNS with the reversible and
non-reversible partial neighbor set. We used the Donuts example with µ0 = 9 and σ = 0.1. Each
dot within the plot represents the result of the average bias value and time used for 30 simulation
runs given certain original sample sizes. L0 = 1000.

0.0

0.5

1.0

1.5

0.0e+00 2.5e+06 5.0e+06 7.5e+06 1.0e+07
Number of Samples

M
ea

n
fo

r
th

e
B

ia
s

Bias of the First Degree Terms versus Number of Samples

0.0

0.5

1.0

1.5

0 50 100
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the First Degree Terms versus Time

Method Irreversible 100 Irreversible 50 Reversible 50+50

Figure 4.25: Sum of the Average Bias of Xi’s between sampling and target density π as a function
of the number of iterations (left) and average time in seconds (right) for two methods: Metropolis
algorithm and Unbiased PNS with the reversible and non-reversible partial neighbor set, where the
proposal distribution is asymmetric with δ ∼ Normal(0.1, 1). We used the Donuts example with
µ0 = 9 and σ = 0.1. Each dot within the plot represents the result of the average bias value and
time used for 30 simulation runs given certain original sample sizes. L0 = 1000. According to the
results here, we conclude that the non-reversible partial neighbor set is not always converging to the
correct distribution.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 77

0.0

0.1

0.2

0.3

0.4

0 50 100
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Second Degree Terms versus Time

0

1

2

3

0 50 100
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Fourth Degree Terms versus Time

0.0

0.2

0.4

0.6

0 50 100
Time in seconds

M
ea

n
fo

r
th

e
B

ia
s

Bias of the Positive Rate versus Time

Method Irreversible 100 Irreversible 50 Reversible 50+50

Figure 4.26: Asymmetric Proposal δ ∼ Normal(0.1, 1): Sum of the average bias from the second-
degree terms (left), the fourth-degree terms (middle), and the positive rate (right) between sampling
and target density π as a function of average time in seconds for two methods: Metropolis algorithm
and Unbiased PNS with the reversible and non-reversible partial neighbor set, where the proposal
distribution is asymmetric with δ ∼ Normal(0.1, 1). We used the Donuts example with µ0 = 9 and
σ = 0.1. Each dot within the plot represents the result of the average bias value and time used for
30 simulation runs given certain original sample sizes. L0 = 1000.

needs some time for the multicore hardware to communicate between cores. On the other hand, the

first simulation shows that the irreversible PNS will converge to the target density under certain

conditions, which can be another topic to explore in the future.

4.9 Combine PNS with other MCMC Techniques

4.9.1 Multiple Try Metropolis

In the Metropolis algorithm, we only propose one state at a time, and our Rejection-Free and PNS

algorithms are adaptions of the Metropolis algorithm where we consider more neighbors at each

step. Similarly, Multiple-Try Metropolis(MTM) is also an adaption of the Metropolis algorithm

which proposed more than one neighbor to be tested at each step [56]. Some numerical studies show

that MTM can be significantly better than the traditional Metropolis-Hastings algorithm [51].

The MTM algorithm is described by Algorithm 10. This algorithm is designed to increase

the sampling speed by increasing the acceptance rate, although the step size is increased as well.

Compare to our methods, MTM can only get one sample at a time by computing the (2l−1) weights.
In addition, we can extend MTM to PNS as well. At each step, by applying the MTM transition

rule for M times, we can obtain M proposals y1,y2, . . . ,yM with M corresponding acceptance

probabilities p1, p2, . . . , pM . Then we can choose our next state by P̂ (yi | Xk−1) ∝ pi, and we can

also calculate our multiplicity list by m = 1 +G where G ∼ Geometric(p), and p = 1
M

∑M
i=1 pi.

However, we don’t think it is a great idea to combine these two methods. Multiple-try Metropolis

needs to compute the energy of (2l−1) other states at every step. In addition, for each step of PNS,

we have to do it for M times. Thus, we need to calculate M × (2l − 1) functions for every step,

and it can be overwhelming. In addition, the purpose of MTM is to increase the acceptance rate,

while PNS works well for those cases with low acceptance rates. Thus, we think combining these

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 78

Algorithm 10 Multiple Try Metropolis

initialize X0

choose a non-negative symmetric function λ : S × S → R
define w(x, y) = π(x)Q(x, y)λ(x, y), ∀x, y ∈ S
for k in 1 to K do

draw y1, y2, . . . , yl independently from Q(Xk−1, ·)
compute the weights w(yj , Xk−1), ∀j = 1, 2, . . . , k
select y from the y1, y2, . . . , yl based on w(Xk−1, ·)
produce a reference set by drawing z1, . . . , zl−1 from the distribution Q(y, ·)
set zl = Xk−1

accept Xk = y with probability min
(
1, w(y1,Xk−1)+···+w(yl,Xk−1)

w(z1,y)+···+w(zl,y)

)
end for

two methods won’t be very efficient.

4.9.2 Barker’s Rule

In Algorithm 1, we used the regular Metropolis-Hasting acceptance probability, which is

min
(
1,

π(Y)Q(Y,Xk−1)

π(Xk−1)Q(Xk−1, Y)

)
.

On the other hand, we also have many other Markov chain kernels such as Barker’s acceptance

function [5], where we accept the proposal with probability

π(Y)Q(Y,Xk−1)

π(Y)Q(Y,Xk−1) + π(Xk−1)Q(Xk−1, Y)
.

We don’t use these Markov chain kernels very often because based on Paskun-Tierney ordering [63],

[80], these kernels are usually less efficient than the regular ones. However, under some special

circumstances, we may need to use these kernels. Thus, we extend our PNS algorithm to these

special Markov chain kernels as well.

Here use a simulation to show the change of the TVD values by sampling with PNS with Barker’s

acceptance function. Similar to the simulation from Section 4.3, we used the QUBO sampling

example again. The only difference is that the non-zero elements were generated randomly by Qi,j ∼
Normal(0, 12) instead of Normal(0, 102), ∀i ≤ j. We used a small variance here because we have to

calculate log(exp(yTQy)+exp(xTQx)), and with a large variance, calculating the exponential values

may cause numerical overflows. The result is shown in Figure 4.27. The figure illustrates that the

Markov chain with Barker’s transition probabilities converges to the correct distribution, although

the converging speed is slower than the regular Metropolis-Hastings kernel, which demonstrates

that the Paskun-Tierney ordering works for PNS as well. Note that, the Markov chain produced by

Metropolis-Hasting will converge correctly as long as the Markov chain kernels used is reversible.

Similarly, we believe that PNS with any reversible Markov chain kernels works as well.

CHAPTER 4. SAMPLING VIA PARTIAL NEIGHBOR SEARCH 79

0.0

0.2

0.4

0.6

1e+04 1e+05 1e+06
Number of Samples

T
V

D
 v

al
ue

s

TVD versus Number of Samples

0.0

0.2

0.4

0.6

0.1 1.0 10.0
Time in seconds

T
V

D
 v

al
ue

s

TVD versus Time

Method Barkers Regular

Figure 4.27: Average values of TVD between sampling and target density π as a function of the
number of iterations (left) and average time in seconds (right) for two methods: Unbiased PNS
with regular transition rule and Barker’s transition rule. We used an upper triangular 16 × 16
QUBO matrix, generated randomly by Qi,j ∼ N(0, 12) for upper triangular elements. Each dot
within the plot represents the result of the average TVD value and time used for 100 simula-
tion runs given certain original sample sizes. The original sample sizes for both algorithms are
{2000, 4000, 8000, 16000, . . . , 2048000}.We choose these sizes to get a close average CPU time for all
three methods. For Unbiased PNS, we used |Nk| = 8 and L0 = 100.

Chapter 5

Optimization via Rejection-Free

and Partial Neighbor Search

5.1 Optimization questions and Simulated Annealing Review

Optimization is the cornerstone of many areas. It plays a crucial role in finding feasible solutions to

real-life problems, from mathematical programming to operations research, economics, management

science, business, medicine, life science, and artificial intelligence [27]. Before the invention of linear

and integer programming in the 1950s, optimization was characterized by several independent topics,

such as optimum assignment, the shortest spanning tree, transportation, and the traveling salesman

problem, which were then united into one framework [73]. Today, combinatorial optimization is

essential in research because most problems originate from practice and are dealt with daily [73].

Optimization questions aim to find an optimal solution to maximize or minimize a real function

within a given state space. Sometimes, a feasible solution with the corresponding function value

near the optimal solution is also acceptable. The process of finding an optimal or feasible solution

to some complex combinatorial optimization problems may take a considerable amount of time. In

particular, no algorithm for NP-hard problems can guarantee that the optimal state of the problem

will be found within a limitation governed by a polynomial based on the input length [29].

Among all complex optimization problem solvers, metaheuristics are usually nature-inspired [8].

They are designed to select a heuristic that often arrives at a feasible solution instead of an optimal

one. The Simulated Annealing algorithm [47], based on the Metropolis steps [59] at decreasing

temperatures, is a typical method of this kind, as we now review.

Simulated Annealing, as introduced by [47], is widely used to solve combinatorial optimization

problems, such as approximating the optimal values of functions with many variables [70]. Although

there is some theory to prove that Simulated Annealing will converge to the optimal solution almost

surely with sufficiently slow cooling schedules [62], for many complex optimization problems, such as

NP-hard problems, there is no guarantee that this algorithm will provide an optimal solution within

a reasonable amount of time. On the other hand, Simulated Annealing can give reasonable, feasible

solutions quickly [1]. Discrete Simulated Annealing contains the following essential elements [7]:

1. A state space S.

80

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 81

2. A real-valued target distribution π on S. The ultimate goal for the Simulated Annealing is

to find Y ∈ S such that π(Y) ≥ π(X), ∀X ∈ S. However, for many circumstances, a good

feasible solution is acceptable.

3. ∀X ∈ S, ∃ a proposal distribution Q(X, ·) where
∫
Y ∈S\{X}Q(X,Y) = 1.

4. ∀X ∈ S, ∃ N (X) = {Y ∈ S | Q(X,Y) > 0} ⊂ S\{X}, called the neighbors of X.

5. A non-increasing function T : N → (0,∞), called the Cooling Schedule. T (k) is called the

temperature at step k ∈ N.

6. An initial State X0 ∈ S.

With the above elements, the Simulated Annealing algorithm, which consists of a discrete time-

inhomogeneous Markov Chain {Xk}Kk=0 can be generated by Algorithm 11. Algorithm 11 is designed

to converge to states Xk with nearly-maximal values of π(Xk), though that is not guaranteed. Note

that the algorithm can also be formulated using log values for better numerical stability.

Algorithm 11 Simulated Annealing

initialize X0

for k in 1 to K do
random Y ∈ N (Xk−1) based on Q(Xk−1, ·)
random Uk ∼ Uniform(0, 1)

if Uk < [π(Y)
π(Xk−1)

]1/T (k) then

▷ accept with probability min
{
1,
[π(Yk)
π(Xk−1)

]1/T (k)
}

Xk = Y ▷ accept and move to state Y
else

Xk = Xk−1 ▷ reject and stay at Xk−1

end if
end for

The Simulated Annealing algorithm, just like the Metropolis-Hastings algorithm, may be ineffi-

cient with respect to rejections. In order to improve the performance of Simulated Annealing, we

adopt the Rejection-Free algorithm for sampling from Chapter 3 into an optimization version. Ad-

ditionally, Rejection-Free may experience inefficiency when it enters local extreme areas. Therefore,

we can also adopt our Partial Neighbor Search (PNS) for sampling from Chapter 4 to optimization

questions as well to further enhance its efficiency.

5.2 Rejection-Free algorithm for optimization

In addition to sampling, the Rejection-Free algorithm can also be applied to optimization problems.

Given a set S and a real-valued target distribution π on the set S, we can use the Rejection-Free

algorithm to find X ∈ S that maximizes π(X) by Algorithm 12. Algorithm 12 is again designed

to converge to states Xk with nearly-maximal values of π(Xk), with greater efficiency by avoiding

rejections, though that is again not guaranteed. Although the purpose of sampling and optimization

are different, regarding the implementation, Rejection-Free for optimization is only different from

Rejection-Free for sampling by getting rid of the multiplicity list {Mk}.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 82

Algorithm 12 Rejection-Free for Optimization (Discrete Cases)

initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1) do
▷ only works for finite neighbors

calculate q(Y) = Q(Y, Jk−1)min{1, [π(Y)
π(Jk)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ N (Jk−1) such that P̂ (Jk = Y | Jk−1) ∝ q(Y)

▷ choose the next jump chain State
end for

Figure 5.1: Illustration of the local maximum area in an optimization problem where both Simulated
Annealing and Rejection-Free may get stuck. The target distribution π has the following function
values: π(A) = π(B) = 100, π(A1) = π(A2) = · · · = π(An) = π(B1) = π(B2) = · · · = π(Bn) = 0.01.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 83

Although the Rejection-Free algorithm for optimization can help reduce the inefficiency of rejec-

tions, local maximum areas of π can still be a problem. For example, we want to find X ∈ S, which

maximizes π(X) from a state space starting at state A in Figure 5.1. Here, we use a uniform proposal

distribution Q on the neighbor sets N as shown in Figure 5.1. We will have many rejections if we

constantly use Simulated Annealing with T ≡ 1. Note that, π(A1) = π(A2) = · · · = π(An) = 0.01

while π(A) = π(B) = 100. The probability of escaping from A is 1
n+1 + n

n+1 ×
1

10000 , where
1

n+1

represents the probability of moving from state A to state B, and n
n+1 ×

1
10000 is the probability of

moving from state A to A1, A2, . . . , An. Cooling Schedules can help reduce the probability of rejec-

tion at the beginning of Simulated Annealing since T should be large at the beginning. However,

as we move on in Simulated Annealing, we will be more and more likely to be trapped by local

maximum areas like this. The Rejection-Free algorithm for optimization can produce some speedup

in this case, but the Rejection-Free chain will still be stuck by the local maximum area {π(A), π(B)}.
If n, the number of other neighbors for A and B, is small, this chain will be switching between A

and B for a really long time, since

P̂(J1 = B | J0 = A) =
min{1, π(B)

π(A)}∑
z ̸=A min{1, π(z)

π(A)}
=

1

1 + 0.0001× n
≈ 1

P̂(J1 = A | J0 = B) ≈ 1.

(5.1)

To help our Markov chain escape from those local maximums in optimization, we propose another

method called Partial Neighbor Search based on the Rejection-Free algorithm.

5.3 Partial Neighbor Search for Optimization

Partial Neighbor Search (PNS) is an algorithm based on the Rejection-Free, also designed as a

Markov chain used for optimization as described in Algorithm 13. Algorithm 13 is again designed

to converge to states Xk with nearly-maximal values of π(Xk), with greater efficiency by avoiding

both rejections and traps in local maximum areas.

Algorithm 13 Optimization Partial Neighbor Search

initialize J0
for k in 1 to K do

pick Nk(Jk−1) ⊂ N (Jk−1) (⋆)
for Y ∈ Nk(Jk−1) do ▷ Only neighbors in Nk will be considered

calculate q(Y) = Q(Y, Jk−1)min{1, [π(Y)
π(Jk)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

▷ choose the next Jump Chain State
end for

The (⋆) step in Algorithm 13 is the key of PNS. At this step, Nk(Jk−1) could be random 50% of

the elements from N (Jk−1). In Section 5.6, we will explore many other choices for the (⋆) step to

figure out the best strategy. Moreover, for continuous cases, PNS can be applied, and we only need

to ensure the Partial Neighbor Sets Nk are always finite, ∀k. On the other hand, Algorithms 4 and

Algorithm 12 for Rejection-Free only work for discrete cases where the number of neighbors for all

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 84

states must be finite, and we will illustrate these by an optimization example in continuous cases in

Section 5.10.

The motivation for PNS is simple: we have a better chance of escaping from the local maximum

area if we force the algorithm to avoid some neighbors randomly. For example, in Figure 5.1, if we

only consider half of the neighbors at state A, then we may disregard state B with probability 50%,

then we have a probability of at least 50% of selecting a state from {A1, A2, . . . , An} as our next

state in the PNS chain. If this occurs, we are more likely to escape from the local maximum area

{π(A), π(B)}.

5.4 Application to the QUBO question

Here we use the QUBO question as an example again. For the optimization version as it supposes

to be, the QUBO questions aims to find the optimal or workable solution for the function xTQx.

It is known to be NP-hard [37], so it is common to use Simulated Annealing to find the optimal or

workable solution. This problem can now be addressed using our PNS algorithm.

For a given N by N matrix Q (usually upper triangular), the QUBO question aims to find

argmaxxTQx, where x ∈ {0, 1}N (5.2)

(Sometimes argmin is used in place of argmax, which is equivalent to taking the negative of Q, so

for simplicity, we focus on the argmax version here.)

As part of our algorithm, we use a uniform proposal distribution among all neighbors where

the neighbors are defined as binary vectors with Hamming distance 1. That is, Q(X,Y) = 1
N for

∀Y ∈ N (X), where Y ∈ N (X) ⇐⇒ |X − Y | =
∑N

i=1|Xi − Yi| = 1, ∀X,Y ∈ {0, 1}N . We randomly

choose half of the neighbors at each step of PNS, which means we only consider a random subset

NK(x) ⊂ N (x) whose cardinality is |Nk(X)| = 1
2 |N (X)| = 1

2N for ∀X ∈ {0, 1}N . In addition,

the target distribution π(x) = exp{xTQx}, since we need the target distribution to be positive all

time to use the Cooling Schedule, and maximizing xTQx is the same as maximizing exp{xTQx}.
Furthermore, T (k) represents the temperature at step k for the cooling schedule here.

We compare Simulated Annealing, Rejection-Free for Optimization, and PNS in 1000 simulation

runs. We randomly generate a 200 by 200 upper triangular as the QUBO matrix Q. The non-zero

elements from Q were generated randomly by Qi,j ∼ Normal(0, 1002), ∀i ≤ j.

The result for the simulation is shown in Figure 5.2. Here, we used a violin plot to summarize

the results. The violin plot uses the information available from local density estimates and the basic

summary statistics to provide a useful tool for data analysis and exploration [42]. The violin plot

combines two density traces on both sides and three quantile lines (25%, 50%, and 75%) to reveal

the data structure. In addition, we added a long segment of the bottom layer as the mean for the

values. We also added a short segment on the y-axis to help compare the mean values.

From Figure 5.2, we can see that the PNS is always the best in all four different cooling schedules.

Note that the number of iterations used for Simulated Annealing is 200, 000 for Simulated Annealing

while they are 1000 for both Rejection-Free and PNS. We used these many iterations because we

need to consider 200 neighbors at each iteration in Rejection-Free, while we only need to consider

one neighbor for each iteration in Simulated Annealing. If we proceed with all three algorithms on

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 85

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

80000

81000

82000

83000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Figure 5.2: Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest
(log) target distribution value log π(x) = xTQx being found, for a random upper triangular QUBO
matrix Q where the non-zero elements are generated by Qi,j ∼ N(0, 1002). Four different cooling
schedules where T (k) = 0.1, 1 and 10 constantly, and T (k) being geometric from 10 to 0.1 are used
here. The number of iterations for Simulated Annealing is 200,000, and the numbers of iterations
for Rejection-Free and PNS are 1000. The three black lines inside the violin plots are 25%, 50%,
and 75% quantile lines. The colored segments represent the mean values.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 86

a single-core machine, the run time of a single simulation run for simulated Annealing is about 20

seconds; the run time for Rejection-Free is about 10 seconds; the run time for PNS is only 5 seconds.

In addition, parallel hardware can increase the speed of both Rejection-Free and PNS by distributing

the calculation of the transition probabilities for different neighbors onto different cores. Besides

that, we can also use multiple replicas at different temperatures, such as in parallel tempering, or

deploy a population of replicas at the same temperature [76]. Combining these methods by parallel

computing can yield 100x to 10,000x speedups for both Rejection-Free and PNS [76].

In the above example, the improvement in the efficiency of Rejection-Free is not hard to under-

stand. The performance of PNS is somehow counter-intuitive. Compared to Rejection-Free, why

would we get a better result by considering fewer neighbors at each step? To illustrate how PNS

works, we can look closely at the Markov chains generated in the above example.

5.5 Understanding the improvement of PNS

In this section, we found a local maximum area for the target distribution π purposefully in the

previous QUBO example in Section 5.4 by looking at the final results from the simulation runs from

the previous section. Many Rejection-Free chains stopped at this local maximum area after 1000

iterations. For this local maximum area, the target distribution value is around 82600, and this

local maximum area contains three states whose target distribution values are much larger than all

their other neighbors. Thus, this local maximum can trap the regular Rejection-Free chain for a

long time, just like the cases we mentioned in Figure 5.1. We can plot the Markov chains by PNS

with the target distribution values for all the neighbors by Rejection-Free and the random subset of

neighbors by PNS in the form of boxplots. The boxplot of the first 30 steps from the first simulation

in PNS is shown in the first plot in Figure 5.3.

From the first plot in Figure 5.3, most of the target distribution values within the boxplot are

not useful since they are too small to be picked by the algorithm. Therefore, we only need to

consider the important neighbors likely to be chosen. Firstly, for each state Jk in the Markov

Chain, we find the max value among all the transition probabilities, and we define the important

neighbors to be those neighbors whose transition probability is larger than exp{−10} times the

highest transition probability among all neighbors. That is, for each Jk from the chain, we find

q(Y0) = max{q(Y) | Y ∈ N (Jk)}, and then we define {Y | Y ∈ N (Jk), q(Y) > exp{−10} × q(Y0)}
to be important neighbors for Jk. This time, we only have several important neighbors at each

step. Thus, we used points instead of boxplots to show the important neighbors. The result from

Rejection-Free and PNS is also shown in Figure 5.3.

From the second plot in Figure 5.3, the red dots represent the important neighbors, and the

pink line means the Rejection-Free chain. We can see that this local maximum area of three states

can easily trap the Rejection-Free chains because their target distribution values are much higher

than all other neighbors. Thus, the important neighbors for any of these three states are only the

remaining two, and the Rejection-Free chain will be switching between these three for a long time.

At the same time, the blue dots in the second plot represent the important neighbors if we start to

do PNS from that state. Although we did not apply PNS in the second plot, we still put the random

subset for PNS there as a comparison. From the blue dots in the second plot, we can say that if we

perform PNS, then the Markov chain can escape from this local maximum area faster since some

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 87

0 5 10 15 20 25 30

79
00

0
81

00
0

83
00

0

Detailed Partial Neighbor Search Chain

Number of Iteration

C
os

t F
un

ct
io

n
V

al
ue

all neighbors (red boxplots) and partial neighbors (blue boxplots)

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

79
00

0
81

00
0

83
00

0
79

00
0

81
00

0
83

00
0

0 5 10 15 20 25 30

82
40

0
82

60
0

82
80

0
83

00
0

Detailed Rejection Free Chain

Number of Iteration

C
os

t F
un

ct
io

n
V

al
ue

all important neighbors (red points) and partial important neighbors (blue points)

0 5 10 15 20 25 30

82
40

0
82

60
0

82
80

0
83

00
0

Detailed Partial Neighbor Search Chain

Number of Iteration

C
os

t F
un

ct
io

n
V

al
ue

all important neighbors (red points) and partial important neighbors (blue points)

Figure 5.3: The detailed Markov Chains from Rejection-Free (the pink chain in the second plot) and
PNS (the light blue chain in the first and the third plot). The red box plots in the first plot represent
the target distribution values for all neighbors, and the blue box plots represent the partial neighbors.
Most of these values are useless because they are too small to be picked by the Markov chain. The
second and the third plots only show the important neighbors, defined as those whose transition
probability is larger than exp(−10) times the highest transition probability among all neighbors.
Here, red points represent all important neighbors, and blue points mean important neighbors of
a random subset of all neighbors used for PNS. The Rejection-Free Chain switches between three
local maximum states all the time while the PNS chain escapes from the local maximum area after
five iterations.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 88

groups of the blue dots do not contain any of these three states with high target distribution values.

On the other hand, the third plot in Figure 5.3 shows that the PNS chain (blue line) escapes from

this local maximum area within five steps. Again, the blue dots represent the important neighbor

from PNS, and the red dots represent the important neighbor if we start to perform Rejection-Free

from that step. For each step of PNS within the local maximum area of three states, the Markov

Chain has the probability of 25% to include neither of the remaining neighbors from the three states.

Thus, PNS helped the Markov chain to escape from this local maximum area. In addition, in the

middle part of the PNS chain, when the target distribution value of the PNS chain is increasing, we

usually have more than one important neighbor. For example, if we have three important neighbors,

we only have 12.5% for considering none of them by PNS.

Thus, the PNS is better than Rejection-Free because the PNS performs much better than the

Rejection-Free algorithm when the local maximum areas trap the Markov chain. On the other hand,

PNS is not much worse than Rejection-Free when the Markov chain is increasing with respect to

the target distribution value.

This section uses 50% random partial neighbors for each step. We have many other choices, and

we will consider and compare these choices in the next section.

5.6 Optimal subset choice for Partial Neighbor Search

We formally defined the Partial Neighbor Sets when we prove the convergence theorem for the

sampling version of PNS in Section 4.5. For optimization, the choice of Partial Neighbor Sets can be

chosen not that strictly. We simply need to make sure, with the current choice of Partial Neighbor

Sets, the Markov chain is able to find the global optimal solution. However, in practice, when we

don’t know too much about the model, choosing Partial Neighbor Sets satisfying all the conditions

in Definition 4.5.2 is the best strategy.

Now, we compare the four different ways to choose the proposal distribution {Qk,Nk} for PNS
in the (⋆) step in Algorithm 13:

• Method A (random subset every step): The Partial Neighbor Sets Nk are randomized for every

step, where |Nk(X)| = 1
2 × |N (X)|. Qk’s are defined accordingly.

• Method B (random subset every 10 steps): The Partial Neighbor Sets Nk are randomized for

once 10 steps, where |Nk(X)| = 1
2 × |N (X)|. That is, N10×k+1 = N10×k+2 = · · · = N10×k+10

for ∀k ∈ N. Qk’s are defined accordingly.

• Method C (systematic subset every step): Before we start our Markov Chain, we define two

Partial Neighbor SetsN1 andN2, where |N1(X)| = |N2(X)| = 1
2×|N (X)|, N1(X)∩N2(X) = ∅.

For step k of the Markov chain, we only randomly generate rk ∈ {1, 2}, and apply Nrk for step

k. Q1 and Q2 are defined accordingly.

• Method D (systematic subset every 10 steps): Before we start our Markov Chain, we define two

Partial Neighbor SetsN1 andN2, where |N1(X)| = |N2(X)| = 1
2×|N (X)|, N1(X)∩N2(X) = ∅.

For every ten steps of the Markov chain, we only randomly generate rk ∈ {1, 2} and apply Nrk .

That is r10×k+1 = r10×k+2 = . . . = r10×k+10 for ∀k ∈ N. Q1 and Q2 are defined accordingly.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 89

81500

82000

82500

83000

83500

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

79000

80000

81000

82000

83000

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 1

82000

82500

83000

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

T = 10

80000

81000

82000

83000

Method A Method B Method C Method D
Method for the star step

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Figure 5.4: Comparison of different methods to choose the subsets for PNS, in terms of the highest
(log) target density value log π(x) = xTQx found. Method A: random subset every step; method
B: random subset every ten steps; method C: systematic subset every step; method D: systematic
subset every ten steps. Random upper triangular QUBO matrix where the non-zero elements are
generated by Qi,j ∼ N(0, 1002). Four different cooling schedules where T = 0.1, 1, and 10 for all
n, and T being geometric from 10 to 0.1, are used here. The number of iterations for all methods
is 1000. The three black lines inside the violin plots are 25%, 50%, and 75% quantile lines. The
colored segments represent the mean values.

Again, we use the 200 × 200 QUBO example. The settings for the simulation are the same as

in Section 5.4. For Method C and D, the two Partial Neighbor Sets N1 and N2 are defined to be

flipping the first 100 entries in x and flipping the last 100 entries in x. The result for the simulation

is shown in Figure 5.4. This figure shows that the random subset at every step (Method A) performs

the best in all four Cooling Schedules. Therefore, we will keep using Method A in all later parts.

In addition, we used to choose Partial Neighbor Sets with half elements from all neighbors. Now

we compare the Partial Neighbor Sets with cardinality of |N (X)| × {1, 3
4 ,

2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8} by

the same simulation settings as before. From Figure 5.5, we can see that 1
3 ,

1
4 ,

1
5 are overall the best

among all the choices. Thus, we can conclude that Partial Neighbor Sets with around 25% of the

neighbors being considered at each step are the best for the QUBO question stated above.

Therefore, we conclude that our best method to do optimization for the 200×200 QUBO question

is Algorithm 14.

5.7 Comparison with Tabu Rejection-Free algorithm

Tabu search [35] [36] is also a methodology in optimization that guides a local heuristic search

procedure to explore the solution space beyond local optimality. The idea of Tabu search is to

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 90

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 1

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

T = 10

82000

82500

83000

83500

1 3/4 2/3 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Fraction of Neighbors being Used

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Figure 5.5: Comparison of different sizes of the random subsets for PNS, in terms of the highest (log)
target density value log π(x) = xTQx being found. Subset sizes are N × {1, 3

4 ,
2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8}.

Random upper triangular QUBO matrix where the non-zero elements are generated by Qi,j ∼
N(0, 1002). Four different cooling schedules where T = 0.1, 1, and 10 for all n, and T being
geometric from 10 to 0.1, are used here. The number of iterations for all methods is 1000. The
three black lines inside the violin plots are 25%, 50%, and 75% quantile lines. The colored segments
represent the mean values.

Algorithm 14 Partial Neighbor Search for the 200 by 200 QUBO question

initialize J0
for k in 1 to K do

randomly pick Nk(Jk−1) ⊂ N (Jk−1) where |Nk(Jk−1)| = 50
▷ Only 50 out of the 200 neighbors will be considered

for Y ∈ Nk(Jk−1) do

calculate q(Y) = min{1, [exp(Y TQY)

exp(JT
k−1QJk−1)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

▷ choose the next Jump Chain State
end for

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 91

prohibit access to specific previously-visited solutions. Tabu search is the most intuitive method

to help the Markov Chain escape from local maximum areas, as in Figure 5.1. After moving from

state A to state B, we must choose our next state among {B1, B2, . . . , BN}. We can combine our

Rejection-Free algorithm for optimization with Tabu search and then compare this new method to

the PNS by the QUBO question. Note that we do not need to record all visited states since we are

almost impossible to revisit a state after a certain number of steps. Thus, we only need to record

the last several steps and prohibit our Markov chain from revisiting them. The new algorithm is

formulated as Algorithm 15.

Algorithm 15 L steps Simplified Tabu Rejection-Free for optimization

initialize J0
for k in 1 to K do

for Y ∈ N (Jk−1)\{Jk−2, . . . , Jk−L−1} do
▷ Remove states from the last L steps

q(Y) = min{1, [exp(Y
TQY)

exp(JT
k QJk)

]
1

T (k) }
▷ the transition prob. from Jk−1 to Y

end for
choose Jk ∈ Nk(Jk−1) such that P̂(Jk = Y | Jk−1) ∝ q(Y)

▷ choose the next Jump Chain State
end for

Here, we compare PNS with L-step Simplified Tabu Rejection-Free for L = 1, 2, 3, . . . , 9. Again,

we randomly generate a 200 by 200 upper triangular QUBO matrix. The non-zero elements from

the 200 by 200 upper triangular matrix Q were generated randomly with Qi,j ∼ N(0, 1002) for

i < j. Note that we need to consider about 200 neighbors at each step for both Rejection-Free and

Simplified Tabu Rejection-Free, while we only need to consider 50 neighbors at each iteration for

PNS. If we proceed with the algorithms with a single-core implementation, Rejection-Free and Tabu

Rejection-Free need about four times longer than PNS with the same number of steps. Therefore, we

can compare the PNS with 4×100 = 400 iterations with the other methods to get a fair comparison

for the program on a single core. Note that we are using this many numbers of steps here because

400 steps are enough for PNS to find a good enough answer. The result for the simulation is shown

in Figure 5.6. From this plot, we can see that PNS performs much better than Rejection-Free and

Simplified Tabu Rejection-Free.

5.8 Application to Knapsack problem

The Knapsack problem is another well-known NP-hard problem in optimization [72]. We consider

the simplest 0-1 Knapsack problem here. Given a knapsack of max capacity W and N items with

corresponding values {vi}Ni=1 and weights {wi}Ni=1, we want to find a finite number of items among all

N items which can maximize the total value while not exceeding the max capacity of the knapsack.

That is, for given W > 0, {vi}Ni=1 > 0 and {wi}Ni=1 > 0, find a sequence of N binary variable

{Xi}Ni=1 ∈ {0, 1} to maximize

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 92

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

30000

40000

50000

60000

70000

80000

PNS RF Tabu1 Tabu2 Tabu3 Tabu4 Tabu5 Tabu6 Tabu7 Tabu8 Tabu9
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Figure 5.6: Comparison of PNS, Rejection-Free, and 1-Step to 9-steps Simplified Tabu Rejection-
Free, in terms of the highest (log) target density value log π(x) = xTQx found. Random upper
triangular QUBO matrix where the non-zero elements are generated by Qi,j ∼ N(0, 1002). Four
different cooling schedules where T = 0.1, 1, and 10 constantly, and T being geometric from 10 to
0.1, are used here. The run time for all algorithms on a single-core implementation is about the
same. The number of iterations for PNS is 400, and the number of iterations for all other methods
is 100. The colored segments represent the mean values.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 93

N∑
i=1

viXi

subject to

N∑
i=1

wiXi ≤W

(5.3)

Since the Knapsack problem is NP-hard, we can use the Simulated Annealing algorithm to find a

feasible solution. For this simulation, we set W = 100, 000. We randomly generate N = 1000 items

where the values and weights are random by wi, vi ∼ Poisson(1000). The mean and the variance for

Poisson(1000) are both 1000. Suppose we want to find a binary vector X = (X1, X2, . . . , XN)T of

dimension N to maximize vTX subject to wTX ≤W .

Again, we used a uniform proposal distribution among all neighbors where the neighbors are

defined as binary vectors with Hamming distance 1. That is, Q(X,Y) = 1
N for ∀Y ∈ N (X), where

Y ∈ N (X) ⇐⇒ |X − Y | =
∑N

i=1|Xi − Yi| = 1, ∀X,Y ∈ {0, 1}N . We randomly choose half of the

neighbors at each step for PNS. That is, |Nk(X)| = 1
2 |N (X)| = 500 for ∀X ∈ {0, 1}N . Moreover,

the target density π(X) = 1(wTX ≤ W) × vTX, where 1 represents the indicator function. In

addition, T (k) represents the temperature at step k for the Cooling Schedule here.

Again, we compare Simulated Annealing, Rejection-Free, and PNS here. The result is shown in

Figure 5.7. The plot shows that Rejection-Free for optimization and PNS algorithm are better than

the regular Simulated Annealing algorithm in all four Cooling Schedules. Again, for the simulation

shown in Figure 5.7, the numbers of iterations used for the three methods are set to be different

to have a fair comparison between three methods. We set the number of iterations for Simulated

Annealing to be 1, 000, 000. The numbers of iterations for Rejection-Free and PNS are 1000 since we

need to consider 1000 neighbors at each iteration for Rejection-Free for optimization. In contrast,

we only need to consider one neighbor for each iteration in Simulated Annealing.

This result shows that PNS is not always that much better than Rejection-Free when the number

of iterations is the same. In some cases, where the target distribution is not sharply peaked, and

there are not too many local extreme areas, Rejection-Free can also have excellent performance.

Note that if we run the above simulation on a single core, PNS will only take about half of the time

used by Rejection-Free, and if we use parallel hardware to apply the above algorithm, Rejection-Free

and PNS will take about the same time.

In addition, Rejection-Free is not always better than simple Simulated Annealing. For example,

if π(X) ≡ 1 for all X ∈ S, there will be no rejections. The Simulated Annealing will move to a new

state by computing a single probability, while the Rejection-Free will do the same but compute the

probabilities for all neighbors. However, when the dimension of the problem is large or the target

density is sharply peaked, the PNS will perform much better than Rejection-Free, and Rejection-Free

will perform much better than Simulated Annealing.

5.9 Application to 3R3XOR problem

The 3R3XOR problem is a methodology for generating benchmark problem sets for Ising machines

devices designed to solve discrete optimization problems cast as Ising models introduced by [41].

The Ising model, named after Ernst Ising, is concerned with the physics of magnetic-driven phase

transitions [14], and we have already shown an example for the sampling version of the Ising models

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 94

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

98000

100000

102000

104000

Simualted Annealing Rejection−Free PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Figure 5.7: Comparison of Simulated Annealing, Rejection-Free, and PNS in terms of the highest tar-
get density values found in Knapsack Problem withW = 100, 000, N = 1000, wi, vi ∼ Poisson(1000).
Four different cooling schedules where T = 0.1, 1, and 10 constantly, and T being geometric from
10 to 0.1, are used there. The number of iterations for Simulated Annealing is 1,000,000, while the
number for Rejection-Free and PNS is 1000. The three black lines inside the violin plots are 25%,
50%, and 75% quantile lines. The colored segments represent the mean values.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 95

in Section 3.7. Again, the Ising model is defined on a lattice, where a spin si ∈ {−1, 1} is located

on each lattice site [9]. The optimization question for the Ising model has been widely applied to

many scientific problems such as neuroscience [44] and environmental science [53]. Thus, algorithms,

even special-purpose programmable devices, designed to solve discrete optimization problems cast

as Ising models are popular [41], and our PNS algorithm is one of them.

However, the non-planar Ising model is NP-complete [15]. We cannot find an optimal state from

an Ising model in polynomial time. Then, it is hard for us to compare the performance of the

heuristic solvers, such as Rejection and PNS, by the time used to find the optimal state from a

random Ising model. On the other hand, [41] introduced a tool for benchmarking Ising machines

in 2019. In that approach, linear systems of equations are cast as Ising cost functions. The linear

systems can be solved quickly, while the corresponding Ising model exhibits the features of NP-

hardness [41]. This way, we can construct special Ising models with a unique known optimal state.

Then we can use these special Ising models to compare the heuristic solvers’ runtimes to find the

optimal state.

In this section, we focus on constructing a simplified version of 3-body Ising with N spins from

a binary linear system of N equations. The simplified version is defined as follows:

H({sj}) =
∑

a<b<c

Ma,b,csasbsc, (5.4)

where si ∈ {−1, 1} for ∀i = 1, 2, . . . , N . Ma,b,c is a N × N × N matrix where Ma,b,c = 0 ∀a ≥ b,

b ≥ c, or a ≥ c.

In Hen’s (2019) approach, we start by choosing a binary matrix {Ai,j} and a binary vector {bj}
to form a modulo 2 linear system of N equations in N variables.

N∑
j=1

Ai,jxj ≡ bi mod 2, for i = 1, 2, . . . , N. (5.5)

This module 2 linear system of equations can always be solved in polynomial time using Gaussian

elimination. In addition, as long as the binary matrix {Ai,j} is invertible, the solution (if exists) is

unique. Suppose {x1, ..., xn} are n binary variables. Then for given {Ai,j} and {bj}, we define

F ({xj}) =
N∑
i=1

1

(N∑
j=1

Ai,jxj ̸≡ bi mod 2
)
, (5.6)

where 1 means indicator function here. Since F is a sum of N indicator functions, then 0 ≤ F ≤ N

and the minimum bound is reached when {xj} is the solution to the modulo 2 linear system.

Let sj = 1− 2xj ∈ {−1, 1} for j = 1, 2, . . . , N be N Ising spins. Then we must have

∏
j:Ai,j=1

sj = (−1)bi if and only if

N∑
j=1

Ai,jxj ≡ bi mod 2, (5.7)

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 96

∀i = 1, 2, . . . ,m. Then

F =

N∑
i=1

1

(N∑
j=1

Ai,jxj ̸≡ bi mod 2
)

=

N∑
i=1

1

(∏
j:Ai,j=1

sj ̸= (−1)bi

)
, since

∏
j:Ai,j=1

sj and (−1)bi ∈ {−1, 1}

=
1

2

[N∑
i=1

(
1− (−1)bi

∏
j:Ai,j=1

sj

)]
.

(5.8)

After dropping immaterial constants, we define

F0({sj}) =
N∑
i=1

[
(−1)bi

∏
j:Ai,j=1

sj

]
. (5.9)

Note that F ≥ 0 and the minimum bound is reached when {xj} is the solution to the modulo 2 linear

system. Thus, F0 ≤ N , and the maximum bound will be reached when {xj | xj =
1
2 (1− sj)} is the

solution to the modulo 2 linear system. In addition, as long as the matrix {Ai,j} is invertible, the
solution to the equation system must uniquely exist, and then there must exist a single configuration

maximize F0 whose maximum value is exactly N .

Again, the Hamiltonian for simplified 3-body Ising model including only the cubic term to

be H({sj}) =
∑

a<b<c Ma,b,csasbsc. Here, we assume, on each row of binary matrix {Ai,j},∑N
j=1 Ai,j = 3. Then, let Ma,b,c = (−1)bi if ∃i, a < b < c such that Ai,a = Ai,b = Ai,c = 1,

and Ma,b,c = 0 otherwise. Then, we have H({sj}) = F0({sj}).
Thus, we can construct an Ising model with a unique optimal bound with a known optimal value

N as follows:

1. find an invertible binary matrix {Ai,j} and a binary vector {bi}, where
∑N

j=1 Ai,j = 3, ∀i

2. solve the modulo 2 linear equation system
∑N

j=1 Ai,jxj ≡ bi mod 2, for i = 1, 2, . . . , N to

make sure the unique solution exists

3. define Ma,b,c be a N × N × N matrix where Ma,b,c = (−1)bi if ∃i, a < b < c such that

Ai,a = Ai,b = Ai,c = 1, and Ma,b,c = 0 otherwise

4. then we must have a unique optimal solution smax for H(smax) = max(H(s)) = N

By constructing the special 3-body N × N × N Ising model with a unique optimal solution of

maximum bound N , we can examine the performance of the Rejection-Free and PNS algorithms on

these special Ising models. Again, uniform proposal distributions are used here, and the neighbors

are defined as binary vectors with Hamming distance 1. We random generate the special Ising

models with four different sizes N = 12, 24, 48 and 96. For each of these four different sizes, we

generate 50 different Ising models and record the time used by the algorithms to reach the unique

optimal state. The median of these 50 results for both Rejection-Free and PNS algorithms are shown

in Figure 5.8. From this figure, Rejection-Free is the worst. 25% PNS performs comparably to 75%,

and the 50% PNS performs the best.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 97

1e−02

1e+00

1e+02

0 25 50 75 100
Dimension of the Problem

T
im

e
to

 S
ol

ut
io

n
(s

ec
)

Method 25% PNS 50% PNS 75% PNS Rejection−Free

Time to Solution versus Dimension

Figure 5.8: Comparison of the minimum value for the time used to find the optimal state by
Rejection-Free and PNS with 25%, 50%, and 75% of the neighbors being considered at each step
for a random Ising model generated by 3R3XOR. Each dot represents the median of 50 repeated
simulations for a given problem size N = 12, 24, 48 and 96.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 98

5.10 Application to Continuous State Space

In previous sections, we focused on optimization questions with the discrete state space S where all

states have at most a finite number of neighbors. Meanwhile, Simulated Annealing works for general

state space. In addition, Theorem 3.3.6 extended the Rejection-Free for sampling to general state

space. Similarly, we can extend the Rejection-Free for optimization to general state space.

Although we have a solid theory base for Rejection-Free in general state space, it is challenging

to apply Rejection-Free to those cases. There is a major difficulty involved in the for loop that

calculates the transition probability of all neighbors in Algorithm 12. In continuous cases, although

numerical integration of all transition probability can be performed, it is unlikely that such tasks

may be efficiently divided among specialized hardware with a certain number of parallel processing

units. On the other hand, PNS, as described in Algorithm 13, can be applied straightforwardly

to continuous cases by choosing the Partial Neighbors Sets Nk(X) to be finite subsets of all the

neighbors N (X) in Algorithm 13.

We compare the performance of Simulated Annealing with our PNS on a simple example of

quadratic programming, which belongs to the category of continuous optimization, as stated below:

argmax xTQx

subject to xi ≥ 0, ∀i = 1, 2, . . . , N

N∑
i=1

xi = 1,

(5.10)

where Q is a given an upper triangular N by N matrix and x ∈ RN . For most cases, the quadratic

programming is stated by argmin instead of argmax. We use the argmax version here to be consis-

tent with the QUBO question in Section 5.4, and argmax is equivalent to argmin when replacing Q

by −Q. This quadratic programming question is also NP-hard as long as Q is indefinite [71], where

indefinite means matrices that are neither positive semi-definite nor negative semi-definite.

We randomly generate a 200 by 200 upper triangular to be the matrix Q, where the non-zero

elements from the 200 by 200 upper triangular matrix Q were generated randomly by Qi,j ∼
Normal(0, 1002), ∀i ≤ j. We compare Simulated Annealing and PNS in 100 simulation runs here.

We omit Rejection-Free since applying Rejection-Free to continuous cases is quite hard.

The target density value is set to be π(x) = exp{xTQx}, ∀x such that xi ∈ (0, 1), ∀i = 1, 2, . . . , N ,

and π(x) = −∞ otherwise. In addition, the proposal distribution Q and the corresponding neighbor

set N are defined as follows:

1. for state x = (x1, x2, . . . , xN)T ∈ S, choose a random entry xr for r ∈ {1, 2, . . . , N};

2. generate a random value s ∼ Normal(0, 0.12);

3. let yr = xr + s and yn = xn × 1−xr

1−yr
, ∀n ̸= r;

4. if yr /∈ (0, 1), then the corresponding π(y) is defined to be −∞; in practice, we just need to

generate a new y; also note that, as long as yr, x ∈ (0, 1), we must have yn ∈ (0, 1) as well;

5. to ensure the reversibility within each Partial Neighbor Set, we also consider y′r = xr − s and

y′n = xn × 1−xr

1−y′
r
, ∀n ̸= r; if y′r /∈ (0, 1), then we can ignore y′.

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 99

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 0.1

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 1

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

T = 10

150

200

250

Simualted Annealing Reversible PNS Nonreversible PNS
Algorithm

M
ax

 V
al

ue
 F

ou
nd

10 > T > 0.1

Figure 5.9: Comparison of Simulated Annealing and PNS in terms of the highest (log) target dis-
tribution value log π(x) = xTQx being found, for a random upper triangular matrix Q and x ∈ RN

subject to xi ≥ 0, ∀i = 1, 2, . . . , N , and
∑N

i=1 xi = 1. The non-zero elements are generated by
Qi,j ∼ N(0, 1002). Four different cooling schedules where T (k) = 0.1, 1 and 10 constantly, and T (k)
being geometric from 10 to 0.1 are used here. The number of iterations for Simulated Annealing is
600, 000, and the number of iterations for PNS is 72, 000. The run times for these two algorithms
on a single-core implementation are both around 80 seconds. The three black lines inside the violin
plots are 25%, 50%, and 75% quantile lines. The colored segments represent the mean values.

With the given steps, we have
∑N

n=1 yn = 1 as long as
∑N

n=1 xn = 1. This method is similar to

component-wise Simulated Annealing. We find a random component, magnify or minify it, and

then modify the rest of the entries accordingly to make the summation remain unchanged. This

proposal distribution Q is therefore systematic. By the above ways to generate neighbors, we can

eliminate the constraints that xi ≥ 0, ∀i = 1, 2, . . . , N , and
∑N

i=1 xi = 1, and we only need to focus

on argmaxxTQx.

For Simulated Annealing, we randomly generate one neighbor by the above-given steps and

calculate the transition probability. For PNS, we can generate, for example, 20 random neighbors at

each step. In this case, the Partial Neighbor Set Ni is only a random subset of N with 20 elements,

and thus, the implementation of PNS is simple compared to the Rejection-Free.

The result for the simulation are shown in Figure 5.9. We can see that the PNS performs better

than Simulated Annealing in all four different cooling schedules. However, the difference between

PNS and Simulated Annealing in this continuous example is not as much as the difference between

the algorithms from the discrete QUBO questions. This is because the continuous example is not

as sharply peaked as the discrete example from Section 14. After we choose a random entry r, we

only need to move a small step around the original value of xr. On the other hand, we have to

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 100

flip between 0 and 1 in the discrete example. Thus, the rejection rate for the Simulated Annealing

is lower than the rate from the discrete example, so the performance of these two algorithms gets

closer.

In addition, PNS is specially designed for parallel hardware. Again, with a specialized dedicated

processor such as DAU, PNS can yield 100x to 10,000x speedups [76]. In addition, this example also

shows PNS has more flexibility compared to the Rejection-Free algorithm. Again, Rejection-Free

can hardly work for cases with infinite neighbors, while PNS can be easily applied by choosing finite

Nk.

Moreover, the number of elements in Nk needs to be reasonable for PNS to keep its performance.

For example, if we used |Nk| = 500, we would calculate too many transition probabilities at each

step, and the algorithm would be inefficient. Meanwhile, if we used |Nk| = 2, the number of Partial

Neighbor Sets being considered at each step would be too few. As PNS will force the Markov chain

to move to one element from the Partial Neighbor Set Nk, it will move to some terrible choices of

states when all states in the Partial Neighbor Set Nk have small target distribution values. In the

above simulation, choosing |Nk| from 10 to 30 won’t make a big difference.

5.11 Burn-In by Partial Neighbor Search

In Chapter 4, when we need K samples (original sample size), we have to generate 2K states of the

original sample size. The first K states are used as the burn-in part. In this way, we started our

sampling process from convergence for Rejection-Free and Unbiased PNS. However, Geyer argued

that burn-in is not necessary for MCMC in [33]. As an alternative to burn-in, any point that you

don’t mind having in a sample is a good starting point. His argument suggests that we can start

at any point as long as the target density value for this point is large. Geyer claimed that this

alternative method is usually better than regular burn-in in [33].

If we accept the above statement, then we can apply optimization algorithms from Chapter 5

before we start sampling. For example, we can cancel the burn-in part of the QUBO question in

Section 4.3. Instead, before we start sampling from the target density, we consider optimization

algorithms that try to maximize π(x) = exp{xTQx} for x ∈ {0, 1}N as in 5.4. Then we can start

sampling from a state with a large π(x) value, although it may not be the optimal one. Simulated

Annealing is one such algorithm. In addition, we can also use Optimization Rejection-Free and

Optimization PNS from Chapter 5.

However, the starting states obtained by the proposed three optimization algorithms won’t con-

verge to the target density. Therefore, people can use these optimization methods to replace the

burn-in part only if they believe that the MCMC can start at non-convergence, just like Geyer [33].

However, some people may insist on starting from stationarity. Then we can combine the algo-

rithm for optimization and sampling and try to take advantage of both versions to get a burn-in

algorithm. We can apply the optimization algorithm for a certain number of steps K0, and then

we apply the sampling algorithms such as Rejection-Free 12 or Unbiased PNS (Algorithm 7) for K1

samples.

To check the distribution of the states after a certain number of steps of the mixed algorithm,

We generate a certain number of Markov chains by the algorithms, and we record the last state of

each chain. As a result, we can get the distribution after burn-in, and we call this distribution to be

CHAPTER 5. OPTIMIZATION VIA REJECTION-FREE AND PARTIAL NEIGHBOR SEARCH 101

Figure 5.10: Average total variation distance (TVD) between the starting distribution from 100, 000
chains and target density as a function of average time for the chains in seconds for four methods:
Rejection-Free, Optimization PNS plus Rejection-Free, Unbiased PNS, and Optimization PNS plus
Unbiased PNS. Random upper triangular 16 × 16 QUBO matrix is generated randomly by Qi,j ∼
N(0, 12) for upper triangular elements. The original sample sizes for Rejection Free are K1 =
{20, 30, 40, 50, . . . , 1000}, and the number of steps for the corresponding Optimization PNS is K0 =
⌊K1

20 ⌋}. The original sample sizes for Unbiased PNS are K1 = {40, 50, 60, . . . , 1500}, and the number

of steps the corresponding Optimization PNS is K0 = ⌊K1

40 ⌋. Each dot within the plot represents
the TVD value between the target distribution π and the distribution of the last state of 100, 000
Markov chains.

the starting distribution for sampling. For example, just like the previous example in Section 4.3,

we still consider a 16 × 16 QUBO question. Every setting is exactly the same as what we have in

Section 4.3 except we used Qi,j ∼ Normal(0, 12), ∀i ≤ j. For a standard deviation of 10, we will

need much more samples and thus a much longer time to get a small TVD value. since we only

use the last states from one Markov chain. We generate one such starting distribution with 100, 000

Markov chains and check the TVD value between the starting distribution and the target density.

The number of steps for Optimization PNS K0 is chosen to be ⌊ 1
20K1⌋ (⌊ ⌋ represents the floor

function). The number of samples K1 = 20, 40, 60, . . . , 200. In addition, we also compare Unbiased

PNS with Optimization PNS plus Unbiased PNS. Since we believe Unbiased PNS will converge

slower than Rejection-Free, so we choose K1 = 40, 80, . . . , 600, and K0 = ⌊ 1
40K1⌋. The results is

shown in Figure 5.10

From Figure 5.10, algorithms with the help of Optimization PNS converge faster with respect to

the CPU time. We used a 16× 16 QUBO question here. However, we concluded that the higher the

dimension is, the more sharply peaked the distribution is, the better the Optimization PNS will be.

Optimization PNS performs extremely well in the optimization version of 200×200 QUBO question

in Section 5.4. Thus, we can use the Optimization PNS to help burn-in in high dimension or sharply

peaked distributions.

Chapter 6

Conclusion

In this thesis, we demonstrate new methods for sampling and optimization questions based on the

Markov chain Monte Carlo. By considering all the neighbors at once, Rejection-Free can improve

the sampling efficiency over Metropolis-Hastings. Also, two versions of the Partial Neighbor Search

algorithms of sampling were introduced to address the problem that Rejection-Free cannot be applied

to some specialized hardware. Although the Basic PNS is straightforward, it does not converge

in distribution to the target density. Meanwhile, the Unbiased PNS will correctly converge in

distribution to the target density with more effort. In addition, the Unbiased PNS can use specialized

parallel hardware such as DA [57] to improve sampling efficiency significantly. As compared to

a single-core implementation for the QUBO question, the Unbiased PNS performed worse than

Rejection-Free. Furthermore, Rejection-Free is infeasible in many continuous cases, while Unbiased

PNS can be applied to all continuous cases and works much better than Metropolis. Additionally,

for the optimization questions, Optimization Rejection-Free algorithms can prevent the inefficiency

of the Simulation Annealing from rejections by considering all neighbors at each step. We have also

proposed an Optimization PNS based on the Rejection-Free technique in order to address the issue

of the local maximum area. Three sets of discrete examples have been simulated to demonstrate

that PNS can produce significant speedups in optimization problems. PNS has also been applied

to continuous examples in order to demonstrate its superior flexibility in comparison to Rejection-

Free. Additionally, as Optimization PNS outperforms both Simulated Annealing and Optimization

Rejection-Free, we can use Optimization PNS to improve burn-in parts before sampling.

There are several directions that can be explored in the future. For the sampling part, what are

the optimal choices for the Partial Neighbor Sets and L0? We compared the sampling efficiency for

different combinations of the Partial Neighbor Sets and L0 for the QUBO question in Section 4.6

and concluded that the choices are highly based on the QUBO matrices themselves and when we

get rid of the influence of the matrices, the choice of them does not matter as long as the values are

not extreme. However, for other questions, the answers may be different. In addition, we explored

the two flips for the QUBO question in Section 4.6.6. We concluded that two flips are useless in our

simulations, where the QUBO matrix Q is randomly generated. On the other hand, in some specific

cases, it may be helpful. Moreover, we also talked about the irreversible Partial Neighbor Sets, and

we concluded that for the Donuts example if we use symmetric proposal distribution, the PNS chain

will converge in distribution to the target density, while the asymmetric proposal distribution will

102

CHAPTER 6. CONCLUSION 103

cause the failure of convergence. We can explore the convergence requirements for the non-reversible

Partial Neighbor Sets since such sets are more flexible than the reversible ones. Especially for parallel

hardware, communication between cores can be hard. Reversible Partial Neighbor Sets do require

such communication, and thus non-reversible Partial Neighbor Sets can improve sampling efficiency

then.

For optimization questions, the situation is simpler than that of the sampling question. PNS

works much better than Rejection-Free and Simulated Annealing on many optimization questions,

and in addition, for optimization questions, there is no convergence problem. Thus, the conditions

for the PNS convergence Theorem 4.5.3 can be somehow loosened. A very interesting question

is how much we can loosen the conditions. For example, we think that Non-reversible Partial

Neighbor Sets can be very useful in optimization questions. As long as the Non-reversible PNS is

able to find the global maximum state, it can be applied, and we don’t need to worry about the

convergence properties. In addition, we can also explore the two flips for the optimization question.

The information from the QUBO matrix Q can also be used by the proposal distribution to improve

the optimization efficiency.

Overall, we have found several algorithms including Rejection-Free, Unbiased PNS, and Opti-

mization PNS that can be used for sampling and optimization, and the use of parallel hardware can

make these algorithms even more efficient. We have explored many ways to improve the efficiency of

sampling and optimization by choosing different parameters or making small changes to algorithms,

and there are still a variety of topics that are worth exploring to improve the efficiency even further.

Appendix A

Notation Used and Their Meanings

1. (a) N represents the neighbor set for the states; For example N (x) means the neighbors for

state x; see Section 2.3 for more details;

(b) N represents the set for natural numbers {0, 1, 2, 3, . . . };

(c) N(i) = #{n ≥ 1 : Xn = i} represents the total number of times that the chain hits i

(without counting time 0); see Section 2.1.2 for more details;

(d) N usually represents the dimension of the problem; for example, when we used N × N

QUBO matrix to test the sampling efficiency in Section 4.3 for N = 16;

2. (a) P represents the probability function; for example, if we toss a coin, P(head) = 0.5;

(b) P represents the proportion of a state within a Markov chain; for example, if we have

a Markov chain with states {A,B,A,C,D}, then P(A) = 0.4; see Section 4.1 for more

details.

(c) P represents the power set; for example, if we have a set S = {A,B,C}, then the power

set P(S) = {∅, {A}, {B}, {C}, {A,B}, {B,C}, {C,A}, {A,B,C}}

3. (a) S: the spin map for the Ising model; see Section 3.7.2 for more details;

(b) S: the state space for the Markov chains; see Section 2.1 for more details;

4. E represents the expectation; for example, if U ∼ Uniform(0, 1), then E(U) = 0.5;

5. R represents the set of real numbers;

6. 1 means indicator function; for example, 1(U < 0.5) = 1 if and only if U < 0.5, and 1(U <

0.5) = 0 otherwise;

7. \ is the set minus sign; for example, {1, 2, 3}\{1} = {2, 3}, and {1, 2, 3}\{2, 5} = {1, 3};

8. (a) ⌊a⌋ represents the floor function; for example, ⌊5.1⌋ = ⌊5.9⌋ = 5

(b) ⌈a⌉ represents the ceiling function; ⌊5.1⌋ = ⌊5.9⌋ = 6

104

Bibliography

[1] B. Albright, “An introduction to simulated annealing”, The College Mathematics Journal,

vol. 38, no. 1, pp. 37–42, 2007.

[2] S. Almasi George and G. Allan, Highly parallel computing, 1989.

[3] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to MCMC for

machine learning”, Machine learning, vol. 50, pp. 5–43, 2003.

[4] C. Andrieu and G. O. Roberts, “The pseudo-marginal approach for efficient Monte Carlo

computations”, The Annals of Statistics, vol. 37, no. 2, pp. 697–725, 2009.

[5] A. A. Barker, “Monte carlo calculations of the radial distribution functions for a proton?

electron plasma”, Australian Journal of Physics, vol. 18, no. 2, pp. 119–134, 1965.

[6] I. Beichl and F. Sullivan, “The Metropolis algorithm”, Computing in Science & Engineering,

vol. 2, no. 1, pp. 65–69, 2000.

[7] D. Bertsimas and J. Tsitsiklis, “Simulated annealing”, Statistical science, vol. 8, no. 1, pp. 10–

15, 1993.

[8] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on metaheuristics for

stochastic combinatorial optimization”, Natural Computing, vol. 8, no. 2, pp. 239–287, 2009.

[9] B. Block and T. Preis, “Computer simulations of the Ising model on graphics processing units”,

The European Physical Journal Special Topics, vol. 210, no. 1, pp. 133–145, 2012.

[10] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, “A new algorithm for Monte Carlo simulation

of Ising spin systems”, Journal of Computational Physics, vol. 17, no. 1, pp. 10–18, 1975.

[11] R. Bozick, E. Lauff, and J. Wirt, “Education longitudinal study of 2002 (ELS: 2002): A first

look at the initial postsecondary experiences of the high school sophomore class of 2002”,

National Center for Education Statistics, 2007.

[12] S. Brooks, A. Gelman, G. Jones, and X. L. Meng, Handbook of Markov chain Monte Carlo.

CRC press, 2011.

[13] M. Chen, C. Gao, and Z. Ren, “A general decision theory for Huber’s ϵ-contamination model”,

Electronic Journal of Statistics, vol. 10, no. 2, pp. 3752–3774, 2016.

[14] B. A. Cipra, “An introduction to the Ising model”, The American Mathematical Monthly,

vol. 94, no. 10, pp. 937–959, 1987.

[15] B. A. Cipra, “The Ising model is NP-complete”, SIAM News, vol. 33, no. 6, pp. 1–3, 2000.

105

BIBLIOGRAPHY 106

[16] R. Colwell, “The chip design game at the end of moore’s law”, in 2013 IEEE Hot Chips 25

Symposium, IEEE Computer Society, 2013, pp. 1–16.

[17] A. F. Costa and M. Rahim, “Economic design of X charts with variable parameters: The

Markov chain approach”, Journal of Applied Statistics, vol. 28, no. 7, pp. 875–885, 2001.

[18] G. Deligiannidis and A. Lee, “Which ergodic averages have finite asymptotic variance?”, The

Annals of Applied Probability, vol. 28, no. 4, pp. 2309–2334, 2018.

[19] R. Douc and C. P. Robert, “A vanilla Rao-Blackwellization of Metropolis-Hastings algorithms”,

The Annals of Statistics, vol. 39, no. 1, pp. 261–277, 2011.

[20] A. Doucet, M. K. Pitt, G. Deligiannidis, and R. Kohn, “Efficient implementation of Markov

chain Monte Carlo when using an unbiased likelihood estimator”, Biometrika, vol. 102, no. 2,

pp. 295–313, 2015.

[21] R. Durrett, Essentials of stochastic processes. Springer International Publishing, 1999.

[22] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and new perspectives”,

Physical Chemistry Chemical Physics, vol. 7, no. 23, pp. 3910–3916, 2005.

[23] R. Eckhardt, “Stan Ulam, John von Neumann”, Los Alamos Science, p. 131, 1987.

[24] P. S. Efraimidis and P. G. Spirakis, “Weighted random sampling with a reservoir”, Information

processing letters, vol. 97, no. 5, pp. 181–185, 2006.

[25] M. Falcioni and M. W. Deem, “A biased monte carlo scheme for zeolite structure solution”,

The Journal of chemical physics, vol. 110, no. 3, pp. 1754–1766, 1999.

[26] C. Feng, MCMC interactive gallery, https://chi-feng.github.io/mcmc-demo/app.html?

algorithm=RandomWalkMH&target=donut, Last accessed on 2022-07-05, 2021.

[27] C. A. Floudas and P. M. Pardalos, Encyclopedia of optimization. Springer Science & Business

Media, 2008.

[28] P. A. Gagniuc, Markov chains: from theory to implementation and experimentation. John

Wiley & Sons, 2017.

[29] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems”,

Theoretical Computer Science, vol. 1, no. 3, pp. 237–267, 1976.

[30] A. Gelman, W. R. Gilks, and G. O. Roberts, “Weak convergence and optimal scaling of random

walk Metropolis algorithms”, The annals of applied probability, vol. 7, no. 1, pp. 110–120, 1997.

[31] C. J. Geyer et al., “Computing science and statistics: Proceedings of the 23rd symposium on

the interface”, American Statistical Association, New York, vol. 156, 1991.

[32] C. J. Geyer, “Markov chain Monte Carlo maximum likelihood”, Computing Science and Statis-

tics, Proceedings of the 23rd Symposium on the Interface, pp. 156–163, 1991.

[33] C. J. Geyer, “Introduction to Markov chain Monte Carlo”, in Handbook of Markov Chain

Monte Carlo, CRC Press, 2011, pp. 3–48.

[34] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in practice. CRC

press, 1995.

[35] F. Glover, “Tabu search—part I”, ORSA Journal on computing, vol. 1, no. 3, pp. 190–206,

1989.

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=donut
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=donut

BIBLIOGRAPHY 107

[36] F. Glover, “Tabu search—part II”, ORSA Journal on computing, vol. 2, no. 1, pp. 4–32, 1990.

[37] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and using QUBO models”,

arXiv preprint: 1811.11538, 2018.

[38] U. H. Hansmann, “Parallel tempering algorithm for conformational studies of biological molecules”,

Chemical Physics Letters, vol. 281, no. 1-3, pp. 140–150, 1997.

[39] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications”,

Biometrika, vol. 57, pp. 97–109, 1970.

[40] B. Hayes et al., “First links in the Markov chain”, American Scientist, vol. 101, no. 2, p. 252,

2013.

[41] I. Hen, “Equation planting: A tool for benchmarking Ising machines”, Physical Review Applied,

vol. 12, no. 1, p. 011 003, 2019.

[42] J. L. Hintze and R. D. Nelson, “Violin plots: A box plot-density trace synergism”, The Amer-

ican Statistician, vol. 52, no. 2, pp. 181–184, 1998.

[43] D. B. Hitchcock, “A history of the Metropolis-Hastings algorithm”, The American Statistician,

vol. 57, no. 4, pp. 254–257, 2003.

[44] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational

abilities”, Proceedings of the national academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[45] G. Iliopoulos and S. Malefaki, “Variance reduction of estimators arising from Metropolis-

Hastings algorithms”, Statistics and Computing, vol. 23, no. 5, pp. 577–587, 2013.

[46] M. H. Kalos and P. A. Whitlock, Monte Carlo methods. John Wiley & Sons, 2009.

[47] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing”, Sci-

ence, vol. 220, no. 4598, pp. 671–680, 1983.

[48] G. Kochenberger, J. K. Hao, F. Glover, et al., “The unconstrained binary quadratic program-

ming problem: A survey”, Journal of Combinatorial Optimization, vol. 28, no. 1, pp. 58–81,

2014.

[49] G. Korniss, M. A. Novotny, and P. A. Rikvold, “Parallelization of a dynamic Monte Carlo al-

gorithm: A partially rejection-free conservative approach”, Journal of Computational Physics,

vol. 153, no. 2, pp. 488–508, 1999.

[50] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the Monte Carlo method is

so important today”, Wiley Interdisciplinary Reviews: Computational Statistics, vol. 6, no. 6,

pp. 386–392, 2014.

[51] J. S. Liu, F. Liang, and W. H. Wong, “The multiple-try method and local optimization

in metropolis sampling”, Journal of the American Statistical Association, vol. 95, no. 449,

pp. 121–134, 2000.

[52] B. D. Lubachevsky, “Efficient parallel simulations of dynamic Ising spin systems”, Journal of

Computational Physics, vol. 75, no. 1, pp. 103–122, 1988.

[53] Y. P. Ma, I. Sudakov, C. Strong, and K. M. Golden, “Ising model for melt ponds on Arctic

sea ice”, New Journal of Physics, vol. 21, no. 6, p. 063 029, 2019.

BIBLIOGRAPHY 108

[54] S. Malefaki and G. Iliopoulos, “On convergence of properly weighted samples to the target

distribution”, Journal of Statistical Planning and Inference, vol. 138, no. 4, pp. 1210–1225,

2008.

[55] A. A. Markov, “Extension of the law of large numbers to dependent quantities”, Izv. Fiz.-

Matem. Obsch. Kazan Univ.(2nd Ser), vol. 15, no. 1, pp. 135–156, 1906.

[56] L. Martino, “A review of multiple try mcmc algorithms for signal processing”, Digital Signal

Processing, vol. 75, pp. 134–152, 2018.

[57] S. Matsubara, M. Takatsu, T. Miyazawa, et al., “Digital annealer for high-speed solving of

combinatorial optimization problems and its applications”, in 2020 25th Asia and South Pacific

Design Automation Conference (ASP-DAC), IEEE, 2020, pp. 667–672.

[58] N. Metropolis, “The beginning”, Los Alamos Science, vol. 15, pp. 125–130, 1987.

[59] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation

of state calculations by fast computing machines”, The Journal of Chemical Physics, vol. 21,

no. 6, pp. 1087–1092, 1953.

[60] N. Metropolis and S. Ulam, “The Monte Carlo method”, Journal of the American statistical

association, vol. 44, no. 247, pp. 335–341, 1949.

[61] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Springer Science &

Business Media, 2012.

[62] A. G. Nikolaev and S. H. Jacobson, “Simulated annealing”, Handbook of metaheuristics, pp. 1–

39, 2010.

[63] P. H. Peskun, “Optimum monte-carlo sampling using markov chains”, Biometrika, vol. 60,

no. 3, pp. 607–612, 1973.

[64] G. O. Roberts and J. S. Rosenthal, “Geometric ergodicity and hybrid Markov chains.”, Elec-

tronic Communications in Probability [electronic only], vol. 2, pp. 13–25, 1997.

[65] G. O. Roberts and J. S. Rosenthal, “Two convergence properties of hybrid samplers”, The

Annals of Applied Probability, vol. 8, no. 2, pp. 397–407, 1998.

[66] G. O. Roberts and J. S. Rosenthal, “Optimal scaling for various Metropolis-Hastings algo-

rithms”, Statistical science, vol. 16, no. 4, pp. 351–367, 2001.

[67] G. O. Roberts and J. S. Rosenthal, “Minimising MCMC variance via diffusion limits, with

an application to simulated tempering”, The Annals of Applied Probability, vol. 24, no. 1,

pp. 131–149, 2014.

[68] J. S. Rosenthal, A first look at stochastic processes. World Scientific, 2019.

[69] J. S. Rosenthal, A. Dote, K. Dabiri, H. Tamura, S. Chen, and A. Sheikholeslami, “Jump

Markov chains and rejection-free Metropolis algorithms”, Computational Statistics, pp. 1–23,

2021.

[70] R. A. Rutenbar, “Simulated annealing algorithms: An overview”, IEEE Circuits and Devices

magazine, vol. 5, no. 1, pp. 19–26, 1989.

[71] S. Sahni, “Computationally related problems”, SIAM Journal on computing, vol. 3, no. 4,

pp. 262–279, 1974.

BIBLIOGRAPHY 109

[72] H. M. Salkin and C. A. De Kluyver, “The knapsack problem: A survey”, Naval Research

Logistics Quarterly, vol. 22, no. 1, pp. 127–144, 1975.

[73] A. Schrijver, “On the history of combinatorial optimization (till 1960)”, Handbooks in opera-

tions research and management science, vol. 12, pp. 1–68, 2005.

[74] E. Schuster, “Buffon’s needle experiment”, The American Mathematical Monthly, vol. 81, no. 1,

pp. 26–29, 1974.

[75] J. Seco and F. Verhaegen, Monte Carlo techniques in radiation therapy. CRC press Boca

Raton, FL: 2013.

[76] A. Sheikholeslami, “The power of parallelism in stochastic search for global optimum: Keynote

paper”, in ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference, IEEE, 2021,

pp. 36–42.

[77] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh, “Parallelism via

multithreaded and multicore CPUs”, Computer, vol. 43, no. 3, pp. 24–32, 2010.

[78] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for protein fold-

ing”, Chemical physics letters, vol. 314, no. 1-2, pp. 141–151, 1999.

[79] R. H. Swendsen and J. S. Wang, “Replica Monte Carlo simulation of spin-glasses”, Physical

review letters, vol. 57, no. 21, p. 2607, 1986.

[80] L. Tierney, “A note on metropolis-hastings kernels for general state spaces”, Annals of applied

probability, pp. 1–9, 1998.

[81] M. H. Weik, “The ENIAC story”, Ordnance, vol. 45, no. 244, pp. 571–575, 1961.

[82] T. J. Wu, Y. C. Hsieh, and L. A. Li, “Statistical measures of DNA sequence dissimilarity under

Markov chain models of base composition”, Biometrics, vol. 57, no. 2, pp. 441–448, 2001.

	Introduction
	Background Review
	Markov chain Review
	Markov Chain Definitions
	Recurrence and Transience
	Markov Chain Convergence

	Monte Carlo method Review
	Markov chain Monte Carlo Review
	Hybrid Chains
	Parallel Tempering

	Parallel Computing Review

	Jump Markov chains and Rejection-Free Metropolis algorithm
	The Uniform Selection Algorithm
	The Jump Chain
	Using the Jump Chain for Estimation
	Application to the Metropolis-Hastings Algorithm
	Hybrid Chains
	Application to Parallel Tempering
	Numerical Examples
	A Bayesian Inference Problem with Real Data
	Apply Rejection-Free to the Ising model
	Extend Rejection-Free to Pseudo-marginal Metropolis-Hastings

	A Efficient Method to Sample Proportionally

	Sampling via Partial Neighbor Search
	Basic Partial Neighbor Search algorithm
	Unbiased Partial Neighbor Search algorithm
	Hybrid Chains for Partial Neighbor Search

	Application to QUBO model
	Continuous Models and the Donuts Example
	Convergence Theorem
	QUBO Revisited: Choices for the Partial Neighbors
	Systematic Or Random
	The choice of the Partial Neighbor Sets sizes
	The choice of L0
	The choice of L0 when the Partial Neighbor Sets have different sizes
	The choice of Partial Neighbor Sets sizes given L0
	Two Flips

	Use the information of QUBO matrix
	Irreversible Assumptions for Partial Neighbor Sets
	Combine PNS with other MCMC Techniques
	Multiple Try Metropolis
	Barker's Rule

	Optimization via Rejection-Free and Partial Neighbor Search
	Optimization questions and Simulated Annealing Review
	Rejection-Free algorithm for optimization
	Partial Neighbor Search for Optimization
	Application to the QUBO question
	Understanding the improvement of PNS
	Optimal subset choice for Partial Neighbor Search
	Comparison with Tabu Rejection-Free algorithm
	Application to Knapsack problem
	Application to 3R3XOR problem
	Application to Continuous State Space
	Burn-In by Partial Neighbor Search

	Conclusion
	Notation Used and Their Meanings
	Bibliography

