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1 Introduction and Motivation

This is a supplementary reading for the paper Convergence Rate of Markov Chains by
Jeffrey S. Rosenthal. It is meant to help readers have better understanding of the original
paper.

1.1 Convergence of Markov Chain

The main motivation of the paper is raised by the following two questions:
Does a Markov chain converge? If it does, what is the rate of convergence?

1.2 Key application: Markov Chain Monte Carlo algorithm

Markov Chain Monte Carlo algorithm (abbreviated as MCMC algorithm) is an approach
where a Markov chain is defined in a way that it will converge to a certain probability
distribution of interest. That’s saying, given a probability distribution, we are able to
construct a Markov Chain that converges to this probability distribution.

Examples of such algorithm in applied settings include but not restricted to Gibbs
sampler in statistics(a sampling method to get the joint distribution when conditional
distributions are known), approximation algorithm in computer science, and stochastic
algorithms in physics.
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1.3 Other applications

Convergence rates for Markov chains also applied to card shuffling(seven ordinary ”riffle”
shuffle), and method for generating random matrices to be used for encryption algorithms
(in particular random walk on groups).

1.4 Opportunities for further works

Examine some of the applied algorithms which use Markov chain; get bounds on conver-
gence rate.

1.5 Summary of the paper

Section 1-3: preliminary materials
Section 4: basic connection between Markov chains and eigenvalues
Section 5: random walks on groups (not included in this notes)
Section 6: coupling and minorisation conditions

2 Basic definitions

2.1 Definition of a Markov chain

A Markov chain consists of
(i) a measurable state space X
(ii) an initial distribution µ0 on X
(iii) transition probabilities P (x, dy)
(iv)

∫
A(x) = P (x,A)

is a measurable function of x ∈ X for each fixed set A ⊂ X

2.2 Multi-step transition probability distribution

Definition: µk on X is a set of probabilities of where the Markov chain will be after k
steps. And

µk(X ) =

∫
X
P (x,A)µk−1(dx)

In discrete case, we can write

µk(y) =
∑
x

P (x, y)µk−1(x)

If we write µk as a row-vector, and P as a matrix with [P ]xy = P (x, y), then

µk = µk−1P = · · · = µ0P
k
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2.3 Total variation distance between probability measures

Definition: ||v1 − v2|| := supA∈X |v1(A)− v2(A)|1, where A is a measurable subset of X .
In finite case we have

||v1 − v2|| =
1

2

∑
x

|v1(x)− v2(x)|

When ||v1− v2|| = 0, we can see it as the case v1 infinitely close to v2, since the supremum
of all the distance among choice of x is 0, all the other elements have smaller distance goes
to 0.

Proof. If X is finite, then

|v1(A)− v2(A)| =
∑
x∈A
|v1(x)− v2(x)|

Let
B = {x ∈ X : v1(x)− v2(x) ≥ 0}

Then clearly the maximum of |v1(A) − v2(A)| is achieved either when A = B or A = Bc.
But

|v1(B)− v2(B)| − |v1(Bc)− v2(Bc)| = v1(B)− v2(B)− (−(v1(B
c)− v2(Bc))

= v1(B) + v1(B
c)− v2(B)− v2(Bc)

= 1− 1 = 0

Hence |v1(B)− v2(B)| = |v1(Bc)− v2(Bc)|. Therefore

sup
A∈X
|v1(A).− v2(A)|| = |v1(B)− v2(B)| = |v1(Bc)− v2(Bc)|

=
1

2
(|v1(B)− v2(B)|+ |v1(Bc)− v2(Bc)|)

=
1

2
(
∑
x∈B
|v1(x)− v2(x)|+

∑
x∈Bc

|v1(x)− v2(x)|)

=
1

2

∑
x∈X
|v1(x)− v2(x)|.

Moreover, for any X ,

||v1 − v2|| =
1

2
sup

f :X→C,|f |≤1
|Ev1(f)− Ev2(f)| = sup

f :X→R, 0≤f≤1
|Ev1(f)− Ev2(f)|

(Here, we take test functions instead of test sets)

1Intuitively it measures the maximum difference between the probabilities assigned to a single event by
the two distributions. Maybe it is 1/2

∫
X |v1(x)− v2(x)|dx just like in finite case?
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3 The simplest non-trivial example

3.1 Settings

X = {0, 1}, µ0 = (1, 0)

P =

[
1− p p
q 1− q

]
Then

µk(0) =
q

p+ q
+ (1− q

p+ q
)(1− p− q)k

µk(1) =
p

p+ q
− (1− q

p+ q
)(1− p− q)k

3.2 Observations

(1) Let π = ( q
p+q ,

p
p+q ). Assume |1− p− q| < 1, then

||µk − π|| = |(
q

p+ q
)(1− p− q)k| → 0

(decrease exponentially quickly to 0, with rate governed by (1− p− q).)

(2) The limiting distribution π is a stationary distribution: πP = P , and thus corresponds
to a left-eigenvector of the matrix P with eigenvalue 1. It is easily seen that any limiting
distribution π for any Markov chain must be a stationary distribution(since µk = µk−1P )

(3) The convergence fails when p = q ∈ {0, 1}. If p = q = 0 the Markov chain is de-
composable, meaning that the space X contains two-empty disjoint closed subsets. If
p = q = 1 then this Markov chain is periodic. (different from class, we say it is periodic if
the space contains disjoint subsets X1, . . . ,Xd such that for any x ∈ Xj , P (x,Xj+1 = 1)). If
our Markov chain is indecomposible and aperiodic, then it converges exponentially quickly.

(4) The eigenvalues of the matrix P are 1 and 1 − p − q. We have a connection be-
tween trivial eigenvalues and non-trivial eigenvalues

(5) Define

β =
∑
y

min
x
P (x, y)

Then β = min{p + q, 2 − p − q}. Then 1 − β = |1 − p − q| is the absolute value of the
non-trivial eigenvalue as above. The relationship will be explored in Section 5 via the
method of ”coupling”
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(6) This Markov chain is reversible. It guarantee all eigenvalues will be real (so diago-
nalizable). But not all Markov chain has such property. It will be discussed in Section 6

(7) When p = q, this corresponds to a simple random walk on group Z/2Z with step
distribution Q(1) = p and Q(0) = 1− p. Then EQ((−1)x) = −p+ (1− p) = 1− p− q. So
for simple random walk on groups, the eigenvalues can be computed by taking expected
values with respect to Q. This is discussed in Section 4.

4 The eigenvalue connection

Now Consider finite space X . Since µk = µ0P
k., we do not want it to blow up. Natu-

rally we should consider eigenvalue. Since left eigenvalues and right eigenvalues are the
same(because eigenvalues of its transpose are the same)

Fact 1 Any stochastic matrix P has an eigenvalue 1.

Proof. the vector u with u1 = · · · = un = 1 is a right-eigenvector corresponding to eigen-
value 1 of P .

Fact 2 Suppose we have eigenvalues λ0, . . . , λn−1 such that λ0 = 1. Consider λ∗ :=
max{λ1, . . . , λn−1}. Then λ∗ ≤ 1. Furthermore, if P (x, y) > 0 for all x, y, we have λ∗ < 1

Proof. Let v(x) be the biggest entry. Then we have

|λv(x)| = (Pv)x = |
n∑
y=1

P (x, y)v(y)| ≤ |v(x)|

So λ ≤ 1.
Suppose P (x, y) > 0, the equality holds only if v(x) is a constant. But in this case it is v0.
Therefore λ∗ < 1

Fact 3 Suppose P satisfies λ∗ < 1. Then there is a unique stationary distribution π on
X and, given an initial distribution µ0 and any point x ∈ X , there is a constant Cx > 0
such that

|µk(x)− π(x)| ≤ CxkJ−1(λ∗)k−J+1

If P is diagonalizable, we have

|µk(x)− π(x)| ≤
n−1∑
m=1

|amvm(x)||λm|k ≤ (

n−1∑
m=1

|amvm(x)|)(λ∗)k
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where initial distribution can be expressed as linear combination of corresponding eigen-
vectors

µ0 = a0v0 + · · ·+ an−1vn−1

If the eigenvectors vi are orthogonal in L2(π), i.e. if
∑

x vi(x)vj(x)π(x) = δij , we get the
further bound,∑

x

|µk(x)− π(x)|2π(x) =

n−1∑
m=1

|am|2|λm|2k ≤ (

n−1∑
m=1

|am|2)(λ∗)k

Interpretation: Now we easily get a new bound using eigenvalues. When λ∗ < 1, |µk(x)−
π(x)| → 0 as k →∞, the Markov Chain converges exponentially quickly. µk(x)→ a0v0 =
π(x). Since

∑
x π(x) = 1, a0 = (

∑
y v0(y))−1. Indeed, the stationary distribution does not

depend on the initial distribution µ0
Meanwhile, λ∗ < 1 means the eigenvalue 1 has only one multiplicity, so the Markov chain
has a unique stationary distribution π as the corresponding eigenvector. Conversely, if
λ∗ = 1, the eigenvalue 1 has at least 2 multiplicity, and also assume P is diagonalizable,
then each multiplicity has a corresponding eigenvector, contradicts the property of unique
stationary distribution.

Fact 4 A finite Markov chain satisfies λ∗ < 1 if and only if it is both indecomposable
and aperiodic

Proof. Necessity: assume it is decomposable, with disjoint subspaces X1 and X2. Then P
is like [

1 0
0 1

]
Then there are two vectors with eigenvalue 1
Assume it is periodic. Then the matrix is like0 1 0

0 0 1
1 0 0


Let

v = (e2πi/3, e4πi/3, 1)

Then e2πi/d is an eigenvalue.(Intuitively, the matrix is a permutation, which moves xi to

xj+1, so we can just make
v(xj+1)
v(xj)

to be a fixed number)(can not pick a random ratio

because we want v(x1)/v(xn) = r) In this case λ∗ = 1
Sufficiency: 2.4.4. If a chain is indecomposible and aperiodic, then for any state i, j ∈ S,
there is a n0(i, j) such that pnij > 0 for any n > n0. Find the biggest n0. Then Pn has all
positive entries.
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Note: Irreducible is a stronger property than indecomposable.

5 Coupling and minorisation conditions

5.1 Coupling construction

Let X,Y be two random variables on some space X . If we write L(X) and L(Y ) for their
probability distributions, then

||L(X)− L(Y )|| ≤ sup
A
|P (X ∈ A,X 6= Y )− P (Y ∈ A,X 6= Y )| ≤ P (X 6= Y )

Consider a Markov chain P on X with (i) X0 ∼ µ0
(ii) Y0 ∼ π
(iii)P (Xk+1 ∈ A|Xk) = P (Xk, A)
(iv)P (Yk+1 ∈ A|Yk) = P (Yk, A)
(v) There is a random time T (so called coupling time) such that Xk = Yk for all k ≥ T

(i.e. X and Y are the same after time T)

We do not know the joint law except after some time T (the coupling time). We know

||µk − π|| = ||L(Xk)− L(Yk)|| ≤ P (Xk 6= Yk) ≤ P (T > k)

So if we can find a coupling as above, we get an immediate bound on ||µk − π|| in terms of
the tail probabilities of the coupling time T
For the last inequality, Xk 6= Yk ⇒ k ≤ T and the converse is not true. This is because
Xk 6= Yk is saying X and Y are not the same at time k, and therefore we haven’t reached
time T yet (by definition of T ). In other words, the set T ≥ k is larger than the set Xk 6= Yk
Remark: for an arbitrary chain, we define a coupling with initial state (µ0, x0) such that
Xk and Yk are marginally updated by P . Then it suffices to check when Xk converges from
Yk(The benefit is we can just consider the transition probability we constructed)

5.2 Uniform minorisation conditions

Suppose a Markov chain satisfies an inequality of the form

P k0(x,A) ≥ βξ(A)

where x ∈ R is a subset, β > 0 and ξ is a probability distribution.
The inequality above is called a minorisation condition for a Markov chain. It says that
the transition probabilities from a set R all have common overlap of at least size β. (Is
this sentence saying that all of the transition probabilities from R should be greater than
or equal to β?)
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For later sections, we will only consider the uniform case where R = X (uniform because
holds for all x ∈ X ) and we set k0 = 0 for simplicity.

Now we’ll use uniform minorisation condition to a valid coupling (Xk, Yk) as follows:
First, define X0 ∼ µ0, Z0 ∼ π independently. Given Xk, Zk, choose Xk+1, Zk+1 by flipping
an independent coin that has probability β coming up heads:
a) If the coin is heads, we’ll force Xk+1, Zk+1 = z, where z ∈ X distributed independently
according to ξ(·)
b) If the coin is tails, then we choose Xk+1, Zk+1 independently with

P (Xk+1 ∈ A) =
P (Xk, A)− βξ(A)

1− β

P (Zk+1 ∈ A) =
P (Zk, A)− βξ(A)

1− β
We call this residuals (for leftover probabilities). How come?

Recall the condition iii) and iv) above. We have to choose probability that precisely so
that P (Xk+1 ∈ A|Xk) = P (Xk, A) (same for z)

P (Xk+1 ∈ A|Xk) = P (Xk, head)P (Xk+1 ∈ A|Xk, head) + P (Xk, tail)P (Xk+1 ∈ A|Xk, tail)

= βξ(A) + (1− β)P (Xk+1 ∈ A|Xk, tail) = P (Xk, A)

To satisfy the equation above, we will get exactly the residual probability in b) for tail
situation. Meanwhile, minorisation condition is important here, it ensures the valid prob-
ability distribution, P (Xk, A)− βξ(A) > 0.

Finally, let T be the first time we toss up head, that is the coupling time that X and
Z will be at same step. Define Yk = Zk (k ≤ T ), but after coupling time, Yk = Xk for
k > T . Therefore, we shall consider (Xk, Yk) as coupling with coupling time T . It is again
important to think about the minorisation condition based on our assumptions, because
of the inequality, we can successfully construct such coupling, and then get a neat result,
that we call the Markov Chain is geometric ergodic.

Fact 5 Suppose a Markov chain satisfies P (x,A) ≥ βξ(A) for all x ∈ X and for all mea-
surable subsets A ⊆ X . Then given any initial distribution µ0 and stationary distribution
π, we have

||µk − π|| ≤ (1− β)k

Note that as long as a Markov chain satisfies the above condition (uniform minorisation
conditions), we can define the combined chain (Xk, Yk) with coupling time T , then we see
that P (T > k) = (1− β)k
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We have βξ(x) = β(x1, x2, . . . , xn) ≤ {min(P (x, 1)), . . . ,minP (x, n)} by the minorisa-
tion condition. Sum the entries together, we get β∗1 ≤

∑
y∈X minx∈X P (x, y) In the infinite

case, we instead take integral. Then the largest value of beta will be
∑

y∈X minx∈X P (x, y).

Example. We let

P (x, dy) =
1− x− y

3
2 + x

dy = 1 +
−1

2 + y
3
2 + x

.

If y < 1
2 then we have inf(P ) when x is the smallest; if y > 1

2 then we have inf(P )
when x is the largest. Therefore we may take β = 29

30 , and by Fact 5, we conclude that
||µk − π|| ≤ ( 1

30)k.

5.3 Compare to Markov Forgetting Lemma

Here is an interesting connection to Markov Forgetting Lemma(in discrete case):

If a Markov Chain is irreducible and aperiodic, and has stationary distribution πi. then
for all i, j, k ∈ S, |Pn(i, k)− Pn(j, k)| → 0 as n→∞
So that after a long time n, it doesn’t matter where the chain started from, they will
eventually come at the same step, that is, converge to stationary distribution.

In the proof of Markov Forgetting lemma, we require coupling for two independent
random variables Xk, Yk, and their joint Markov chain (Xk, Yk) where their joint tran-
sition probability is P̄(ik)(jl) = P(ik)P(jl), joint stationary distribution π̄(ij) = πiπj , since
they are independent. However, in our construction of coupling above, Xk and Yk is not
independent. They depends on the coin’s situation.

5.4 Comparison between two methods

In Coupling, we apply this approach to Markov Chain that has stationary distribution π,
the bounding condition is easier to compute. In section 4, eigenvalue approach can be
applied to any Markov Chain, and after we found out the eigenvalues, we can verify if
unique stationary distribution exists. But in both cases, even we don’t know the exact
stationary distribution, given ε, we can get a large enough k for the bound, compute µk to
approximate π since they are ”ε close” now.

6 Generalization of Minorisation to Subset of State Space

In Section 5, when we defined the minorisation condition as:

P k0(x,A) ≥ βξ(A) x ∈ R, A ⊆ X
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for some R ⊆ X , we decide to set R to be X . Now, we are going to explore the general case
when R can be any subset of X . The bound we used before is not valid here anymore, and
there are several approaches to solve this problem. We are able to bound the probability
of escaping from R if R can be very large, or we can use ”drift conditions”. Also, we can
update regeneration times from Xk and try to bound the ”times since the last generation”.

7 Appendix

7.1 Integral with respect to a probability measure

We first define such integral for simple functions, then construct a sequence of simple
functions which converges to the original function, and take integrals of then plus use
dominated convergence theorem
e.g. ∫

f(x)dµ(x) =
∑

fiµ(xi, xi+1)

For probability µ, this means P (x ∈ (xi, xi+1))
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