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1 Introduction

This is a supplementary reading for the paper General State Space Markov Chains and
MCMC Algorithms by Gareth O. Roberts and Jeffrey S. Rosenthal. It is meant to help
readers have better understanding of the original paper. The paper provides introduction
to MCMC (algorithms, motivations and relevant theory) → conditions for geometric and
uniform ergodicity with quantitative bounds on the rate of convergence (using coupling
constructions based on minorisation and drift conditions).

A Markov chain consists of
(i) a measurable state space X
(ii) an initial distribution µ0 on X
(iii) transition probabilities P (x, dy)
(iv)

∫
A(x) = P (x,A)

is a measurable function of x ∈ X for each fixed set A ⊂ X
(v) Multi-step transition probability distribution:
Definition of µk on X , the probabilities of where the Markov chain will be after k steps
µk(X) =

∫
X P (x,A)µk−1(dx). In discrete case, we can write µk(y) =

∑
x P (x, y)µk−1(x).

If we write µk as a row-vector, and P as a matrix with [P ]xy = P (x, y), then µk = µk−1P =
· · · = µ0P

k.

Markov chain Monte Carlo algorithms - such as the Metropolis-Hastings algorithms
and the Gibbs sampler are ways of sampling from complicated probability distributions. It
allows sampling from posterior distributions in Bayesian inference. These algorithms raise
two important questions: what is the stationary distribution of the Markov chain involved
in the algorithm and what is the rate of convergence.

Plan. Section 2: Introduction to MCMC
Section 3: Convergence Rate Results Commonly used in MCMC
Section 4: The eigenvalue connection
Section 5: Asymptotic Convergence
Section 6: Uniform Ergodicity
Section 7: Geometric Ergoidicity
Section 8: Quantitative Convergence Rate
Section 9: Convergence Proof using Coupling Constructions
Section 10: Appendix
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1.1 The problem.

Suppose we have a density function1 πu on the state space X . Then we can define a
probability measure on X , by

π(A) =

∫
A πu(x)dx∫
X πu(x)dx

We want to estimate expectation of functions f : X → R with respect to π:

π(f) = Eπ[f(X)] =

∫
X f(x)πu(x)dx∫
X πu(x)dx

(=

∫
X
f(x)(

πu(x)∫
X πudx

)dx)

The problem is if X is high-dimensional and πu is complicated, then it is infeasible to
directly compute the integral.
The classical Monte Carlo solution to this problem is simulate random variables Z1, . . . , Zn ∼
π(·), and then estimate π(f) by

π̂(f) =
1

N

n∑
i=1

f(Zi)

Note this is a random variable with expected value π(f) (i.e. the estimator is unbiased)
and standard deviation of order O(1/

√
N). Then by CLT, the error π̂(f)− π(f) will have

a limiting normal distribution as N → ∞. Therefore we can compute π(f) by computing
samples (plus some regression techniques?). But the problem is if πu is complicated, then
it is very difficult to simulate i.i.d. random variables from π(·).
The MCMC solution is to construct a Markov chain on X which has π(·) as a stationary
distribution, i.e. ∫

X
π(dx)P (x, dy) = π(dy)

Then for large n the distribution of Xn will be approximately stationary. We can set
Z1 = Xn and get Z2, Z3, . . . , Zn repeatedly.

Remark. In practice instead of starting a fresh Markov chain every time we take the
successive Xn’s, for example, (N −B)−1

∑N
i=B+1 f(Xi). We tend to ignore the dependence

problem as many of the mathematical issues are similar in either implementation.

Remark. We have other ways of estimation, such as ”rejection sampling” and ”impor-
tance sampling”. But MCMC algorithms is applied most widely.

1A function f : Rn → R is a (unnormalized) density function if it is non-negative and
∫
X f < ∞. The

integral is usually taken with respect to Lebesgue measure, although we could have other settings. If the
integral is 1, then it is called a normalized density function.
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Summary Estimate π(f) needs to take samples; taking sampling needs MCMC.

1.2 Motivation: Bayesian Statistics Computations

Let L(y|θ) be the likelihood function.(density of y given θ). Let the ”prior” density of θ
be p. The the ”posterior” distribution of θ given y is then density which is proportional to

πu(θ) ≡ L(y|θ)p(θ)

(as p(y) is a fixed constant, which we do not care about because it does not affect the
probability measure π induced by πu). The ”posterior mean” of any function f is given by

π(f) =

∫
X f(x)πu(x)dx∫
X πu(x)dx

For this reason, Bayesians are anxious to estimate such π(f). MCMC is extremely helpful
for such estimates.

Example of Bayesian inference. Assume the average number of years women spend in
education in country µi follows normal distribution with mean 13 and standard deviation
0.5. µ is the French average. You’re told that the number of years in France follows a
normal distribution with σ = 1 year; you want to estimate µ. Then we know p(µ). Let x
be the samples. Once we know µ, we get L(x|µ). Then we can get πu

1.3 Bounds on Markov Chain Convergence Times

Definition The n-step transition law of the Markov chain is defined as:

Pn(x,A) = P [Xn ∈ A|X0 = x]

Fundamental questions
(A) Does there exist a probability distribution π on X such that ||µk − π|| → 0 as k →∞
(B) If so, then given ε > 0, how large should k be to ensure ||µk − π|| < ε

We will introduce two approaches:
Section 4: The eigenvalue connection, this is a simple case for finite state space Markov
chain.
Section 5 and onwards: we’ll focus more on the second way: using Coupling technique.
This can be applied to general state space Markov chains.
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2 MCMC and its construction

This section will explain how MCMC algorithm is constructed. Now we introduce re-
versibility.
Definition. A Markov Chain on state space X is reversible with respect to a probability
distribution π(·) on X , if

π(dx)P (x, dy) = π(dy)P (y, dx), x, y ∈ X

Proposition. A Markov Chain is reversible with respect to π(·), then π(·) is the stationary
distribution for the chain.

Proof. By reversibility, we have∫
x∈X

π(dx)P (x, dy) =

∫
x∈X

π(dy)P (y, dx) = π(dy)

∫
x∈X

P (x, dy) = π(dy)

Now the simplest way to construct a MCMC algorithm which satisfies reversibility is
using Metropolis-Hastings algorithm.

2.1 The Metropolis-Hastings Algorithm.

Suppose that π(·) has a (possibly unnormalized) density πu. Let Q(x, ·) be essentially any
other Markov Chain, whose transitions also have a (possibly unnormalized) density, i.e.
Q(x, dy) ∝ q(x, y)dy.

First choose some X0. Then given Xn, generate a proposal Yn+1 from Q(Xn, ·). In the
meantime we flip a independent bias coin with probability of heads equals to α(Xn, Yn+1),
where

α(x, y) = min

[
1,
πu(y)q(y, x)

πu(x)q(x, y)

]
, π(x)q(x, y) 6= 0

And α(x, y) = 1 when π(x)q(x, y) = 0. Then if the coin is heads, we accept the proposal
and set Xn+1 = Yn+1. If the coin is tails, then we reject the proposal and set Xn+1 = Xn.
Then we replace n by n+ 1 and repeat. The reason we take α(x, y) as above is explain as
follow.

Proposition. The Metropolis-Hastings Algorithm produces a Markov Chain {Xn} which
is reversible with respect to π(·).

Proof. We want to show for any x, y ∈ X ,

π(dx)P (x, dy) = π(dy)P (y, dx)
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Since if x = y the solution is trivial. Then we can automatically assume that x 6= y. Let c
be the normalizing constant. i.e. c =

∫
X πu(x)dx. Then

π(dx)P (x, dy) = [c−1πu(x)dx][q(x, y)α(x, y)dy]

= c−1πu(x)q(x, y) min

[
1,
πu(y)q(y, x)

πu(x)q(x, y)

]
dxdy

= c−1 min[πu(x)q(x, y), πu(y)q(y, x)]dxdy

By symmetry (i.e. simply switching x and y), we can also obtain

π(dy)P (y, dx) = c−1 min[πu(x)q(x, y), πu(y)q(y, x)]dxdy

Here are some examples under specific conditions.
• Symmetric Metropolis Algorithm. Here q(x, y) = q(y, x). Then the acceptance
probability can be simplified as

α(x, y) = min

[
1,
πu(y)

πu(x)

]
• Random Walk Metropolis-Hastings. Here q(x, y) = q(y−x) And Q(x, ·) ∼ µ which
can be any distribution.
• Independence Sampler. Here q(x, y) = q(y) which means that Q(x, ·) is independent
of x.
• Langevin algorithm. Here the proposal is generated by

Yn+1 ∼ N (Xn + (δ/2)∇ log π(Xn), δ)

for some small δ > 0

2.2 MCMC in practice

• Running algorithm on a computer. It is not complicated to run Metropolis-
Hastings algorithm on computer. We need to run the proposal chain Q(x, ·), and then do
the accept/reject step. For example we can set u ∼ Uniform(u; 0, 1). If u < α, then we
accept it. Otherwise we reject it. Here we only need to compute the ratio of density such
as πu(y)/πu(x), so we do not need normalizing constant.

Meanwhile, it is also tricky to choose an appropriate proposal distribution Q(x, ·) In the
future section, we will discuss how the choice of proposal distribution affect its convergence.
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• Combining Chains. If P2 and P2 are two different chains, each has a stationary
distribution π(·), then we can combining them by considering the new chain P1P2 which
also has stationary distribution π(·). Thus, it is perfectly acceptable, and quite common to
make new MCMC algorithms out of old ones, by specifying that the new algorithm applies
first the chain P1, then the chain P2, then the chain P1 again, etc. And, more generally, it
is possible to combine many different chains in this manner.

Note that, even if each of P1 and P2 are reversible, the combined chain P1P2 will in
general not be reversible. It is for this reason that it is important, when studying MCMC,
to allow for non-reversible chains as well.

2.3 The Gibbs Simpler

Suppose πu(·) is d-dimensional density, with X an open subset of Rd, and write x =
(x1, ..., xd).

And we define the ith component Gibbs Sampler as Pi such that we replace ith

component by a draw from the full conditional distribution of πu(·) conditional on all the
other components, which leaves all components besides i unchanged.

More formally, let

Sx,i,a,b = {y ∈ X ; yj = xj for j 6= i, and a ≤ yj ≤ b}.

Then

Pi(x, Sx,i,a,b) =

∫ a
b πu(x1, .., xi−1, t, xi+1, .., xn)dt∫∞
−∞(x1, .., xi−1, t, xi+1, .., xn)dt

, a ≤ b

It follows immediately that Pi is reversible with respect to πu(·). Since we can treat Pi
as a special case of Metropolis-Hastings algorithm with α(x, y) ≡ 1. Therefore Pi has a
stationary distribution πu(·).

Then we have two ways to construct a full Gibbs sampler.
• The deterministic-scan Gibbs samplers

P = P1P2..Pd.

It performs the d different Gibbs Sampler components in sequential order.
• The random-scan Gibbs samplers

P =
1

d

d∑
i=1

Pi.

It does one of the d different Gibbs sampler components, chosen uniformly at random.
Either version produces an MCMC algorithm having πu(·) as its stationary distribution.

And the components get updated once at a time. Also the random-scan Gibbs sampler is
reversible, while the deterministic-scan Gibbs sampler usually is not.
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2.4 Variance Components Model (A Detailed Bayesian Example)

Variance Components Model is a typical example of a target density πu(·) that arises in
Bayesian statistics, in an effort to illustrate the problems and issues which arise.

Now we introduce a fixed constants µ0 and positive constant a1, b1, a2, b2 and σ2
0. Also

we must have three hyper-parameters, σ2
θ , σ

2
e , and µ, each having prior distributions as

follow
σ2
θ ∼ IG(a1, b1); σ2

e ∼ IG(a2, b2); µ ∼ N (µ0, σ
2
0).

where IG is the Inverse Gaussian distribution. Furthermore, we must have K conditionally
independent parameters θ1, θ2..., θK , with

θi ∼ N (µ, σ2
θ).

In terms of these parameters, we have data {Yij}, with the assumption that

Yij ∼ N (θi, σ
2
e) conditionally independently, and 1 ≤ i ≤ K; 1 ≤ j ≤ J.

Then we can clearly see three hierarchies with all parameter conditioning on {Yij}.
Now consider the joint K + 3 parameters given this data, then we have this distribution

π(·) = L(σ2
θ , σ

2
e , µ, θ1, .., θK |{Yij}),

defined on X = (0,∞)2 ×RK+1. We would like to sample from this distribution. Now we
compute the unnormalized density

πu(σ2
θ , σ

2
e , µ, θ1, .., θK) ∝ e−b1/σ

2
θσ2

θ
−a1−1

e−b2/σ
2
eσ2

e
−a2−1

e−(µ−µ0)2/2σ2
0

×ΠK
i=1[e−(θi−µ)2/2σθ/σ2

θ ]×ΠK
i=1ΠJ

j=1[e−(Yij−θi)2/2σ2
e/σe]

We now begin with the Gibbs Samplers. Then we need additional distribution as follows:

L(σ2
θ |σ2

e , µ, θ1, .., θK , Yij) = IG

(
a1 +

1

2
K, b1 +

1

2

∑
i

(θi − µ)2

)
;

L(σ2
e |σ2

θ , µ, θ1, .., θK , Yij) = IG

(
a2 +

1

2
KJ, b2 +

1

2

∑
i,j

(Yij − θi)2

)
;

L(µ|σ2
e , σ

2
θ , θ1, .., θK , Yij) = N

(
σ2
θµ0 + σ2

0

∑
i θi

σ2
θ +Kσ2

0

,
σ2
θσ

2
0

σ2
θ +Kσ2

0

)
;

L(θi|µ, σ2
e , σ

2
θ , θ1, .., θi−1, θi+1, .., θK , Yij) = N

(
Jσ2

θ Ȳi + σ2
eµ

Jσ2
θ + σ2

e

,
σ2
θσ

2
e

Jσ2
θ + σ2

e

)
, 1 ≤ i ≤ K.

where Ȳi = 1
J

∑
j Yij . The Gibbs sampler then proceeds by updating the K + 3 variables

according to the above conditional distributions. This is feasible since the conditional
distributions are all easily simulated (IG and N ).
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We can also use Metropolis-Hastings Algorithm here. For example, we can choose
symmetric random walk algorithm with the proposal distribution being N (Xn, σ

2IK+3) for
some appropriate σ2 > 0. Then given Xn, we will proceed the algorithm as follows:

1 Choose Yn+1 ∼ N (Xn, σ
2IK+3);

2 Choose Un+1 ∼ Uniform(0, 1);

3 If Un+1 <
πu(Yn+1)
πu(Xn) , we accept the proposal and set Xn+1 = Yn+1. Otherwise we reject

the proposal and set Xn+1 = Xn.

We now conclude that, for such typical target distributions π(·), both the Gibbs sampler
and appropriate Metropolis-Hastings algorithms perform well in practice, and allow us to
sample from π(·).

3 Total variance distance

Definition The total variation distance between two probability measures ν1(·) and ν2(·)
is:

||ν1(·)− ν2(·)|| = sup
A
||ν1(A)− ν2(A)||

This leads to two questions: is limn→∞ ||Pn(x, ·)− π(·)|| = 0 and how large must n be so
that ||Pn(x, ·) − π(·)|| < ε?. In order to answer these questions, we need a digression on
the properties of total variation distance.

Proposition 3 (a) ||ν1(·)− ν2(·)|| = supf :X→[0,1] |
∫
fdν1 −

∫
fdν2|

(b) ||ν1(·) − ν2(·)|| = 1
b−a supf :X→[a,b] |

∫
fdν1 −

∫
fdν2| for any a < b, and in particular

||ν1(·)− ν2(·)|| = 1
2 supf :X→[−1,1] |

∫
fdν1 −

∫
fdν2|

(c) If π(·) is stationary for a Markov chain kernel P , then ||Pn(x, ·)−π(·)|| is non-increasing
in n, i.e. ||Pn(x, ·)− π(·)|| ≤ ||Pn−1(x, ·)− π(·)|| for n ∈ N
(d) More generally, letting (νiP )(A) =

∫
νi(dx)P (x,A), we always have ||(ν1P )(·)−(ν2P )(·)|| ≤

||ν1(·)− ν2(·)||
(e) Let t(n) = 2 supx∈X ||Pn(x, ·)−π(·)||, where π(·) is stationary. Then t is sub-multiplicative,
i.e. t(m+ n) ≤ t(m)t(n) for m,n ∈ N
(f) If µ(·) and ν(·) have densities2 g and h, respectively, with respect to some σ−finite
measure ρ(·), and M = max{g, h} and m = min{g, h}, then

||µ(·)− ν(·)|| = 1

2

∫
X

(M −m)dρ = 1−
∫
X
mdρ

2see appendix for definition
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(g) Given probability measure µ(·) and ν(·), there are jointly defined random variables X
and Y such that X ∼ µ(·) and Y ∼ ν(·), and P [X = Y ] = 1− ||µ(·)− ν(·)||

Proof. (a): Let p(.) be any δ-finite measure such that ν1 � ρ, ν2 � ρ. Set g =
dν1/dρ and h = dν2/dρ. Then∣∣∣∣ ∫ fdν1 −

∫
fdν2

∣∣∣∣ =

∣∣∣∣ ∫ f(g − h)dρ

∣∣∣∣
This is maximized (over all 0 ≤ f ≤ 1) when f = 1 on {g > h} and f = 0 on {h > g}

(We could also let f = 1 on {g < h}. It is easy to verify in both cases they are equal to
|ν1(A)− ν2(A)|.) Then note

sup
A
|ν1(A)− ν2(A)| = sup

A
|
∫
A
gdρ−

∫
A
hdρ| = sup

A
|
∫
A

(g − h)dρ|

is also maximized when A = {g > h} and it gives the same maximum value. This shows
the equivalence.

(b): The proof of (b) is very similar to (a). Let ρ(.) be any δ-finite measure such that
ν1 � ρ, ν2 � ρ. Let g = dν1/dρ and h = dν2/dρ. Consider again:

|
∫
fdν1 −

∫
fdν2| = |

∫
f(g − h)dρ|

This integral is maximized when f = b on {g > h} and f = a on {h > g}, because
then f will be the greatest when it’s multiplied to a positive value and smallest when it’s
multiplied with a negative value (Compare the choice of f with (a), where we used the
indicator function). Let A = {g > h}, then

|
∫
f(g − h)dρ| = |b

∫
A

(g − h)dρ+ a

∫
X\A

(g − h)dρ|

= |b[v1(A)− v2(A)] + a[(1− v1(A))− (1− v2(A))]|
= |b(v1(A)− v2(A)− a(v1(A)− v2(A))|
= (b− a)|v1(A)− v2(A)|

=⇒ 1

b− a
|
∫
f(g − h)dρ| = |ν1(A)− ν2(A)|

We showed in (a) that the set A also maximized |v1(A) − v2(A)|, thus proving the
equivalence.
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(c): For any measurable set A,

|Pn+1(x,A)− π(A)| = |
∫
y∈X

Pn(x, dy)P (y,A)−
∫
y∈X

π(dy)P (y,A)| ≤ ||Pn(x, ·)− π(·)||

(the last inequality follows from (a)). Then clearly

||Pn+1(x, ·)− π(·)|| = sup
A
|Pn+1(A)− π(A)| =≤ ||Pn(x, ·)− π(·)||

(d): For any measurable set A,

|v1P (A)− v2P (A)| = |
∫
y∈X

v1(dx)P (y,A)−
∫
y∈X

v2(dx)P (y,A)| ≤ ||v1(·)− v2(·)||

Then d follows clearly. (Note (c) is a actually special case of (d), with v1 = Pn(x, ·) and
v2 = π(·) .)

(e): Let P̂ (x, ·) = Pn(x, ·)− π(·) and Q̂(x, ·) = Pm(x, ·)− π(·), so that

P̂ Q̂f(x) ≡
∫
y∈X

f(y)

∫
z∈X

[Pn(x, dz)− π(dz)][Pm(z, dy)− π(dy)]

=

∫
y∈X

f(y)

∫
z∈X

(Pn(x, dz)Pm(z, dy)− π(dz)Pm(z, dy))

−
∫
y∈X

f(y)π(dy)

∫
z∈X

Pn(x, dz)− π(dz)

=

∫
y∈X

f(y)[Pn+m(x, y)− π(dy)− π(dy)(1− 1)]

=

∫
y∈X

[Pn+m(x, dy)− π(dy)]

In other words, if we define Ĥ(x, ·) = Pm+n(x, ·)− π(·), then

P̂ Q̂f(x) = Ĥf(x) ≡
∫
y∈X

Ĥ(x, dy)f(y)

Let f : X → [0, 1] and g(x) = (Q̂f)(x) ≡
∫
y∈X Q̂(x, dy)f(y). Set g∗ = supx∈X |g(x)|.

Then

|g(x)| =
∣∣∣∣ ∫

y
Pm(x, dy)f(y)−

∫
y
π(dy)f(y)

∣∣∣∣ ≤ ||Pm(x, ·)− π(·)|| (by part(a))

And

g∗ ≤ sup
x∈X
||Pm(x, ·)− π(·)|| = 1

2
t(m)
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It is easy to verify P̂ Q̂f = P̂ (Q̂f) (We left it as an exercise. See 1.1.4.). Then clearly if
g∗ = 0, then P̂ Q̂f = P̂ (Q̂f) = 0. Otherwise

2 sup
x∈X
|(P̂ Q̂f)(x)| = 2g∗ sup

x∈X
|(P̂ [g/g∗])(x)| ≤ t(m) sup

x∈X
|(P̂ [g/g∗])(x)|

Since −1 ≤ g/g∗ ≤ 1( because g < g∗), we have

sup
x∈X
|(P̂ [g/g∗])(x)| ≤ 2||P̂ || = 2||P (x, ·)− π(·)||

by part (b). Hence

sup
x∈X
|(P̂ [g/g∗])(x)| ≤ 2 sup

x∈X
||P (x, ·)− π(·)|| = t(n)

=⇒ 2 sup
x∈X
|(P̂ Q̂f)(x)| ≤ t(m)t(n)

Recall for every x ∈ X there exists some function fx such that P̂ Q̂fx(x) = ||Ĥ(x, ·)|| =
||Pm+n(x, ·)− π(·)||(by part(a)). Then

2||Pm+n(x, ·)− π(·)|| ≤ t(m)t(n)

for every x in X . Therefore

2 sup
x∈X
||Pm+n(x, ·)− π(·)|| ≤ t(m)t(n)

In other words
t(m+ n) ≤ t(m)t(n)

(f): According to (b),

||µ(·)− ν(·)|| = 1

2
sup

f :X→[−1,1]

∣∣∣∣ ∫ fdµ−
∫
fdν

∣∣∣∣ =
1

2
sup

f :X→[−1,1]

∣∣∣∣ ∫ f(g − h)dρ

∣∣∣∣
=

1

2

(∫
g>h

(g − h)dρ+

∫
h>g

(h− g)dρ

)
=

1

2

∫
X

(M −m)dρ

Since M = max(g, h) and m = min(g, h), M + m = g + h. Hence
∫
X (M + m)dp =∫

X (g + h)dp =
∫
X dv1 +

∫
X dv2 = 1 + 1 = 2.

Thus

1

2

∫
X

(M−m)dρ = 1−1

2

(
2−
∫
X

(M−m)dρ

)
= 1−1

2

∫
X

((M+m)−(M−m))dρ = 1−
∫
X
mdρ

12



(g): Let a =
∫
X mdp, b =

∫
X (g −m)dp and c =

∫
X (h−m)dp. If any of a, b, c equals zero,

the statement is trivial. To be more specific, if a = 0, then X and Y have disjoint supports.
If b = 0 or c = 0, then set X = Y = Z, where Z ∼ µ(·). So assume they are all positive.

Construct Z,U, V, I such that Z has density m/a, U has density (g − m)/b, V has
density (h−m)/c and I is independent of Z,U, V .
Case 1: I = 1, P (I = 1) = a, X = Y = Z
Case 2: I = 0, P (I = 0) = 1− a, X = U, Y = V
U, V have disjoint support so P (U = V ) = 0. Thus

P (X = Y ) = P (X = Y, I = 1)+P (X = Y, I = 0) = P (I = 1)+0 = a =

∫
X
mdp = 1−||µ(.)−ν(.)||

It remains to show X ∼ µ(·), Y ∼ ν(·). First note that b = 1− a. It follows that

P [X ∈ A] = P [X ∈ A, I = 1] + P [X ∈ A, I = 0]

= aP [Z ∈ A] + (1− a)P [U ∈ A]

=

∫
A
m dρ+

1− a
b

∫
A

(g −m) dρ

=

∫
A
m dρ+

∫
A

(g −m) dρ

=

∫
A
g dρ = µ(A)

So X ∼ µ(·). Similarly Y ∼ ν(·)

4 The eigenvalue connection

4.1 Introduction

Consider finite space X . Since µk = µ0P
k, we do not want it to blow up. Naturally

we should consider eigenvalue. Since left eigenvalues and right eigenvalues are the same
(because eigenvalues of its transpose are the same)

4.2 The simplest non-trivial example

Settings
X = {0, 1}, µ0 = (1, 0)

P =

[
1− p p
q 1− q

]
Then

µk(0) =
q

p+ q
+ (1− q

p+ q
)(1− p− q)k

13



µk(1) =
p

p+ q
− (1− q

p+ q
)(1− p− q)k

Observations
(1) Let π = ( q

p+q ,
p
p+q ). Assume |1− p− q| < 1, then

||µk − π|| = |(
q

p+ q
)(1− p− q)k| → 0

(decrease exponentially quickly to 0, with rate governed by (1 - p - q).

(2) The limiting distribution π is a stationary distribution: πP = P , and thus corresponds
to a left-eigenvector of the matrix P with eigenvalue 1. It is easily seen that any limiting
distribution π for any Markov chain must be a stationary distribution(since µk = µk−1P )

(3) The convergence fails when p = q ∈ {0, 1}. If p = q = 0 the Markov chain is decom-
posible, meaning that the space X contains two-empty disjoint closed subsets. If p = q = 1
then this Markov chain is periodic. (different from class, we say it is periodic if the space
contains disjoint subsets X1, . . . ,Xd such that for any x ∈ Xj , P (x,Xj+1 = 1)). If our
Markov chain is indecomposible and aperiodic, then it converges exponentially quickly.

(4) The eigenvalues of the matrix P are 1 and 1 − p − q. We have a connection be-
tween trivial eigenvalues and non-trivial eigenvalues

(5) Define

β =
∑
y

min
x
P (x, y)

Then β = min{p+ q, 2− p− q}. Then 1− β = |1− p− q| is the absolute value of the non-
trivial eigenvalue as above. The relationship can be explored via the method of ”coupling”

(6) This Markov chain is reversible. It guarantees all eigenvalues will be real (so diag-
onalizable). But not all Markov chain has such property.

(7) When p = q, this corresponds to a simple random walk on group Z/2Z with step
distribution Q(1) = p and Q(0) = 1− p. Then EQ((−1)x) = −p+ (1− p) = 1− p− q. So
for simple random walk on groups, the eigenvalues can be computed by taking expected
values with respect to Q. This is a connection to Random walks in groups.

4.3 Fact 1

Any stochastic matrix P has an eigenvalue 1.

14



Proof. the vector u with u1 = · · · = un = 1 is a right-eigenvector corresponding to eigen-
value 1 of P .

4.4 Fact 2

Suppose we have eigenvalues λ0, . . . , λn−1 such that λ0 = 1. Consider λ∗ := max{λ1, . . . , λn−1}.
Then λ∗ ≤ 1. Furthermore, if P (x, y) > 0 for all x, y, we have λ∗ < 1

Proof. Let v(x) be the biggest entry. Then we have

|λv(x)| = (Pv)x = |
n∑
y=1

P (x, y)v(y)| ≤ |v(x)|

So λ ≤ 1.
Suppose P (x, y) > 0, the equality holds only if v(x) is a constant. But in this case it is v0.
Therefore λ∗ < 1

4.5 Fact 3

Suppose P satisfies λ∗ < 1. Then there is a unique stationary distribution π on X and,
given an initial distribution µ0 and any point x ∈ X , there is a constant Cx > 0 such that

|µk(x)− π(x)| ≤ CxkJ−1(λ∗)
k−J+1

If P is diagonalizable, we have

|µk(x)− π(x)| ≤
n−1∑
m=1

|amvm(x)||λm|k ≤ (
n−1∑
m=1

|amvm(x)|)(λ∗)k

where initial distribution can be expressed as linear combination of corresponding eigen-
vectors

µ0 = a0v0 + · · ·+ an−1vn−1

If the eigenvectors vi are orthogonal in L2(π), i.e. if
∑

x vi(x)vj(x)π(x) = σij , we get the
further bound,

∑
x

|µk(x)− π(x)|2π(x) =

n−1∑
m=1

|am|2|λm|2k ≤ (

n−1∑
m=1

|am|2)(λ∗)
k

Interpretation: Now we easily get a new bound using eigenvalues. When λ∗ < 1, |µk(x)−
π(x)| → 0 as k →∞, the Markov Chain converges exponentially quickly. µk(x)→ a0v0 =
π(x). Since

∑
x π(x) = 1, a0 = (

∑
y v0(y))−1. Indeed, the stationary distribution does

15



not depend on the initial distribution µ0. Meanwhile, λ∗ < 1 means the eigenvalue 1 has
only one multiplicity, so the Markov chain has a unique stationary distribution π as the
corresponding eigenvector. Conversely, if λ∗ = 1, the eigenvalue 1 has at least 2 multiplicity,
and also assume P is diagonalizable, then each multiplicity has a corresponding eigenvector,
contradicts the property of unique stationary distribution.

4.6 Fact 4

A finite Markov chain satisfies λ∗ < 1 if and only if it is both indecomposible and aperiodic

Proof. Necessity: assume it is decomposible, with disjoint subspaces X1 and X2. Then P
is like [

1 0
0 1

]
Then there are two vectors with eigenvalue 1
Assume it is periodic. Then the matrix is like0 1 0

0 0 1
1 0 0


Let

v = (e2πi/3, e4πi/3, 1)

Then e2πi/d is an eigenvalue.(Intuitively, the matrix is a permutation, which moves xi to

xj+1, so we can just make
v(xj+1)
v(xj)

to be a fixed number)(can not pick a random ratio

because we want v(x1)/v(xn) = r) In this case λ∗ = 1
Sufficiency: 2.4.4. If a chain is indecomposible and aperiodic, then for any state i, j ∈ S,
there is a n0(i, j) such that pnij > 0 for any n > n0. Find the biggest n0. Then Pn has all
positive entries.

Note: Irreducible is a stronger property than indecomposible. Here is an example of
indecomposible Markov chain but not irreducible:1/4 1/4 1/2

0 0 1
0 0 1



Next, we move to General State Space Markov Chain.
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5 Asymptotic Convergence

For a Markov chain to converge to stationarity, several conditions are required.

Definition. A chain is φ-irreducible if there exists a non-zero σ-finite measure φ on
X such that for all A ⊆ X with φ(A) > 0, and for all x ∈ X there exists a positive integer
n = n(x,A) such that Pn(x,A) > 0.

Intuitively, a chain is said to be φ-irreducible, if there exists a probability measure φ
and with this measure we can get from x to A in finite steps for all x. The reason why
φ-irreducible is used instead of irreducible as in discrete case is that the probability of
getting from one state to another state is zero in continuous state space.

Running Example. Here we give an example of a φ-irreducible Markov chain defined by
the Metropolis-Hastings Algorithm.

Suppose that π(·) is a probability measure having unnormalised density function πu with
proposal density q(x, ·) with respect to d-dimensional Lebesgue measure. Then if q(·, ·) is
positive and continuous on Rd ×Rd, and πu is positive everywhere, then the algorithm is
π-irreducible (simply follows from the definition of π-irreducible). Then we have π(A) > 0,
and specifically there exists a R > 0 such that π(AR) > 0, where AR = A ∩ BR(0),
and BR(0) represents the ball of radius R centered at 0. Then by continuity, for any
x ∈ Rd, infy∈ARmin{q(x,y), q(y,x)} ≥ ε for some ε > 0, this implies that q(x,y) ≥ ε and
q(y,x) ≥ ε. Therefore, we have that

P (x, A) ≥ P (x, AR) = P (x, AR|accept) + P (x, AR| reject)

≥
∫
AR

q(x,y) min

[
1,
πu(y)q(y,x)

πu(x)q(x,y)

]
dy

=

∫
AR

min

[
q(x,y),

πu(y)

πu(x)
q(y,x)

]
dy

≥ ε
∫
AR

min

[
1,
πu(y)

πu(x)

]
dy

= ε

∫
A1

1 dy + ε

∫
A2

πu(y)

πu(x)
dy

≥ εLeb(A1) +
ε

πu(x)

∫
A2

πu(y)dy

= εLeb(A1) +
εK

πu(x)
π(A2)

where K =
∫
X πu(y)dy > 0, A1 = {y ∈ AR : πu(y) ≥ πu(x)}, A2 = {y ∈ AR : πu(y) <

πu(x)} (The last equality follows from the definition of πu : π(A) =
∫
A π(y)dy

K for any
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measurable set A ⊂ X .)
To see P (x,A) > 0, it suffices to show Leb(A1) and π(A2) cannot both be 0. Sup-

pose by contrary, that Leb(A1) = π(A2) = 0. Then since π(·) is absolutely contin-
uous with respect to Lebesgue measure, π(A1) = 0. This contradicts the fact that
π(AR) = π(A1) + π(A2) > 0. Therefore P (x,A) > 0, and the chain is π-irreducible

Example 2. Periodic example. Suppose X = {1, 2, 3} with π{1} = π{2} = π{3} = 1/3.
Let P (1, {2}) = P (2, {3}) = P (3, {1}) = 1. Then π(.) is stationary, and the chain is φ-
irreducible (any state is reachable from all states). However, if X0 = 1, then Xn = 1
whenever n is a multiple of 3, so P (Xn) = 1 oscillates between 0 and 1, it doesn’t converge
to 1/3.

To avoid this problem, we require aperiodicity.

Definition. A Markov chain with stationary distribution π(·) is aperiodic if there do
not exist d ≥ 2 and disjoint subsets X1,X2, . . . ,Xd ⊆ X with P (x,Xi+1) = 1 for all
x ∈ Xi(1 ≤ i ≤ d − 1), and P (x,X1) = 1 for all x ∈ Xd, such that π(X1) > 0 (and hence
π(Xi) > 0 for all i). (Otherwise, the chain is periodic, with period equal to the largest such
value of d, and corresponding periodic decomposition X1, . . . ,Xd.)

It is reasonable to ask if we can define this aperiodicity without assuming the existence of
stationary distribution. The answer is actually yes. There is another definition of aperiod-
icity using maximal irreducible measure (usually denoted by ψ(·)), where the measure ψ(·)
is ”maximal” in the sense that φ� ψ for any probability measure φ(·) on X which makes
P φ−irreducible. It might be surprising that such ψ exists for any φ−irreducible chain.
Then this allows us to define aperiodicity without using π(·), by requiring ψ((

⋃
Xi)c) = 0

instead of π(X1) = 0. To see the equivalence of these two definitions, see [1].

Running Example Continued. There is no additional assumptions necessary to ensure
aperiodicity. To see this, suppose that X1 and X2 are disjoint subsets of X both of positive
π measure, with P (x,X2) = 1 for all x ∈ X1. But just take any x ∈ X1, then since X1 must
have positive Lebesgue measure

P (x,X1) ≥
∫
y∈X1

q(x, y)α(x, y)dy > 0

This contradicts P (x,X1) ≤ 1 − P (x,X2) = 0. Therefore aperiodicity must hold.(It is
rather rare for MCMC algorithms to be periodic, as aperiodicity )

Now we can state the main asymptotic convergence theorem, which assumes that the
state space’s σ-algebra is countably generated, but this is a very weak assumption which
is true for e.g. any countable state space, or any subset of Rd with the usual Borel σ-algebra.
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Theorem 4. If a Markov chain on a state space with countably generated σ-algebra is
φ-irreducible and aperiodic, and has a stationary distribution π(.), then for π−a.e. x ∈ X .

lim
n→∞

||Pn(x, .)− π(.)|| = 0

In particular, limn→∞ P
n(x,A) = π(A) for all measurable A ⊆ X

Remark: Sometimes π-a.e. might not be as strong as it looks like. We will discuss this
problem in Example 3.

Fact: If Markov Chain is φ irreducible and aperiodic, and has a stationary distribution
π(·), if h : X → R with π(|h|) <∞, then a ”strong law of large numbers” also holds:

P [ lim
n→∞

(1/n)

n∑
i

h(Xi) = π(h)] = 1

Recall that the statement of the classical strong law of large numbers theorem is: For infi-
nite i.i.d. sequence Xi of copies of X, with |E(x)| <∞. Then P [limn→∞ X̄n = E(X)] = 1.
Here, we consider positive recurrent chain possessing invariant probability π, the ”Strong
LLN” states that (1/n)

∑n
i h(Xi) converges to π(h) = Eπ(h(X)), the steady state expec-

tation of h(X).

Example 3. This example illustrates the importance of π-a.e for Theorem 4. Let
X = 1, 2, .... Let P (1, 1) = 1, and for x ≥ 2.P (x, 1) = 1/x2 and P (x, x + 1) = 1 − (1/x2).
Then chain has stationary distribution π(·) = δ1(·), that is for state 1, π1 = 1 and other
state πi = 0 for i ≥ 2, and this chain is π-irreducible and aperiodic. On the other hand,
if we do not start from 1, then P (Xn = x + n for all n) = Π∞j=x(1 − (1/j2)) > 0, so that

limn→∞ ||Pn(x, .)− π(.)|| 6= 0. To check this infinite product Π∞j=x1− (1/j2) < 1 does not

converge to 0, suppose j is large, then 1 − (1/j2) ≈ e−1/j2 (since for small x, ex ≈ 1 + x
by Taylor’s expansion). The trick is that j can increase, the whole product is not an in-
finite product of a constant. Π(1 − 1/j2) = e−

∑
1/j2 > 0 since exponential functions are

always positive, and
∑

1/j2 is convergent. This is also why we construct this chain by
P (x, 1) = 1/x2, instead of 1/x. (See Exercise 1.2.1.) In conclusion, Theorem 4 do holds
for π-a.e. x ∈ X , but does not hold for x ≥ 2. This Markov chain is not Harris Recurrent
because it doesn’t go to another state with probability 1, it may have chance to reach far
(big number state), but with only positive probability.

Harris Recurrent Markov Chain: Note that MCMC algorithms are created precisely so
that π(·) is stationary. And obviously φ irreducible and aperiodic, so it applies to theorem
well (for π - a.e). Furthermore, Metropolis algorithm holds the conclusion of the theorem
for all x ∈ X , not just π- a.e. Since the transition kernels P (x, ·) with proposal distribution
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Q(x, ·) are all absolutely continuous with respect to π(·). It is also Harris recurrent: for
all B ⊆ X with π(B) > 0, P [∃n : Xn ∈ B|X0 = x] = 1. Equivalently, for discrete Markov
Chain, Harris recurrent holds iff there exists y ∈ X such that Px[τ(y) <∞] = 1 for some
y, τ(y) = inf (n > 1 : Xn = y). This implies that the chain for sure will eventually reach
B/y from x. Harris Recurrence is a stronger condition than π irreduciblity, and it can be
proved that Harris recurrent Markov chain satisfies minorization condition as we’ll discuss
later.

Corollary. If a Markov Chain is φ-irreducible, with period d ≥ 2, and has a stationary
distribution π(·), then for π-a.e. x ∈ X ,

lim
n→∞

∥∥∥∥∥(1/d)
n+d−1∑
i=n

P i(x, ·)− π(·)

∥∥∥∥∥ = 0,

and also the “strong law of large number” still holds without change.

Proof. Let this Markov Chain P have periodic decomposition X1, ...,Xd ⊆ X . And we
define a new Chain P ′ as a d-step chain P d restrict to X1. Then it is obvious that P ′ is φ-
irreducible and aperiodic on X1. And now we define π′(A) = dπ(A∩X1) for all measurable
A ⊆ X . Because with disjoint X1, ...,Xd ⊆ X , for all i = 1, .., d − 1, P (x,Xi+1) = 1 for all
x ∈ Xi and P (x,X1) = 1 for all x ∈ Xd. And we observe that

π(X2) =

∫
X
π(dx)P (x,X2)

≤
∫
X1

π(dx)P (x,X2)

= π(X1)

Similarly, we have π(X1) ≤ π(X2) ≤ · · · ≤ π(Xd) ≤ π(X1). Therefore we can conclude that
π(X1) = · · · = π(Xd) = 1/d.
Since π′(X1) = dπ(X1) = d ∗ (1/d) = 1, π′ is a probability measure. Now let A ⊆ X1, we
have ∫

X1

π′(dx)P d(x,A) =

∫
X1

dπ(dx)P d(x,A)

= d

∫
X1

π(dx)P d(x,A) = dπ(A) = π′(A)

Therefore π′ is stationary for P ′. Now we observe that for any measurable A ⊆ X ,

1

d

d−1∑
j=0

(π′P j ∗ P )(A) =
1

d

d∑
j=1

(π′P j)(A) =
1

d

d−1∑
j=0

(π′P j)(A) + π′(A) =
1

d

d−1∑
j=0

(π′P j)(A)
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And since

1

d

d−1∑
j=0

(π′P j)(X ) =
1

d
d
d−1∑
j=0

(πP j)(X1) = dπ(X1) = d ∗ 1

d
= 1

Therefore by uniqueness, it is true that π′ satisfy that π(·) = (1/d)
∑d−1

j=0(π′P j)(·). Now
without loss of generality, we assume x ∈ X1. And let n = md with m → ∞, then for
j ∈ N, by Proposition 3(d), we have∥∥∥Pmd+j(x, ·)− (π′P j)(·)

∥∥∥ ≤ ∥∥∥Pmd(x, ·)− π′(·)∥∥∥
Then we have∥∥∥∥∥(1/d)

md+d−1∑
i=md

P i(x, ·)− π(·)

∥∥∥∥∥ =

∥∥∥∥∥∥(1/d)
d−1∑
j=0

Pmd+j(x, ·)− (1/d)
d−1∑
j=0

(π′P j)(·)

∥∥∥∥∥∥
≤ (1/d)

d−1∑
j=0

∥∥∥Pmd+j(x, ·)− (π′P j)(·)
∥∥∥

≤ (1/d)
d−1∑
j=0

∥∥∥Pmd(x, ·)− π′(·)∥∥∥ .
Now we apply Theorem 4 to P ′, we then obtain that limm→∞

∥∥Pmd(x, ·)− π′(·)∥∥ = 0.
for π′-a.e. x ∈ X1. By replacing md with n, we have

lim
n→∞

∥∥∥∥∥(1/d)

n+d−1∑
i=n

P i(x, ·)− π(·)

∥∥∥∥∥ ≤ (1/d)
∑

lim
m→∞

∥∥∥Pmd(x, ·)− π′(·)∥∥∥ = 0

Furthermore, let h : X → R, with π(|h|) < ∞, and let P̄ be the transit kernel of X1 ×
... × Xd which corresponding to the sequence {(Xmd, Xmd+1..., Xmd+d−1)}∞m=0. Now let
h̄(x0, ..., xd−1) = (1/d)

∑d−1
j=0 h(xj). Similar to P ′, we can see that P̄ is φ-irreducible

and aperiodic since each components in the product are so. And we have the stationary
distribution

π̄ = π′ × (π′P )× ...× (π′P d−1)

Therefore with the assumption of h, by applying the above Fact to P̄ and h̄, we can
establish that

lim
n→∞

(1/n)

n∑
i=1

h̄(Xid, Xid+1..., Xid+d−1) = π̄(h̄) w.p. 1.
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Remark. If we have a irreducible Markov Chain with finite state space, we do not need
the assumption of periodicity to establish above corollary.

To consider the quantitative rate of convergence on
∥∥(1/n)

∑n
i=1 P

1(x, ·)− π(·)
∥∥, we

need to use shift-coupling technique.

6 Uniform Ergodicity

Definition. A Markov chain with stationary π(.) is uniformly ergodic if

||Pn(x, .)− π(.)|| ≤Mρn

for some ρ < 1 and M <∞.

Proposition. A Markov chain with stationary π(.) is uniformly ergodic if and only if
supx∈X ||Pn(x, .)− π(.)|| < 1

2 for some n ∈ N.

Proof. If the Markov chain is uniformly ergodic, it is very easy to see that since ρ < 1,M <
∞, there will be a n large enough such that:

||Pn(x, .)− π(.)|| ≤Mρn <
1

2

for all x ∈ X .
Now, assume supx∈X ||Pn(x, .)− π(.)|| < 1

2 for some n ∈ N.
Define T (n) = 2 supx∈X ||Pn(x, .)−π(.)|| = β < 1. Then by Proposition 3(e), T (n) satisfies
the sub-multiplicity property such that for all j ∈ N, T (jn) ≤ (T (n))j = βj . Furthermore,
setting j = bmn c and using Proposition 3(c):

||Pm(x, .)− π(.)|| ≤ ||P (jn)(x, .)− π(.)|| ≤ 1

2
T (jn) ≤ (T (n))j ≤ βj ≤ β−1(β

1
n )m

with T (jn) = 2 supx∈X ||Pn(x, .)−π(.)||. Then the chain is uniformly ergodic withM = β−1

and ρ = β
1
n .

Remark. The same statement is true when 1
2 is substituted with any 0 < δ < 1

2 as we
can apply the same proof above.

In order to develop further conditions on uniform ergodicity, we need some definitions.

Definition. A subset C ⊆ X is small (or (n0, εn0 , v)-small) if there exists a n0 ∈ Z, ε > 0,
and a probability measure v(.) on X such that the following minorization condition holds:

Pn0(x, .) ≥ εv(.) x ∈ C
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Remark. Some other versions of this definition also require that C have positive station-
ary measure. However, we do not require this since π(C) > 0 will be satisfied under the
assumption of the drift condition considered in the next section.

Intuitively, we can think of this n0-step transition will have a ε-overlap in probability.
Now, realize that if X is countable, and if∑

y∈X
inf
x∈C

Pn0(x, {y}) > 0,

then we can set εn0 =
∑

y∈X infx∈C P
n0(x, {y}), and for y ∈ X , let v({y}) = ε−1

n0
infx∈C

Pn0(x, {y}), it’s easy to see that C is (n0, εn0 , v)-small. This fact is useful in that for an
irreducible (or simply indecomposible) and aperiodic chain on a finite state space, we will
have εn0 > 0 for sufficiently large n0. Generalizing to a continuous space, if the transition
probabilities have densities with respect to some measure η(.), i.e. if Pn0(x, dy), then we
can take εn0 =

∫
y∈X (infx∈X pn0(x, y))η(dy). This leads us to the concluding theorem of

this section, whose proof uses a technique called coupling, which will be introduced in the
next section.

Theorem 8. Consider a Markov chain with invariant probability distribution π(.). Sup-
pose X is (n0, εn0 , v)-small, then the chain is uniformly ergodic. Furthermore,

||Pn(x, .)− π(.)|| ≤ (1− ε)b
n
n0
c

Therefore, Theorem 8 allows us to bound the distance to stationarity quantitatively!

Definition. A subset C ⊆ X is pseudo-small if there exists a n0 ∈ Z, ε > 0, and
a probability measure vxy(.) on X such that for all x, y ∈ C, Pn0(x, .) ≥ εvxy(.) and
Pn0(y, .) ≥ εvxy(.).

Remark. Theorem 8 will remain true if the assumption of the state space being small is
replaced by pseudo-small because we will use pairwise coupling in our proofs.

Running example, continued. In the previous section, we applied some of our re-
sults to a MCMC running example. Now, we look at whether we can apply the definition
of small to it. It turns out that in the general set up of our running example, all compact
sets on which πu is bounded are small. To see this, suppose C is a compact set on which π
is bounded by k <∞. Take any point x in C, and let D be any compact set with positive
π and Lebesgue measure. Let ε = infa,b∈C∪D q(a,b), M = supx∈C,y∈D q(x,y). Then, we
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can conclude that for any x ∈ C, y ∈ X , M ≥ q(x,y) ≥ ε, q(y,x) ≥ ε, and π(x) ≤ k.
Then

P (x, dy) ≥ q(x,y) min{1, πu(y)q(y,x)

πu(x)q(x,y)
} ≥ εmin{1, πu(y)ε

Mk
}

Thus for any y ∈ X ,

P (x, dy) ≥ ε1D min{1, πu(y)ε

Mk
}

We see that the right hand side is a positive measure that does not depend on x, so the
compact set C is small, and we can easily bound the convergence rate.

However, most MCMC algorithms are not uniformly ergodic, so we will have to use a
more general theorem to bound their rates of convergence.

7 Geometric Ergodicity

A weaker condition than uniform ergodicity.
Definition. A Markov chain with stationary distribution π(.) is geometrically ergodic if

||Pn(x, .)− π(.)|| ≤M(x)pn, n = 1, 2, 3...

for some p < 1 where M(x) <∞ for π-a.e. x ∈ X
If X is finite, then all irreducible and aperiodic Markov chains are geometrically (in

fact, uniformly) ergodic. If X is infinite, however, this is not always the case. So it is
reasonable to question that in which case the geometric ergodicity is guaranteed. (Spoiler
alert: we will assume two more conditions, minorization condition and drift condition)

Definition. Given Markov chain transition probabilities P on a state space X , and a
measurable function f : X → R, define the function Pf : X → R such that (Pf)(x)
is the conditional expected value of f(Xn), given that Xn = x. In symbols, (Pf)(x) =∫
y∈X f(y)P (x, dy).

Definition. A Markov chain satisfies a drift condition (or, univariate geometric drift
condition) if there are constants 0 < λ < 1 and b < ∞, and a function V : X → [1,∞]
such that:

PV ≤ λV + b1C ,

i.e. such that
∫
X P (x, dy)V (y) ≤ λV (x) + b1C for all x ∈ X

The main result guaranteeing geometric ergodicity is:
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Theorem 9. Consider a φ-irreducible, aperiodic Markov chain with stationary distri-
bution π(.). Suppose the minorisation condition is satisfied for some C ⊂ X and ε > 0
and probability measure v(.). Suppose further that the drift condition is satisfied for some
constants 0 < λ < 1 and b <∞, and a function V : X → [1, 0] for at least one (and hence
for π-a.e.) x ∈ X . Then the chain is geometrically ergodic.
(why these conditions can guarantee geometric ergodicity?)

Fact 10. In fact, it follows from Theorems 15.0.1, 16.0.1, and 14.3.7 of Meyn and
Tweedie[1], and Proposition 1 of [2], that the minorisation condition and drift condition
of Theorem 9 are equivalent (assuming φ-irriducibility and aperiodicity) to the apparently
stronger property of ”V-uniform ergodicity” i.e. that there is C <∞ and p < 1 such that

sup
|f |≤V

|Pnf(x)− π(f)| ≤ CV (x)pn, x ∈ X

Example 4. This is a example that demonstrates the geometric ergodicity of Metropolis
algorithms on R (section 2.1 of the paper). Let X = R+ and πu(x) = e−x. Let the proposal
distribution q(x, y) = q(|y − x|) with support contained in [x− a, x+ a]. Let V (x) = ecx ,
for some c > 0, be the drift function, and the proposal distribution q(x, y) = q(|y − x|) be
symmetric. For x ≥ a, Note

α(x, y) = min{1, πu(y)q(y, x)

πu(x)q(x, y)
} = min{1, πu(y)

πu(x)
} (since q is symmetric)

Then since πu(x, y) = e−x is decreasing,

α(x, y) =

{
1, y < x
πu(y)
πu(x) , y ≥ x
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Then we can try to piece together a drift condition by:

PV (x) =

∫ x+a

x−a
V (y)P (x, dy) + V (x)

∫ x+a

x−a
(1− P (x, dy))

=

∫ x+a

x−a
V (y)q(x, y)α(x, y)dy +

∫ x+a

x−a
V (x)q(x, y)(1− α(x, y))dy

= (

∫ x

x−a
V (y)q(x, y)dy +

∫ x+a

x
V (y)q(x, y)

πu(y)

πu(x)
dy)

+ (0 +

∫ x+a

x
V (x)q(x, y)(1− πu(y)

πu(x)
)dy)

=

∫ x+a

x
V (2x− y)q(x, y)dy︸ ︷︷ ︸

change of variable

+

∫ x+a

x
V (y)q(x, y)

πu(y)

πu(x)
dy

+

∫ x+a

x
V (x)q(x, y)(1− πu(y)

πu(x)
)dy

=

∫ x+a

x
q(x, y)[

V (y)πu(y)

πu(x)
+ V (2x− y) + V (x)(1− πu(y)

πu(x)
)]dy

Now we try to bound the equation inside the integral, let u = y − x:

V (y)πu(y)

πu(x)
+ V (2x− y) + V (x)(1− πu(y)

πu(x)
) = ecx[e(c−1)u + e−cu + 1− e−u]

= 2(1− (1 + e(c−1)u)(1− e−cu)

2
)ecx

= 2(1− ε)V (x)

where ε = (1+e(c−1)u)(1−e−cu)
2 . Notice if c < 1, then 0 < ε < 1. We then take a particular

ε ∈ (0, 1) such that

V (y)πu(y)

πu(x)
+ V (2x− y) + V (x)(1− πu(y)

πu(x)
) ≤ 2(1− ε)V (x)

for any u (this is possible as u has a compact support), so that

PV (x) ≤ V (x)(1− ε)
∫ x+a

x
2q(x, y)dy = (1− ε)V (x).

Furthermore, it is easy to show that PV (x) is bounded on [0, a], and since [0, a] is
compact, it is a small set. Thus we’ve shown that both the minorization condition and
drift condition holds. The algorithm is geometrically ergodic by Theorem 9.
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Remark. Geometric ergodicity is often an useful property; however, it doesn’t prove
to be too helpful in certain situations.

Example 5. Consider an independent sampler, with π(.) an Exponential(1) distribution,
and Q(x, .) an Exponential(λ). If we run the MCMC with 0 < λ ≤ 1, then the sampler is
geometrically ergodic (as shown above with the case λ = 1), has central limit theorems,
and have nice properties. However, if λ > 1, the sample is no longer geometrically ergodic.
In fact, simulations indicate that when λ = 5, when started at stationarity and averaged
over the first million iterations, the sampler will miss return a value that typically misses
the target and occasionally becomes very large, leading to very unstable behaviour. This is
a scenario where the property of geometric ergodicity is useful in telling us the convergence
behaviours of MCMC algorithms.

Example 6. Let X = [0, 1], δ = 10−100, 0 < a < 1− δ, πu(x) = δ + 1[a,a+δ](x). Then:

π([a, a+ δ]) =

∫
[a,a+δ] πu(x)dx∫

[0,1] πu(x)dx

≈ δ

2δ
=

1

2

Now consider an algorithm with an uniformly distributed proposal function. Since the
interval [a, a+ δ] is really small, unless the sampler gets really lucky, the result will appear
as converging to Uniform(X ) distribution. Nevertheless, this algorithm is still geometri-
cally ergodic (even uniformly ergodic since it’s irreducible, aperiodic, and the state space
is finite).

Example 7. Let X = R, πu(x) = 1
1+x2

. Then a random walk Metropolis algorithm
with proposal function distributed Uniform[x− 1, x+ 1] is ergoidc but is not geometrically
ergodic. However, is we truncate the tail of πu to π′u(x) = πu(x)1|x|≤10100 , then the algo-
rithm is geometrically and uniformly ergodic. However, the two algorithms are essentially
the same, and in this case geometric ergodicity don’t tell us much at all.

These examples demonstrates the limitation of qualitative convergence properties and
forces us to come up with more quantitative bounds on Markov chain convergence.

8 Quantitative Convergence Rates

Seeing the limitations of uniform ergodicity and geometric ergodicity, we begin to search
for a quantitative bound on convergence rates, i.e. ||Pn(x, .)− π(.)|| ≤ g(x, n) for some ex-
plicit function g(x, n), which is small for large n (hopefully), so we can bound convergence
rate efficiently.

27



Definition. Bivariant Drift condition:

P̄ h(x, y) ≤ h(x, y)/α, (x, y) /∈ C × C

for some function h : X → X → [1,∞) and some α > 1, where

P̄ h(x, y) ≡
∫
X

∫
X
h(z, w)P (x, dz)P (y, dw)

(P̄ represents running two independent copies of the chain) This equation of P̄ represents
the expectation of h(·, ·) after one move, starting from the point (x, y). The bivariate drift
condition can be understood as: if the pair of Markov chains is both outside of the pair
of small sets C × C (the region where they can couple), then both chains will drift back
towards it. The expression seems very difficult to compute, but there is actually a connec-
tion between univariate drift condition introduced above, which is easier to find, and the
bivariant drift condition:

Proposition 11. Suppose the univariant drift condition is satisified for some V : X →
[1,∞], C ∈ X , 0 < λ < 1 and b <∞. Let d = infx∈Cc V (x). If c = d > [b/(1−λ)]−1, then
the bivariate drift condition is satisified for the same C, with h(x, y) = 1

2 [V (x) +V (y)] and
α−1 = λ+ b/(d+ 1) < 1. That is P̄ h(x, y) ≤ 1

2 [V (x) + V (y)][λ+ b/(d+ 1)].

Proof. For drift condition, consider if (x, y) /∈ C × C, then either x /∈ C, or y /∈ C,
or both. In all cases, since d = infx∈Cc V (x), and at most one chain out of the pair (x, y)
is in C, we can bound h(x, y) ≥ (1 + d)/2. Since the univariant drift condition holds,
PV ≤ λV + b1C , then PV (x) + PV (y) ≤ λV (x) + λV (y) + b:

P̄ h(x, y) =
1

2
[PV (x) + PV (y)] ≤ 1

2
[λV (x) + λV (y) + b]

= λh(x, y) + b/2 ≤ λh(x, y) + (b/2)[h(x, y)/((1 + d)/2)]

= [λ+ b/(1 + d)]h(x, y) = h(x, y)/α

Now, let B = max{1, α(1− ε) supC×C R̄h} where

R̄h(x, y) ≡
∫
X

∫
X

(1− ε)−2h(z, w)(P (x, dz)− εv(dz))(P (y, dw)− εv(dw))

The expression of R̄h could be interpreted as the residual expectation, or the expectation
of h in the event that two chains fail to couple with probability ε. In terms of these assump-
tions made above, we can state our main result for a qualitative bound on the convergence
rate:
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Theorem 12. Consider a Markov chain on a state space X , having transition kernel
P . Suppose there is C ⊂ X , h : X × X → [1,∞)), a probability distribution v(·) on X ,
α > 1, and ε > 0, B as defined above. If these conditions in the section all hold, Then for
any joint initial distribution L(X0, X

′
0), and any integer 1 ≤ j ≤ k, if {Xn} and {X ′n} are

two copies of the Markov chain started in the joint distribution L(X0, X
′
0), then

||L(Xk)− L(X ′k)||TV ≤ (1− ε)j + α−kBj−1
n0 E[h(X0, X

′
0)].

The formal proof will be given at next section using coupling constructions.

Convergence Diagnostics In many complicated Markov Chain, it may be difficult to
satisfy the condition of theorem 12 and apply successfully. In such cases, MCMC practi-
tioners will instead use ”convergence diagnostics”. In statistic, diagnostics involve doing
statistical analysis of the realised output X1, X2, ..., to check if the distribution of Xn ap-
pear to be stable for large enough n. This is like ”Law of Large numbers”, and in idea of
Monte Carlo Simulation. For MCMC, we Run the Markov chain repeatedly from different
initial states, and check if the chain all converge to approximately the same distribution.
In practice, this works well, but also it can introduce bias into the resulting estimates.

9 Convergence Proofs using Coupling Constructions.

9.1 The Coupling Inequality.

Suppose we have two random variables X and Y which are defined jointly on a common
state space X , their probability distribution L(X) and L(Y ) have property that

‖L(X)− L(Y )‖ = sup
A
|P (X ∈ A)− P (Y ∈ A)|

= sup
A
|P (X ∈ A,X = Y ) + P (X ∈ A,X 6= Y )

− P (Y ∈ A, Y = X)− P (Y ∈ A, Y 6= X)|
= sup

A
|P (X ∈ A,X 6= Y )− P (Y ∈ A, Y 6= X)|

≤ P (X 6= Y )

Therefore we have
‖L(X)− L(Y )‖ ≤ P (X 6= Y ) (1)

9.2 The Coupling Loop on Small Set

Suppose now that C is a small set. We shall use the following coupling construction by
using splitting technique. We will run two copies {Xn} and {X ′n} of the Markov Chain.
And we update them as follow.
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To start with splitting technique, we let X0 = x and X ′0 ∼ π(·). And n = 0, then we
repeat the following loop.
Beginning of the loop. Given Xn and X ′n,
1. If Xn = X ′n, we choose Xn+1 = X ′n+1 ∼ P (Xn, ·), and replace n by n+ 1.
2. Else, if (Xn, X

′
n) ∈ C ×C, then w.p. ε, we choose Xn+n0 and X ′n+n0

and w.p. 1− ε, we
conditionally independently choose (since we have minorisation condition)

Xn+n0 ∼
Pn0(Xn, ·)− εν(·)

1− ε

X ′n+n0
∼ Pn0(X ′n, ·)− εν(·)

1− ε

If n0 > 1, for completeness, we construct Xn+1, . . . , Xn+n0−1 from their correct conditional
distributions given X0 and Xn+n0 . And similarly for X ′n+1, . . . , X

′
n+n0−1. And we replace

n by n+ n0.
3. Else, conditionally independently choose Xn+1 ∼ P (Xn, ·) and X ′n+1 ∼ P (X ′n, ·) and
replace n by n+ 1.
Then we return to the beginning of the loop.

The above construction let two chains {Xn} and {X ′n} update over transit kernel P .
So we have,

P [Xn ∈ A] = Pn(x, ·); P [X ′n] = π(A) for all n

We can also see that the two chains are run independently until they both enter C. And
we will provide way later to obtain a better bound on ‖Pn(Xn, ·)− π(·)‖ other than the
result from coupling inequality.

9.2.1 Proof of Theorem 8.

Recall Theorem 8: Consider a Markov chain with invariant probability distribution π(.).
Suppose X is (n0, εn0 , v)-small, then the chain is uniformly ergodic. Furthermore,

||Pn(x, .)− π(.)|| ≤ (1− ε)b
n
n0
c

Proof. In this case, we have C = X . Therefore we will only consider step 2 of the above
loop. Since for every n0, we have at least the probability of ε to make Xn = X ′n. Consider
a n0-step chain, by coupling inequality, let n = n0m (have m chances to couple), so

‖Pn(Xn, ·)− π(·)‖ ≤ P [Xn 6= X ′n] ≤ (1− ε)m = (1− ε)n/n0

Now for any n, we have bn/n0c ≤ m, let z = n0bn/n0c, so z ≤ n. And by Proposition 3(c),
we have that

‖Pn(Xn, ·)− π(·)‖ ≤ ‖P z(Xn, ·)− π(·)‖ ≤ (1− ε)bn/n0c
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9.3 Proof of Theorem 12.

Recall Theorem 12: Consider a Markov chain on a state space X , having transition
kernel P . Suppose there is C ⊂ X , h : X ×X → [1,∞)), a probability distribution v(·) on
X , α > 1, and ε > 0, B as defined above. If these conditions in the section all hold, Then
for any joint initial distribution L(X0, X

′
0), and any integer 1 ≤ j ≤ k, if {Xn} and {X ′n}

are two copies of the Markov chain started in the joint distribution L(X0, X
′
0), then

||L(Xk)− L(X ′k)||TV ≤ (1− ε)j + α−kBj−1
n0 E[h(X0, X

′
0)].

Proof. First we choose X0 and X ′0 from the initial distribution and doing the coupling loop
as above. Therefore we have the following inequality∥∥L(Xk)− L(X ′k)

∥∥ ≤ P [Xk 6= X ′k] (2)

Now let
Nk = #{m : 0 ≤ m ≤ k, (Xm, X

′
m) ∈ C × C}

Therefore Nk is the cardinality the set of times where {(Xn, X
′
n)} successfully visit to C×C

and we names this set’s elements τ1, τ2, ... Then for any integer j with 1 ≤ j ≤ k,

P [Xk 6= X ′k] = P [Xk 6= X ′k, Nk−1 ≥ j] + P [Xk 6= X ′k, Nk−1 < j] (3)

Since {Xk 6= X ′k, Nk−1 > j} including the event that first 1 − ε event happens. Therefore
we have

P [Xk 6= X ′k, Nk−1 ≥ j] ≤ (1− ε)j . (4)

Now we only need to bound P [Xk 6= X ′k, Nk−1 < j].
Let

Mk = αkB−Nk−1h(Xk, X
′
k)1(Xk 6= X ′k), k = 0, 1, 2, ...

where N−1 = 0. Now we claim following lemma.

9.3.1 Lemma 13. {Mk} is a supermartingale

We want to show that
E[Mk+1|Xk, X

′
k] ≤Mk

Now we consider two scenarios. First if (Xk, X
′
k) /∈ C × C, we know that Xk+1 6= X ′k+1

and Nk = Nk−1, so

E[Mk+1|Xk, X
′
k] = αk+1B−Nk−1E[h(Xk+1, X

′
k+1)|Xk, X

′
k]

= Mk

E[h(Xk+1, X
′
k+1)|Xk, X

′
k]

h(Xk, X
′
k)/α

(5)
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So the drift condition implies that the fraction part of (5) is less then 1, so

E[Mk+1|Xk, X
′
k] ≤Mk

Second scenario is when (Xk, X
′
k) ∈ C × C, then Nk = Nk−1 + 1. Since if Xk = X ′k, we

have Xk+1 = X ′k+1 and E[Mk+1] = E[Mk] = 0,so here we assume Xk 6= X ′k. Now we have

E[Mk+1|Xk, X
′
k] = αk+1B−Nk−1−1E[h(Xk+1, X

′
k+1)1(Xk 6= X ′k)|Xk, X

′
k]

= Mk

αE[h(Xk+1, X
′
k+1)1(Xk 6= X ′k)|Xk, X

′
k]

Bh(Xk, X
′
k)

(6)

Since Xk 6= X ′k and we have a ε-coin to decide whether Xk+1 6= X ′k+1 or Xk+1 = X ′k+1, so

E[h(Xk+1, X
′
k+1)|Xk, X

′
k] = (1− ε)R̄h(Xk, X

′
k) + ε ∗ 0

Therefore the fraction part of (6) becomes

α(1− ε)R̄h(Xk, X
′
k)

Bh(Xk, X
′
k)

=
α(1− ε)R̄h(Xk, X

′
k)

max[1, α(1− ε) supC×C R̄h]h(Xk, X
′
k)

≤
α(1− ε) supC×C R̄h(Xk, X

′
k)

max[1, α(1− ε) supC×C R̄h]h(Xk, X
′
k)

= min[1, α(1− ε) sup
C×C

R̄h]
1

h(Xk, X
′
k)

≤ 1

h(Xk, X
′
k)
≤ 1 (7)

Therefore by (7) we have that under the second scenario,

E[Mk+1|Xk, X
′
k] ≤Mk

Now we combine two scenarios and conclude that {Mk} is a supermartingale. And we
come back to the second term of (3). Since B > 1, we have

P [Xk 6= X ′k, Nk−1 < j] = P [Xk 6= X ′k, Nk−1 ≤ j − 1]

≤ P [Xk 6= X ′k, B
−Nk−1 ≥ B−(j−1)]

= P [1(Xk 6= X ′k)B
−Nk−1 ≥ B−(j−1)] (8)

By applying Markov’s Inequality (P(X≥a) ≤ E(X)
a ) to (8), we get

P [1(Xk 6= X ′k)B
−Nk−1 ≥ B−(j−1)] ≤ E[1(Xk 6= X ′k)B

−Nk−1 ]Bj−1 (9)
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Since h : X × X → [1,∞), and the property of supermartingale, we have

E[1(Xk 6= X ′k)B
−Nk−1 ] ≤ E[1(Xk 6= X ′k)B

−Nk−1h(Xk, X
′
k)] = E[Mk]α

−k ≤ E[M0]α−k

(10)
By combining (8), (9) and (10), we have

P [Xk 6= X ′k, Nk−1 < j] ≤ Bj−1α−kE[M0] = Bj−1α−kE[h(X0, X
′
0)] (11)

By combining (2), (3), (4) and (11), we conclude for n0 = 1,∥∥L(Xk)− L(X ′k)
∥∥ ≤ (1− ε)j + α−kBj−1E[h(X0, X

′
0)].

Now if n0 > 1, we will adjust a few details of the above process. Here we will not count the
visit time which corresponding to filling in times during the construction of Xn+1, ..., Xn+n0

(and similarly for X ′), becasue in these filling times we cannot couple the joint chain. And
we let Nk be the time of visit to C×C and with its {τi}, avoiding filling in times. Now we
replace Nk−1 in (3) with Nk−n0 . And we claim Mt(k) is a supermartingale where t(k) is the
latest time ≤ k such that it does not correspond to filling in times. And we can complete
proof by continue the previous process with these changes.

9.4 Proof of Theorem 9.

Recall Theorem 9: Consider a φ-irreducible, aperiodic Markov chain with stationary
distribution π(.). Suppose the minorisation condition is satisfied for some C ⊂ X and
ε > 0 and probability measure v(.). Suppose further that the drift condition is satisfied for
some constants 0 < λ < 1 and b <∞, and a function V : X → [1, 0] for at least one (and
hence for π-a.e.) x ∈ X . Then the chain is geometrically ergodic.

We will prove by using Theorem 12, shows that it satisfy bivariate drift condition. Now
set h(x, y) = 1

2 [V (x) + V (y)]. Now we will introduce a few statements which will be useful
for the proof.

9.4.1 Lemma 14.

We may assume with out the loss of generality that

sup
x∈C

V (x) <∞

Specifically given a small set C and drift function V satisfying both minorisation and drift
condition, we can find a smaller set C0 ⊆ C such that it can still satisfy those conditions.
Then for C0 we have λ0 instead of λ. And the above inequality still hold.

Proof. The drift condition gives that for 1 < λ < 1, and b < ∞ and V : X → [1,∞), we
have

PV ≤ λV + b1c
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Now we choose δ with 0 < δ < 1− λ, and let λ0 = 1− δ; K = b/(1− λ− δ), and set

C0 = C ∩ {x ∈ X : V (x) ≤ K}.

It is clear that the minorisation condition still holds for C0 since C0 ⊆ C. And drift
condition still holds for x ∈ C0 and x ∈ X \ C because λ ≤ λ0. Now for x ∈ C \ C0, we
have

(PV )(x) ≤ λV (X) + b1c(x) = (1− δ)V (x)− (1− δ − λ)V (x) + b

≤ (1− δ)V (x)− (1− δ − λ)K + b = (1− δ)V (x) = λ0V (x)

Therefore we have
(PV )(x) ≤ λ0V (x) + b1C0(x)

for all x ∈ X .

9.4.2 Proposition 15.

For a geometrically ergodic Markov Chain, with small set C, and drift function V satisfying
both minorisation and drift conditions, there does not exist a drift function V0 : X → [0,∞),
with the property upon replacing V with V0 while both conditions and supx∈C V (x) < ∞
still holds.

Proof. Consider the Markov Chain on X = (0,∞), define as follow. For 0 < x ≤ 1,
P (x, ·) = 1

2λ(·) + 1
2δh(x)(·), where λ is the Lebesgue measure on (0, 1) and h(x) = 1 +√

log(1/x). For 1 < x ≤ 2, P (x, ·) is uniform on [1/2, 1]. For x > 2, P (x, ·) = δx−1(·). For

this chain at interval C = (0, 1), we have
∫ 1

0 h(x)dx = 1 +
√
π/2 <∞, since C have a finite

mean of returning times, so we conclude that C has a stationary distribution (Renewal
theory). Let V (x) = max(ex, x−1/2) be drift function, we can compute (PV )(x).

(PV )(x) =
1

2
V (h(x)) +

1

2

∫ 1

0
V (y)dy

=
1

2
max(exp(1 +

√
log(1/x)), (1 +

√
log(1/x))−1/2) +

1

2

∫ 0.462

0
y−1/2dy +

1

2

∫ 1

0.462
eydy

≈ 1.2981c(x) + 1.36 exp(
√

log(1/x))

Since we know argmincV (x) = 0.462 and we calculate 1.36 exp(
√

log(1/0.462)) ≈ 2.461,
and
0.8V (0.462) ≈ 1.27. Therefore we have

(PV )(x) ≈ 1.2981c(x) + 0.8V (x) + 1.1911c(x)

≈ 2.491c(x) + 0.8V (x)
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So we can also verify that (PV )(x) ≤ 0.8V (x) + 41c(x), therefore by theorem 9, we have
that this chain is geometrically ergodic.
Now suppose we have some V0 satisfying drift condition with supx∈C V0(x) <∞. And since

(PV0)(x) = 1
2V0(h(x)) + 1

2

∫ 1
0 V0(y)dy, we have supx∈C V0(h(x)) <∞,i.e. V0(h) is bounded

on (0, 1] which implies V0 is bounded on entire X . By Fact 10, we conclude that this Chain
is uniform ergodic. By contradiction, we have completed this proof.

With lemma 14 and proposition 15, we know that we can choose a smaller subset of
small set and still keep the drift condition true, but we cannot replace new V0 when keeping
the same small set.
Now we can assume supx∈C V (x) <∞. And with drift condition, we have

sup
(x,y)∈C×C

R̄h(x, y) <∞

which ensure that Bn0 is finite.
Now let d = infCc V (x), then by Proposition 11, the bivariate drift condition still hold and
gives d > b/(1− λ)− 1, which will simply gives theorem 9.
Note. d ≤ b/(1− λ)− 1 will not let this argument go through. In fact, d > b/(1− λ)− 1
ensure that the chain is aperiodic. Without this we must assume the periodicity of the
Chain.
Next, our plan is to enlarge C so that the new d will satisfy d > b/(1 − λ) − 1, and show
C is still small. Then, we can show it satisfies bivariate drift condition, by theorem 9 it is
geometrically ergodic.
Note. We will have no direct control over the new values of n0 and ε, which is why
this approach does not provide a quantitative convergence rate bound. Let us choose any
d′ > b/(1− λ)− 1 and let S = {x ∈ X , V (x) ≤ d′}. Now set C ′ = C ∪ S, this ensure that
infC′c V (x) ≥ d′ > b/(1 − λ) − 1. Since V is bounded on S, we have supx∈C′ V (x) ≤ ∞.
Therefore the bound on bivariate drift condition implies Bn0 <∞ with C ′ instead of C.
Now to complete the proof of Theorem , we still need following lemmas.

9.4.3 Lemma 16.

C ′ is a small set.

Definition. A subset C ⊆ X , is a petite set relative to a Markov Chain P , if there
exists a positive integer n0, ε > 0, and a probability measure ν(·) on X such that,

n0∑
i=1

P i(x, ·) ≥ εν(·) x ∈ C.

Intuitively, petite set allow the different state in C to cover the minorsation measure εν(·)
at different time i. Clearly, any petite set is small, and the converse is generally false.
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Note that petite set does not rule out the possibilities of the periodic behavior of a chain.
For example some of the state x ∈ C, only cover the minorsation measure at odd times,
and others only at even times. For an aperiodic and φ-irreduciable chain, we have another
result as follow.

9.4.4 Lemma 17.

For an aperiodic and φ-irreduciable Markov Chain, all petite sets are small.
The proof of this lemma is in appendix.

9.4.5 Lemma 18.

Let C ′ = C ∪ S where S = {x ∈ X , V (x) ≤ d′} for some d′ <∞, then C ′ is petite.

Proof. Let N large enough that r ≡ 1− λNd′ > 0. Let τC = inf n ≥ 0;Xn ∈ C be the first
return to C. Let Zn = λ−nV (Xn) and Wn = Zmin(n,τC) By drift condition, we know that
Wn is a supermartingale. If n ≥ τC , we have

E[Wn+1|X0, .., Xn] = E[ZτC |X0, .., Xn] = ZτC = Wn

And if n ≤ τC , then we know that Xn /∈ C. Then we have

E[Wn+1|X0, .., Xn] = λ−(n+1)(PV )(Xn)

≤ λ−(n+1)λV (Xn) = λ−nV (Xn) = Wn

Moreover, for x ∈ S, since V > 1, by Markov’s inequality, we have

P[τC ≥ N |X0 = x] = P[λ−τC ≥ λ−N |X0 = x]

≤ λNE[λ−τC |X0 = x] ≤ λNE[WτC |X0 = x]

≤ λNE[W0|X0 = x] = λNV (x) ≤ λNd′

Therefore P[τC < N |X0 = x] ≥ r.
Since C is (n0, ε, ν)-small, we have Pn0(x, ·) ≥ εν(·) for x ∈ C. Note

N+n0∑
i=1+n0

P i(x, ·) =
N∑
i=1

Pn0P i(x, ·) = Pn0(
N∑
i=1

P i(x, ·))

Since P [τC < N |x0 = x] ≥ r for any x ∈ S,

Pn0(

N∑
i=1

P i(x, ·)) ≥ rPn0(x, ·) ≥ rεv(·)

Hence for x ∈ C ∪ S, we have the previous inequality which shows that C ′ is petite.

Since by previous lemma, we have proven C ′ is small, therefore we have proven theorem
9.
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9.5 Proof of Theorem 4.

Recall Theorem 4: If a Markov chain on a state space with countably generated σ-
algebra is φ-irreducible and aperiodic, and has a stationary distribution π(.), then for
π − a.e. x ∈ X .

lim
n→∞

||Pn(x, .)− π(.)|| = 0

Since Theorem 4 does not assume the existence of small set, therefore we need the
following Theorems 19. The key idea is to extract the part of Pn0(x, ·) which is absolutely
continuous with respect to the measure φ. And then find C with φ(C) > 0 such that the
density of this is at least δ > 0 throughout C.

9.5.1 Theorem 19.

Every φ-irreducible Markov Chain on a state space with countably generated σ-algebra,
contain a small set C ⊆ X such that φ(C) > 0. Moreover for each B ⊆ X with φ(B) > 0,
we have a C ⊆ B with φ(C) > 0. And we take minorsation measure ν(·) such that
ν(C) > 0.

Now if we can show (Xn, X
′
n) will hit C ×C infinitely often, then we will have infinite

opportunities of coupling with probability ≥ ε > 0. Then it will eventuality coupling w.p.
1 due to construction. Hence it will prove Theorem 4.

Now following above idea, we have following lemma.

9.5.2 Lemma 20.

Consider a Markov Chain on state space X , having stationary distribution π(·). Suppose
for some A ⊆ X, we have Px(τA < ∞) > 0 for all x ∈ X , then for π-a.e. x ∈ X ,
Px(τA <∞) = 1.

Proof. Recall that τA = inf{n ≥ 1, Xn ∈ A}. i.e. the first time when Xn enters A. Now
we suppose the contrary which is

π{x ∈ X : Px(τA =∞) > 0} > 0 (12)

i.e. there exists x ∈ X such that it will never return to A.

Step 1 First we want to find δ1 and B1 ⊆ X with π(B1) > 0, such that Px(τA <
∞) ≤ 1 − δ1 for all x ∈ B1. Let An ≡ {x ∈ X : Px(τA < ∞) ≤ 1 − 1

n} and A ≡
{x ∈ X : Px(τA < ∞) < 1}. Clearly An converges A as n goes to infinity. Then since
π(A) = π{x ∈ X : Px(τA = ∞) > 0} > 0, there exists n ∈ Z such that π(An) > 0. We
then set B1 = An and δ1 = 1/n.
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Since Px(τA < ∞) > 0 for all x ∈ X , then we can find `0 ∈ N and δ2 > 0 and
B2 ⊆ B1 with φ(B2) > 0 such that P `0(x,A) ≥ δ2 for all x ∈ B2. To be more specific, let
Ui = {x ∈ B2, P

i(x,A) > 0}. Since Px(τA <∞) > 0 for all x ∈ B2, we have

∞⋃
i=1

Ui = B2

It follows that there must exist one such Ui with π(Ui) > 0 (otherwise π(B2) = 0). So we
can choose Ul0 ⊂ B2 such that π(Ul0) > 0 and P l0(x,A) > 0 for all x ∈ Ul0 . Thus we can
find our desired B2 and δ2 (in the similar way we define B1).

Now let us set η = #{k ≥ 1 : Xk`0 ∈ B2}. Since for x ∈ B2, P `0(x,A) ≥ δ2, we have
Px(τA = ∞) ≤ (1 − δ2). Then for any r ∈ N and x ∈ X , we have Px(τA = ∞, η = r) ≤
(1− δ2)r. In particular Px(τA =∞, η = r) = 0. Therefore, for x ∈ B2

Px(τA =∞, η <∞) = 1−Px(τA =∞, η =∞)−Px(τA <∞)

≥ 1− 0− (1− δ1) = δ1

Note η <∞ if and only if sup{k ≥ 1, Xk`0 ∈ B2} <∞. So

Px(τA =∞, sup{k ≥ 1, Xk`0 ∈ B2} <∞) = Px(τA =∞, η <∞) ≥ δ1

Let Dn ≡ (sup{k ≥ 1, Xk`0 ∈ B2} < n) be an event for any positive integer n. It follows
that Px(τA =∞, Dn) converges to Px(τA =∞, sup{k ≥ 1, Xk`0 ∈ B2} <∞) as n goes to
infinity. So there exists n ∈ Z and δ > 0 such that Px(τA =∞, Dn) > δ. Let ` = n, then

Px(τA =∞, sup{k ≥ 1, Xk`0 ∈ B2} ≤ `) ≥ δ x ∈ B

Since B ∈ B2, we have sup{k ≥ 1, Xk`0 ∈ B} ≤ sup{k ≥ 1, Xk`0 ∈ B2}, then for some
`, `0 ∈ N, δ > 0, we have

Px(τA =∞, sup{k ≥ 1, Xk`0 ∈ B} ≤ `) ≥ δ x ∈ B ⊆ X

Step 2 Following step 1, let L = ``0, and S = sup{k ≥ 1;XkL ∈ B}. Note that we let
S = −∞ if {k ≥ 1;XkL ∈ B} = ∅
If S = r, then after r steps, XkL will never return to A. Also since for any j ∈ N,by
stationarity we have

π(AC) =

∫
x∈X

π(dx)P jL(x,Ac) =

∫
x∈X

π(dx)Px[XjL /∈ A]

≥
j∑
r=1

∫
x∈X

π(dx)Px[S = r,XjL /∈ A]
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Now for all integers 1 ≤ r ≤ j, Then we have∫
x∈X

π(dx)Px[S = r,XjL /∈ A] =

∫
x∈X

π(dx)

∫
y∈B

P rL(x, dy)Px[S = −∞, X(j−r)L /∈ A]

=

∫
y∈B

∫
x∈X

π(dx)P rL(x, dy)Py[S = −∞, X(j−r)L /∈ A]

=

∫
y∈B

π(dy)Py[S = −∞, X(j−r)L /∈ A]

≥
∫
y∈B

π(dy)Px[sup{k ≥ 1;XkL ∈ B} ≤ l, τA =∞]

(as [sup{k ≥ 1;XkL ∈ B} < l] ⊂ [S = −∞] and [τA =∞] ⊂ [X(j−r)L /∈ A])

≥
∫
y∈B

π(dy)δ = π(B)δ

Now we have
π(AC) ≥ jπ(B)δ

Then for j > π(B)δ, we have π(Ac) > 1 which is impossible. Therefore by contradiction,
we have proven Lemma 20.

Now continue on the proof of Theorem 4, we let C be a small set from Theorem 19.
Consider the coupling construction {(Xn, Yn)}). Let G ⊆ X × X be the set of (x, y) such
that P(x,y)[∃n ≥ 1 : Xn = Yn] = 1. So if (X0, Y0) ≡ (x, Y0) ∈ G, then we have

lim
n→∞

‖Pn0(x, ·)− π(·)‖ = 0

proving Theorem 4. And it is sufficient to show that for π-a.e. x ∈ X , we have P[(x, Y0) ∈
G] = 1.
Now let Gx = {y ∈ X ; (x, y) ∈ G} for x ∈ X . And let Ḡ = {x ∈ X ;π(Gx) = 1}. We have
following lemma

9.5.3 Lemma 21. π(Ḡ) = 1.

Proof. Since ν(C) > 0 by the assumption in Theorem 19, along with Lemma 34 in ap-
pendix, we are able to show that for any (x, y) ∈ X × X have positive probability of
eventually hitting C × C. First, there is some n and a with Pn(x,C) = a > 0 by irre-
ducibility. Then, since C is a (n0, ε, ν)-small set,

Pnn+ n0(x, ·) ≥ aεν(·).

Then, by Lemma 34, for any r ≥ n∗,

Pn+n0+r(x, ·) ≥ aε
∫
x
ν(dz)P r(z, ·)

≥ aεδrν(·)

39



Then, choose r, s ≥ n∗ to make n+ n0 + r = m+ n0 + s = N . Then, since Xn and Yn are
independent until they reach C × C, we must have

P [XN ∈ C, YN ∈ C] ≥ P [XN ∈ C]P [YN ∈ C]

≥ [aεδrν(C)][bεδsν(C)]

> 0

This last inequality follows from the fact that ν(C) > 0.
Now by Lemma 20, we know that the joint chain will return to C×C w.p. 1 from (π×π)-
a.e. (x, y) /∈ C × C. Once the chain reaches C × C, by construction since R̄ is absolute
continuous with respect to π × π. Therefore by Lemma 20, this chain will keep return
repeatedly to C×C w.p. 1 until Xn = Yn. Since we know from the construction that each
time in C × C, the chain have probability ≥ ε of Xn = Yn. Therefore, we will eventually
have Xn = Yn. So we have (π × π)(G) = 1
Now we assume π(Ḡ) < 1, the by stationarity, we have

π(GC) =

∫
X
π(dx)π(GCx )

=

∫
Ḡ
π(dx)(1− π(Gx)) +

∫
ḠC

π(dx)(1− π(Gx))

=

∫
ḠC

π(dx)(1− π(Gx)) > 0

While (π × π)(GC) = 0. Therefore by contradiction, we have proven Lemma 21.

Therefore we have proven Theorem 4.

10 Appendix: background

10.1 Absolute continuity of measures

Definition If µ and v are two measures on the same measurable space (X,A), µ is said
to be absolutely continuous with respect to v if µ(A) = 0 for every measurable set for
which v(A) = 0. This is written as u� ν

u� v ⇐⇒ ∀A ∈ A (v(A) = 0 =⇒ µ(A) = 0)

10.2 Radon–Nikodym theorem

If v � µ, then there is a measurable function f : X → [0,∞), such that for any measurable
set A ⊂ X,

v(A) =

∫
A
fdµ

The function f is called the Radon–Nikodym derivative and is denoted by dv
dµ .
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10.3 Formal definition of the density

A random variable x with values in a measurable space X ,A(usually Rn with the Borel
sets as measurable subsets) has a probability distribution X∗P on (X ,A): the density of
X with respect to a reference measure µ on (X ,A) is the Radon–Nikodym derivative

f =
dX∗P

dµ

10.4 Lebesgue Measure

Definition. For each subset E of R we define its Lebesgue outer measure µ∗(E) by

µ∗(E) = inf{
∞∑
k=1

l(Ik) : {Ik is a sequence of open intervals with E ⊂ ∪∞k=1Ik}

Note that 0 ≤ µ∗(E) ≤ ∞ for any set E ⊂ R.
Definition. A set E ⊂ R is called Lebesgue measurable if for every subset A of R,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ EC)

Definition. If E is a Lebesgue measurable set, then the Lebesgue measure of E is defined
to be its outer measure µ∗(A) and is written µ(A).

10.5 Proof of Lemma 17.

To prove Lemma 17, we need to introduce following lemma.

Lemma 22. Consider an aperiodic Markov chain on a state space X , with stationary
distribution π(·). Let ν(·) be any probability measure on X . Assume that ν(·)� π(·), and
that for all x ∈ X , there is n = n(x) ∈ N and δ = δ(x) > 0 such that Pn(x, ·) > δν(x)(for
example, this always holds if ν(·) is a minorisation measure for a small or petite set which
is reachable from all states). Let T = {n ≥ 1;∃δn > 0s.t.

∫
ν(dx)Pn(x, ·) ≥ δν(·)} and

assume that T is non-empty. Then there is n∗ ∈ N with T ⊇ {n∗, n∗ + 1, n∗ + 2, ...}.

Proof. Let us first interpret T . We can see that T is the set of steps which some x ∈ X
which satisfy n-step minorsation condition with positive measure ν(·). Since we know that
for all x ∈ X .

P (n(x))(x, ·) ≥ δ(x)ν(·)
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And we assume that T is not empty.
Therefore if n,m ∈ T , then we have∫

x∈X
ν(dx)Pn+m(x, ·) =

∫
y∈X

∫
x∈X

ν(dx)Pn(x, dy)Pm(y, ·)

≥
∫
y∈X

δnν(dy)Pm(y, ·) = δn

∫
y∈X

ν(dy)Pm(y, ·)

≥ δnδmν(·)

We can see that T is close under addition.
Now we will show that gcd(T ) = 1. Suppose the contrary that gcd(T ) = d > 1. For
1 ≤ i ≤ d, let

Xi = {x ∈ X ; ∃` ∈ N, δ > 0 s.t. P `d−i(x, ·) ≥ δν(·)}

Since for all x ∈ X , x satisfies minorsation condition. Therefore we have
⋃d
i=1Xi = X .

Now let
S =

⋃
i 6=j

(Xi ∩ Xj)

And let S̄ = S∪{x ∈ X ;∃m ∈ N s.t. Pm(x, S) > 0}. So S̄ is S union the set of all elements
which can reach S. Now let

X ′i = Xi \ S̄.

Therefore X ′1, . . . ,X ′d are disjoint. And we know that for x ∈ X ′i , we have P (x, S̄) = 0.
Therefore by construction, we have P (x,

⋃
iX ′i ) = 1. In fact we must have P (x,X ′i+1) = 1

for i < d, and P (x,X ′1) = 1 for i = d. Otherwise we would have x in two X ′j which would
contradict the disjointedness.

Now let us consider for all m > 0, ν(Pm(Xi∩Xj)) for i 6= j. Now if ν(Pm(Xi∩Xj)) > 0,
then we have S′ ⊆ X , such that for x ∈ S′, we have `1, `2 ∈ N, and δ > 0 such that for all
x ∈ S′,

P `1d+i(x, ·) ≥ δν(·); P `1d+j(x, ·) ≥ δν(·).

Therefore by additive property of T we have `1d + i + m ∈ T and `2d + i + m ∈ T ,
which contradict the assumption that gcd(T ) = d. Therefore we have for all m > 0,
ν(Pm(Xi ∩ Xj)) = 0 for i 6= j.

Therefore by construction of S̄, we have ν(S̄) = 0. Therefore we have ν(
⋃d
i=1X ′i ) = 1, so

ν(
⋃d
i=1Xi) = ν(X ) = 1. Since we have ν(·)� π(·), therefore π(

⋃d
i=1X ′i ) > 0.

Since X ′i are disjoint and are subsets of a positive measure π(
⋃d
i=1X ′i ). We conclude

that this chain has periodic behavior. Since by assumption we know our chain is aperiodic.
Therefore by contradiction, we have that gcd(T ) = 1. Since T is additive and non-empty,
we must have n∗ ∈ N such that T ⊇ {n∗, n∗ + 1, n∗ + 2, ..}.
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10.5.1 Proof of lemma 17.

Proof. Let R be (n0, ε, ν(·))-petite under the assumption of a chain in lemma 17. Therefore
by definition, for all x ∈ R we have

n0∑
i=1

P i(x, ·) ≥ εν(·).

Now Let T be the same as Lemma 34. Then we have

n0∑
i=1

∫
x∈X

ν(dx)P i(x, ·) ≥ εν(·)

. Therefore there must exist some 1 ≤ i ≤ n0 and δ such that
∫
ν(dx)P i(x, ·) ≥ δν(·).

Therefore T 6= ∅. Hence by assumption in lemma 17 and lemma 34, we can find n∗ and
δn > 0 such that

∫
ν(dx)Pn(x, ·) ≥ δnν(·) for all n ≥ n∗. Now let N = n∗ + n0, and let

r = min{δ : n∗ ≤ n ≤ N − 1}. Therefore for x ∈ R we have we have

PN (x, ·) =

∫
y∈X

PN−i(x, dy)P i(y, ·)

=
1

n0

n0∑
i=1

∫
y∈X

PN−i(x, dy)P i(y, ·)

≥ 1

n0

n0∑
i=1

∫
y∈R

rν(dy)P i(y, ·)

≥ rε

n0
ν(·)

∫
y∈R

ν(dy) =
rε

n0
ν(·)

Therefore we conclude that R is (N, rεn0
, ν(·))-small.
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