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1 Introduction

We are interested in modeling time series using Markov switching models, which are

commonly applied in financial econometrics to model returns with non-stationary data.

We deviate slightly from our original proposal of Bayesian change point detection, but still

incorporate the detection of structural breaks using online methodology. We emphasize

the usefulness of online detection, especially in real life applications, such as in process

control, where data streams in continuously over time, and re-computation of parameters

does not require re-estimation over the entire time series.

We consider a basic HMM-GARCH(1,1) model, which allows for two unobserved

possible states: low and high volatility. We apply the methods used for probabilistic

inference from Hidden Markov Models (HMMs) and Monte Carlo techniques to derive

filtering densities for the hidden states. In comparison to regular maximum likelihood

estimation, this eliminates the need to consider up to 2T possible paths, where T is the

length of the time series. The nonlinear form of the GARCH model prevents us from

using conventional filtering methods (e.g. the Kalman filter), hence each update step will

include a Monte Carlo draw (the ’particles’), which will be propagated forward through

time. This process is known as Sequential Monte Carlo (SMC). We discuss standard

SMC procedures such as Importance Sampling and Resampling (IS and ISR). Later on we

investigate and apply the Auxiliary Particle Filter (APF) as an improvement to regular

ISR. In addition to state filtering, we also face the problem of parameter estimation,

which will require an additional filtering step. Specifically, we use the kernel smoothing
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approach to approximate the posterior density of parameters to propose new values.

Parameters to be estimated include model parameters from the GARCH model, and the

Markov chain transition probabilities for the states.

We will test our algorithm on a data set generated by an HMM-GARCH(1,1) time

series, with states determined by a Markov Chain. This will give a good sense of the

performance of the algorithm without needing to be concerned about model misspecifica-

tion. We base our report mainly on the paper by He and Maheu (’Real Time Detection of

Structural Breaks in GARCH Models’) and the paper by Liu and West (’Combined pa-

rameter and state estimation in simulation-based filtering’), which gives a more detailed

overview on the use of the APF for parameter estimation.

The report will be organized as follows: Section 2 will provide an overview of the

methodology, Section 3 will contain discussion over different variations of the algorithm

that may help reduce the variance of the Monte Carlo estimates, and Section 4 will

provide a summary of our conclusions. This will be followed by an appendix, which will

include all relevant code and mathematical derivations.

2 Methods

2.1 GARCH

A GARCH (Generalized Auto Regressive Conditional Heteroskedastic) process is a com-

mon model used in time series analysis for analyzing stochastic volatility. Specifically, a

GARCH(1,1) model is the following:

yt = σtεt with εt ∼ N(0, 1) (1)

σ2
t = w + ay2

t−1 + bσ2
t−1 (2)

where w, a, b > 0 and a + b < 1. σ2
t is often referred to as the innovation at time

t. We hope to use this model to analyze the asset returns data yt, and in particular

the evolution of an unobserved volatility process. The model is able to capture the
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persistence of volatility in the returns since each new innovation of the GARCH process

is highly dependent on the previous one. However, the GARCH model does a poor job

at modeling abrupt changes in volatility. Various modifications have been suggested to

correct for this, one modification that is very popular in the current literature is the

incorporation of structural breaks within the GARCH process. Instead of assuming that

the observed time series is governed by a single process, we allow it to be composed

of multiple different ones. Our goal is to estimate the times at which the change from

one process to another occurs as well as to conduct parameter estimation for each of the

component processes. In general, we assume that each new observation at time t depends

on a hidden and unobserved state st. We model the evolution of states with a discrete

time Markov Chain. For our case, we only consider two states: state one which would

represent low volatility and state two would represent high volatility. This can of course

be generalized to more than two states, though the maximum number of states must be

defined, a particular weakness of this model.

Figure 1: Simulated Data: State, Returns, Innovations

2.2 Sequential Monte Carlo

If we assume that model parameters are known and set our goal to estimate the posterior

distribution p(xt+1|Dt+1), given our HMM model assumption and by applying Bayes’
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Theorem we can set up the following recursive relationship:

p(xt+1|Dt+1) ∝ p(yt+1|xt+1)p(xt+1|Dt) (3)

p(xt+1|Dt) =
∫
p(xt+1|xt)p(xt|Dt)dxt (4)

Where Dt = {y1, . . . , yt} represents all observations up to time t, yt are observations

at time t, xt are the hidden states, p(yt+1|xt+1) is the likelihood of observing yt and

p(xt+1|xt) is the transition density for the states. A prediction is made for the next time

step using all previous data, and when a new data point arrives, a correction step (or the

update step) generates the new filtering density. For the case when the model is linear

and Gaussian (with the appropriate conjugate priors), we use the usual Kalman filter.

Otherwise, filtering becomes problematic, particularly when it comes to the prediction

step, which requires the computation of an integral over all possible previous states. In

some cases, this can be computed exactly. For example, in a finite state space model,

this integral becomes a sum and is easily computed. However, even when exact inference

is possible, it can become very impractical, with computational costs usually increasing

linearly with time. The goal of SMC is not only to approximate these probabilities, but

also keep computational costs constant at each update step.

To be more specific, we wish to calculate the posterior distribution of hidden states

given previous data. Typically, we want to find p(x1:t|Dt). In our case, where we will only

need p(xt|Dt), we can easily obtain it from the former via marginalization. A possibility

would be to approximate this using MCMC. However, this is computationally expensive

and would require a large number of iterations for each time step. It also turns out to

be completely unnecessary. Instead, we can use an Importance Sampler (IS). With IS,

our main concern is finding a proposal distribution from which we can easily generate

samples. The requirement conditions for q are very mild and essentially only require q to

have the same support as p. Ideally, q(x1:t|Dt) should be as close to p(x1:t|Dt) as possible.

Supposing we do have such a distribution, q(xt|Dt), then we can rewrite our posterior of
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interest as the following:

p(x1:t|Dt) =
w(x1:t, Dt)q(x1:t|Dt)

p(Dt)
(5)

w(x1:t, Dt) =
p(x1:t, Dt)

q(x1:t|Dt)
(6)

=
p(Dt)P (x1:t|Dt)

q(x1:t|Dt)
(7)

p(Dt) =
∫
w(x1:t, Dt)q(x1:t|Dt)dx1:t (8)

q(x1:t|Dt) is approximated by generating samples distributed accordingly, and p(Dt) is

done similarly (it is preferable that both are calculated using the same sample from

q(x1:t|Dt) to reduce variability). Our importance sampler allows us to use samples gener-

ated from another distribution, with appropriate reweighting, to approximate our actual

distribution of interest.

At each time step, we must generate a new set of samples xt from p(xt|Dt). One major

benefit of Monte Carlo sampling is that if we have a sample from a joint distribution,

say from p(x1:t|Dt), we automatically get a sample from a marginal distribution p(xt|Dt)

just by retaining the {xt}. The proposal distribution for the joint parameter density can

be factored as follows using Bayes’ Theorem:

q(x1:t|Dt) ∝ q(x1:t−1|Dt−1)q(xt|yt, xt−1) (9)

∝ q(x1|y1)
∏t
k=2 q(xk|yk, xk−1) (10)

Therefore at time t, to get a joint sample x1:t, we can use our previous sample {x(i)
1:t−1}Ni=1,

and update it with a new component {x(i)
t+1}Ni=1 generated from q(xt|yt, xt−1). We also

update weights in the following way:

w(x1:t, Dt) =
p(x1:t, Dt)

q(x1:t|Dt)
(11)

=
p(x1:t−1, Dt−1)

q(x1:t−1|Dt−1)

f(xt|xt−1)p(yt|xt)
q(xt|yt, xt−1)

(12)

= w(x1:t−1, Dt−1)
f(xt|xt−1)p(yt|xt)
q(xt|yt, xt−1)

(13)
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where f models the transition between latent variables, and p models our observations

conditional on observing the hidden variables i.e. the likelihood. This is sequential

importance sampling (SIS). Specific to our model, where we are interested in sampling

from the posterior p(xt+1|y1:t+1), that is given the arrival of the new observation yt+1 at

time t + 1 we are interested in updating the latent variable, xt+1 which the observation

came from. At this point in time, we assume we know the values of the parameters that are

associated with the computation of the likelihood. Given a previous Monte Carlo sample,

also known as the particle set at time t, {x(k)
t }Nk=1 and corresponding weights {w(k)

t }Nk=1

which was generated using Importance Sampling we can approximate the quantity of

interest by:

p(xt+1|Dt+1) ∝ p(yt+1|xt+1)
N∑
k=1

w
(k)
t p(xt+1|x(k)

t ) (14)

To approximate this density with Monte Carlo techniques, we generate samples from

p(xt+1|x(k)
t ) using prior information about transition probabilities and update the associ-

ated weights of each sample using its current weight w
(k)
t and the likelihood of observation

yt+1 coming from state xt+1 ∼ p(xt+1|x(k)
t ) . In this scenario, the new samples for xt+1

depend only on the prior distribution of xt. In the context of the HMM model, given a set

of transition probabilities, we need to predict which states all the particles will traverse

to, and then evaluate how accurate our prediction was based on the observed likelihood

p(yt+1|x(k)
t+1).

Again there are complications with a selection of the importance distribution, which

we will ignore since SIS is not the main focus of the paper. The other primary concern is

degeneracy. As the particles are propagated, weight becomes concentrated on only a few

selected particles, while particles which are uninformative, still continue to be updated.

One common solution is through resampling. Our Monte Carlo sample is a discrete

approximation to our target density and each particle in the sample carries a weight.

Thus we can just sample with replacement from this discrete distribution. By resampling

the particles at each time step, we keep only meaningful ones. Those with large weights

continue to be updated, while those with low weights are discarded. The intuition behind
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resampling is that a particle with low weight at time t, will tend to still have low weight

at time t+ 1 and will not be useful in making inferences. With the resampling, particles

are reweighted uniformly. As well, from prior information, transition probabilities from

one state to a different one are quite small, so the algorithm may generate many incorrect

predictions by either concentrating all the weight on uninformative particles or by missing

a change in state. This prediction process also makes the algorithm very sensitive to

parameter values. For example, if the parameters associated with each state are fairly

close to each other in value, states essentially look the same, thus the algorithm assigns

small weights to particles that indicate a change in state.

Alternatively, we can incorporate other information which will put more mass on

relevant particles, this should improve how our algorithm performs. This is the motivation

for auxiliary particle filters (APF), developed by Pitt and Sheppard (1999).

2.3 Auxiliary Particle Filter

At this point we still assume we have some estimate of our parameters at time t. Instead

of blindly guessing what the update state xt+1 will be, we select the most promising

particles to update. The idea is to use some form of the likelihood p(yt+1|xt+1) in the

particle selection process. We proceed as before, and set µ
(k)
(t+1) as an estimate of the new

state xt+1 - for our case, the mode of our transition density p(xt+1|x(k)
t ) - for each particle

k = 1, . . . , N . The quality of our estimate is evaluated by computing weight:

g
(k)
t+1 ∝ w

(k)
t p(yt+1|µ(k)

t+1) (15)

The set {g(k)
t+1}Nk=1 are called the auxiliary weights. Generally, a large g

(k)
t+1 serves as a

good indicator as to whether the path the particle is about to undertake is promising

and in accordance to the true underlying process. To perform particle selection, we

first normalize the auxiliary weights and sample with replacement a set (of size K) of

indices {j} with from the set of integers {1, . . . , N} with probabilities proportional to

g
(j)
t+1 where N is the size of the particle set at time t. The algorithm allows the particle
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set size to change at every time point if necessary, but usually the particle set size is

kept constant, with K = N . The generated set of indices {j} represents the set of most

likely paths the process will take given the arrival of the new datum yt+1. Now we draw

the new values x
(j)
t+1 ∼ p(xt+1|x(j)

t ) based on our auxiliary indexes and compute the new

associated weights:

wt+1 ∝
p(yt+1|x(j)

t+1)

p(yt+1|µ(j)
t+1)

(16)

Furthermore, we can proceed with the standard SMC resampling procedure and resample

the particle set according to the new weights wt+1 and obtain an equally weighted final

sample.

2.4 Parameter Filtering

In this section, we extend state filtering procedure to a general joint state and parameter

filtering problem. First we need to extend our particle set of states to include parameter

values. Thus at time t we will have a joint importance sample of the state and parameter

values for the model {x(j)
t , θ

(j)
t }Nj=1 with associated weights {w(j)

t }Nj=1. At this stage our

goal is to approximate a joint posterior p(xt+1, θ|Dt) instead of just a posterior for the

state. We can decompose p(xt, θ|y1:t) into the following three factors:

p(xt+1, θ|Dt+1) ∝ p(yt+1|xt+1, θ)p(xt+1|θ,Dt)p(θ|Dt) (17)

which is just the product of marginal likelihood given the state and parameters; prediction

of hidden states given past data and parameter values; and the posterior density for the

parameters given the data. Note that if we know the parameter values, the above equation

simplifies just to the state filtering problem as discussed previously. Now the challenge lies

in approximating the density for p(θ|Dt). We again follow the approach of Liu and West

(2001) and implement a non-parametric, Kernel Smoothing method for approximation of

p(θ|Dt). If we assume we have solved the problem until time t, that is at time t we have

Monte Carlo samples θ
(j)
t and associated weights {w(j)

t }Nj=1 from the posterior distribution
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of parameters. It is important to remember that θ is fixed and t indicates only the time

step from which our samples come from. We approximate the parameter density by a

smooth kernel density as follows:

p(θ|Dt) ≈
N∑
j=1

w
(j)
t N(θ|m(j)

t , b2Vt) (18)

where N(θ|m,V ) is a multivariate normal distribution with mean vector m and covariance

matrix V . Kernel smoothing approximates the posterior density for θ by a mixture of

multivariate normal distributions with the weights coming from the particle weights. b2

is the kernel shrinkage parameter and is chosen to be between 0 and 1, and usually

decrease slowly as the particle set size increases so that all the parameter estimates are

concentrated closer to the mean. Vt is the Monte Carlo sample variance and is computed

by:

Vt =
N∑
i=1

w
(i)
t (θ

(i)
t − θt)(θ

(i)
t − θt)T (19)

and θt is the Monte Carlo sample mean given by:

θt =
N∑
i=1

w
(i)
t θ

(i)
t (20)

If we take m
(j)
t to be just θ

(i)
t then each Gaussian component is centered around the

existing sample and the overall mixture will be an over-dispersed mixture of Gaussians

with variance (1 + b2)Vt. As time progresses, the variance grows larger, resulting in a

very noisy and inconsistent parameter estimates. To resolve this issue of degeneracy, Liu

and West (2001) use a kernel shrinkage method. They take m
(j)
t = aθ

(i)
t + (1−a)θt where

a =
√

1− b2. The intuition behind this mean value is to make the centres of each of the

Normal components to be closer to each other so that the resulting distribution will have

thinner tails and the desired variance Vt. Maheu and He (2010) use a discount factor

δ ∈ (0, 1) to control the shrinkage of the kernel means as b2 = 1 − [(3δ − 1)/2δ]2 and

a =
√

1− b2. Now, conditional on the sample values drawn from the above mixture, we
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can apply the regular APF filter and perform state inference.

2.5 A General Algorithm

Given a set of particles and weights {θ(i)
t , s

(i)
t , w

(i)
t }Ni=1 ∼ p(st, θ, |Dt) (where N is the size

of the particle set), the following outlines the algorithm for the APF:

1. For i = 1, 2, . . . , N let rt+1 be the mode of p(st+1|sit, θ
(i)
t )

2. Compute the auxiliary weights g
(i)
t+1 ∝ p(yt+1|Dt,m

k
r,t)w

(i)
t , with mk

r,t = aθ
(i)
r,t + (1−

a)θ̄r,t and θ̄r,t =
∑N
i=1w

(i)
t θ

(i)
r,t and draw a sample from 1, . . . , N with the correspond-

ing auxillary weights, call this sampled index k

3. Sample a new parameter vector from the kth normal component of the kernel func-

tion, θ
(k)
t+1 ∼ N(mk

r,t, h
2Vt) where Vt =

∑N
i=1w

(i)
t (θ

(i)
t − θ̄t)(θ

(i)
t − θ̄t)

′ and h2 =

1− (3δ−1
2δ

)2

4. Sample a new state value skt+1 p(s
k
t+1|skt , θ

(k)
t+1)

5. Evaluate the new weight, w
(k)
t+1 ∝

p(yt+1|x(k)
t+1),θ

(k)
t+1

p(yt+1|r(k)
t+1,m

(k)
t )

6. Repeat (2)-(5), possibly using stratified sampling, to generate a new particle set.

3 Simulation Results

We model the data using a GARCH(1,1), using two sets of parameters for the low volatil-

ity state and high volatility state. We reparameterize all the variables so that they can

take on all real values. We initialize w1 using a Gamma(1,0.5), a1 with Beta(4,1), b1 with

Beta(4,1)*(1-a1) (because of the constraint), w2 using Gamma(1,0.5), a2 with Beta(4,1)

and b2 with Beta(4,1)*(1-a2). The first set will represent parameters under the low

volatility regimen. We reparameterize w, a and b as follows:

w∗ = log(w) (21)

a∗ = log
(

a

1− a

)
(22)
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b∗ = log

(
b

1− a− b

)
(23)

We initialize the logit transformed p11 and p22 (the probability of staying in the same

state) using a N(8,1), i.e. the probability of not changing states will be very close to

1. This is a sensible initialization: otherwise, particles will tend to change states too

frequently. We initialize all states to be state 1 (the low volatility state) and the first

innovation to be the average of the unconditional variances of state 1. For our analysis,

we will be running the algorithm for 150 time steps, varying the number of particles as

needed, with each initially weighted equally.

We considered various initializations for the transition probabilities and the δ, which

acts like a tuning parameter for the kernel density. As well, we tried different sampling

schemes, such as stratified vs. non-stratified to reduce variance. In general, we find

that stratified sampling produces much more stable estimates (i.e. tighter confidence

intervals), hence for the rest of our analysis, we only consider outputs generated by this

sampling method. We will elaborate further on the use of stratified sampling in a later

section. To analyze the performance of the APF algorithm we track the evolution of the

various quantities over time as the algorithm progresses:

3.1 Parameter Evolution

We are interesting in monitoring the evolution of the Monte Carlo estimates of the param-

eters as time proceeds. It seems plausible that as time progresses, particles should ’gain

more information’ due to the APF procedure that we apply, and that estimates should

converge to their true value. We expect that estimates at least become less variable (i.e.

confidence intervals narrow as time progresses). We also hope that the two parameter sets

are distinguishable, without using additional prior information (e.g. both a1 and a2 have

the same prior and are initialized identically). Like traditional importance sampling, the

calculation of standard errors in some closed form method is not obvious. Instead, we

resort to repeated runs. We limit ourselves to 100 repeated runs, each run consisting of

5000 particles over 150 time steps, with δ = 0.75. We plot these Monte Carlo estimates
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Figure 2: Monte Carlo estimates of parameters with a 95 percent CI. δ = 0.75, dashed
horizontal lines represent the true value, dotted verticle lines represent switch points.
Due to the variability of w2 parameter, CI bounds extend into the negative region, even
though the parameter only takes positive values.

(averaged over all 100 runs) and their associated confidence intervals (Figure 2). We find

that the parameters do in fact deviate, though some more than others (in particular w1 vs

w2, where the latter value becomes highly variable). We also find that though parameter

values were initialized to very low values, there was a ’correction’ almost immediately.

Parameter sets behave very oddly. In general, estimates seem to become more variable

after the first change point, and stablize slightly after the reversion to the less volatile

state. The stability of the w1 parameter (the intercept) shouldn’t be too surprising when

the other parameters are capturing the volatility. The b1 parameter becomes variable

once the state changes, but recovers fairly quickly once the state reverts. a1 however

does not seem to stabilize after reverting to the more stable state. Again, this is not

surprising, as a1 is the coefficient for the response varible yt, an observed value, while b1

is the coefficient of the innovation, which is estimated (and tends to be a very stable esti-

mate). State 2 parameters actually behave quite well. On average, these parameters only

update under state 2, and almost immediately stop changing upon the switch to state 1.
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Figure 3: δ = 0.25

For this reason, it is possible to suspect that state 1 parameters are more accurate than

state 2 parameters, since the chain spends most time in state 1. This only seems slightly

true. Overall, the confidence intervals tend to miss the true value of the parameter, and

that this Kernel approximation seems slightly questionable. However, we must not also

discount the fact that reparameterizations were needed due to the constraints involved.

Our choice of δ was not a completely a precise one. We considered δ = 0.25, 0.50, 0.75

and did five test runs for each setting and very roughly selected the δ which generated the

most consistent parameter estimates. By the Kernel shrinkage method used to correct

the Kernel variance, higher δ values will generate a smaller variance (hence more stable

values), but the mean of the Kernel will be weighted more towards the individual particle

(θt) instead of the Monte Carlo estimate (θ̄t) (less stable). With δ = 0.75, the stablizing

effect of the reduced Kernel variance is more dominant. Maheu and He chose δ = 0.99

due to his significantly larger parameter set, while we find this choice of δ too restrictive,

preventing the paramters from exploring much of the space. We graph the parameter

changes for δ = 0.25 (Figure 3) and δ = 0.50 (Figure 4)

In general, we find that often the confidence interval will miss the true parameter

value. Sometimes it will actually miss it significantly even by factors of 10 or more.
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Figure 4: δ = 0.50

Though we do find that state 2 parameter values will tend to have larger values than

state 1 parameter values, and in particular, the model is able to capture the huge w2

value that we chose for data generation. Again, we find for high values of delta, the

parameters tend to be move very little over the course of the algorithm run. With lower

values, we find that w2 values will often overshoot significantly. Runs appear to be

highly variable in parameter estimation given a fixed configuration but very consistent in

detection of break points.

3.2 Particle Weights

With each particle is associated a weight value, which corrects for our samples being

generated by another distribution. If the algorithm performs properly, more weight should

be allocated towards those that carry a lot of ’information,’ in our case, the state in which

the particle is in. Optimally, we would like it that when the process is in a low volatility

state, particles that represent state one carry a majority of the weight, or alternatively,

the particles in state 2 should carry as little weight as possible. For our algorith, we

are using two different sets of weights: auxilliary weights which we use to select which

particles to update; and the second set of weights which is the actual importance weight.
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TRUE Run 1 Run 2 Run 3 Run 4 Run 5 Average
(100 runs)

w1 0.07 0.050 0.043 0.059 0.031 0.072 0.061
(0.061,0.062)

a1 0.04 0.062 0.236 0.040 0.466 0.013 0.333
(0.144,0.522)

b1 0.03 0.001 0.076 0.012 0.021 0.011 0.022
(0.020,0.024)

w2 7.75 147.304 116.711 145.432 151.547 233.960 161.396
(-7777,8100)

a2 0.21 0.983 0.737 0.835 0.941 0.580 0.720
(0.579,0.862)

b2 0.77 0.000 0.045 0.012 0.000 0.000 0.064
(0.017,0.111)

Table 1: Parameter estimates for five runs. 5000 particles, 150 time steps, δ = 0.75

Figure 5 shows the evolution of both the auxilliary weights and importance weights in

comparison to the true state the process is in. What is immediately noticeable is that

both weight sets closely match up with those of the actual hidden states, though the

weight continues to be high for a couple time steps after reverting to the low volatility

state (this we will discuss later), and that generally, the algorithm performs correctly.

It is actually quite critical that stratified sampling be used to select which particles to

update (i.e. stratify sample from the auxilliary weights). When not used, the algorithm

can completely fail - either inconsistently detecting state two by continually reverting

states or being trapped in state two (and unable to detect state one).(Figure 5) Though

sometimes the algorithm doesn’t perform too poorly, for example, when the process is in

state one, at least 50 percent of the weight will be in state one. The problem is mainly

due to relevant particles not being propagated forward due to random chance.

3.3 Monitoring States

State prediction is a critical part of this analysis. Whereas many papers focus entirely on

state prediction, assuming parameters are known, we have the additional complication

of estimating these parameters and using them to predict states. We include two mea-

surements of the predicted state, a weighted mean and a mode (selected by choosing the
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Figure 5: δ = 0.75, stratified sampling

state which had most weight) (Figure 7). Again, it is clear that the algorithm performs

well during both low volatility regimen, and high volatility regimen. We also find that

the mean plot is essentially the same as the mode plot, i.e. either all weight is in state

1, or all weight is in state 2, where there is little indecision between the two states. We

find that this is extremely sensitive to our prior for transition probabilities (Figure 8).

A N(2,1) prior generates transition probabilities on average of around 0.88, which is still

fairly high, but results in the chain wanting to move too frequently. We lose the power

to predict the first regimen of state 1 (the chain appears to be unable to choose either

state, based on the mean plot), and in some cases, when the algorithm detects state 2,

it stays in state 2 even when the regimen has switched (which was not a problem for our

previous setting) (Figure 9).
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Figure 6: δ = 0.75, simple random sampling

3.4 An Extended Run - 10,000 Particles over 400 Time Points

In this section we analyze the effect of increasing the observed length of the time series

as well as increasing the particle set size. Intuitively, increasing the observation time

allows particles to collect more information about the actual process and hence improve

parameter estimation. Increasing the particle set is equivalent to increasing the Monte

Carlo sample size and is necessary with the increased time series length since each particle

represents a possible path our chain can undertake. Thus having more particles allows

us to better explore the joint state and parameter space. Using a longer time series

allows us to test the long term behavior of the algorithm, for example its ability to detect

multiple change points. Note that during the run our process was in state 2 twice and

had 4 change points in total. Our APF was able to detect all 4 change points with high

precision over all the test runs. Note that we have some lag in detecting the transition
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Figure 7: δ = 0.75, prior for transitions is N(8,1), stratified sampling

from state two back to state 1 but this is purely due to data. Since next step innovation

is highly dependent on the previous step, it takes around 3 or 4 steps for the transition to

be visible in actual returns data. Algorithm also showed robustness against getting stuck

in any one state. Surprisingly though parameter estimation is very inconsistent over each

run. The only more or less consistent were the estimates for w1, the constant term for

process in state one and they usually were around 0.07 however the estimates for w2 were

ranging from 35 to 84 and very far away from the true value. One reason for it could

be that w2 and w1 have less restrictions on them. The only requirement for them is that

they must be positive whereas a and b parameters must be positive and a+ b < 1. Also

the full likelihood is highly multi-modal with a lot of local maxima and since the new

innovation depends on 3 parameters there are multiple combinations of those parameters

that will result in a similar likelihood value.
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Figure 8: δ = 0.75, prior for transitions is N(2,1), stratified sampling

4 Conclusion

We find that the use of SMC with the APF enhancement is able to accurately predict the

occurence of switch points in the GARCH process. This algorithm is highly sensitive to

priors used to model the transition probabilities, and in order to produce stable results,

requires priors that favor no changes. Parameter estimation using the kernel smoothing

method is not as successful. They are generally very inconsistent, with the true value often

lying outside the confidence interval, and the extended runs with increased particle set

does not seem to yield better results. A tuning parameter closer to one seems to increase

precision but not accuracy. Further work may include investigating the effectiveness of

the algorithm on a misspecified model and considering multiple states, some of which

may be more similar to each other, instead of being very distinct.
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Figure 9: δ = 0.75, prior for transitions is N(2,1), stratified sampling
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Figure 10: δ = 0.75, prior for transitions is N(8,1), stratified sampling
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TRUE Run 1 Run 2 Run 3 Run 4 Run 5
w1 0.07 0.073 0.072 0.066 0.068 0.067
a1 0.04 0.090 0.040 0.152 0.103 0.085
b1 0.03 0.037 0.013 0.014 0.008 0.077
w2 7.75 69.063 35.596 83.745 61.954 217.527
a2 0.21 0.405 0.608 0.655 0.760 0.630
b2 0.77 0.041 0.139 0.030 0.031 0.049

Table 2: Parameter estimates over an extended run. 10,000 particles, 400 time steps,
δ = 0.75

22


