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Abstract

This document records my work on the Engineering Science Under-
graduate thesis study. I will review and discuss topics I have studied so
far as well as presenting some of my original work. My thesis study so
far consists of two major parts: (I) expository studies on discrete-time
Markov process on general state space and convergence of generic Markov
Chain Monte Carlo (MCMC) algorithms, as well as some results concern-
ing weak convergence of a sequence of discrete-time chains to a continuous
process; (II) studies on adaptive MCMC algorithm. First part of my the-
sis study provides necessary theoretical foundations to understand results
and methods in part (II) whereas the second part provides context and
examples of application to my studies in part (I).

A rough breakdown of my studies in these two parts is as follows: Part
(I): (1) expository studies on various results of Markov chains on general
state space, (2) expository studies on ergodicity property of Markov Chain
Monte Carlo (MCMC) algorithms, along with quantitative bounds on the
rate of convergence to stationarity; (3) weak convergence of discrete chains
to a continuous process and related complexity bounds results; Part (II):
(1) studies on generic adaptive MCMC and their ergodicity properties,
(2) studies on various adaptive Gibbs Samplers, (3) original studies on
the asymptotic behavior of the “Stairway to Heaven” example proposed
in ( Latuszyński et al., 2013), Section 3.
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1 Introduction

In this section, I will briefly discuss the context of the thesis study and main
areas of focus. A significant portion of my thesis work consists of expository
studies on existing results. For these parts, I will identify major interests and
objectives and outline important methodologies associated. Besides expository
studies, there are also some original studies involved (mostly on the “Stairway to
Heaven” example), I will provide context to it as well and outline my methods.

The first part of my thesis study focuses on the Markov Chain Monte Carlo
(MCMC) algorithms in general and their ergodicity properties. Since analysis
of MCMC algorithms often involves concepts and methods developed in the gen-
eral framework of discrete-time, general state space Markov chains, my study
includes a significant portion of fundamental theories and methods from this
area, e.g. irreducibility, recurrence, small sets, “coupling” etc. These concepts
are essential to understand current research on MCMC algorithms: for example,
study on the quantitative rate of convergence relies on the Minorization condi-
tion and the coupling argument. I also studied weak convergence of Random
Walk Metropolis algorithm to the Langevin process and relevant general the-
ories. The second portion of my thesis study involves expository and original
studies on adaptive MCMC algorithms and adaptive Gibbs samplers.

1.1 Motivation

The Markov Chain Monte Carlo (MCMC) is a popular sampling algorithm in
statistics; it is widely used to approximately sample complicated probability
distribution in high dimensions. The need for MCMC arises from the difficulty
to draw samples directly from such distributions: it is not always possible to
compute explicit form of the associated, complicated integrals.

For example, MCMC is instrumental in Bayesian statistics which would often
requires computing large hierarchical models with a large number of parameters.
To estimate expectation of function f : X → R under posterior distribution,
which may be written as πu∫

X πu(x)dx
(the integral on the denominator is the

normalizing constant):

E(f(X)) =

∫
X f(x)πu(x)dx∫
X πu(x)dx

,

we need to compute closed form of
∫
X πu(x)dx in order to sample from it.

However, this expression often takes an irregular form and contains hundreds
and thousands of variables. MCMC provides an alternative to sample from such
distribution without the need to compute the integral explicitly: for example,
a Gibbs sampler would only require the knowledge of conditional distribution
of the target distribution and Metropolis-Hastings algorithm only requires the
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ratio of the target density (Roberts and Rosenthal, 2004) (Gelfand and Smith,
1990) (Smith and Roberts, 1993) (Tierney, 1994).

MCMC algorithms should be thought of as an approximation of the direct sam-
pling from the target distribution: the validity of MCMC sampling resides on the
convergence of the Markov chain to the target distribution, meaning that after
running the chain for sufficient long period of time, the probability distribution
of the samples drawn from MCMC become fairly close to the target distribution.
The “closeness” of two probability measures can be measured rigorously with
total variation distance:

||v1(·)− v2(·)||= sup
A
|v1(A)− v2(A)|

Therefore, when we say that the Markov chain converges to the target distribu-
tion, we are referring to

lim
n→∞

||Pn(x, ·)− π(·)||= 0

It is of great interest for statisticians to understand when and how a Markov
process will converge to stationarity: in practice, it is necessary to make sure
that the MCMC in question indeed converges to the target distribution so that
the samples obtained actually approximate target distribution (after a sufficient
large number of runs). It is also important to have a sense of how quickly
the convergence occurs, that is, how many runs would be sufficient to attain
satisfactory approximation.

1.2 Research Areas and Methods

To answer these questions, a theoretical framework was developed concerning
general state space Markov process (Meyn and Tweedie, 2012) (Roberts and
Rosenthal, 2004). The purpose has been to impose certain conditions on the
Markov chains, e.g. irreducibility, so that under these conditions the Markov
chain would have desirable stability and ergodicity properties. This theoreti-
cal framework can be developed by first establishing results on countable state
space. The conditions can then be modified carefully so that an analogous the-
ory can be developed for the general state space chain. One example would
be the extension of recurrence/transience dichotomy from countable state space
chains to general state space chains as in (Meyn and Tweedie, 2012), Chapter
8: The result is first established for irreducible countable state space chains;
and then it is extended to general state space chain with “atom set”, a con-
struction specifically designed to mimic countable state space chains. Then the
assumption of the existence of atom set can be relaxed via Nummelin splitting,
the viability of which is guaranteed by ψ−irreducibility (through Minorization
condition).

A significant portion of my thesis study involves studying the development of
this theoretic framework following (Meyn and Tweedie, 2012) and (Roberts and
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Rosenthal, 2004). Specifically, I have focused on examining fundamental con-
ditions and accompanied auxiliary constructions based on which the analysis
of general state space Markov chains was made possible. Important topics in-
clude: irreducibility, small/petite sets, splitting chains, periodicity, recurrence
and stationarity.

In close association with these topics, I have also studied (Rosenthal, 1995) and
(Rosenthal, 1996) on quantitative rates of convergence. Utilizing the Minoriza-
tion condition and coupling, (Rosenthal, 1995) provided a general method to
analyze convergence speed of discrete-time, general state-space Markov chain.
Their methods provide a rigorous, a priori bounds on how long MCMC should
run to attain satisfactory results. Application of this methodology involves find-
ing a proper auxiliary function and a number of associated parameters to estab-
lish both the Minorization condition and the Drift condition. (Rosenthal, 1996)
supplies an example of how this method can be applied to a realistic hierarchical
Bayesian model (James-Stein estimator). The convergence bounds developed in
(Rosenthal, 1995) are often used in adaptive MCMC literature to simultaneously
bound convergence speed of adaptive kernels to establish the Containment Con-
dition. In addition, I have also studied results concerning weak convergence of
Random Walk Metropolis (RWM) algorithms to the Langevin process in con-
tinuous time, along with relevant theories. Specifically, (Roberts et al., 1997)
discovered that under certain technical assumptions, when proposal variance is
appropriately scaled according to n, the sequence of stochastic processes formed
by the first component of each Markov chain converges to appropriate limiting
Langevin diffusion process. The proof is based on showing convergence of the
infinitesimal generators; I have reorganized the proof so that motivation for
certain technical lemmas becomes more obvious (the proof remains the same).
The significance of the result is such that the limiting diffusion approximation
sheds lights on the efficiency optimization problem: the asymptotically optimal
acceptance rate is shown to be 0.234.

The second part of my study focuses on a special class of MCMC algorithms, i.e.
the adaptive MCMC. This type of sampler is needed mainly due to the difficulty
to “tune” parameters such as scaling manually. The intention of adaptation is to
enable the algorithm to “learn” the best parameter values automatically while
they run. One notable example of adaptive MCMC is the adaptive Metropolis
algorithm proposed in (Haario et al., 2001). Their design allows the algorithm
to optimize the proposal distribution of a Metropolis algorithm. It is shown
in (Roberts et al., 1997) that the proposal N(x, (2.38)2Σ/d) is optimal in a
large dimension settings where d is the number of dimensions and Σ is the
covariance matrix of the target distribution. Therefore, the adaptive routine
involves estimating Σ from empirical distribution of the chain output as it runs
and adapts proposal distribution accordingly. There are a variety of designs
of adaptive MCMC algorithms with different features: directional sampling,
for example, rotates coordinate axis in order to improve mixing efficiency, thus
suitable to sample from slanted, elongated target distribution (Bai, 2009). See
(Roberts and Rosenthal, 2009) for some other designs of adaptive MCMC and
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empirical evaluation of their performances.

Since adaptive MCMC may no longer be Markovian, their convergence prop-
erties require further analysis. With a coupling construction, (Roberts and
Rosenthal, 2007) provided conditions under which ergodicity and stationarity
of the specified target distribution is ensured. Since their work employs mini-
mal assumptions of the adaptive MCMC in question, the result provides a gen-
eral guideline to analyze ergodicity properties of adaptive MCMC algorithms.
Though not necessary conditions in a theoretical sense, ( Latuszyński and Rosen-
thal, 2014) showed that they are generally not redundant in practice.

My studies of adaptive MCMC then focused on a special subclass, i.e. the adap-
tive Gibbs samplers, following ( Latuszyński et al., 2013). This study applied
the generic framework provided by (Roberts and Rosenthal, 2007) and focused
on ergodicity properties of a series of adaptive Gibbs/Metropolis-within-Gibbs
samplers that grow in sophistication. They presented various positive results
guaranteeing convergence of those adaptive algorithms. To support their re-
sults, the authors presented a cautionary example of a simple-seeming adaptive
Gibbs sampler that eventually fails to converge. An elaborate proof was given
to show the process tends to infinity with probability larger than 0. Specifically,
it is used as a counter example to refute the following proposition, which was
presented erroneously in (Levine and Casella, 2006):

An adaptive random scan Gibbs sampler is ergodic if its adaptive selection prob-
ability αn converges to α and a random scan Gibbs sampler with fixed selection
probability α induces a ergodic Markov chain with stationary distribution π.

In hope to simplify the proof and strengthen their result, I worked to produce
two proofs using different methodologies. My proofs strengthen the original
results that such process tends to infinity with probability larger than 0 with
proper choice of “adaptation speed”: I was able to show that there such prob-
ability can be larger than any σ ∈ [0, 1) under certain choices of “adaptation
speed”. Proof one uses an auxiliary process that converges in probability; proof
two involves construction of countably infinitely many phases.
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2 Part I: Markov Process on General State Space
and General MCMC Algorithms

2.1 Preliminary Definitions and Examples

We will include some basic definitions and fundamental results in this section.

We first define Transition Probability Kernels as the following:

Definition 2.1. If P = {P (x,A), x ∈ X , A ∈ B(X)} is such that
(i) for each A ∈ B(X), P (·, A) is a non-negative measurable function on X
(ii) for each x ∈ X, P (x, ·) is a probability measure on B(X)
then we call P a transition probability kernel or Markov transition function.

Theorem 2.1. For any initial measure µ on B(X), and any transition probabil-
ity kernel P , there exists a stochastic process Φ = {Φ0,Φ1, · · ·} on Ω = Π∞i=0Xi,
measurable with respect to F = ∨∞i=0B(Xi), and a probability measure Pµ on
F such that Pµ(B) is the probability of the event {Φ ∈ B} for B ∈ F ; and for
measurable Ai ⊆ Xi, i = 0, ..., n and any n

Pµ(Φ0 ∈ A0,Φ1 ∈ A1, ...,Φn ∈ An)

=

∫
y0∈A0

· · ·
∫
yn−1∈An−1

µ(dy0)P (y0, dy1) · · ·P (yn−1, An).

Remark. The relevant sources from which proof of this theorem can be found is
outlined in (Meyn and Tweedie, 2012). This theorem says that given a transition
kernel, a discrete process exists such that it “proceeds by that kernel” in a way
we typically understand a time-homogeneous Markov process. We will explain
this further following the next definition.

Definition 2.2. The stochastic process Φ defined on (Ω,F) is called a time-
homogeneous Markov chain with transition probability kernel P (x,A) and initial
distribution µ if the finite dimensional distributions of Φ satisfy the following
for every n:

Pµ(Φ0 ∈ A0,Φ1 ∈ A1, ...,Φn ∈ An)

=

∫
y0∈A0

· · ·
∫
yn−1∈An−1

µ(dy0)P (y0, dy1) · · ·P (yn−1, An).

A time-homogeneous Markov chain is memoryless (transition probability only
depends on current step) and its transition probability to “a destination” de-
pends only on its starting position, regardless of time.

Example: Random Walk on Half Line

Given a sequence of i.d.d random variables {Wi} taking values in Z. We define
Markov process {Φn} as Φn = [Φn−1 +Wn]+.
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Example: Markov Process on Finite Groups

Let (G, ∗) be a finite group. Let n = |G|. Given a probability distribution µ
on G, the transition probabilities P (g, h ∗ g) := µ(h) define a Markov chain.
In words, the chain moves via left multiplication by a random element of G
selected according to µ.

Example: Renewal process

Let {Yn} be a sequence of i.d.d random variables with distribution function Γ
concentrated on R+. Let Y0 be a further independent random variable, with
distribution of Y0 being Γ0 concentrated on R+. The random variables Zn :=∑n
i=0 Yi are called a delayed renewal process while if Γ0 = Γ then the sequence

is referred to as a renewal process.

Notably, write Γ0 ∗ Γ for the convolution of Γ0 and Γ given by

Γ0 ∗ Γ(dt) =

∫ t

0

Γ(dt− s)Γ0(ds) (1)

By decomposing successively over the values of the first n variables Z0, ..., Zn−1,
we have that

P (Zn ∈ dt) = Γ0 ∗ Γn∗(dt) (2)

Proposition 2.1. Chapman-Kolmogorov equation: For any m with 0 ≤
m ≤ n,

Pn(x,A) =

∫
X
Pm(x, dy)Pn−m(y,A), x ∈ X , A ∈ B(X) (3)

Remark. Chapman-Kolmogorov equation is instrumental in Markov theories.
We will see it appearing at numerous occasions in the following Chapters. Es-
sentially, it can be interpreted as saying that the process move from starting
point into A by first taking m steps to some intermediate position y ∈ X; and
moves succeeding (n−m) steps with law appropriate to starting afresh at y (it
forgets the past before time m).

Definition 2.3. Skeletons and Resolvents: The chain Φm is called the
m−skeleton of the chain Φ if it satisfies the following transition law:

Px(Φmn ∈ A) = Pmn(x,A) (4)

The resolvent Kaε is defined for 0 < ε < 1 by

Kaε := (1− ε)
∞∑
i=0

εiP i(x,A), x ∈ X,A ∈ B(x) (5)

Remark. An m−skeleton can be understood as the sped-up version of the
original Markov chain (we observe the value of the chain every two steps); A
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resolvent is essentially a sampled chain: it is still technically a sped up version
of the original chain but the times by which it is sped up is determined prob-
abilistically, where the number of steps the chain will progress per time unit is
first sampled from a geometric distribution. Resolvent is associated with the
concept of accessibility . As we will see later, a destination set A is accessible
from x if and only if the probability of resolvent reaching A form x in one step
is larger than 0.

2.1.1 Occupation Times, Return Times and Hitting Times etc.

Definition 2.4. We define occupation times, first return and first hitting times
on A respectively as:

γA :=

∞∑
n=1

1(Φn ∈ A) (6)

τA := min{n ≥ 1 : Φn ∈ A} (7)

σA := min{n ≥ 0 : Φn ∈ A} (8)

We also define two kernels U,L for later use:

U(x,A) :=

∞∑
n=1

Pn(x,A) =

∞∑
n=1

E(1(Φn ∈ A)) = E

( ∞∑
n=1

(1(Φn ∈ A))

)
= Ex[γA]

(9)

L(x,A) := Px(τA <∞) (10)

Remark. The occupation times is the total number of times the chain stayed
in set A; τA is the first time the chain return to A (not including the starting
point); σA is the first time the chain hits set A–it includes the starting point.
U(x,A) is the expected number of times the chain stayed in set A; L(x,A) is
the probability of x return to A in finite steps. As we will see, these concepts
are very useful in later sections.
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2.2 Irreducibility

Irreducibility is a fundamental concept in Markov chain theory, which basically
states that all parts of the state space can be reached by a Markov chain re-
gardless of the starting point. In order to facilitate the analysis of general state
space chain, this concept is modified to ϕ−irreducibility with respect to measure
ψ. An important result is the existence of a maximal irreducibility measure ψ,
which describes the range of the chain much more completely. A closely asso-
ciated concept is accessibility: the idea is that once we know which sets can be
reached with positive probability from a particular starting point, then we will
have some idea of how the chain will behave in the long term.

2.2.1 ϕ−Irreducibility

Definition 2.5. ϕ−Irreducibility for general space chains: We call Φ ϕ−irreducible
if there exists a measure ϕ on B(X) such that, whenever ϕ(A) > 0, we have
L(x,A) > 0 for all x ∈ X.

Proposition 2.2. Equivalent formulation of ϕ−irreducibility:

1. for all x ∈ X, whenever ϕ(A) > 0, U(x,A) > 0;

2. for all x ∈ X, whenever ϕ(A) > 0, there exists some n > 0, possibly
depending on both A and x, such that Pn(x,A) > 0;

3. for all x ∈ X, whenever ϕ(A) > 0 then K1/2(x,A) > 0.

2.2.2 ψ−Irreducibility

Proposition 2.3. If a Markov chain is ϕ−irreducible for some ϕ, then probabil-
ity measure ψ exists such that it is a maximal irreducibility measure, satisfying
the following conditions:

1. Φ is ψ−irreducible;

2. for any other measure ϕ′, the chain X is ϕ′−irreducible if and only if
ψ � ϕ′;

3. if ψ(A) = 0, then ψ({y : L(y,A) > 0}) = 0;

4. the probability measure ψ is equivalent to ψ′(A) :=
∫
X ϕ
′(dy)K1/2(y,A),

for any finite irreducibility measure ϕ′

Remarks: Among different choices of irreducibility measures, ψ is the “maxi-
mal” in the sense that for any set A, ϕ′(A) > 0 implies ψ(A) > 0 where ϕ′ is
any irreducibility measure. Note that the � sign denotes absolute continuity
of measures and two measures which are mutually absolutely continuous are
called equivalent. (2) says that if a set is “negligible” by the maximal irre-
ducibility measure, which would imply it is negligible by all other irreducible
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measures, then the set of starting points that will reach A is also negligible:
ψ({y : L(y,A) > 0}) = 0.

Definition 2.6. We call a set A ∈ B(X) full if ψ(Ac) = 0; we call a set
A ∈ B(X) absorbing if P (x,A) = 1 for x ∈ A.

One important usage of ψ−irreducibility, as opposed to ϕ−irreducibility, is to
guarantee effective analysis of restrictions of chains to full set utilizing the fol-
lowing two propositions. An example we will present later is the theorem con-
cerning periodicity of ψ−irreducible chains where the cyclic classes cover only
a full set on the state space instead of the whole state space as for countable
state space chains.

Proposition 2.4. Suppose that Φ is ψ−irreducible. Then every absorbing set
is full; every full set contains a non-empty, absorbing set. Here an absorbing
set is essentially equivalent to the absorbing communicating class in countable
space.

Proposition 2.5. Suppose that A is an absorbing set. Let PA denote kernel
P restricted to the states in A. Then there exists a Markov chain ΦA whose
state space is A and whose transition matrix is given by PA. Moreover, if Φ is
ψ−irreducible then ΦA is ψ−irreducible.

2.2.3 Accessibility

Definition 2.7. We say that a set B ∈ B(X) is accessible from another set A
if L(x,B) > 0 for every x ∈ A;

We say that a set B ∈ B(X) is uniformly accessible from another set A if there
exists a σ > 0 such that

inf
x∈A

L(x,B) ≥ σ (11)

Note that the relation A  B, the uniformly accessibility of A to B, is non-
reflexive in general, but it is transitive.

Proposition 2.6. Let Ā := {x ∈ X : L(x,A) > 0} and Ā(m) := {x ∈ X :∑m
n=1 P

n(x,A) ≥ m−1}.
Ā = ∪mĀ(m)

and for each m we have Ā(m) A.

Remark. The first statement is obvious: consider m→∞. The second state-
ment follows from the following:

L(x,A) ≥ Px(τA ≤ m) ≥ m−1

The purpose of this Proposition has been to show that state space X can be
covered by sets from which any given A ∈ B+(X) is uniformly accessible.
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2.3 Pseudo-atoms

The purpose of an atom set has been to endow general state space chain with
analogous properties of countable state space chain. The rationale of this con-
struction can be understood as an attempt to “simplify” the Chapman Kol-
mogorov equation. A very important bridge between general state space chain
with atom and any general state space chain is the existence of a “split” chain.
A split chain is defined in a way such that it always admits an atom set and
the transition probability is directly linked to the original chain. Provided that
a Minorizaion Condition is satisfied, a chain can always be split and thus an-
alyzed effectively through its split counterpart. The Minorization condition,
or existence of small sets, can in turn be guaranteed via aperiodicity and irre-
ducibility. This series of deduction allows us to infer important stability and
ergodicity properties of general state space chains through easily verifiable con-
ditions, i.e. irreducibility and aperiodicity.

Definition 2.8. A set α ∈ B(X) is called an atom for Φ if there exists a
measure v on B(X) such that

P (x,A) = v(A), x ∈ α (12)

If Φ is ψ−irreducible and ψ(α) > 0 then α is called an accessible atom

Remark: The existence of “artificial atom” for ϕ-irreducible chains is one
single result that makes general state space Markov chain theory as powerful as
countable space theory.

2.3.1 Splitting ϕ-Irreducible Chains

Proposition 2.7. Suppose there is an atom α in X such that
∑
n P

n(x, α) > 0
for all x ∈ X. Then α is an accessible atom and Φ is v-irreducible with v =
P (α, ·)

Proposition 2.8. If L(x,A) > 0 for some state x ∈ α, where α is an atom,
then α→ A.

Definition 2.9. Minorization Condition: For some σ > 0, some C ∈ B(X)
and some probability measure v with v(CC) = 0 and v(C) = 1

P (x,A) ≥ σ1C(x)v(A), A ∈ B(X), x ∈ X. (13)

Definition 2.10. Construction of Split Chain: Define a new Markov chain
based on the original chain by the following steps

15



1. Split state space X into X ′ = X × {0, 1} where X0 := X × {0} and
X1 := X × {1} are thought of as copies of X equipped with copies of
B(X0), B(x1) of the σ−field B(X). Let B(X ′) be the σ-field generated
by B(X0), B(x1);

2. For any measure λ on B(X), split it into two measures on each of X0, X1

by defining the measure λ′ on B(X ′) through: λ′(A0) = λ(A ∩ C)[1 −
σ] + λ(A∩CC); λ′(A1) = λ(A∩C)σ where σ,C are the constant and the
corresponding small set, and A0 ∈ X0, A1 ∈ X1;

3. Define the split kernel P ′(xi, A) for xi ∈ X ′ and A ∈ B(X ′) by

P ′(x0, ·) = P (x, ·)∗, x0 ∈ X0 − C0 (14)

P ′(x0, ·) = [1− σ]−1[P (x, ·)∗ − σv′(·)], x0 ∈ C0 (15)

P ′(x1, ·) = v′(·), x0 ∈ X1 (16)

Remark: The exact way a split chain operates is in fact not of our interests
as far as application is concerned. The purpose of this construction has been
nothing but to find a chain such that it has the same transition probability as
the original chain and equipped with an atom set (stated formally in Theorem
2.2). Of course, the existence will be inferred from the Minorization condition,
guaranteed through strong aperiodicity and irreducibility. In the above defi-
nition, we assume small set C exist; it is later shown that for ϕ−irreducible
chains small sets for which the minorization condition holds exist, at least for
the m−skeleton.

A few notes on the construction: original measure λ is the marginal measure
induced by λ′ : λ′(A0 ∪ A1) = λ(A). Outside C the chain Φ′ behaves just like
Φ, moving on the top half X0 of the split space. Each time it arrives in C, it is
split; with probability 1− σ it remains in X0 with probability σ it drops to C1.
The bottom level X1 is an atom, with ϕ′(X1) = σϕ(C) > 0 whenever the chain
Φ is ϕ-irreducible. From the definition above, C1 ⊆ X1 is the only part of the
bottom level which is reached with positive probability.

Theorem 2.2. The original chain Φ is the marginal chain of Φ′: that is, for
any initial distribution λ on B(X) and any A ∈ B(X),∫

X

λ(dx)P k(x,A) =

∫
X′
λ′(dyi)P

′k(yi, A0 ∪A1). (17)

The chain Φ is ϕ−irreducible if Φ′ is ϕ′−irreducible; and if Φ is ϕ−irreducible
with ϕ(C) > 0 then Φ′ is v

′−irreducible, and C1 is an accessible atom for the
split chain.

Remarks. This theorem equates transition probability of the original chain to
its split counterpart. If some results can be proved for general state space chain
endowed with atom set, we may immediately transfer such result to the original
chain, provided that the splitting is viable.
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2.3.2 Small Sets

Definition 2.11. Small Sets: A set C ∈ B(X) is called a small set if there
exists an m > 0, and a non-trivial measure vm on B(X), such that for all x ∈ C,
B ∈ B(X),

Pm(x,B) ≥ vm(B). (18)

We say C is vm-small if the above holds.

Remark. Intuitively, a set is small if the transition probability from each of
its element to any set B can be bounded uniformly by a “shrunk” probability
measure (the non-trivial measure vm). However, small set should be understood
as a way to “translate” irreducibility to more concrete information regarding be-
havior of the chain. For example, it may be used with Chapman-Komogorov
equation to derive certain inequalities; it may be combined with strong aperi-
odicity condition to produce Minorization condition, which guarantees splitting
of the chain. We shall see many of those applications in the following sections.

Theorem 2.3. If Φ is ψ−irreducible, then for every A ∈ B+(X), there exists
m ≥ 1 and a vm−small set C ⊆ A such that C ∈ B+(X) and vm{C} > 0. Here
B+(X) denote {B|ψ(B) > 0}.

This shows that if Φ is ψ−irreducible, every set A ∈ B+(X) contains a small set
inB+(X). As a consequence, every ψ-irreducible chain admits somem−skeleton
which can be split and for which the atomic structure of the split chain can be
exploited. In other words, some m−skeleton always obeys the Minorization
condition when ψ−irreducibility holds.

Proposition 2.9. 1. If C ∈ B(X) is vn−small, and for any x ∈ D we have
Pm(x,C) ≥ σ, then D is vn+m−small, where vn+m is a multiple of vn

2. Suppose Φ is φ−irreducible. Then there exists a countable collection Ci
of small sets in B(X) such that

X = ∪∞i=1Ci (19)

3. Suppose Φ is ψ−irreducible. If C ∈ B+(X) is vn-small, then we may
find M ∈ Z+,M > n and a measure vM such that C is vM -small, and
vM (C) > 0.

Remark. (1) can be proved by the Chapman-Kolmogorov equation. For (2),
the collection can be found by identifying the vm−small set C ∈ B+(X). Since
the chain is ψ−irreducible (so ∃n ∈ N+, Pn(x,A) > 0,∀x ∈ X,ψ(A) > 0), the
following set covers :

C(n, k) := {y : Pn(y, C) ≥ k−1}

Notice that each C(n, k) is small because of (1) – they all admit positive prob-
ability of reaching small set C in some n steps. To see (3), since C ∈ B+(X),
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from equivalence definition of ϕ−irreducible, we have Ka1/2(x,C) > 0 for all
x ∈ X. Therefore, it can be deduced that the probability of starting from v(·)
and reaching C after some m steps is positive. Let vM (C) := vPm(C) > 0. For
all x ∈ C,

Pn+m(x,B) =

∫
X

Pn(x, dy)Pm(y,B) ≥ vPm(B) = vM (B),

where M = n+m. The purpose of (3) has been to show that with a small set
C, we may assume with out loss of generality that vM (C) > 0.

Example: Small Set on Random walk on a half line: Provided that
Γ(−∞, 0) > 0, i.e. there is a positive probability of negative increment: there
exists ε > 0, σ > 0 such that the increment P (W < −ε) > σ. Then {0} is
small by definition and for any compact set D := [a, b] we have P b/ε(x, {0}) >
σb/ε,∀x ∈ D. So any compact set is small by Proposition above.

In addition to the above Proposition, we document two results useful for proving
existence of small sets:

Proposition 2.10. Given a positive integer k0 and a subset R ⊆ X, there
exists a probability measure Q(·) so that

P k0(x, ·) ≥ εQ(·)∀x ∈ R, (20)

where

ε =

∫
X

( inf
x∈R

P k0(x, dy)) (21)

Remarks. This Proposition follows trivially from the following inequality:

P k(x,A) ≥
∫
A

( inf
x∈R

P k(x, dy))

This is proven to be a very handy result to be used to show that certain set
is small. Most typical application is when P k(x, ·) is a unimodal distribu-
tion with x being the mode whilst R := [a, b] Therefore, infx∈R P

k0(x, dy) =
min(P k0(a, dy), P k0(b, dy)).

Proposition 2.11. Consider a sequentially-updated Gibbs sampler with n di-
mension. Suppose that for some d, conditional on values for Xk

1 , ..., X
k
d , the

random variables Xk
d+1, ..., X

k
n are independent for all Xk′

i , k
′ < k. Then if we

establish Minorization condition for Xk
1 , ..., X

k
d , i.e.

L(Xk0
1 , ..., Xk0

d |(X
0
1 , ..., X

0
n) = x) ≥ ε′Q′(·),∀x ∈ R (22)

Then there is a probability measure Q(·) on X such that

P k0(x, ·) ≥ ε′Q(·) (23)
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Proof. Suppose that for any measurable set A ⊆ X1 × ...×Xd,∀x ∈ R,

P k0(x,A) ≥ ε′Q′(A).

Define Q(·) on X such that its marginal distribution on the first d coordinates
agrees with Q′(·) and the conditional distribution on the first d coordinates is
defined as

Q(Xd+1, ..., Xn|X1, ..., Xd) = L(Xd+1, ..., Xn|X1, ..., Xd)

Notice that a distribution is fully described with marginal distribution of a set
of coordinates and conditional distribution on the same set of coordinates, i.e.
let X ∼ Q(·) and X1, B1 represent first d coordinates and X2, B2 the remaining
coordinates,

Q(B) = P ({X1 ∈ B1} ∩ {X2 ∈ B2})

= P ({X2 ∈ B2}|{X1 ∈ B1})Q′(B1)

= EX1∈B1
(E(1{X2 ∈ B2}|X1 = x, {X1 ∈ B1}))Q′(B1)

= EX1∈B1
(P ({X2 ∈ B2}|X1 = x))Q′(B1)

where the expectation is known since marginal distribution of X1 is known. The
result follows.
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2.4 Cyclic Behavior

The existence of small sets allows us to study cyclic behavior of Markov chain
on general state space. It should serve yet another example of application of
small sets. First I will review some results on countable space.

Definition 2.12. In the countable space, we define period of a single state α
as the following:

d(α) = gcdn ≥ 1 : Pn(α, α) > 0 (24)

Proposition 2.12. For any y ∈ C(α) := {y : α↔ y}, d(α) = d(y)

Proposition 2.13. Let Φ be a irreducible Markov chain on countable space,
and d the common period of the states. Then there exists disjoint sets D1, ..., Dd

such that they cover X and P (x,Dk+1) = 1, x ∈ Dk, k = 0, ..., d− 1

Definition 2.13. An irreducible chain on a countable space X is called

1. aperiodic, if d(x) ≡ 1, x ∈ X;

2. strongly aperiodic, if P (x, x) > 0 for some x ∈ X.

Proposition 2.14. Let Φ be a irreducible Markov chain on countable space,
and d the common period of the states, and cyclic classes are D1, ..., Dd. Then
for a Markov chain with transition matrix P d, eachDi is an irreducible absorbing
set of aperiodic states.

One major theme of the Markov chain theory on general state space is to “trans-
fer” results on countable state space to general state space chain through ex-
istence of small set. Now I will document one instance of using this method–
using small sets to prove existence of “disjoint” d−cycles for a ψ−irreducible
Markov chain:

Theorem 2.4. Suppose that Φ is a ψ−irreducible Markov chain on X. Let
C ∈ B+(X) be a vM−small set and let d be the greatest common divisor of the
following set:

EC = {n ≥ 1 : the set C is vn−small, with vn = δnv for some δn > 0}

Then there exists disjoint setsD1, ..., Dd ∈ B(X) such that for x ∈ Di, P (x,Di+1) =
1, i = 0, ..., d − 1 mod d. And the set not covered by the d−cycle, i.e. N =
[∪di=1Di]

c, is ψ−null.

The d−cycle {Di} is maximal in the sense that for any other collection {d′, D′k, k =
1, ..., d′} satisfying the properties above, we have d′|d; whilst if d = d′, then, by
reordering the indices if necessary, D′d = Di, a.e.ψ
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Proof. The idea of the proof is to first construct d overlapping sets as the fol-
lowing:

D∗i =

{
y :

∞∑
n=1

Pnd−i(y, C) > 0

}
, i = 0, .., d− 1

which covers X due to irreducibility – ψ(C) > 0. Then we proceed to prove
that ψ(D∗i ∩D∗k) = 0, i.e. the overlapping is ψ−null. By contradiction, assume
that ∃A ⊆ D∗i ∩ D∗k with ψ(A) > 0. Therefore, for some ω ∈ A, there exists
some ni, nk such that

Pnid−i(ω,C) ≥ σi > 0

Pnkd−k(ω,C) ≥ σk > 0

Utilizing the property of maximal irreducibility, since ψ(A) > 0, ∃r such that∫
C

v(dy)P r(y,A) = σc > 0.

Notice that we cannot simply say that since ψ(A) > 0, there exists some r such
that P (x,A) ≥ σc > 0. It is necessary to eliminate “variable” x via integration:
this is the reason why we take a detour to C first.

For x ∈ C,B ⊆ C
P 2M+md−i+r(x,B) ≥∫

C

PM (x, dy)

∫
A

P r(y, dw)

∫
C

Pmd−i(w, dz)PM (z,B) ≥ σcσmv(B)

Notice that here the path the chain follows is: x → C → A → C → B. As
explained we take a detour to C before go to A to uniformly bound the integral.
This shows that 2M+md+r−i ∈ EC . Similarly, we have 2M+nd+r−k ∈ EC .
This contradicts the definition of d and we have thus shown that ψ(D∗i ∩D∗k) = 0.

Let N be the union of overlapping between {D∗i }. Since ψ(N) = 0, the sets
{D∗i \N} form a disjoint class of sets whose union is full. We know that there
exists an absorbing set D ∈ ∪iD∗i \N . Di = D∩D∗i \N thus are disjoint and if
x ∈ D is such that P (x,Dj) > 0, then we have x ∈ Dj−1 because that implies
Pnd−j+1(x,C) = Pnd−(j−1)(x,C) > 0 for some n.

To show the maximality, it suffices to show that for each n ∈ EC , d′|n. In order
to show this, we shall show that for some cyclic class D′i, P

n(x,D′i) > 0, x ∈ D′i
for all n ∈ EC . However, we know that for some cyclic class D′i, v1(D′i ∩C) > 0
because otherwise v1(C) = 0; this implies that Pn(x,D′i ∩ C) > v1(D′i ∩ C) >
0,∀x ∈ C. The result follows. We can further show that C ∩ D′j ≡ ∅,∀j 6= k;

because if not, for x ∈ C∩D′j , PM (x,C∩D′k) = 0 (the chain is bound to return
to D′j after multiple of d′ steps).
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This result motivates the following definition regarding periodicity of Markov
chains on general state space.

Definition 2.14. Suppose that the chain is ψ−irreducible. The largest d for
which a d−cycle occurs is called period of the chain. If d = 1, the chain is called
aperiodic. When there exists v1−small set A with v1(A) > 0, then the chain is
called strongly aperiodic.

Based on these definitions and the main theorem, we have the following useful
propositions,

Proposition 2.15. Suppose that Φ is a ψ−irreducible Markov chain.
(i) If Φ is strongly aperiodic, then the Minorization Condition (single step)
holds;
(ii) The resolvent, or Kaε−chain, is strongly aperiodic for all 0 < ε < 1.
(iii) If the chain is aperiodic then every skeleton is ψ−irreducible and aperiodic,
and some m−skeleton is strongly aperiodic

Remarks. Our results regarding existence of small sets suggest that Minoriza-
tion is always satisfied for some m−skeleton of the chain. (i) tells us that for
a strongly aperiodic chain, m = 1, i.e. Minorization condition is satisfied for
the original chain and we can split it immediately. So it is always preferable to
work with strongly aperiodic chain. The general method is to prove results for
strongly aperiodic chains and then extend them to general state space chains
through the m−skeleton or Kaε−chain.

Notice that for a periodic chain, such v1−small set does not exists such that it
has positive ψ−measure: to prove by contradiction, assume such small set does
exist; A = (A∩N)∪ (∪d−1

i=0 (A∩Di)): ψ(A∩N) = 0 =⇒ v1(A∩N) = 0 because
otherwise P (x,A ∩N) > v1(A ∩N) > 0,∀x ∈ A =⇒ ψ(A) = 0; for any i such
that A ∩Di 6= ∅, we have x ∈ A ∩Di, P (x,D1 ∩ A) = 0 =⇒ v1(D1 ∩ A) = 0.
Therefore, v1(A) = 0 and the result follows.
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2.5 Petite Sets and Sampled Chains

Let a = {a(n)} be a distribution, or probability measure, on Z+ and consider
the Markov chain Φa with probability transition kernel

Ka(x,A) :=

∞∑
n=0

Pn(x,A)a(n)

Probabilistically, Φa has the interpretation of being the chain Φ “sampled” at
time-points drawn successively according to the distribution a. For example, if

aε(n) = [1− ε]εn, n ∈ Z+,

we sample from the geometric distribution (thus obtaining some integer n) and
progress the original chain by n steps. Notice that in this case, the chain is
the resolvent Kε as defined before. One use of this definition is that it allows
for development of useful conditions under which uniform accessibility can be
inferred, i.e. if a set B ∈ B(X) is uniformly accessible using a from another set
A ∈ B(X), that is, if there exists a σ > 0 such that

inf
x∈A

Ka(x,B) > σ,

then A B. This is because L(x,B) > Ka(x,B) for any a.

In addition to the above, we will document some other useful Propositions
concerning this definition:

Proposition 2.16. (i) Let a ∗ b denote the convolution of a and b,

Ka∗b(x,A) =

∫
Ka(x, dy)Kb(y,A)

;
(ii) If A a B and A b B, then A a∗b B;
(iii) If a is a distribution on Z+ then

U(x,A) ≥
∫
U(x, dy)Ka(y,A)

Remarks: The probabilistic interpretation of (i) is that if the chain is sam-
pled at a random time η = η1 + η2, where η1 has distribution a and η2 has
independent distribution b, then since η has distribution a ∗ b (definition of con-
volution), it follows that (i) is just a Chapman-Kolmogorov decomposition at
the intermediate random time.

Small sets always exist in the ψ−irreducible case, and provide most of the prop-
erties needed. Petite sets, on the other hand, have more tractable properties:
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Definition 2.15. We call a set C ∈ B(x) va−petite if the sampled chain satisfy
the bound

Ka(x,B) ≥ va(B),∀x ∈ C,B ∈ B(X),

where va is a non-trivial measure on B(X)

Obviously, a small set is a petite set with a := δm(m). Petite set, on the other
hand, is small set with respect to the sampled chain. Other important properties
are the following:

Proposition 2.17. (i) If A ∈ B(X) is va−petite, and D  b A then D is
vb∗a−petite;
(ii) If Φ is ψ−irreducible and if A ∈ B+(X) is va−petite, then va is an irre-
ducibility measure for Φ.

Remarks. Apparently, (i) is useful to deduce that some set D is petite set upon
knowing another petite set and their relation–similar result exists for small sets
as we have seen before. The proof for (i) is just writing out the definition; to see
(ii), we need to show that given va(B) > 0, Pn(x,B) > 0 for all x ∈ X and some
n. It is sufficient to show that PnKa(x,B) > 0 since this essentially implies
that it is probable to reach B from x in finite steps. We also use the small set
cover of X that we have proved existence, i.e. A(n, k) = {y : Pn(y,A) ≥ k−1}:

PnKa(x,B) ≥
∫
A

Pn(x, dy)Ka(y,B) ≥ m−1va(B) > 0.

In summary, this proposition shows when a petite/small set associated measure
is an irreducibility measure, which is generally very useful in later proofs.

Here is another set of useful propositions concerning petite sets. These proper-
ties generally do not apply to small sets. (ii), (iii) are apparently consequences
of (i); as we will see later, the existence of an increasing sequence of petites that
covers the state space is especially useful in certain proofs.

Proposition 2.18. Suppose Φ is ψ−irreducible.

(i) If A is va−petite, then there exists a sampling distribution b such that A is
also ψb−petite where ψb is a maximal irreducibility measure;
(ii) The union of two petite sets is petite;
(iii) There exists a sampling distribution c, an everywhere strictly positive,
measurable functions: s : X → R, and a maximal irreducibility measure ψc
such that

Kc(x,B) ≥ s(x)ψc(B), x ∈ X,B ∈ B(X)

Thus there is an increasing sequence {Ci} of ψc−petite sets, all with the same
sampling distribution c and Minorizing measure equivalent to ψ, with ∪Ci = X

Remarks. The proof of (i) is to first show that va is an irreducibility measure:
we use the fact that there exists small set C ∈ B+(X) which is also vb−petite
for some b where vb is an irreducibility measure by previous results; then we can
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show that A a∗aε C and thus derive that A is va∗aε∗b−petite where va∗aε∗b is
a irreducibility measure since it is multiple of vb. Then we can show that with
0 < ε < 1,

Ka∗aε(x,B) = KaKaε(x,B) ≥ vaKaε(B), x ∈ A,B ∈ B(X)

Since va is an irreducibility measure, the measure vaKaε here is a maximal
irreducibility by previous results.

Proposition 2.19. Suppose that Φ is ψ−irreducible and that C is va−petite.

(i) Without loss of generality we can take a to be either a uniform sampling
distribution am(i) = 1/m, 1 ≤ i ≤ m, or a to be the geometric sampling distri-
bution aε. In either case, there is a finite mean sampling time

ma =
∑
i

ia(i).

(ii) If Φ is strongly aperiodic then the set C0 ∪ C1 ⊆ X ′ corresponding to C is
v∗a−petite for the split chain Φ′

Remark. Too see (i), we note that for any vn−small setA ∈ B+(X),
∑N
k=1 P

k(x,A) ≥
1/2ψb(A), x ∈ C, using Proposition 2.18. Then we can show that

N+n∑
k=1

P k(x,B) ≥
N∑
k=1

P k+n(x,B) ≥ 1

2
ψb(A)vn(B)
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2.6 Transience and Recurrence

Stable chains are conceived as those which do not vanish from their starting
points in some ways. The focus of this portion of the study will be on the
behavior of the occupation time:

Definition 2.16 (Uniform Transience and Recurrence). A set A is called uni-
formly transient if there exists M <∞ such that

Ex[ηA] ≤M, ∀x ∈ A

The set A is called recurrent if

Ex[ηA] =∞,∀x ∈ A

2.6.1 Chains with an atom

In this section, I will review how to classify a chain that admits an atom to either
recurrent or transient, through the splitting technique we reviewed previously.

Theorem 2.5. Suppose that a chain is ψ−irreducible and admits an atom
α ∈ B+(X). Then
(i) if α is recurrent, then every set in B+ is recurrent. (ii) if α is transient, then
there is countable covering of X by uniformly transients sets.

Remarks. To see (i), just apply Chapman-Kolmogorov equation (x goes to α;
α goes to α; α to any target set A ). For (ii), it is important to pay attention
here to the use of the “atom” construct: it is essentially conceived to mimic
behavior of a single state on the countable state space.

An important theme of this section is to explore the relation between return/hitting
time “τA” and occupation time “ηA” in the context of recurrence. The first en-
trance and last exist decomposition provides a link between the two. For general
state space Markov chain, the decomposition equations assumes the following
form (see (Meyn and Tweedie, 2012) p.184 for detail):

U (z)(x,B) = U
(z)
A (x,B) +

∫
A

U
(z)
A (x, dw)U (z)(w,B),

U (z)(x,B) = U
(z)
A (x,B) +

∫
A

U (z)(x, dw)U
(z)
A (w,B),

With the decomposition equations and the existence of atomic set, we may
classify the general chains as the following:
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Theorem 2.6. Suppose that Φ is ψ−irreducible and admits an atom α ∈
B+(X). Then
(i) if α is recurrent, then every set in B+(X) is recurrent.
(ii) if α is transient, then there is a countable covering of X by uniformly
transient sets.

Proof. For (i), using the property of the atomic set α,∑
n

P r+s+n(x,A) ≥
∑
n

∫
α

P r(x, dw)

∫
α

Pn(w, dz)Pm(z,A)

= P r(x, α)[
∑
n

Pn(α, α)]Pm(α,A) =∞

We can see that the purpose of atom here has been to transform the Chapman-
Kolmogorov equation on general state space to its countable state space form.
The advantage

Due to the property of the atom set α, the above can be simplified to the
form that is identical to the countable space case. For example, the last exist
decomposition is:

U (z)(x, α) = U (z)
α (x, α) + U (z)(x, α)U (z)

α (α, α),

So results on the countable state space are directly applicable. For example, we
can solve for expected hitting time (with z) in terms of the taboo probability
here:

U (z)(x, α) =
U

(z)
α (x, α)

1− U (z)
α (α, α)

≤ 1

1− L(α, α)
.

Notice that

L(x,A) =

∞∑
n=1

AP
n(x,A) = lim

z↑1
U

(z)
A (x,A)

The condition that α is transient ensures that U(x, α) is bounded for all x.
Consider the countable covering of X given by,

ᾱ(j) = {y :

j∑
n=1

Pn(y, α) > j−1}

We can use Chapman-Kolmogorov to show that for each j, ᾱ(j) is indeed tran-
sient:

U(x, α) ≥ j−1U(x, ᾱ(j)) inf
y∈ᾱ(j)

j∑
n=1

Pn(y, α) ≥ j−2U(x, ᾱ)(j)

This leads to the following definition:

Definition 2.17 (Transient Sets). If A ∈ B(X) can be covered with a countable
number of uniformly transient sets, then we call A transient.
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2.6.2 The General Recurrence/transience Dichotomy

This section will extend results in the last section, which assumes existence of
atom. This is one example of using the splitting techniques introduced pre-
viously to extend results from countable state space to general state space.
Regarding stability classification of ψ−irreducible chains, we have the following
definition:

Definition 2.18. (i) The chain is called recurrent if it is ψ−irreducible and
U(x,A) ≡ ∞,∀x ∈ X,∀A ∈ B+(X).
(ii) The chain is transient if it is ψ−irreducible and X is transient.

Starting from the Proposition below, we can see how our construction of split
chain becomes useful in extending results from countable state space to general
state space.

Proposition 2.20. Suppose that Φ is ψ−irreducible and strongly aperiodic.
Then either both Φ and Φ̌ are recurrent, or both Φ and Φ̌ are transient.

Remarks. Strong aperiodicity ensure that Minorization Condition holds and
thus Nummelin Splitting is viable for Φ. With the “split” Dirac measure δ∗x, we
have the following equality,

∞∑
n=1

∫
δ∗x(dyi)P̌

n(yi, B) =

∞∑
n=1

Pn(x,B).

Then the result follows.

The following Proposition provides a link between the recurrence of the chain
and its resolvent. In the proof, we can see that it uses some results we had for
sampled chains.

Proposition 2.21. For any 0 < ε < 1,

∞∑
n=1

Kn
aε =

1− ε
ε

∞∑
n=0

Pn

Remarks. The proof presented in (Meyn and Tweedie, 2012) (not stated ex-
plicitly) uses the following property of the convolution, which in turn follows
from Fubini’s theorem :∫

Rd
(f ∗ g)(x)dx = (

∫
Rd
f(x)dx)(

∫
Rd
g(x)dx).

As a direct consequence of the Proposition above,
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Proposition 2.22. Suppose that Φ is ψ−irreducible.
(i) The chain is transient if and only if each resolvent chain Kaε is transient;
(ii) The chain is recurrent if and only each Kaε chain is recurrent

Since the chain is ψ−irreducible, we know that the resolvent is strongly aperi-
odic. The dichotomy (either transient or recurrent) is already established for
the split chain of the resolvent and by Proposition 2.20 we know that the di-
chotomy extends to the resolvent chain. The Proposition 2.22 further extends
the dichotomy to the original chain, which gives us the following theorem.

Theorem 2.7. If the chain is ψ−irreducible, then it is either recurrent or
transient.

Remarks. Here we can see how the dichotomous results from countable state
space chain is extended to general state space: we first prove similar results with
the assumption that atom set exists and “remove” that assumption by utilizing
Nummelin Splitting technique.

We also have the following concerning the skeleton chain.

Theorem 2.8. Suppose that Φ is ψ−irreducible and aperiodic.
(i) The chain is transient if and only if one, and then every, m−skeleton Φm is
transient.
(ii) The chain is recurrent if and only if one, and then every, m−skeleton Φm is
recurrent.

Remarks. We will note the following equality:

∞∑
i=1

P j(x,A) =

m∑
r=1

∞∑
j=1

P r+jm(x, dy) =

m∑
r=1

∞∑
j=1

∫
P r(x, dy)P jm(y,A)

=

m∑
r=1

∫
P r(x, dy)

∞∑
j=1

P jm(y,A)

With this (i), and ⇐ of (ii) should be easy to see. For (ii) ⇒, notice that from
ψ−irreducibility and aperiodicity of the original chain, we know any skeleton
is also ψ−irreducible (here aperiodicity is necessary). So we know that the
skeleton is dichotomous but it cannot be transient due to (i).

The recurrence considered in this section is weaker than more desirable recur-
rence property known as Harris Recurrence, which requires that L(x,A) ≡ 1
for all x ∈ A and A ∈ B+(X). For countable chains, recurrence would imply
Harris Recurrence due to the following Proposition:

Proposition 2.23. For countable chains, U(x, x) =∞ if and only if L(x, x) =
1.

Unfortunately, we are unable to establish analogous results for chains on general
state space thus far.
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The following theorem provides various means to bound U(x,A) so that they
can be used to ensure that a set is uniformly transient.

Proposition 2.24. Suppose that Φ is a Markov chain but not necessarily irre-
ducible.
(i) If set A ∈ B(X) is uniformly transient with U(x,A) ≤ M, ∀x ∈ A, then
U(x,A) ≤ 1 +M, ∀x ∈ X;
(ii) If any set A ∈ B(X) satisfies L(x,A) = 1,∀x ∈ A, then A is recur-
rent. If Φ is ψ−irreducible, then A ∈ B+(X), then A ∈ B+(X) and we have
U(x,A) ≡ ∞,∀x ∈ X;
(iii) if any set A ∈ B(X) satisfies L(x,A) ≤ ε < 1,∀x ∈ A, then we have
U(x,A) ≤ 1/[1− ε],∀x ∈ X so that A is uniformly transient;
(iv) Let τA(k) denote the k−th return time to A, and suppose that for some m

Px(τA(m) <∞) ≤ ε < 1, x ∈ A;

then U(x,A) ≤ 1 +m/[1− ε],∀x ∈ X.

Remarks. (i) is a direct result of using first entrance decomposition, which is
often applied to link U(x,A) with x ∈ A to U(x,A) with x ∈ X. It mostly serves
to extend bound on U(x,A) with x ∈ A to the entire state space X; (ii) basically
states that Harris recurrence is stronger condition than recurrence, providing a
link between τA and ηA; (iii) allows us to bound U(x,A) given that L(x,A) is
uniformly bounded; it can be shown using last exist decomposition (yet again);
(iv) instead can be used to bound U(x,A) given that probability of “making
more than k − th return” is bounded below 1. The proof uses induction: for
fixed m ∈ Z+, given

Px(ηA ≥ m) ≤ ε, x ∈ A

i.e. the probability of “making more than (m−1)−th return” is bounded below
1. By induction, we can bound the probability of making more than or equal
to m(k + 1) hits,

Px(ηA ≥ m(k + 1)) =

∫
A

Px(ΦτA(km) ∈ dy)Py(ηA ≥ m) ≤ εk+1

With this bound over the m−skeleton, we may bound each step in a “stairway”
fashion: for x ∈ A,

U(x,A) =

∞∑
n=1

Px(ηA ≥ n)

≤ m[1 +

∞∑
k=1

Px(ηA ≥ km)] ≤ m/(1− ε)

.

The following proposition can be used to identify other uniform transient set
given the existence of one uniformly transient set.
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Proposition 2.25. If A is uniformly transient, and B  a A for some a, then
B is uniformly transient. Hence if A is uniformly transient, there is a countable
covering of Ā by uniformly transient sets.

Proof. This is another example of using accessibility to infer property of one set
from another. As we have seen in previous sections, similar results exist with
petite set (small set), transitive property of uniform accessibility. To prove such
property usually requires Chapman-Kolmogorov equation or formula of similar
form. To see the first statement, recall the following inequality,

U(x,A) ≥
∫
U(x, dy)Ka(y,A) ≥ δU(x,B)

The second statement comes from the following result from previous sections:

Ā = ∪mĀ(m)

where Ā(m) A,∀m (so each Ā(m) is uniformly transient).

2.6.3 Harris Recurrence

In this section, we will review some stronger concepts of recurrence. This section
will be focused on establishing some link between the “return time counts” and
first return time probabilities. Let’s first define the event that Φ ∈ A infinitely
often (i.o), or ηA =∞:

{Φ ∈ A i.o.} := ∩∞N=1 ∪∞k=N {Φk ∈ A}

which obviously a stronger condition than U(·, A) = E(ηA) = ∞. We will use
the following notation:

Q(x,A) := Px{Φ ∈ A i.o.}.

We have the following equality due to the strong Markov property:

Q(x,A) = P ({τA <∞} ∩ {Φ ∈ A i.o. Φ0 ∈ A})

= E(1{{τA <∞} ∩ {Φ ∈ A i.o. Φ0 ∈ A}})
= PΦτA

{Φ ∈ A i.o.} · Ex[1{τA <∞}]
= Ex[PΦτA

{Φ ∈ A i.o.}1{τA <∞}]

=

∫
A

(

∞∑
i=1

P i(x, dy))Q(y,A) =

∫
A

UA(x, dy)Q(y,A)

Here, to calculate the expectation of the random variable PΦτA
{Φ ∈ A i.o.}1{τA <

∞}, we partition the sample space according to the location of the first return.

The definition for Harris Recurrence is as the following:
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Definition 2.19. The set A called Harris recurrent if

Q(x,A) = Px(η =∞) = 1, x ∈ A

A chain is called Harris recurrent if it is ψ−irreducible and every set in B+(X)
is Harris recurrent.

We first develop conditions to ensure that a set is Harris recurrent based on first
return time probabilities L(x,A).

Proposition 2.26. Suppose for some setA ∈ B(X) we have L(x,A) ≡ 1, x ∈ A.
Then

Q(x,A) = L(x,A),∀x ∈ X
and in particular A is Harris recurrent.

Proof. The concepts/methodology used to prove this proposition is useful for
our later studies. So I will supply a detailed proof here. Firstly, we are able to
acquire the following equality using strong Markov property:

Px(τA(2) <∞) =

∫
A

UA(x, dy)L(y,A) = 1

Intuitively, this can be understood as the probability of reaching to some point
in A (UA(x, dy)) with finite steps and then return to A in finite steps. Strong
Markov property allows us to inductively extend to any finite k−return time:
i.e. with probability 1, the chain will return to A. For any x, we have the
following:

Px(ηA ≥ k) = Px(τA(k) <∞) = 1

i.e. the probability of the chain “occupying” A for at least k times equals to the
probability it returns to A more than k-th times. Then,

Q(x,A) = lim
k→∞

Px(ηA ≥ k) = 1,∀x ∈ A

. Then,

Q(x,A) =

∫
A

UA(x, dy)Q(y,A) = L(x,A)

Remarks. Intuitively, this Proposition states that if the chain returns to set
A with probability 1, then it returns to set A infinitely often with probability
1. This shows that the two definitions of Harris recurrence are in fact identical,
i.e. the one that uses occupation time Px(ηA =∞) = 1, x ∈ A and the one that
uses return time L(x,A) = 1, x ∈ A.

The following theorem can be very useful in proving Harris recurrence of a
set given uniform accessibility (denoted with “ ”). To prove the theorem, we
need the Martingale Convergence Theorem. Let’s first define martingale and
supermartingale:
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Definition 2.20. A sequence of integrable random variables {Mn : n ∈ Z+}
is called adapted to an increasing family of σ−fields {Fn : n ∈ Z+} if Mn is
F−measurable for each n. The sequence is called a martingale if E[Mn+1|Fn] =
Mn for all n ∈ Z+ and a supermartingale if E[Mn+1|Fn] ≤Mn for n ∈ Z+

Theorem 2.9. For a supermartingale Mn for which

sup
n
E(|Mn|) <∞,

{Mn} converges to a finite limit with probability one.

Theorem 2.10. (i) Suppose that D  A for any sets D and A in B(X). Then

{Φ ∈ D i.o.} ⊆ {Φ ∈ A i.o.} a.s.

and therefore Q(y,D) ≤ Q(y,A),∀y ∈ X;
(ii) If X  A then A is Harris recurrent, and Q(x,A) ≡ 1,∀x ∈ X.

Proof. Intuitively, (i) is easy to understand: since the chain visits setD infinitely
often and there is some ε > 0 chance for the chain to go from D to A each time,
the chain will end up visiting A infinitely often as well. The proof is to show
that the chain visiting D infinitely often implies limn L(Φn, A) = 1, which can
be shown to be equivalent to the event of the chain returning to set A infinitely
often. We use the following notation:

En = {Φn+1 ∈ A,n ∈ Z+}

One important step of the proof is to show that

P [∪∞i=nEi|FΦ
n ]→ 1(∩∞m=1 ∪∞i=m Ei) a.s.

This equality establishes a link between the probability of “returning” and the
occurrence of “infinitely often returning to the set”. To see this, note that for
fixed k ≤ n

P (∪∞i=kEi|FΦ
n ) ≥ P (∪∞i=nEi|FΦ

n ) ≥ P (∩∞m=1 ∪∞i=m Ei|FΦ
n ).

Notice that
lim
n→∞

P (∪∞i=kEi|FΦ
n ) = 1(∪∞i=kEi)

lim
n→∞

P (∩∞m=1 ∪∞i=m Ei|FΦ
n ) = 1(∩∞m=1 ∪∞i=m Ei)

By the Martingale Convergence Theorem, we know that the following limit
exists,

lim sup
n

P [∪∞i=nEi|FΦ
n ], lim inf

n
P [∪∞i=nEi|FΦ

n ]
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Therefore, we have the following inequality,

1(∪∞i=kEi) ≥ lim sup
n

P [∪∞i=nEi|FΦ
n ]

≥ lim inf
n

P [∪∞i=nEi|FΦ
n ] ≥ 1(∩∞m=1 ∪∞i=m Ei)

As k → ∞, the two extreme terms converge, which shows the equality we
desired. As a result, by strong Markov property,

lim
n→∞

L(Φn, A) = lim
n→∞

P [∪∞i=nEi|FΦ
n ] = 1(∩∞m=1 ∪∞i=m Ei) a.s.

Also note that

1(∩∞m=1 ∪∞i=m {Φi ∈ D}) ≤ 1(lim sup
n

L(Φn, A)) > 0 = 1(lim
n
L(Φn, A) = 1)

The result follows. (ii) follows from (i) easily.

Another method of proof could be the following: we know that ηD =∞, a.s., if
the chain visits D infinitely often i.e.

P ({ω ∈ Ω|ηD(ω) =∞}) = 1

while due to uniform accessibility

L(x,A) = E(E(1({∃n <∞,Φn ∈ A}|σ(ηD))))

= E(1− (1− ε)ηD ) =

∫
Ω

(1− (1− ε)ηD(ω))P (dω) = 1

The result we just proved can be used to show the following:

Theorem 2.11. If Φ is Harris recurrent then Q(x,B) = 1 for every x ∈ X and
every B ∈ B+(X).

Remarks. This theorem simply means that for a Harris recurrent chain, the
chain will hit every “large enough” set infinitely often regardless of its starting
point. From Harris recurrent, we know that every B ∈ B+(X) is recurrent
and that the chain is ψ−irreducible. We can use results we obtained from our
study of the petite sets: there exists an increasing sequence of ψc−petite sets
(countable) {Ci} that covers X, all with the same sampling distribution c and
Minorizing measure equivalent to ψ (recall that for each va−petite set it is also
a ψb−petite where ψb is maximal irreducibility measure, which is unique to the
specific chain). We can choose a large enough n such that x ∈ Cn and ψ(Cn) > 0
(this ensures that Cn is Harris recurrent). By definition,

Kc(y,B) ≥ ψc(B) = σ > 0,∀y ∈ Cn
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which implies that Cn  a B ⇒ Cn  B. The result follows.

Example. Recurrent But Not Harris-Recurrent
We may construct a chain that is recurrent but not Harris recurrent: consider
a chain Φ that is Harris recurrent on state space X. We can expand the state
space to X ′ := X ∪N where N consists of a sequence of individual points {xi}.
We can further define the transition probability:

P ′(xi, xi+1) = βi, P
′(xi, α) = 1− βi

where α ∈ X and 0 <
∏∞
i=0 βi < 1.

This construction ensures that

L′(xi, A) = L′(xi, α) = 1−
∞∏
i=1

βi < 1, A ∈ B+(X)

Therefore, any set B ⊂ X ′ with B ∩X ∈ B+(X) and B ∩N non-empty is not
Harris recurrent. However, since

U ′(xi, A) =

∞∑
n=1

Pn(xi, A) =

∞∑
m=1

∞∑
n=1

Pn+m(xi, A) ≥
∞∑
m=1

∞∑
n=1

Pm(xi, α)Pn(α,A)

=

∞∑
m=1

Pm(xi, α)

∞∑
n=1

Pn(α,A) ≥ L′(xi, α)U(α,A) =∞, A ∈ B(X)

every set in B+(X ′) is recurrent. We will later see that the only way in which an
irreducible chain can be recurrent and not Harris recurrent is by the existence
of an absorbing set which is Harris recurrent, accompanied by a single ψ−null
set on which the Harris recurrence fails.

Definition 2.21. Maximal absorbing set: For any Harris recurrent set D, we
write D∞ = {y : L(y,D) = 1}. We know that D ⊆ D∞ and D∞ is absorbing
(the chain can never move from D∞ to any point such that the probability to
reach D is less than 1.); D is a maximal absorbing set if D = D∞.
Maximal Harris sets: We call a set maximal Harris if H is a maximal absorbing
set such that Φ restricted to H is Harris recurrent.

With this definition, we have the following theorem:

Theorem 2.12. If Φ is recurrent, then

X = H ∪N

where H is non-empty maximal Harris set and N is transient.

Proof. The proof first requires construction of set H and set N . Then it pro-
ceeds to prove that H is indeed a non-empty maximal Harris set and that N is
transient. First, we set

H = {y : Q(y, C) = 1}, N = Hc
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where C is a ψa−petite set in B+(X). Since H∞ = H(H∞ ∈ H because if
the chain reaches H with probability 1 then it reaches C with probability 1),
either H is empty or H is maximal absorbing. Suppose that H is empty, i.e.
Q(x,C) < 1 for all x. It can be show that

C1 := {x ∈ C : L(x,C) < 1}

is in B+(X). For if it is not, we can find an absorbing full set F ⊂ Cc1 and

L(x,C ∩ F ) = 1, x ∈ C ∩ F =⇒ Q(x,C ∩ F ) = 1, x ∈ C ∩ F

which contradicts the premise Q(x,C) < 1 for all x. Notice that C ∩ F is
non-empty because that would imply C ⊆ F c =⇒ ψa(C) = 0.

Since ψ(C1) > 0 there exists B ⊆ C1, B ∈ B+(X) and δ > 0 with L(x,C1) ≤
δ < 1,∀x ∈ B, i.e.

L(x,B) ≤ L(x,C1) ≤ δ, x ∈ B.

Then by previous results on transient sets, we have U(x,B) ≤ [1−δ]−1 and this
contradicts that Φ is recurrent.

Therefore H is a non-empty maximal absorbing set, and H is full. Then we know
that N is ψa−null. Note that from equivalent definition of the irreducibility, we
know that ∃k, P k(x,N c) > 0,∀x ∈ X. Therefore, since

E(ηN ) =
∑
n

nk(1− P k(x,N c))n <∞

we may conclude that set N is transient.

To show that H is also Harris, we note that C  A,∀A ∈ B+(X) and by
construction Q(x,C) = 1,∀x ∈ H. Therefore, Q(x,A) = 1,∀x ∈ H,A ∈
B+(X).
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2.7 Quantitative Convergence Rates of MCMC

In this section, I will review some results on convergence rates of MCMC. This
section mainly follows (Rosenthal, 1995) and (Rosenthal, 1996). The main re-
sults specifies a generic method to derive quantitative convergence rates of a
general Markov process upon verifying the Minorization and Drift condition.
These results are also used in adaptive MCMC literature to bound convergence
speed so that it provides an alternative to check the Containment Condition.

2.7.1 Minorization and Convergence Rates

Here I state another definition of Minorization conditions for Markov chains:

Definition 2.22. (Another definition of Minorization Condition) A Markov
chain with transition kernel P (x, dy) on a state space X satisfies a minorization
condition on a subset R ⊆ X if there is a probability measure Q(·) on X, a
positive integer k0, and ε > 0, such that

P k0(x,A) ≥ εQ(A),∀x ∈ R,A ∈ B(X) (25)

Theorem 2.13. Suppose that a Markov chain P (x, dy) on a state space X sat-
isfies Minorization condition. Let X(k), Y (k) be two realizations of the Markov
chain (started in any initial distribution), defined jointly as described in the
proof, Let

t1 = inf{m : (X(m), Y (m)) ∈ R×R}

, and for i > 1 let

ti = inf{m : m ≥ ti−1 + k0, (X
(m), Y (m)) ∈ R×R}

Set Nk = max{i : ti < k}. Then for any j > 0,

||L(X(k))− L(Y (k))||var≤ (1− ε)[j/k0] + P (Nk < j) (26)

Remarks on the Proof:

1. Nk can be conveniently interpreted as counts of both chains stepping into
small set R before k if k0 = 1; when k0 6= 1, then Nk is the latest time
when both chains stepping into small set R and since the “coin tossing”
procedure is only administrated for k0−skeleton chain, there are at most
[j/k0] times the chain may couple in the small set given Nk ≥ j

2. The proof of this theorem provides a good example of utilizing Minoriza-
tion condition to show convergence through “coupling” argument. The
idea is to construct simultaneously two joint Markov chain such that they
each follows the transition probability P (x, dy) marginally, and one of
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them is at stationarity. It is critical that these two chains coincide af-
ter a random amount of time T (coupling time). This generic “coupling”
argument leads to the following inequality (“coupling” inequality):

||L(X(k))− L(Y (k))||var≤ P (X(k) 6= Y (k)) ≤ P (k < T ) (27)

3. The idea of Minorization condition comes from the desire to “bring to-
gether” both chains: one starts from stationarity and the other from any
initial distribution. The small set here is the venue at which such en-
counter may happen while they still each abide by the transition proba-
bility P marginally:

Xn+1/Yn+1∼


Q∗(·), if Xn, Yn ∈ R, I = 0

P (Xn/Yn, ·)− εQ(·)
1− ε

, if Xn, Yn ∈ R, I = 1

P (Xn/Yn, ·), otherwise

(28)

Q∗(·) denotes that both chains proceed according to distribution Q(·)
but with perfect correlation, while in other cases both chains proceed
independently, and I is a Bernoulli random variable with P (I = 0) = ε.

The results in Theorem 2.13 can be applied to form quantitative bound to
the convergence rate by carefully bounding P (Nk) < j. Specifically, with the
following proposition:

Proposition 2.27.

P (Nk < j) ≤ α−kE(

j∏
i=1

αri),∀α > 1, ri = ti − ti−1 (29)

Remarks: This can be proven using Markov’s inequality.

Proposition 2.28. Suppose that there is α > 1 and a function h : X ×X → R
such that h ≥ 1 and

E(h(X1, Y 1)|X0 = x, Y 0 = y) ≤ α−1h(x, y),∀(x, y) /∈ R×R. (30)

Then
E(αr1) ≤ E(h(X0, Y 0)), (31)

and for i > 1 and any choice of r1, ..., ri−1,

E(αri |r1, ..., ri−1) ≤ αk0 sup
(x,y)∈R×R

E(h(X1, Y 1)|X0 = x, Y 0 = y). (32)

Theorem 2.14. Suppose that Markov chain P (x, dy) satisfies Minorization
condition and satisfies hypotheses of the above proposition. Set

A = sup
(x,y)∈R×R

E(h(X1, Y 1)|X0 = x, Y 0 = y)

38



. Then, with initial distribution v,

||L(Xk)− π||var≤ (1− ε)[j/k0] + α−k+(j−1)k0Aj−1Ev×π(h(X0, Y 0)). (33)

Remarks: The above can be shown iteratively with the total expectation for-
mula. The application of the result above involves finding a small set as well as
associated ε and all of the following components: α, A, and Ev×π(h(X0, Y 0)).
The propositions in last section may be used to find small set and associated
ε. As to the rest, we may use the “drift condition” to simplify analysis (See
below).

Theorem 2.15. Suppose a Markov chain P (x, dy) on a state space X satisfies
the drift condition

E(V (X1)|X0 = x) ≤ λV (x) + b, x ∈ X (34)

for some V : X → R≥0, and some λ < 1 and b < ∞; and further satisfies a
minorization condition

P (x, ·) ≥ εQ(·),∀x ∈ X,V (x) ≤ d, (35)

for some ε > 0, some probability measure Q(·) on X, and some d > 2b
1−λ . Then

for any 0 < r < 1, beginning in the initial distribution v, we have

||L(Xk)− π||≤ (1− ε)rk + (α−(1−r)Ar)k(1 +
b

1− λ
+ Ev(V (X0))), (36)

where

α−1 =
1 + 2b+ λd

1 + d
< 1; (37)

A = 1 + 2(λd+ b) (38)

Remarks: This is an extension of 2.14 by setting h(x, y) = 1+V (x)+V (y), R =
{x ∈ X|V (x) ≤ d}.

2.7.2 Example: Bivariate Normal Model

Given a Bivariate normal distribution that has common mean µ and covariance

matrix

(
2 1
1 1

)
for which the conditional distributions are given by

L(X1|X2 = x) = N(x, 1),

L(X2|X1 = x) = N(
x+ µ

2
, 1/2)

Suppose we use a Gibbs sampler to sample this distribution. We may use the
method given in previous section to acquire a quantitative exponential bound
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on total variation distance. Notice that for this example, we use the original
method developed in Theorem 5, (Rosenthal, 1995). It differs from the simplified
version slightly.

Step 1. Auxiliary Function
Notice that due to the special structure of the sequential Gibbs sampler, we may
choose auxiliary functions that simply disregard the first coordinate: since the
update scheme is as the following (12)(12)(12)..., the expectation of the auxil-
iary function can be acquired without knowing the previous value of the first
coordinate. Another important factor to consider when screening for auxiliary
function is its stability with respect to the chain, that is, it “tends to” admit
a smaller value. Intuitively, for points that are far away from modal points of
the target distribution, it is more likely to move closer to the modal points at
the next step. Therefore, given that the small set chosen does include modal
points, it is preferable to elect auxiliary functions that admit a small value at
those modal points. Notice that in the simplified version of Theorem 5 (The-
orem 12 in (Rosenthal, 1995)), the small set is chosen to be {x : h(x) ≥ d}
directly.

Taking in to consideration of these factors, we may choose the following auxiliary
function for this particular example:

h(x, y) = 1 + (x2 − µ)2 + (y2 − µ)2.

Step 2. Small Set and Drift Condition
Choose the following set to be the perspective small set:

R = {x ∈ X|(x2 − µ)2 ≥ 3}

Compute ε using Proposition 2.10:

ε =

∫
( inf
x∈R

N(
x2 + µ

2
, 3/4; y))dy

=

∫ 0

−∞
N(
√

3/2, 3/4; y)dy +

∫ ∞
0

N(−
√

3/2, 3/4; y)dy > 0

For this choice of auxiliary function, using the variance-expectation formula, we
have

E(h(X(1), Y (1))|x2, y2) = 9/4 + (1/4)h(x, y),∀x, y,
which implies

E(h(X(1), Y (1))|x2, y2) ≤ (13/16)h(x, y),∀x, y /∈ R×R.

The condition we will verify here is not exactly the drift condition–it is a similar
condition developed by (Rosenthal, 1995).

To continue, we note that

A = sup
(x,y)∈R×R

E(h(X(1), Y (1))|x, y) = 9/4 + (1/4)(1 + 3 + 3) = 4
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and knowing that Y2 ∼ N(µ, 1),

Ev×π(h(X(0),Y (0)

) = 1 + Eπ((y2 − µ))2) + Ev(x2 − µ)2 = 2 + Ev(x2 − µ)

2.7.3 Example: Quantitative Rates of the James-Stein estimator

We will go through a realistic example of applying Theorem 2.15 to a hierarchical
Bayesian sampling problem. The procedure can be broken down to multiple
steps.

Step 1: Set up the Gibbs Sampler

Firstly, we shall define the Bayesian model:

Yi|θi ∼ N(θi, V ), 1 ≤ i ≤ K

θi|µ,A ∼ N(µ,A), 1 ≤ i ≤ K

µ ∼ flat prior on R

A ∼ IG(a, b)

This model defines a procedure by which the K observations are “generated”.
In the context of Bayesian probability, the observations {Yi} are known and we
are to find and sample from the “posterior” distribution of parameters µ and
{θi}. It is quite standard to work with such “hierarchical” models. Informally,
starting with {Yi}, µ and A (the last two are sampled from prior), we just need
to write conditional posterior distribution P (θi|Yi)P (θi):

θ
(k)
i ∼ L(θi|A = A(k), µ = µ(k−1), Yi) = N(

µ(k)V + YiA
(k)

V +A(k)
,
A(k)V

V +A(k)
)

Notice that this formula is quite standard (prior being normal with parameters
(µ,A) and likelihood being also normal with only one data point Yi). See
these papers for derivation of such formulae: (Murphy, 2007), (Jordan, 2010).
Similarly, we are able to write the following conditional distributions:

A(k) ∼ L(A|θi = θ
(k−1)
i , Yi) = IG((a+

K − 1

2
), b+

1

2

∑
(θ

(k−1)
i − θ̄(k−1))2);

µ(k) ∼ L(µ|A = A(k), θi = θ
(k−1)
i , Yi) = N(θ̄(k−1),

A(k)

K
)

With these, we are able to use a Gibbs sampler to sample parameters µ and
{θi} in an iterative manner. We hope that the sampling results will approximate
true posterior distribution:

π(·) = L(A,µ, θ1, ..., θK |Y1, ..., YK)
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Step 2: Find appropriate auxiliary function f(·)

The goal here is to derive the drift condition:

E(f(x(k))|x(k−1) = x) ≤ λf(x) + Λ,

for some 0 < λ < 1,Λ > 0, f : X → R+.

Some observations:

1. When searching for a proper auxiliary function, not only is it necessary
to satisfy the drift condition, we must also keep λ,Λ as small as possible
so that the Minorization condition is satisfied on fd : {x ∈ X |f(x) ≤
d}: intuitively, the larger fd, less “likely” will Minorization condition be
satisfied.

2. Another factor that affects size of ε and satisfaction of Minorisation con-
dition is whether transition probability within fd is “close”: the point is
that if the transition probability is very disparate, their respective “min-
ima” points tend to scatter around on X , which would require ε to be very
small for ε ·Q(·) to be bounded below of all the “minima” points.

3. Based on the observations above, we thus conclude that the choice of
auxiliary function f should have following properties: (1) if it is very
large at one iteration, it tends to get smaller at the next; (2) all values of
x for which f(x) is small have similar transition probabilities for the next
iteration.

For this problem, a good choice is

f(x) = f(A,µ, θ1, ..., θK) =

K∑
i=1

(θi − Ȳ )2 = K(θ̄ − Ȳ )2 +

K∑
i=1

(θi − θ̄)2

We know that the samples of {θi} should be close to data points {Yi}. Therefore,
if f(x) is large in one iteration (the values of θi are afar from Ȳ ), we expect
f(x) to attain smaller value at the next iteration.

Step 3. Show drift condition is satisfied

This step involves evaluating the following:

E(
∑

(θ
(k)
i − θ̄

(k))2|x(k−1)), E(K(θ̄ − Ȳ )2|x(k−1))

Since we only know distribution of θi conditioned on A(k), µ(k), Yi, we have to
use the “double expectation” to peel away θi

E(
∑

(θ
(k)
i − θ̄

(k))2|A(k), µ(k), x(k−1))
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This can be easily attained by using the following equality (this can be derived
by exchanging summation and expectation and use variance formula):

E(

n∑
i=1

(Zi − Z̄)2) = (
n− 1

n
)

n∑
i=1

V ar(Zi) +

n∑
i=1

(E(Zi)− E(Z̄))2

Apply this formula and variance-expectation formula, we can derive:

E(f(x(k))|x(k−1), µ(k), A(k)) = E(
∑

(θ
(k)
i − θ̄

(k))2|x(k−1), µ(k), A(k))

+E(K(θ̄ − Ȳ )2|x(k−1), µ(k), A(k))

= (K − 1)(
A(k)V

V +A(k)
) + (

A(k)

V +A(k)
)2∆

+K[
A(k)V

K(v +A(k))
+ (µ(k) − Ȳ )2(

V

V +A(k)
)2],

where ∆ =
∑

(Yi − Ȳ )2. We cam then take expected value over µ(k),

E(f(x(k))|x(k−1), A(k)) = K(
A(k)V

V +A(k)
) + (

A(k)

V +A(k)
)2∆

+(K(θ̄(k−1) − Ȳ )2 +A(k))(
V

V +A(k)
)2

Then we can identify that K(θ̄(k−1)− Ȳ )2 ≤ f(x(k−1)) and simplify the expres-
sion further through other inequalities (detail not shown here):

E(f(x(k))|x(k−1), A(k)) ≤ (1 +
A(k)

V
)−2f(x(k−1)) + (K +

1

4
)V + ∆

and take expectation over A(k), we then can obtain the drift condition:

E(f(x(k))|x(k−1)) ≤ λf(x) + Λ,

where

λ = E(1 +
W

V
)−2 with W ∼ IG(a+

K − 1

2
, b)

and Λ = ∆ + (K + 1/4)V , with ∆ =
∑

(Yi − Ȳ )2.

Step 4. Verify Minorization condition

The problem here is how to find a probability measure Q(·) and corresponding ε.
One strategy used here is to define Q(·) so that it mimics transition probabilities
P (x, ·) (as defined by conditional distribution in Step 1) but with appropriate
infimums over values of x ∈ fd, i.e.,

Q′(dA) = ( inf
0≤r≤d

IG(a+
K − 1

2
, b+

r

2
;A))dA
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Q′(dµ|A) =

(
inf

K(s−Ȳ )2≤d
N(s,

A

K
;µ)

)
dµ;

Q′(dθi|µ,A) = N(
µV + YiA

V +A
,
AV

V +A
),

The point of this construction is to ensure that

P (x, ·) ≥ Q′(·), x ∈ fd

Intuitively, Q(·) differs from P (x, ·) in that it is defined to “start” from the
point in fd to ensure the minimum value while P (x, ·) can start from any point
x ∈ fd. This is why the infimum operator is not applied to Q′(dθi|µ,A): it does
not contain any θi.

To illustrate, suppose our “destination” is the following set: (A,µ, θ) ∈ R×Y ×
R ⊆ X ,

Q(µ ∈ Y) =

∫
µ∈Y

∫
A∈R

Q′(dA)Q′(dµ|A)

≤
∫
µ∈Y

∫
A∈R

Q′(dA)P (x, dµ) ≤
∫
µ∈Y

P (x, dµ) = P (x,Y),∀x ∈ fd

Therefore,

P (x, ·) ≥ εQ(·), where Q(·) =
Q′(·)
Q′(X )

, ε = Q′(X )

where

Q′(X ) =

∫ ∞
0

Q′(dA)

∫ ∞
−∞

Q′(dµ|A)

K∏
i=1

∫ ∞
−∞

Q′(dθi|µ,A)

=

∫ ∞
0

( inf
0≤r≤d

IG(a+
K − 1

2
, b+

r

2
;A))dA

∫ ∞
−∞

(
inf

K(s−Ȳ )2≤d
N(s,

A

K
;µ)

)
dµ

Recall the following Proposition we have reviewed in previous section:

Proposition 2.29. Given a positive integer k0 and subset R ⊆ X , there exists
a probability measure Q(·) such that

P k0(x, ·) ≥ εQ(·),∀x ∈ R

where

ε =

∫
X

( inf
x∈R

P k0(x, dy))
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The construction of Q(·) here is exactly to replicate this proposition in the
hierarchical settings. Observe the integral expression of Q′(X ), it is actually just∫
X (infx∈R P

k0(x, dy)) with k0 = 1. The expression of ε can often be simplified
further using the uni-modality of the probability distribution function (See also
the bivariate normal example in (Rosenthal, 1995)). In this example, IG and
normal distribution are both unimodal. Therefore, we can write

inf
0≤r≤d

IG(a+
K − 1

2
, b+ r/s;A) =

min[IG(a+
K − 1

2
, b;A), IG(a+

K − 1

2
, b+ d/2;A)].∫ ∞

−∞
( inf
K(s−Ȳ )2≤d

N(s,A/K;µ))dµ = 2

∫ ∞
0

N(−
√
d/K,A/K;µ)dµ

In summary, to establish a quantitative bounds involves choosing an auxiliary
function, computing its expectation (given starting point), finding appropriate
constant λ,Λ so that drift condition is satisfied, finding Q(·) (often motivated
by Proposition 2.29) for which fd is a small set. Application of this “program”
seems to follow a relatively standard procedure. With appropriate choice of
auxiliary function, it is possible to derive a quantitative convergence rates for
certain algorithms.
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2.8 Complexity Bounds

2.8.1 Definitions and Useful results concerning continuous stochas-
tic process

We include a short section on definitions and useful results necessary to under-
stand the concept of weak convergence of stochastic process, particularly how
it is motived by weak convergence of probability measures. The definition uses
fundamental thoughts of the functional analysis: intuitively, each process is
treated as a functional defined on “time” with certain common characteristics.
Weak convergence of stochastic processes can therefore be defined by establish-
ing a metric space on the set of such functionals. The results and definitions
here are mostly taken from Chapter 3 of (Ethier and Kurtz, 2009).

We first develop weak convergence of probability measures.

Definition 2.23. Let C(S) be the space of real-valued bounded continuous
functions on the metric space (S, d) with norm ||f ||= supx∈S |f(x)|. A sequence
{Pn} ⊂ P(S) is said to converge weakly to P ∈ P(S) if

lim
n→∞

∫
fdPn =

∫
fdP, f ∈ C(S)

.

Recall that the distribution of an S−valued random variable X, denoted by
PX−1, is the element of P(S) given by PX(−1)(B) = P{X ∈ B}. We may
define convergence in distribution (covered in undergraduate probability) of a
sequence of random variables {Xn} accordingly by

lim
n→∞

E[f(Xn)] = E[f(X)].

We may denote weak convergence by Pn ⇒ P and convergence in distribution
by Xn ⇒ X.

Cadlag functions and Skorokhod space. As stated in introduction, to
study convergence of a sequence of stochastic processes to another stochastic
process, we must establish some metric space of which stochastic processes are
the elements. Most stochastic processes arising in applications have the prop-
erty that they have right nd left limits at each time point for almost every
sample path. The convention is such that the sample paths are assumed to be
actually right continuous without altering finite-dimensional distributions. This
motivates the adoption of Cadlag functions (real-valued functions on [0,∞) that
are right continuous and have left-hand limits) as elements of our metric space.
Note that we do not merely use continuous functions so that “jump processes”
can be accommodated in our theory. If we suppose that the processes (func-
tionals) considered are defined on (E, r) metric space, we may denote this set
as DE [0,∞).

46



The most obvious way to define metrics for DE [0,∞) is the following ||f ||=
supt∈[0,∞)|f(t)|. This gives us a Banach space but the resulting metric space is
non-separable, which causes well-known problems of measurability in the theory
of weak convergence of measures on the space (Paulauskas, 2011). A definition
that preserves separability and completeness is given in (EthierandKurtz, 2009)
as the following:

d(x, y) = inf
λ∈Λ

[
γ(λ) ∨

∫ ∞
0

e−µd(x, y, λ, µ)dµ

]
,

where
d(x, y, λ, µ) = sup

t≥0
q(x(t ∧ µ), y(λ(t) ∧ µ)), q ≡ r ∧ 1

γ(λ) = sup
s>t≥0

|log
λ(s)− λ(t)

s− t
|<∞

Therefore, we may treat each stochastic process as a random variable and keep
using the weak convergence definition of probability measures given above (thus
the name weak convergence of stochastic processes). The following theorem is
given in Chapter 3, 7.8 (a) of (Ethier and Kurtz, 2009) (we will not restate the
proof here). It is illustrative of how weak convergence of stochastic processes
leads to weak convergence of the values of processes at finitely many time points
to those of the limiting process. We will use this theorem in (Roberts and
Rosenthal, 2014).

Theorem 2.16. Let E be separable and let Xn, n = 1, 2, . . . , and X be pro-
cesses with sample paths in DE [0,∞). If Xn ⇒ X, then

(Xn(t1), . . . , tk)⇒ (X(t1), ..., X(tk))

for every finite set {t1, ..., tk} ⊂ {t ≥ 0 : P{X(t) = X(t−)} = 1}.

Remarks. This theorem says that if a sequence of stochastic processes con-
verges weakly to a limiting process, then upon fixing finitely many points in
time, the corresponding values (vector of random variables indexed by n) con-
verges in distribution (n → ∞) to the corresponding values on the limiting
process. Notably, this is only true for points where there is no jumps in limiting
process X (almost surely). However, the proposition shows that there are not
there are not “too many” of points that “admit jumps”:

Proposition 2.30. If X is a process with sample paths in DE [0,∞), then the
complement in [0,∞) of

{t ≥ 0 : P{X(t) = X(t−)} = 1}

is at most countable.
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This also implies that we can always find some t ≥ 0 such that the process is
not jumping. This proposition will be used to fix a minor problem in the proof
of the main theorem of (Roberts and Rosenthal, 2014).

Convergence Theorems for Feller processes I will not give a complete
proof of these. However, the general methodology should be useful for us to
understand relation between weak convergence of the processes and convergence
of their generators and semigroup. We must first familiarize ourselves with
some crucial concepts in stochastic process literature. The following definition
is taken from the Encyclopedia of Mathematics which I find most illustrative
of the intended “continuity” idea for Feller process. That said, there are other
equivalent, more common definitions for Feller process (e.g. by defining Feller
semigroup first).

Definition 2.24. Feller Process A homogeneous Markov process X(t), t ∈ T ,
where T is an additive sub-semi-group of the real axis R, with values in a
topological space E with a topology C and a Borel σ−algebra B, the transition
function P (t, x,B), t ∈ T, x ∈ E,B ∈ B, of which has a certain property of
smoothness, namely that for a continuous bounded function f the function

x 7→ P tf(x) =

∫
f(y)P (t, x, dy)

is continuous. We refer to the following set

P = {P t : t ∈ T}

as the Feller semigroup.

Remarks. This definition is actually easy to understand once we understood
its purpose: to “qualify” for being a Feller process, the Markov chain must
exhibit continuous behavior with respect to the starting point. Informally, a
Feller process is such that if the starting point changes by a small amount, the
distribution at any fixed time t will only deform by a very small amount.

We also introduce the concept of infinitesimal generator:

Definition 2.25. Let {Pt} be a semigroup for a Markov process. The infinites-
imal generator for the semigroup (and the process) is as follows:

Af = lim
t↓0

P tf − f
t

for all f ∈ B(E) for which this limit exists as a limit in B(E).

Definition 2.26. Let A be a closed linear operator on a Banach space. A linear
subspace D ⊆ dom(A) is a core of A if the closure of A restricted to D is, again
A.
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Remark. The core of a generator is a rather technical concept related to
functional analysis. To understand it, we make the following comments: (i) A
closure of a linear operator A is a closed extension of A, which is essentially
another linear operator B such that B is closed and maps a superset of dom(A)
to the same codomain while retaining the original mapping for elements in
dom(A); (ii) A linear operator A is closed if {f, g : f ∈ dom(A), g = Af}
is a closed set (A is a closed map); (iii) core of operator A is just a subset
of D ⊆ dom(A) such that D itself is closed under linear operations (linear
subspace) and A restricted to D is closed. (iv) The idea of a core is that we can
get away with knowing how the operator works on a linear subspace, which is
often much easier to deal with, rather than controlling how it acts on its whole
domain.

The following theorem is crucial to proving weak convergence of stochastic pro-
cesses. It is taken from (Kallenberg, 2006) Chapter 17. A similar version without
referring to Feller process explicitly can be found in (Ethier and Kurtz, 2009)
Chapter 4 Section 8. I find the former more accessible.

Theorem 2.17. LetX,X1, X2, ... be Feller processes with semigroups (Tt), (T1,t), (T2,t), ...
and generators A,A1, A2, ..., and fix a core D for A. Then these conditions are
equivalent:
(i) If f ∈ D, there exists some fn ∈ dom(An) with fn → f and Anfn → Af ;
(ii) Tn,t → Tt strongly for each t > 0;
(iii) Tn,tf → Ttf for each f ∈ C0, uniformly for bounded t > 0;
(iv) If Xn

0 ⇒ X0, then Xn ⇒ X.

The theorem above does not apply to discrete-time Markov chains (viewed in
continuous time) since they are not time-homogeneous (think of the time points
where transition occur and time in between). Therefore, this theorem is not
directly applicable to prove say weak convergence of discrete random walk to
Wiener process. The following theorem amends this deficiency:

Theorem 2.18. Let Y 1, Y 2, ... be discrete Markov chains with transition op-
erators U1, U2, ..., and consider a Feller process X in S with semigroup (Tt) and
generator A. Fix a core D for A, and assume that 0 < hn → 0. Then condition
(i) through (iv) of the previous theorem remain equivalent for the operators and
processes:

An = h−1
n (Un − I), Tn,t = U [t/hn]

n , Xn
t = Y n[t/hn].

Remark. This theorem essentially says that the Feller process requirement for
Xn can be relaxed if Xn can be shown to be a sped-up process (infinitely fast
as n→∞) of some other discrete process Yn.

Notice that the requirement for X to be Feller has not been relaxed in the
theorem above. The following theorem is very useful in practice.
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Theorem 2.19. If a process satisfies a stochastic differential equation of the
form:

dXt = b(Xt)dt+ σ(Xt)dBt,

we refer to it as an Ito diffusion.

An Ito diffusion X is a continuous Feller process

These theorems provide means to prove weak convergence of stochastic pro-
cesses. In particular, with (i), we may prove weak convergence of processes by
proving convergence of generators–as we will see in next section, (Roberts et al.,
1997) sets fn := V and showed AnV → AV .

Example: Functional Central Limit Theorem. This well-know theorem
states that

Yn :=
1

n1/2

[nt]∑
i=0

Xi ⇒W

where X1, X2, . . . is a sequence of iid, standard-normal random variables and
W is the Wiener process. From Theorem 2.19, we know that W is Feller and
the discrete process Yn certainly satisfies requirement of Theorem 2.18. The
central limit theorem implies that

1

n1/2

[nt]∑
i=0

Xi ⇒
√

(t)Z,Z ∼ N (0, 1).

Therefore, by definition of weak convergence of random variables:

E[f(y +
1

n1/2

[nt]∑
i=0

Xi)]→ E[f(y +
√
tZ)],∀f ∈ C0.

Therefore, (iii) in Theorem 2.17 is satisfied. Functional Central Limit Theorem
follows.

2.8.2 Weak Convergence and Optimal Scaling of Random Walk Metropo-
lis Algorithms

This section summarizes (Roberts et al., 1997)’s result that under certain con-
ditions the Markov process associated with the MH algorithm converges to a
Langevin diffusion as the dimension of the target densities goes to infinity and
the process is sped up proportionally. The set-up of this asymptotic problem is
as the following:

The target distribution is of the following form:

πn(xn) =

n∏
i=1

f(xni )
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where f is assumed to be Lipschitz continuous and

Ef [(
f ′(X)

f(X)
)8] ≡M <∞,

Ef [(
f
′′
(X)

f(X)
)4] <∞.

The proposal distribution is supposed to be a multivariate Gaussian distribution
as the following:

qn(xn, yn) =
1

(2πσ2
n)n/2

exp(
−1

2σ2
n

|yn − xn|2)

The the main theorem states:

Theorem 2.20. Suppose f is a real-valued function with continuous second
derivative and satisfies the conditions outlined in the set-up. Let σ2

n = l2/(n−1)
and Unt := Xn

[nt],1 where Xn
[nt],1 denotes the first-dimension component of the

sped-up (by n−times for setting of n dimension) MH process. Assume that
Xi

0,j = Xj
0,j∀i ≤ j. Then, as n→∞,

Un ⇒ U

where⇒ denotes weak convergence of processes in the Skorokhod topology and
U0 is distributed according to f and U satisfies the Langevin SDE

dUt = (h(l))1/2dBt + h(l)
f ′(Ut)

2f(Ut)
dt

and

h(l) = 2l2Φ(− l
√
I

2
)

with Φ being the standard normal cumulative cdf and

I ≡ Ef [(
f ′(X)

f(X)
)2]

Remarks. Here I will discuss the methods of proof presented in (Roberts
et al., 1997). I will focus on illustrating the thought process and intuition of
the proof–rather than just replicate the algebraic derivations in the original
paper. I also corrected several typos in the original paper. The aim is to prove
weak convergence of a sequence of stochastic process Un → U . Refer to (Ethier
and Kurtz, 2009) for relevant theoretic background on infinitesimal generators,
convergence etc..

To show that Un ⇒ U , we need to show that the (discrete-time) generator of
Xn,

GnV (xn) = nE[(V (Y n)− V (xn))(1 ∧ πn(Y n)

πn(xn)
)],
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converges uniformly to the generator of the limiting Langevin diffusion, for suit-
ably large class of real-valued function V (V is function of the first component
only), where

GV (x) := lim
t→0

Ex[V (Xt)]− f(x)

t

= h(l)[
1

2
V
′′
(x) +

1

2

d

dx
(log f)(x)V ′(x)].

Using total expectation law,

GnV (xn) = nEY1
[(V (Y n)− V (xn))E[(1 ∧ πn(Y n)

πn(xn)
)|Y1]]

The key to the proof is to apply Taylor expansion: observe the expressions of
GV (x) and GnV (xn)–the latter essentially describes expectation of “change”
in derivatives form of V, log(f) (in infinitesimal time) and the former describes
change “directly” as expectation of difference of two discrete steps, which van-
ishes as n increases (the variance of per step is scaled to 1/n).

Therefore, we would like to express E[(V (Y n) − V (xn))(1 ∧ πn(Y n)
πn(xn) )] in some

polynomial form of, say, (1/n)k, k ∈ N . Note that we already know that E[(Y1−
x1)2] is scaled to 1/n, E(Y1 − x1) = 0 and higher moments E(|Y1 − x1|p),∀p >
2 converges to 0 faster than 1/n. Therefore, intuitively, we will be able to
show the convergence results so long as we can find the expansion of (V (Y n)−
V (xn))E[(1 ∧ πn(Y n)

πn(xn) )|Y1], i.e.,

(V (Y n)− V (xn))E(1 ∧ πn(Y n)

πn(xn)
|Y1)

= A1(n, x1)(Y1 − x1) +A2(n, x1)(Y1 − x1)2 +A3(n, x1)(Y1 − x1)3 + ...

One way to obtain this expression is to expand (V (Y n) − V (xn)) and E[(1 ∧
πn(Y n)
πn(xn) )|Y1] separately and evaluate the product.

The inner expectation can be evaluated as the following:

EY1,xi,n = E[(1∧ πn(Y n)

πn(xn)
)|Y1] = E[1∧ exp

(
ε(Y1) +

n∑
i=2

(log f(Yi)− log f(xi))

)
]

where ε(Y1) := log( f(Y1)
f(x1) ).

As stated above, our strategy is to expand E[(1 ∧ πn(Y n)
πn(xn) )|Y1], which would

require evaluating explicit expression of the expectation. Let’s first expand the
expression inside of the expectation:

EY1,xi,n = E[(1 ∧ πn(Y n)

πn(xn)
)|Y1]
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= E[1 ∧ exp

(
ε(Y1) +

n∑
i=2

[(log f(xi))
′(Yi − xi) + 1/2(log f(xi))

′′(Yi − xi)2

+1/6(log f(Zi))
′′′(Yi − xi)3]

)
]

Let’s write the above expression as E(1 ∧ eA) where A is the only random
component. We will need to first find density function of A and evaluate the
integral on A < 0 and A ≥ 0. Here we know (Yi − xi) terms are Gaussian, but
A also involves higher-order terms that could complicate the calculation. The
intuition here is that if we may somehow discard higher order terms, then we
may immediately apply the following lemma to evaluate the expectation is the
following: Suppose A ∼ N(µ, σ2),

E(1 ∧ eA) = Φ(µ/σ) + exp(µ+ σ2/2)Φ(−σ − µ/σ)

Therefore, we want to find some “auxiliary sequence” WY1,xn,n, which does not
contain higher order terms, such that

sup
xn,Y1

|EY1,xn,n −WY1,xn,n|→ 0 as n→∞ (39)

With this sequence, since

sup
xn
|GnV − nE[(V (Y1)− V (x1))WY1,xn,n]|

≤ sup
xn

nEY1
[|(V (Y1)− V (x1)) · (EY1,xn,n −WY1,xn,n)|]

≤ sup
Y1,xn

|EY1,xn,n −WY1,xn,n|· sup
xn
|nEY1

[(V (Y1)− V (x1))]|→ 0 as n→∞

we only need to prove that

nE[(V (Y1)− V (x1)) ·WY1,xn,n]→ GV (x) as n→∞

Here the auxiliary sequence can be chosen to be the following:

WY1,xn,n := E[1∧exp

(
ε(Y1)+

n∑
i=2

[(log f(xi))
′(Yi−xi)−

l2

2(n− 1)
((log f(xi))

′)2]

)
|Y1]

As we have noted above, this choice is mainly motivated by the need to rid of
second order and third terms. Now we need to show (39). First notice that the
function g(x) = 1 ∧ ex is Lipschitz with coefficient 1, i.e.

|g(x)− g(y)|≤ |x− y|,∀x, y ∈ R

53



And note that absolute moments of normal random variable X are

E[|X|p] = σp ·
2p/2Γ(p+1

2 )
√
π

Since by our construction σ ∼ O(1/n), the third order terms will just vanish as
n→∞.

To show that (39), we only need to show that

sup
xn

E
∣∣∣∣ n∑
i=2

[
(log f(xi))

′′

2
(Yi − xi)2 +

l2

2(n− 1)
(log f(xi))

′2]

∣∣∣∣→ 0 as n→∞

Rearrange the expression, using the fact that Yi are independent for i = 2, ..., n:{
E
∣∣∣∣ n∑
i=2

[
(log f(xi))

′′

2
(Yi − xi)2 +

l2

2(n− 1)
(log f(xi))

′2]

∣∣∣∣}2

≤ E
{( n∑

i=2

[
(log f(xi))

′′

2
(Yi − xi)2 +

l2

2(n− 1)
(log f(xi))

′2]

)2}

= V ar

[ n∑
i=2

[
(log f(xi))

′′

2
(Yi − xi)2 +

l2

2(n− 1)
(log f(xi))

′2]

]

+

(
E
[ n∑
i=2

[
(log f(xi))

′′

2
(Yi − xi)2 +

l2

2(n− 1)
(log f(xi))

′2]

])2

=
V ar((Yi − xi)2)

4

n∑
i=2

(
(log f(xi))

′′
)2

+

( n∑
i=2

[
(log f(xi))

′′

2
V ar(Yi − xi) +

l2

2(n− 1)
(log f(xi))

′2]

)2

=
l4

4(n− 1)2

n∑
i=2

(
(log f(xi))

′′
)2

+
l4

4(n− 1)2

( n∑
i=2

[(log f(xi))
′′ + (log f(xi))

′2]

)2

It seems that there is a typo in (Roberts et al., 1997) where they omitted l4 but
this will not affect the proof. Since (log f)′′ is bounded, the first term will tend
to 0. We now can focus on the second term.

For the ease of notation,

Rn(x2, ..., xn) =
1

n− 1

n∑
i=2

[(log f(xi))
′]2
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and

Sn(x2, ..., xn) =
−1

n− 1

n∑
i=2

[(log f(xi))
′′].

The remaining arguments rely on the fact that as n → ∞, we are able to find
a “tightening” set Fn in which Rn and Sn are bounded closer and closer as n
increases whilst the probability of the process falls outside of the set tends to 0.

We can define Fn as the following:

Fn = {|Rn(x2, ..., xn)− I|< n−1/8} ∩ {|Sn(x2, ..., xn)− I|< n−1/8}

Here Rn and Sn are bounded closer and closer to I and the bound is n−1/8. For
xn ∈ Fn, using triangular inequality,∣∣∣∣ n∑

i=1

(log f(xi))
′′ + ((log f(xi))

′)2

2(n− 1)

∣∣∣∣
≤ |1/2Rn − 1/2I|+ |1/2I − 1/2Sn| → 0 as n→∞

Therefore, it is necessary to show the following

∀t, P [Zns ∈ Fn, 0 ≤ s ≤ t]→ 1 as n→∞.

That is, the process will be “contained” within Fn as n→∞.

To show this, we utilize the stationarity of the process to πn and the assumption
of the initial distribution, i.e. Zn0 ∼ πn and Zns ∼ πn, 0 ≤ s ≤ t. Another
observation is that since

E[Rn] = E[(
f ′(xi)

f(xi)
)2] = I

we may apply weak law of large numbers: for all ε > 0,

Pπn [|Rn(Z)− T |> ε]→ 0 as n→∞.

Here we may choose ε := n−1/8, by extended Markov’s inequality (for monoton-
ically increasing functions) and the assumption of f ,

Pπn [Z /∈ Fn] = Pπn [|Rn(Z)− I|> n−1/8] ≤ Eπn [(Rn(Z)− I)4]

(n−1/8)4

= Eπn [(Rn(Z)− I)4]n1/2 ≤ 3M

(n− 1)3/2

It follows that (using P (A ∪B) = P (A) + P (B)− P (A ∩B)),

P [Zns /∈ Fn, for some 0 ≤ x ≤ t] ≤ tnPπn [Z /∈ Fn]→ 0 as n→∞
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. The case for Sn is analogous.

Now that we proved 39, we will proceed to show that the auxiliary process
WY1,xn,n indeed converges to infinitesimal generator GV as n→∞.

WY1,xn,n can be evaluated to be

WY1,xn,n = Φ(R−1/2
n (l−1ε(Y1)− lRn/2))

+ exp(ε(Y1))Φ(− lR
1/2
n

2
− ε(Y1)R−1/2

n l−1) :≡M(ε).

Therefore, we only need to prove convergence of the term

nE[(V (Y1)− V (x1))M(log
f(Y1)

f(x1)
)].

Apply Taylor series expansion:

(V (Y1)− V (x1))M(log
f(Y1)

f(x1)
)

= (V ′(x1)(Y1 − x1) + 1/2V ′′(x1)(Y1 − x1)2 +
V ′′′(Z1)

6
(Y1 − x1)3)

×[M(0) + (Y1 − x1)M ′(0)(log f(x1))′ +
1

2
(Y1 − x1)2T (x1,W1)].

where T (x1,W1) denotes the Taylor remainder term and Z1,W1 are in between
x1, Y1.

We notice that in the expression above, all terms with (Y1 − x1)k, k 6= 2 vanish
as n→∞ after taking expectation, i.e.

E
[
n(V (Y1)− V (x1))M(log

f(Y1)

f(x1)
)

]

= 2nΦ(−R
1/2
n l

2
)[

1

2
V ′′(x1) +

1

2
(log f(x1))′V ′(x1)] · E[(Y1 − x1)2]

+E[B(x1, Y1, n)]→ 0 as n→∞
where we used the fact E(Y1 − x1) = 0 and that f (i)(x), V (i)(x), i = 1, 2, 3 can
be bounded by some K and the higher order terms converge to 0 as n→∞, i.e.

E[|B(x1, Y1, n)|] ≤ a1(K)nE[|Y1−x1|3]+a2(K)nE[|Y1−x1|4]+a3(K)nE[|Y1−x1|5].

Therefore,
sup
xn∈Fn

|GnV (x)−GV (x)|→ 0 as n→∞

This concludes the proof. The following Corollary highlights the practical sig-

nificance of the main theorem:
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Corollary 2.1. Let αn(l) =
∫ ∫

πn(xn)α(xn, yn)qn(xn, yn)dxndyn be the aver-
age acceptance rate of random walk Metropolis algorithm in n dimensions, and
let

α(l) = 2Φ(− l
√
I

2
)

.

We then have
(i) limn→∞ αn(l) = α(l)
(ii) h(l) is maximized (to two decimal places) by

l = l̂ =
2.38√
I

Also
α(l̂) = 0.23

and
h(l̂) = 1.3/I.

Remark. The average acceptance rate defined above can be understood intu-
itively as average of α(xn, yn), the acceptance rate from xn to yn, weighted over
each occurrence of the chain (initial distribution being stationarity π) reaching
yn in one step. h(l) is sometimes referred to as the speed measure of the limiting

diffusion process. Therefore, we may interpret l̂ as l that maximizes the limit-
ing diffusion’s convergence speed to stationarity. Under this l̂, the asymptotic
average rate of acceptance is 0.23. Therefore, an approximation of optimal avg.
rate of acceptance can be taken to be 0.23 for finite RWM algorithms.

2.8.3 Complexity Bounds via Diffusion Limits

In the last section, we established the result that under certain assumptions,
a random-walk Metropolis-Hasting chain (its the first coordinate to be pre-
cise) converges weakly (in the usual Skorokhod topology)to a limiting ergodic
Langevin diffusion as d → ∞ where d is both the dimension and the factor by
which we speed up the Markov chain.

Let Lip1
1 denote all Lipschitz functions with Lipschitz constant ≤ 1 and with

|f(x)|≤ 1,∀x ∈ X :

Lip1
1 = {f : X → R, |f(x)− f(y)|≤ ρ(x, y)∀x, y ∈ X , |f |≤ 1}

We can define “KR” distance function as the following:

||Lx(Xt)− π||KR:= sup
f∈Lip11

∣∣∣∣Ex[f(Xt)]− π(f)

∣∣∣∣.
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Compare the “KR” distance function with usual total variation distance:

||Lx(Xt)− π||TV := sup
A
|P (t)(x,A)− π(A)|

≡ sup
|f |≤1

∣∣∣∣Ex[f(Xt)]− π(f)

∣∣∣∣.
where the equivalence is due to the fact that the maximum is achieved by
choosing f = 1 on regions where density of P (t) is greater than π and f =
0 otherwise (or vice-versa). We notice that “KR” has a more limited set of
function we may choose from (e.g. f has to be Lipschitz continuous). This
means that

||Lx(Xt)− π||KR≤ ||Lx(Xt)− π||TV
The purpose of redefining a distance metrics is that TV is not suitable to bound
weak convergence (it may not go to 0 if the process only converges weakly to
stationarity). We will see how the Lipschitz condition is necessary in the proof.

Theorem 2.21. Let X(d) denote a sequence of stochastic processes. Suppose
that this sequence of stochastic processes converges weakly in the Skorokhod
topology to another stochastic process X(∞) as d→∞. Assume that X(d) has
stationary distribution π for all d and X(∞) converges to π. Then for any ε > 0,
there are D <∞ and T <∞ such that

E
X

(d)
0 ∼π

||L
X

(d)
0

(X
(d)
t )− π||KR< ε, t ≥ T, d ≥ D.

Remark. To see why this is true. We must first establish that ||. . . ||KR is
indeed a norm: (i) ||0||= 0; (ii) ||aµ||= a||µ|| (iii)||−µ||= ||µ|| (f ∈ Lip1

1 ⇔ −f ∈
Lip1

1) (iv) the triangular inequality

||µ+ ν||= sup
f∈Lip

(µ(f) + ν(f)) ≤ sup
f∈Lip

(µ(f)) + sup
f∈Lip

(ν(f)) = ||µ||+||ν||

The following proposition is critical to the proof of the main theorem:

Proposition 2.31. The metric δ := ||µ − ν||KR metrises weak convergence of
probability measures on (X ,F , ρ), i.e.

{µt} ⇒ µt iff lim
t→∞

δ(µt, µ) = 0

From (Gibbs and Su, 2002), we learned the following proposition:

Proposition 2.32. Given state space R or any metric space, the Wasserstein
metric is equivalent to our definition of KR, i.e. for distribution function µ, ν

dW (µ, ν) := sup{
∣∣∣∣ ∫ hdµ−

∫
hdν

∣∣∣∣ : ||h||L≤ 1}
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where the supremum is taken over all h satisfying the Lipschitz condition |h(x)−
h(y)|≤ ρ(x, y).

The Wassertein metric metrises weak convergence on spaces of bounded diam-
eter.

(Roberts and Rosenthal, 2014) is able to conclude that “KR”, i.e. the Wasser-
stein metric, in fact metrises weak convergence on all spaces regardless of bound-
edness by showing the following:

Proposition 2.33. Let ρ∗ = min(ρ∧ 2). Weak convergence on (X , ρ) is equiv-
alent to weak convergence on (X , ρ∗) . And ||. . . ||KR is the same under both
metrics.

This is easy to see once we realize that |f(x)−f(y)|≤ 2 for f ∈ Lip1
1–this means

that our set of 1−Lipschitz functions remain unchanged upon switching metrics
to ρ∗. It is odd why (Gibbs and Su, 2002) would include the bounded condition
(and a few other papers too). As a direct consequence, we have the following
proposition:

Proposition 2.34. If X(∞) converges to π, either weakly or in total variation
distance, the for all ε > 0 there is T <∞ such that

||Lx(X
(∞)
T )− π||KR≤ ε/2,∀t ≥ T

This is obvious because (i) total variance converges to 0 implies that weak
convergence (though the reverse is not necessarily true) (ii) “KR” metrises weak
convergence. Then we have the following proposition:

Proposition 2.35. Under the assumptions of the main theorem, for any x ∈ X
and ε > 0, there is D <∞ and T <∞ such that

||Lx(X
(d)
T )− π||KR< ε, d ≥ D

Proof of this proposition as presented in (Roberts and Rosenthal, 2014) has a
minor problem that there is no guarantee that Xn(T )⇒ X(T ) for the T we find
in 2.34. This problem can be fixed easily by applying Proposition (2.30) from
the first section: from this proposition, we know that there exists some T ′ > T
such that

Xn(T ′)⇒ X(T ′).

For if not, [T,∞) would be a subset of the complement of {t ≥ 0, P{X(t) =
X(t−)} = 1}, which would make it uncountable (thus contradiction). The rest
of the proof is identical to the original. We apply triangular inequality as the
following:

||Lx(X
(d)
t )− π||KR≤ ||Lx(X

(d)
t )− Lx(X

(∞)
t )||KR+||Lx(X

(∞)
t )− π||KR.
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Then we can just set t := T ′. Since, “KR” metrices weak convergence, the
results follows.

Remarks. We have shown that such D exists for a single point in time (which
we know exists). However, we do not know if D exists for all points in [T ′,∞).

Next step is to show that for each ε > 0, there exists D < ∞ and T < ∞ such
that

EX0∼π||LX0
(X

(d)
T )− π||KR< ε, d ≥ D.

In addition, we want to show that EX0∼π||LX0(X
(d)
t )−π||KR is a non-increasing

function of t:
EX0∼π||P s+t(X0, ·)− π||

= EX0
||
∫
y∈X

P s(X0, dy)P t(y, ·)− π||

≤ EX0∼π

∫
y∈X
||P s(X0, dy)P t(y, ·)− π · P s(X0, dy)||

≤ EX0∼π

∫
y∈X

P s(X0, dy)||P t(y, ·)− π · ||

= EY0∼π||P t(Y0, ·)− π||

The third inequality step uses stationarity. This proves the claim. The main
theorem follows.

As we can see, this theorem can be directly applied to the Random Walk
Metropolis algorithm (by combining with the result in the previous section)
to derive the following result:

Theorem 2.22. Let Z(d) be a d−dimension RWM algorithm satisfying the
technical assumption we discussed in previous section. Then for any ε > 0,
there is D <∞ and T <∞ such that

E
Z

(d)
0 ∼π

||L
Z

(d)
0

(Z
(d)
bdtc,1)− π||KR< ε, t ≥ T, d ≥ D
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3 Part II: Adaptive Markov Chain Monte Carlo

This is the second part of my thesis study, which focuses on a special class of
MCMC algorithm: adaptive Markov Chain Monte Carlo. The study mostly
follows (Roberts and Rosenthal, 2007) and ( Latuszyński et al., 2013), though a
set of other papers were reviewed related this topic: (Roberts and Rosenthal,
1997) provided results useful for analysis in ( Latuszyński et al., 2013); (Craiu
et al., 2015) investigated whether bounded modifications of stable Markov chain
remains stable based on methodology provided by (Roberts and Rosenthal,
2007); (Rosenthal and Yang, 2017) extended results in the previous paper to
the “combo-continuous” case; (Roberts and Rosenthal, 2009) surveyed various
adaptive MCMC algorithms and their empirical properties;

3.1 Ergodicity Conditions for General Adaptive Markov
Chain Monte Carlo

We mostly follow (Roberts and Rosenthal, 2007) in this section.

3.1.1 Formal Setup

Let {Pγ}γ∈Y be a collection of Markov chain kernels on X . Each kernel should
have π(·) as their stationary distribution:

(πPγ)(·) = π(·)

We also assume that Pγ is φ−irreducible and aperiodic so that Pγ is ergodic for
π(·):

lim
n→∞

||Pnγ (x, ·)− π(·)||= 0

The reasoning behind adaptive MCMC is that since some γ may lead to far
less (or more) efficient algorithms, the adaptive algorithm should choose γ by a
Y−valued random variable Γn updated at each step by specified rules. Let Xn

represent state of the algorithm at time n on X . Let

G = σ(X0, ..., Xn,Γ0, ...,Γn)

be the filtration generated by (Xn,Γn). Thus, P [Xn+1 ∈ B|Xn = x,Γn =
γ,Gn−1] = Pγ(x,B). We also adopt the following notation:

A(n)((x, γ), B) = P [Xn ∈ B|X0 = x,Γ0 = γ], B ∈ F

Note that A(n) here represents unconditional distribution of the algorithm at
step n with only initial state and kernel known. Finally, we let

T (x, γ, n) = ||A(n)((x, γ), ·)− π(·)||
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denote the total variation distance between the distribution of the adaptive
algorithm at time n and the target distribution π(·). The adaptive algorithm is
referred to as ergodic if

lim
n→∞

T (x, γ, n) = 0,∀x, γ

.

3.1.2 Uniform Converging Case

To motivate the main theorem, we state the following proposition which is a
special case with only finite adaptation.

Proposition 3.1. A finite adaptation MCMC algorithm, in which each indi-
vidual kernel Pγ is ergodic and adaptation stops after some finite steps τ , is
ergodic.

The result can be proved by simply noting that limn→∞||PnΓτ (Xτ , ·)−π(·)||= 0.
This proposition provides a viable yet “safe” means to run adaptive MCMCs,
i.e., there is an initial, trial stage with finite number of runs, within which the
algorithm will explore different tunings to determine good parameter values.
A second stage follows where the actual samples will be obtained to preserve
asymptotic convergence.

The main results in this section therefore concern dependent, infinite adaptation
schemes: the adaptations will continue to modify Γn based on Gn−1. We will
specify under which conditions the adaptive algorithm will still converge to
target distribution π(·). In this section, we will start from more straightforward
conditions: we will require the convergence to π(·) of the kernels Pγ to be
uniformly bounded. This condition will be extended to more general case.

Theorem 3.1. Consider an adaptive MCMC algorithm on state space X , with
adaptation index Y, so π(·) is stationary for each kernel Pγ , γ ∈ Y. The adaptive
algorithm is ergodic if both of the following conditions are satisfied:

(a) [Simultaneous Uniform Ergodicity] For all ε > 0, there is N = N(ε) ∈ N
such that ||PNγ (x, ·)− π(·)||≤ ε for all x ∈ X and γ ∈ Y; and

(b) [Diminishing Adaptation] Let

Dn = sup
x∈X
||PΓn+1(x, ·)− PΓn(x, ·)||

denote a Gn+1−measurable random variable (depending on Γn and Γn+1). The
Diminishing Adaptation condition requires

lim
n→∞

Dn = 0

in probability.

62



Proof. We will supply a detailed proof for this theorem since the methods in-
volved are very important to the study of adaptive MCMC in general. Intu-
itively, the flow of the proof is as the following: using condition (b), we identify
a sufficiently large step K the adaptation Dn is properly bounded with minimal
probability to “escape” (convergence in probability); then we construct a sec-
ond, auxiliary chain where kernel is fixed. For this chain, we know will converge
to π(·) by (a), which corresponds to a fixed number of steps N after step K in
our δ − ε proof due to simultaneous uniformity; the rest of the proof involves
coupling the original chain to this auxiliary chain and thus show that it indeed
converges to the target distribution.

Fix ε > 0. Let N be some positive integer that is larger than N(ε) as in (a).
By condition (b), we can find n∗ ∈ N such that

P ({Dn ≥ ε/N2}) ≤ ε/N, ∀n ≥ n∗

The coupling construction will start from n∗, after which the adaptation is
sufficiently small in a probabilistic sense. We also denote the “target time”
with K ≥ n ∗+N.

Let
En = ∩n+N

i=n+1({Di < ε/N2})

Due to convergence in probability as in (2), we have P (En) ≥ 1− ε for n ≥ n∗.
It can be easily seen with triangular inequality that on event E,

||PΓn∗(x, ·)− PΓm(x,·)||< ε/N, x ∈ X , n∗ ≤ m ≤ K

The second chain we will now construct is just a Markov chain with fixed tran-
sition probability (kernel) Pn∗ and starts from the state Xn∗. Let’s denote this
chain with X ′n. We claim that such chain exists so that on E

P [X ′i 6= Xi, n∗ ≤ i ≤ m] < [m− n∗]ε/N, n∗ ≤ m ≤ K

Indeed, this is direct result of coupling inequality and induction. In particular,
this implies that at the target step,

P (X ′K 6= XK , E) < ε

Recall that with condition (a), for the auxiliary chain (with fixed kernel Γn∗ ),

||PNΓn∗(Xn∗, ·)− π(·)||< ε

Suppose Z ∼ π(·). With coupling inequality again, P [X ′K 6= Z] < ε. We
can construct all of Xn, X ′n and Z on a common probability space, by first
constructing Xn and X ′n as above and then constructing Z conditioning on
them but with Z ∼ π(·). We then have

P (XK 6= Z) ≤ P (XK 6= XK , E) + P (X ′K 6= Z,E) + P (Ec) < 3ε
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. Hence, with coupling inequality again,

T (x0, γ0,K) = ||L(XK)− π(·)||< 3ε

Since we may choose any arbitrarily large N > N(ε), the result follows.

Under diminishing adaptation, the process gradually tends to a certain kernel
and under uniform ergodicity, with any such kernel the process will converge
in a uniformly bounded manner: since there could be infinitely many possible
kernels, without uniformity we may end up with an infinite sequence of ker-
nels that, though each converges eventually, do not all converge to targeted
distribution within given ε with any finite N .

The uniform ergodicity condition may be “substituted” with conditions that are
easier to verify. We will therefore document some useful propositions regarding
this.

Proposition 3.2. Suppose an adaptive MCMC satisfies diminishing adaptation
and also that each kernel is ergodic for π(·).

(a) If X ,Y are finite. Then the adaptive MCMC is ergodic;
(b) If X × Y is compact in some topology with respect to which the mapping
(x, γ) → T (x, γ, n) is continuous for each fixed n ∈ N. The the adaptive algo-
rithm is ergodic;

Remarks. (a) and (b) essentially eliminates the problem we just alluded to.
In (a) there is simply only finite instead infinite possible kernels and each cor-
responds to only a finite collection of steps required to converge; (b) introduces
“uniform boundedness” through the combined condition of continuity and com-
pactness: though there are still infinite possible kernels, the maximal number of
steps required to converge among all the kernels are bounded. It can be proved
using the well-known result in analysis:

Let K be a compact subset of metric space M and f : K → R a continuous
function on K. Then f attains its maximum value at some point in K.

Both conditions can be used to verify the simultaneous uniform ergodicity con-
dition for certain algorithms. A noteworthy application of this is for adaptive
Metropolis algorithm proposed in (Haario et al., 2001), which adapts by using
different proposal distribution Q(·). The following Proposition can be proved
using (b):

Proposition 3.3. Suppose an adaptive MCMC algorithm satisfies the Dimin-
ishing Adaptation property, and also that each Pγ is ergodic for π(·). Suppose
further that for each γ ∈ Y, Pγ represents a Metropolis-Hastings algorithm with
proposal kernel Qγ(x, dy) = fγ(x, y)λ(dy) having a density fγ(x, ) with respect
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to some finite reference measure λ on X , with corresponding density g for π(·)
so that π(dy) = g(y)λ(dy). Finally, suppose that the fλ(x, y) are uniformly
bounded, and for each fixed y ∈ X , the mapping (x, γ) → fγ(x, y) is continu-
ous with respect to some product metric space topology, with respect to which
X × Y is compact. Then the adaptive algorithm is ergodic.

3.1.3 Non-Uniformly Converging Case

As mentioned in last section, the uniform ergodicity condition can be further
relaxed. Notice that in the proof, condition (a) was only used to show that the
auxiliary chain was sufficiently close to π(·). As we will see shortly, a weaker
condition can be used to ensure convergence. This weakened condition is referred
to as the“containment condition”, which can be described as the following:

To construct the containment condition, define “ε convergence time function”
Mε : X × Y → N by

Mε(x, γ) = inf{n ≥ 1 : ||Pnγ (x, ·)− π(·)||≤ ε}

Mε(x, γ) has the intuitive interpretation as the number of steps required for a
chain with kernel Pγ and initial state x to converge to π(·) within ε−distance.
Notice that if each kernel is ergodic, for any ε > 0, Mε(x, γ) <∞.

The containment condition essentially requires that the sequence {Mε(Xn, Yn)}∞n=0

is bounded in probability for all ε for any initial state space and kernel. If con-
tainment condition and diminishing adaptation condition are both satisfied,
the process is ergodic. Formally, the non-uniform convergence theorem can be
stated as following:

Theorem 3.2. Consider an adaptive MCMC algorithm that satisfies Dimin-
ishing Adaptation condition, i.e.

lim
n→∞

sup
x∈X
||PΓn+1(x, ·)− PΓn ||= 0 in probability

Let x∗ ∈ X and γ∗ ∈ Y. Then limn→∞ T (x∗, γ∗, n) = 0 provided that for all
ε > 0, the sequence {Mε(Xn,Γn)}∞n=0 is bounded in probability given X0 =
x∗,Γ0 = γ∗, i.e. for all δ > 0, there is N ∈ N such that

P [Mε(Xn,Γn) ≤ N |X0 = x∗,Γ0 = γ∗] ≥ 1− δ, ∀n ∈ N

Before stating the proof, we would like to remark that this relaxation of the
simultaneous uniform ergodicity condition is just replacement of the original
“definite” bound on convergence speed across all kernels with a “probabilistic”
bound.

Therefore, we can see that the weaker condition is really analogous to the conver-
gence case (convergence in probability) whereas the original, uniform bounds on
convergence speed is analogous to sure convergence. Now we will state a proof
where this point can be seen more clearly.
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Proof. In the proof for the uniform converging case, condition (a) essentially
requires that there exists N ∈ N for each ε > 0 such that

{ω ∈ Ω| sup
x∗∈X ,γ∗∈Y

Mε(x∗, γ∗) ≤ N} = Ω

Now since this condition is relaxed and it was used only in deriving P (X ′K 6=
Z,E) < ε in the final step of the proof, we have

T (x∗, γ∗, n) < 3ε+ P (Mε(Xn,Γn) > N |X0 = x∗,Γ0 = γ∗).

Assuming that the containment condition is satisfied, we are able to find m ∈ N
such that

P (Mε(Xn,Γn) > m|X0 = x∗,Γ0 = γ∗) ≤ ε,∀n ∈ N.

Then let N ≥ m, we conclude that

T (x∗, γ∗,K) < 3ε+ ε = 4ε,K ≥ n ∗+m.

3.1.4 Relation to Quantitative Convergence Rates

In part I, we have reviewed the theory of quantitative convergence bounds with
(Rosenthal, 1995) and (Rosenthal, 1996). Upon satisfying the drift condition
and the Minorization condition, a bound on convergence speed of the Markov
process can be established. Therefore, it provides us yet another alternative
to substitute the containment condition, which in itself mainly serves to bound
convergence speed across all the kernels. First, let’s reiterative a simplified
version of the main theorem (Theorem 5) in (Rosenthal, 1995):

Theorem 3.3. Suppose a Markov chain P (x, dy) on a state space X satisfies
the Drift Condition

E(V (X1)|X0 = x) ≤ λV (x) + b, x ∈ X (40)

for some V : X → R≥0, and some λ < 1 and b < ∞; and further satisfies a
Minorization Condition

P (x, ·) ≥ εQ(·),∀x ∈ X such that V (x) ≤ d, (41)

for some ε > 0, some probability measure Q(·) on X, and some d > 2b
1−λ . Then

for any 0 < r < 1, beginning in the initial distribution v, we have

||L(Xk)− π||≤ (1− ε)rk + (α−(1−r)Ar)k(1 +
b

1− λ
+ Ev(V (X0))), (42)

where

α−1 =
1 + 2b+ λd

1 + d
< 1; (43)
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A = 1 + 2(λd+ b) (44)

We can also rewrite the bound above into a more compact form,

||Pn(x, ·)− π(·)||≤ KV (x)ρn,∀λ ∈ Y,

where K <∞ and ρ < 1, depending only on the constants ε, λ, b, d.

To apply this theorem to bound convergence speed across kernels, we consider
a notion called simultaneously strongly aperiodically geometric ergodicity.

Definition 3.1. The family of kernels {Pγ}γ∈Y are referred to as simultaneously
strongly aperiodically geometrically ergodic if there is V : X → R≥0, ε > 0,
b, d <∞ such that
(i) for each γ ∈ Y, there exists a probability measure Qγ(·) on X with Pγ(x, ·) ≥
εQγ(·) for all x ∈ X such that V (x) ≤ d;
(ii)PγV ≤ λV + b.

Therefore, for an adaptive algorithm with kernels being simultaneously strongly
aperiodically geometrically ergodic, there convergence speed can be bounded
uniformly by KV (x)ρn. Therefore, the “ε−convergence time” can also be
bounded: Since

KV (Xn)ρN < ε→ sup
γ∗∈Y

Mε(Xn, γ∗) ≤ N

we only need {V (Xn)} to be bounded in probability to ensure that for all ε > 0,
the sequence {Mε(Xn,Γn)}∞n=0 is bounded in probability. By Markov inequality,
we also know that

sup
n
E(V (Xn)) <∞→ {V (Xn)} is bounded in probability.

Therefore, the problem is simplified to show supnE(V (Xn)) < ∞. This can
be easily derived via induction using the Drift condition (after integrating over
distribution of Γn), double expectation formula and the fact that E(V (X0)) <
∞ and λ < 1. Based on the reasoning above, we can state the following theorem:

Theorem 3.4. Consider an adaptive MCMC algorithm with Diminishing con-
dition, such that the family of kernels {Pγ}γ∈Y are simultaneously strongly
aperiodically geometrically ergodic with E(V (X0)) < ∞. Then the adaptive
algorithm is ergodic.
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3.2 Adaptive Gibbs Samplers and related MCMC meth-
ods

In this section, I will first review results and methods used in ( Latuszyński et al.,
2013). ( Latuszyński et al., 2013) discussed ergodicity properties of a series of
adaptive Gibbs samplers where the general framework reviewed (Containment
Condition and Diminishing Condition) in the last section were used to show con-
vergence. This paper also presents a cautionary example of a simpling-seeming
adaptive Gibbs sampler that fails to converge. The paper gives a proof that this
process tends to infinity with probability larger than 0 through construction of
an auxiliary chain and coupling. Their method is similar to what is used in
(Roberts and Rosenthal, 2007) but has greater complexity in construction of
bounds. A part of my thesis study is to strengthen their results using similar
techniques.

3.2.1 Notations and Preliminaries

Gibbs samplers are often used to sample from complicated high-dimensional
probability distributions that have relatively straightforward conditional distri-
bution. Such target distributions are common in Bayesian statistics. The order
by which each dimension is updated can be deterministic (updating each dimen-
sion in a predetermined, sequential manner) or random, referred to as random
scan Gibbs sampler (RSG). A random scan Gibbs sampler choose which coor-
dinate to update according to a selection probability distribution. For a random
scan Gibbs sampler, it might be beneficial to introduce adaptation to selection
probability to improve mixing efficiency. This is because for certain target dis-
tribution, e.g. π(x, y) ∝ x100(1 + sin(y)),X = {0, 1} × [−100, 100], it is more
efficient to focus on sampling from just one or specific several dimensions.

Metropolis-within-Gibbs is an extension of the classic Gibbs sampler with which
samples of each dimension are drawn from a Metropolis sampler instead of
from conditional distribution directly. For this class of algorithms, we may
also have adaptations with the Metropolis sampler, in addition to adaptation of
selection probability. We will concern ourselves with mostly these two types of
adaptation.

Suppose there are d dimensions to the target distribution π and the state space
is X = X1 × ... × Xd and each state Xn = (Xn,1, ..., Xnd). We use following
notation

Xn,−i := (Xn,1, ..., Xn,i−1, Xn,i+1, ..., Xn,d)

X−i = X1 × ...×Xi−1 ×Xi+1 × ...×Xd
We also used αn = (αn,1, ..., αn,d) to denote probability to update each coordi-
nate at step n. We denote transition kernel of a random scan Gibbs sampler
with selection probability α as Pα. The set of selection probabilities is assumed
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to be:
Y := [ε, 1]d ∩∆d−1

where 0 < ε ≤ 1/d and δd− 1 := {(p1, ..., pd) ∈ Rd : pi ≥ 0,
∑d
i=0 pi = 1}

3.2.2 Adaptive Random Scan Gibbs Sampler

The Containment Condition and Diminishing Condition proposed in (Roberts
and Rosenthal, 2007) may be adapted and simplified to analyze ergodicity prop-
erties of adaptive random scan Gibbs sampler. The main result is as the follow-
ing:
Theorem 3.5. Let the selection probabilities α ∈ Y for all n. Given
(a) ||αn − αn−1||→ 0 in probability for fixed starting values x0 ∈ X , α0 ∈ Y.
(b) ∃β ∈ Y such that the random scan Gibbs with fixed kernel β is uniform
ergodic.
Then the adaptive random scan Gibbs sampler is ergodic:

lim
n→∞

T (x0, α0, n) = 0

Moreover, if supx0,α0
||αn − αn,1n−1||→ 0 in probability,

sup
x0,α0

lim
n→∞

T (x0, α0, n) = 0

Apparently, condition (a) is used to derive Diminishing condition while (b) is
used to derive containment condition. Let’s first look at how (b) would imply
simultaneous uniform ergodicity.

Proposition 3.4. If RSG(β) is uniformly ergodic where β ∈ Y, then RSG(α)
is uniformly ergodic for every α ∈ Y. Moreover, there exists M <∞, ρ < 1 such
that supx0,α T (x0, α, n) ≤Mρn → 0.

Proof. This proof sets yet another example of utilizing small sets to show con-
vergence. Essentially, it is trying to identify relations between Pβ , which is
already known to be convergent, to any other transition kernels in Y. The small
sets provide means for such comparison.

From previous results concerning small sets, we know that the entire state space
X is small, which means that there exists s > 0, a probability measure µ and a
positive integer m such that,

Pmβ (x, ·) ≥ sµ(·).

For any α ∈ Y, we let

r := min
i

αi
βi
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. By the constraints we set on Y, we have

ε

1− (d− 1)ε
≤ r ≤ 1

Thus, Pα may be written as a mixture of transition kernels, namely

Pα = rPβ + (1− r)Pq,

where q = α−rβ
1−r . To see this, we can just pick any coordinate say j and check

that the probability to be selected with this kernel is indeed αj :

P (j coordinate is updated) = rβi + (1− r)αi − rβi
1− r

= αi

This implies that the entire state space is small with respect to Pα as well:

Pmα (x, ·) ≥ rmPmβ (x, ·) ≥ rmsµ(·)

≥ (
ε

1− (d− 1)ε
)msµ(·),∀x ∈ X

. This in turn implies uniform ergodicity:

||Pnα (x, ·)− π(·)||TV≤
(

(
ε

1− (d− 1)ε
)ms

)bn/mc

It is more obvious that (a) will imply Diminishing Condition: (a) essentially
requires adaptation of selection probabilities to diminish. We only need to show
that total variance distance of the kernel can be bounded by total variance
distance between the selection probabilities somehow to obtain the results.

Proposition 3.5. Let Pα and Pα′ be RSG using kernel α, α′ ∈ Y. Then,

||Pα(x, ·)− Pα′(x, ·)||≤
|α− α′|

ε+ |α− α′|
≤ |α− α

′|
ε

Proof. Let δ := |α− α′|. Then

r := min
i

α′i
αi
≥ ε

ε+ maxi|αi − α′i|
≥ ε

ε+ δ

The inequality here can be thought of as by choosing the smallest possible α′i
and the largest distance between αi and α′i. We use the same method employed
in the previous proof, i.e. writing Pα′ = rPα + (1 − r)Pq for some q. We then
have

||Pα(x, ·)− Pα′(x, ·)||= ||rPα + (1− r)Pα − rPα + (1− r)Pq||

= (1− r)||Pα − Pq||≤
δ

ε+ δ
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Therefore, combining the two proposition above, we just showed that the adap-
tive RSG satisfies both the Containment Condition and the Diminishing Con-
dition. We then have convergence.

An erroneous claim was made in (Levine and Casella, 2006) regarding the con-
vergence of adaptive random scan Gibbs sampler. It states that the adaptive
RGS is ergodic if it follows the following conditions:
(i) αn → α a.s. for some fixed α ∈ (0, 1)d; and
(ii) The random scan Gibbs sampler with fixed selection probabilities α induces
an ergodic Markov chain with stationary distribution π.

These conditions, however, do not guarantee ergodicity. We notice that it differs
from the result we just derived in that it lacks constraints on the kernel family
and the additional requirement of fixed kernel Pα to be uniformly ergodic. A
counter example on 2D space was cited in ( Latuszyński et al., 2013) to refute
this claim. We will discuss this counter example and methods of proof in the
next section.

3.2.3 Adaptive Random Scan Metropolis-within-Gibbs

Such adaptive RSG can be extended by “embedding” a Metropolis within. Such
algorithms are referred to as Adaptive Random Scan Metropolis with Gibbs
sampler (AdapRSMwG). Here we consider the case where the proposal distri-
bution of the Metropolis algorithm remains fixed.

Ergodicity conditions of such algorithm are given in the following theorem:

Theorem 3.6. Assume that
(a) |αn − αn−1|→ 0 in probability for fixed starting values x0 ∈ X , α0 ∈ Y.
(b) ∃β ∈ Y such that the random scan Gibbs with fixed kernel β is uniform
ergodic.
(c) For every i ∈ {1, ..., d}, Px−i is uniformly ergodic for every x−i ∈ X−i.
Moreover there exist si > 0 and an integer mi such that for every x−i ∈ X−i
there exists a probability measure vx−i on (Xi, B(Xi)) such that

Pmix−i ≥ sivx−i(·),∀xi ∈ Xi

Then the AdaptRSMwG is ergodic:

lim
n→∞

T (x0, α0, n) = 0

Moreover, if supx0,α0
||αn − αn,1n−1||→ 0 in probability,

sup
x0,α0

lim
n→∞

T (x0, α0, n) = 0

Before we proceed to the proof, we will introduce the notion strongly uniform
ergodicity :
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Definition 3.2. A transition kernel P on X with stationary distribution π is
(m, s)−strongly uniform ergodic, if for some s > 0 and positive integer m

Pm(x, ·) ≥ sπ(·),∀x ∈ X .

Similarly, a family of Markov chains {Pγ}γ∈Γ that share a common stationary
distribution π is called (m, s)−simultaneously strongly uniformly ergodic, if for
some s > 0 and positive integer m

Pmγ (x, ·) ≥ sπ(·),∀x ∈ X , γ ∈ Γ

The following is a result concerning strongly uniform ergodicity.

Proposition 3.6. Let µ be a probability measure on X . For positive integer
m and s > 0. If a a transition kernel P
(a) is reversible and,
(b) satisfies the following

Pm(x, ·) ≥ sµ(·),∀x ∈ X ,

then it is ((b log(s/4)
log(1−s)c+ 2)m, s

2

8 )−strongly uniformly ergodic.

Proof. The key of the proof is to first utilize reversibility, the fact that the chain
converges to π and the Minorization condition given, in order to identify the
following relations:

π(dx)Pm(x, dy) = π(dy)Pm(y, dx) ≥ π(dy)sµ(dx)

and consequently
Pm(y, dx) ≥ π(dy)s(µ(dx)/π(dy))

Usually, to work with the Minorization condition and similar form, we first write
out

P km+m(x, ·) =

∫
X
P km(x, dz)Pm(z, ·) ≥

(∫
X
P km(x, dz)s(µ(dx)/π(dy))

)
π(·)

The next step involves finding a subsetA ⊆ X such that

(∫
X P

km(x, dz)s(µ(dx)/π(dy))

)
can be bounded below. One such set could be the following:

A := {x ∈ X : µ(dx)/π(dx) ≥ 1/2}

Now(∫
A

P km(x, dz)s(µ(dx)/π(dy))

)
≥
(∫

A

P km(x, dz)s/2

)
= (s/2)P km(x,A)
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Recall that the chain converges to π uniformly. Combining this with the Mi-
norization condition:

π(·) ≥ sµ(·)→ π(A) ≥ sµ(A)

Clearly µ(Ac) ≤ 1/2, which implies µ(A) > 1/2. We are able to get the result
combining arguments above.

Before we are able to prove the main theorem, the following Proposition is
needed:

Proposition 3.7. If RSG(β) is uniformly ergodic, then there exists s′ > 0 and
positive integerm′ such that the family {RSG(α)}α∈Y is (m′, s′)−simultaneously
strongly uniformly ergodic.

Remarks. Notice that both random scan Gibbs sampler and Metropolis-Hastings
algorithm are reversible. Therefore, we immediately have that RSG(β) is
strongly uniformly ergodic for some m and s1. By previous result, for any
α, there exists s2 ≥ ( ε

1−(d−1)ε )
m such that

Pmα (x, ·) ≥ s1s2π(·)

The final step to the main theorem involves Theorem 2 from (Roberts and
Rosenthal, 1998) (slightly modified to suit our purpose):

Theorem 3.7. Consider a random scan hybrid sampler

P =

d∑
i=1

αiPi,

where αi ∈ Y denotes selection probability of coordinate i and Pi denotes a
Markov kernel on X which fixes coordinates other than i

Assume that
(i) for any i, Px−i has stationary distribution π(·|X−i) and is (Ni, εi)−strongly
uniformly ergodic;
(ii) the corresponding RSG, with stationary distribution π(·), is (N ′, ε′)−strongly
uniformly ergodic.
Then this hybrid sampler is (N∗, ε∗)−strongly uniformly ergodic, where

N∗ = N ′ max
1≤i≤k

{Ni};

ε∗ = ε′ min
1≤i≤k

{εN
′

i k−N
′(max1≤i≤k){Ni}−1}

Proof of the main Theorem: To show Containment Condition, essentially
we need to show for each kernel Pα the requirements (i) (ii) in Theorem 3.7
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are satisfied with the same N∗ and ε∗. (i) is guaranteed by condition (c) in
Theorem 3.6 and the fact that Metropolis-Hastings algorithms are reversible.
(ii) is guaranteed by Proposition 3.7 and condition (b) in Theorem 3.6. The
Diminishing Condition, on the other hand, is guaranteed by condition (a) in
Theorem 3.6 as before.

3.2.4 Adaptive Random Scan adaptive Metropolis-within-Gibbs

It is possible to extend the adaptation regime to allow both adaptation of
selection probabilities and proposal probability distribution of the embedded
Metropolis algorithm (AdapRSadapMwG). This doubly adaptive algorithm has
been used in e.g. (Richardson et al., 2010) for an application in statistical
genetics. Adaptation of proposal distribution of the embedded Metropolis al-
gorithm is motivated by results in optimal scaling for random walk Metropolis
algorithms (Roberts and Rosenthal, 2001). The ergodicity conditions for this
algorithm can be formulated as follows:

Theorem 3.8. Let αn ∈ Y represent choices of selection probabilities, and
γn ∈ Γ represent choices of proposal distribution. Assume that
(a) |αn − αn−1|→ 0 in probability for fixed starting values x0 ∈ X , α0 ∈ Y and
γ0 ∈ Γ.
(b) ∃β ∈ Y such that the random scan Gibbs with fixed kernel β is uniform
ergodic.
(c) For every i ∈ {1, ..., d}, Px−i , x−i ∈ X−i and γi ∈ Γi, the transition kernel
Px−i,γi is uniformly ergodic. Moreover there exist si > 0 and an integer mi such
that for every x−i ∈ X−i and γi ∈ Γi there exists a probability measure vx−i,γi
on (Xi, B(Xi)) such that

Pmix−i ≥ sivx−i(·),∀xi ∈ Xi

(d) The Metropolis-within-Gibbs kernels exhibit diminishing adaptation, i.e. for
every i ∈ {1, ..., d},

sup
x∈X
||Px−i,γn+1,i(xi, ·)− Px−i,γn,i(xi, ·)||→ 0

in probability as n → ∞, for fixed starting values x0 ∈ X , α0 ∈ Y and γ0 ∈ Γ.
Then the AdapRSadapMwG is ergodic:

lim
n→∞

T (x0, α0, n) = 0

Moreover, if
(a’) supx0,α0

||αn − αn,1n−1||→ 0 in probability,
(b’) supx0,α0

supx∈X ||Px−i,γn+1,i(xi, ·)−Px−i,γn,i(xi, ·)||→ 0 in probability, then

sup
x0,α0

lim
n→∞

T (x0, α0, n) = 0
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Proof. The method of proof is almost identical to simpler adaptive algorithms
we reviewed previously in this section. We only need to check requirements (i)
and (ii) in the Theorem 3.7. Notice that (c) in 3.8 and Proposition 3.6 ensures
that every adaptive transition kernel for i−th coordinate, i.e. Px−i,γi is strongly
uniformly ergodic, which satisfies (i). And (b) in 3.8 and Proposition 3.7 ensures
that (ii) is satisfied.

The Diminishing Adaptation condition can be shown by “separating” both
adaptations:

sup
x∈X
||Pαn−1,γn(x, ·)− Pαn−1,γn−1(x, ·)||≥

sup
x∈X
||Pαn,γn(x, ·)− Pαn−1,γn(x, ·)||

+ sup
x∈X
||Pαn−1,γn(x, ·)− Pαn−1,γn−i(x,·)||

The first term above in the summation converges to 0 in probability by (a) in
3.8. The second term

sup
x∈X
||Pαn−1,γn(x, ·)− Pαn−1,γn−i(x,·)||≤

d∑
i=1

αn−1,i sup
x∈X
||Px−i,γn+1,i

(xi, ·)− Px−i,γn,i(xi, ·)||

which is derived by “extract” the summation sign out of total variation dis-
tance using triangular inequality and out of the supremum operator. This term
converges to 0 in probability using condition (d) in 3.8.
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3.3 The “Stairway to Heaven” problem

3.3.1 The Problem

Definition 3.3. Let αn denote the “selection probability” of a d−dimension
adaptive Gibbs sampler where αn ∈ Y and Y ⊆ [0, 1]d. An adaptive Gibbs
sampler follows the following procedure:

1. Set αn := Rn(α0, ..., αn−1, Xn−1, ..., X0)

2. Choose coordinate i ∈ {1, ..., d} according to selection probability αn

3. Draw Y ∼ π(·|Xn−1,−i), −i meaning fix all coordinates but i

4. Set Xn := (Xn−1,1, ..., Xn−1,i−1, Y,Xn−1,i+1, ..., Xn−1,d)

The following statement of “stairway to heaven” problem can be found in
( Latuszyński et al., 2013):

LetN = {1, 2....} and let the state space X = {(i, j) ∈ N×N , i = j or i = j+1},
with target distribution given by π(i, j) ∝ j−2. On X , consider a class of
adaptive random scan Gibbs samplers for π, as defined above with update rule
given by:

Rn(αn−1, Xn−1 = (i, j)) =

{
{ 1

2 + 4
an
, 1

2 −
4
an
}, if i = j

{ 1
2 −

4
an
, 1

2 + 4
an
}, if i = j + 1,

(45)

for some choice of the sequence (an)∞n=0 satisfying 8 < an ↗∞

3.3.2 Simplified Proof

In this section, we give a proof of the following theorem. The proof in this section
uses similar method as in the “proof by constructing phases” presented in the
last section. However, the construction is entirely different and much simpler.
The two original proofs are still kept because they are essentially different.

Theorem 3.9. For any fixed σ ∈ [0, 1), there exists a choice of ãn such that
P (X̃n →∞) > σ.

Fix any natural number K ≥ 1.

Definition 3.4. Let Sn denote the “distance” from Xn to starting position
(1, 1). IfXn = (xn, xn), Sn = 2(xn−1); ifXn = (xn, xn−1), Sn = 2(xn−1)−1 =
2xn − 3.

First we first note the following Lemma:
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Lemma 3.1. If Xn = (xn, xn), the distribution of Sn+1 − Sn, taking value
{−1, 0, 1}, is(

(
1

2
− 4

an
)

x2
n

x2
n + (xn − 1)2

, 1−(
1

2
− 4

an
)

x2
n

x2
n + (xn − 1)2

−(
1

4
+

2

an
),

1

4
+

2

an

)
(46)

If Xn = (xn, xn − 1), the distribution of Sn+1 − Sn, taking value {−1, 0, 1}, is(
1

4
− 2

an
, 1−(

1

4
− 2

an
)−(

1

2
+

4

an
)

(xn − 1)2

x2
n + (xn − 1)2

, (
1

2
+

4

an
)

(xn − 1)2

x2
n + (xn − 1)2

)
(47)

Proof. This follows directly from the updating routine specified in previous sec-
tion.

Definition 3.5. Fix any M ∈ N such that

0.01 · (M − 2)− 2
√
K · (M − 2) ln(M − 2) ≥ 4

and
M > max(M0(σ),M1(σ))

where M0(σ) and M1(σ) are finite numbers that depend only on the fixed σ. We
will define M0(σ) and M1(σ) later in the proof: this is mostly for more concise
presentation–M0(σ) and M1(σ) can be defined right away given σ as we will see
later. M apparently exists for any fixed natural number K.

Definition 3.6. Define sequence Ni such that N0 = 0, N1 = M0(σ) and Ni −
Ni− 1 = M − 2 + 2(i− 2), i = 2, 3, ....

Definition 3.7. Define an as follows:{
an = 8, if 0 ≤ n < N1

an = 8 2i2+1−2i
2i−1+0.1 − 0.001, if Ni−1 ≤ n < Ni,∀i ≥ 2

(48)

Lemma 3.2. (i) an →∞; (ii) an ≥ 8.

Proof. (i) is true since Ni is finite for all i; (ii) is a just an algebra exercise: an
increases for n ≥ 2 and a2 > 8.

Proposition 3.8. For each i ≥ 2, if xn ≥ i and Ni−1 ≤ n < Ni, there exists
a sequence of i.d.d random variable {Zi} such that Zi is stochastically smaller
than Sn+1 − Sn for each n ∈ [Ni−1, Ni) and Zi,n take value {−1, 0, 1} and
E(Zi) ≥ 0.01
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Proof. Since xn ≥ i, and an is constant for Ni−1 ≤ n < Ni

1

4
+

2

an
> (

1

2
+

4

an
)

(xn − 1)2

xn2 + (xn − 1)2
≥ (

1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
(49)

1

4
− 2

an
< (

1

2
− 4

an
)

(xn)2

(xn)2 + (xn − 1)2
≤ (

1

2
− 4

an
)

i2

i2 + (i− 1)2
(50)

Solve the following inequality:

(
1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
− (

1

2
− 4

an
)

i2

i2 + (i− 1)2
> 0.1 (51)

We obtain:

an < 8
2i2 + 1− 2i

2i− 1 + 0.1

This means that with our choice of an, for all n ∈ [Ni−1, Ni)

(
1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
− (

1

2
− 4

an
)

i2

i2 + (i− 1)2
> 0.1

Note that since i ≥ 2,

(
1

2
− 4

an
)

i2

i2 + (i− 1)2
≤ 4/5 · 1/2 = 2/5

and since an > 10 for i ≥ 2

(
1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
< 1/2 · (1/2 + 4/10) = 9/20

Denote distribution of Zi as (ai, 1− ai − bi, bi). For n ∈ [Ni−1, Ni), we choose

ai = (
1

2
− 4

an
)

i2

i2 + (i− 1)2
+ 0.0001 (52)

bi = (
1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
− 0.0001 (53)

Note that here an is constant depending on only i (thus the notation does not
refer to n); ai < 1/2, bi < 1/2,∀i > 1 and E(Zi) > 0.1 − 0.0002 = 0.0998 >
0.01.

Define Ii,m :=
∑m
j=1 Zi. Since Zi is strictly bounded by [−1, 1], by Hoeffding’s

inequality, for any t > 0,

P (|Ii,m − E(Ii,m)|≥ t) ≤ 2 exp(− t2

2m
) (54)
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For any n > 1, let the ”bound” t be tm = 2
√
Kn ln(n) for each n. Then the

probability of ”exceeding the bound” for each m is

P

(
|Ii,m − 0.01m|≥ 2

√
Km ln(m)

)
≤ 2

m2K
(55)

Therefore,

P

(
Ii,m > 0.01m− 2

√
Km ln(m)

)
> 1− 2

m2K
(56)

Now we can proceed to prove the main theorem.

Proof. When n < N1, an = 8. the probability of moving one step back is 0
and there is positive probability of moving ahead. From law of large number,
we know that there exists finite M0(σ) such that P (SM0

> M) > (1− σ/2) for
arbitrarily small σ > 0.

Let’s adopt the following notation:

Ω1 = {SM0 > M}

Ωi = {SNi ≥M + 4(i− 1)}

We need to first prove some lemmas.

Lemma 3.3. For each i ≥ 2, under event ∩i−1
j=1Ωi, xn ≥ i for all n ∈ [Ni−1, Ni).

Proof. We know that under event ∩i−1
j=1Ωi, SNi−1 ≥M +4(i−2). We now claim

that for Ni−1 ≤ n < Ni, xn ≥ i: assume the worst case where Sn − Sn−1 = −1
always for Ni−1 ≤ n < Ni; since Ni −Ni−1 = M − 2 + 2(i − 2), we know that
the smallest Sn is achieved at SNi :

SNi ≥ SNi−1
− (M − 2 + 2(i− 2)) ≥M + 4(i− 2)−M + 2− 2i+ 4 = 2i− 2.

This implies that the smallest value possible for xn, n ∈ [Ni−1, Ni) is xNi ≥ i.
So xn ≥ i, n ∈ [Ni−1, Ni).

Before we prove the next lemma, we restate the following theorem concerning
monotone coupling and stochastic domination:

Theorem 3.10. The real random variable X is stochastically larger than Y if
and only if there is a coupling between X,Y such that

P (X ≥ Y ) = 1
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Remark. This means that if Xi is stochastically larger than Yi respectively
for all i > 1, we may find a coupling for each i between Xi and Yi such that
P (
∑
Xi ≥

∑
Yi) = 1.

Lemma 3.4. For each i ≥ 2, under event ∩i−1
j=1Ωi, for all n ∈ [Ni−1, Ni),

P{SNi ≥M + 4(i− 1)} ≥ 1− 2

(M − 2 + 2(i− 2))2K

Proof. Note that Ni − Ni−1 = M − 2 + 2(i − 2) ≥ M − 2,∀i ≥ 2. And from
definition of M , we know that for all m ≥M − 2

0.01m− 2
√
Km ln(m) ≥ 4.

We have also shown that

P

(
Ii,m > 0.01m− 2

√
Km ln(m)

)
> 1− 2

m2K
(57)

From the previous lemma, we know that for n ∈ [Ni−1, Ni) we may couple
Sn+1 − Sn with Zi since xn ≥ i. This gives us that

P{SNi ≥M + 4(i− 1)} ≥ P{SNi−1
+ Ii,Ni−Ni−1

≥M + 4(i− 1)}

= P

{
Ii,M−2+2(i−2) ≥M + 4(i− 2)−M − 4(i− 2) = 4

}
≥ P

{
Ii,M−2+2(i−2) ≥

0.01(M − 2 + 2(i− 2))− 2
√
K(M − 2 + 2(i− 2)) ln (M − 2 + 2(i− 2)))

}
> 1− 2

(M − 2 + 2(i− 2))2K

Corollary 3.1. From the lemma above, we have

P (Sn →∞) ≥ (1− σ/2) ·Π∞j=0(1− 2

(M − 2 + 2j)2K
)

Proof. The lemma essentially provides us with the following:

P{Ωi|∩i−1
j=1Ωj} ≥ 1− 2

(M − 2 + 2j)2K

Since ∩∞j=1Ωj implies that {Sn →∞, n→∞}. The claim follows by induction.
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The main theorem can be proved follows. Let K = 1. for any σ ∈ [0, 1), we may
choose sufficiently large M1(σ) so that Π∞j=0(1 − 2

(M1(σ)−2+2j)2K
) > (1 − σ/2).

Such M1(σ) exists because limM→∞Π∞j=0(1− 2
(M−2+2j)2 ) = 1.

As a result,

P (Sn →∞) ≥ (1− ε) ·Π∞j=0(1− 2

(M − 2 + 2j)2K
)

≥ (1− σ/2)2 > 1− σ

This concludes the proof.

3.3.3 Proof Using An Auxiliary Process

The main result is Theorem 3.11. We first need to construct a auxiliary process
as in the following proposition.

Proposition 3.9. Define a random-walk-like space homogeneous process as
following:

S0 = 0 and Sn :=

n∑
i=1

Yi, for n ≥ 1

, where Y1, Y2, ... are independent random variables taking values in {−1, 0, 1}.
Let distribution of Yn on {−1, 0, 1} be

vn =
{1

4
− 1

an
,

1

2
,

1

4
+

1

an
}

.

Then there exists a choice of {an}, a positive,strictly increasing, unbounded
sequence, such that Sn tends to infinity in probability. That is, for any large
number M and any ε > 0, there exists some positive integer N such that

P (Sn > M) > 1− ε, ∀n > N

.

Proof. Since Yi is strictly bounded by [−1, 1], by Hoeffding’s inequality, for any
t > 0,

P (|Sn − E(Sn)|≥ t) ≤ 2 exp(− t
2

2n
)

.

For any n > 1, let the ”bound” t be tn = 2
√
n ln(n) for each n. Then the

probability of ”exceeding the bound” for each n is
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pn := P

(
|Sn − E(Sn)|≥ 2

√
n ln(n)

)
≤ 2

n2

Let’s choose an = 3
√
n+ 999, whereby E(Sn) =

∑n
i=1

2
3
√
i+999

.

Define Ωn = {ω ∈ Ω : |Sn(ω)− E(Sn)|≤ tn}.

Under event ∩∞n=mΩn, we have

Sn > E(Sn)− tn =

n∑
i=1

2
3
√
i+ 999

− 2
√
n ln(n), ∀n > m (1)

Notice that

lim
n→∞

n∑
i=1

2
3
√
i+ 999

− 2
√
n ln(n) = +∞ (2)

(since
∑n
i=1

2
3√i+999

>
∫ n+1

1
2

3
√
x+999

dx = 3(n+ 1000)2/3 − 300)

And for any integer m > 1,

P (∩∞n=mΩn) = Π∞n=m(1− pn) ≥ Π∞n=m(1− 2

n2
) > (

m− 1−
√

2

m− 1 +
√

2
)
√

2
2 (3)

Therefore, by ”Squeeze Theorem” and (3),

lim
m→∞

P (∩∞n=mΩn) = 1 (4)

By (2), for any M , we are able to find positive integer N1 so that

n∑
i=1

2
3
√
i+ 999

− 2
√
n ln(n) > M, ∀n > N1

By (4), for any ε > 0, we are able to find positive integer N2 so that

P (∩∞n=mΩn) > 1− ε, ∀m > N2

Choose N = max{N1, N2}. By (1) and the fact that N ≥ N1, we know that
under event ∩∞n=NΩn, Sn ≥ E(Sn)− tn > M , for all n > N , i.e.

P ({ω ∈ Ω : Sn(ω) > M, ∀n > N}) ≥ P (∩∞n=NΩn) > 1− ε
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Theorem 3.11. For any fixed σ ∈ [0, 1), there exists a choice of ãn such that
P (X̃n →∞) > σ.

Proof. Let’s first write the distribution of X̃n − X̃n−1 with values {−1, 0, 1}:

If Xn−1 = (i, i),(
(
1

2
− 4

an
)

i2

i2 + (i− 1)2
, 1− (

1

2
− 4

an
)

i2

i2 + (i− 1)2
− (

1

4
+

2

an
),

1

4
+

2

an

)

If Xn−1 = (i, i− 1),(
1

4
− 2

an
, 1− (

1

4
− 2

an
)− (

1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
, (

1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2

)

Notice that if we plug in an = 8, the above simplifies to:

If Xn−1 = (i, i), (
0,

1

2
,

1

2

)
If Xn−1 = (i, i− 1), (

0, 1− (i− 1)2

i2 + (i− 1)2
,

(i− 1)2

i2 + (i− 1)2

)

Notice that if an = 8, X̃n − X̃n−1 is stochastically larger than random variable
Zn = −1, 0, 1, which is i.d.d for all n with the following distribution:

(0,
9

10
,

1

10
)

Therefore, for On :=
∑n
i=1 Zn, there exists a coupling between X̃n − X̃n−1 and

Zn such that
X̃n ≥ On, ∀n > 1

Now we will use Hoeffding’s inequality to construct a ”lower bound” on On as
before. Recall for any t > 0,

P (|On − E(On)|≥ t) ≤ 2 exp(− t
2

2n
)

.

For any n > 1, let the ”bound” t be tn = 2
√
n ln(n) for each n. Then the

probability of ”exceeding the bound” for each n is
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P

(
|On −

n

10
|≥ 2

√
n ln(n)

)
≤ 2

n2

Define ΩO,n = {ω ∈ Ω : |On(ω)− n
10 |≤ tn}. Similar to the case for Sn, for any

integer m > 1,

P (∩∞n=mΩO,n) ≥ Π∞n=m(1− 2

n2
) > (

m− 1−
√

2

m− 1 +
√

2
)
√

2
2 (5)

Notice that under event ∩∞n=mΩO,n,

On ≥
n

10
− 2
√
n ln(n), ∀n > m

Meanwhile, under event ∩∞n=mΩn, as we have shown above, for all n > m

Sn < E(Sn)+tn =

n∑
i=1

2
3
√
i+ 999

+2
√
n ln(n) < 3(n+999)

2
3−300+

1

5
+2
√
n ln(n)

Apparently, there exists some N0 such that the ”lower bound” of On (of order

n) will exceed ”upper bound” of Sn (of order n
2
3 ), i.e. for all n > N0,

n

10
− 2
√
n ln(n) > 3(n+ 999)

2
3 − 300 +

1

5
+ 2
√
n ln(n)

There exists some N1 such that an =
√
n+ 999 > 8 for all n > N1;

By (4), as σ < 1, there exists some N2 such that

P (∩∞n=mΩn) >
√
σ, ∀m > N2

There exists some N3 such that for all n > N3, the lower bound of On will
exceed 15, i.e.

n

10
− 2
√
n ln(n) > 15, ∀n > N3

By (5), as σ < 1, there exists some N4 such that

P (∩∞n=mΩO,n) >
√
σ, ∀m > N4

There exists some N5 such that the ”lower bound” of Sn minus 6 (of order n
2
3 )

will exceed an+1 (of order n
1
3 ), i.e. for all n > N5

n∑
i=1

2
3
√
i+ 999

−2
√
n ln(n)−6 > 3(n+1000)2/3−300−2

√
n ln(n)−6 > 3

√
n+ 1000
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Let N := max{N0, N1, N2, N3, N4, N5}.

Define ãn = 8, if n ≤ N while ãn = an otherwise. Notice that since N ≥ N1,
ãn remains an increasing sequence tending to infinity.

For all n ≤ N , X̃n − X̃n−1 is stochastically larger than Zn. Therefore, there
exists a coupling between X̃n − X̃n−1 and Zn such that

X̃N ≥ ON (6)

Under event (∩∞i=NΩi) ∩ (∩∞i=NΩO,i), since N > N0, the ”lower bound” of ON
has already exceeded ”upper bound” of SN ,

ON ≥ SN (7)

By (6) and (7),
X̃N ≥ SN (8)

Now we seek to use induction to show that X̃n ≥ Sn for all n ≥ N . We want to
show the following: under event (∩∞i=NΩi)∩ (∩∞i=NΩO,i), for all n > N , if given

X̃n−1 ≥ Sn−1, X̃n ≥ Sn.

Indeed, since N ≥ N5, for all n > N , the ”lower bound” of Sn minus 6 will
be already larger than an+1, i.e. under event (∩∞i=NΩi) ∩ (∩∞i=NΩO,i), for all
n > N > N5,

Sn > 3(n+ 1000)2/3 − 300− 2
√
n ln(n)− 6 > 3

√
n+ 1000 = an+1

Since X̃n−1 ≥ Sn−1,
X̃n−1 − 6 ≥ Sn−1 − 6 > an

By Lemma 6.4(b), there exists coupling of X̃n − X̃n−1 and Yn such that if
X̃n−1− 6 ≥ an then X̃n− X̃n−1 ≥ Yn, given that X̃n− X̃n−1 and Yn follow the
same an. In our case, this rule applies for all n > N . Therefore,

X̃n−1 − 6 > an =⇒ X̃n ≥ Sn

.

Thus, by induction, under event (∩∞i=NΩi) ∩ (∩∞i=NΩO,i),

X̃n ≥ Sn, ∀n ≥ N

Therefore, since event ∩∞i=NΩi and event ∩∞i=NΩO,i are independent,

P (X̃n →∞) > P ((∩∞i=NΩi) ∩ (∩∞i=NΩO,i)) = P (∩∞i=NΩi)P (∩∞i=NΩO,i) = σ
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3.3.4 Proof by constructing “phases”

Here we provide another proof to Theorem 3.11:
Theorem 3.12. For any fixed σ ∈ [0, 1), there exists a choice of {an} such that
P (X̃n →∞) > σ.

Proof. We will construct countably many “phases” for the process {Xn}. Phase
i will have Ni steps where Ni < ∞ (Ni will be specified later). Let Si :=∑i
n=1Nn,∀i > 0 and S0 = 0. Let oi := X̃Si − X̃Si−1

, ∀i > 1 and o1 := X̃N1
.

Intuitively oi can be interpreted as the increment of {X̃n} during phase i.

Before we move on to define Ni, let’s first start to construct our choice of {an}:{
a1 = 8

an = 8 2i2+1−2i
(2i−1) − 0.1, if Si−1 < n ≤ Si

(58)

Let’s write the distribution of X̃n+1 − X̃n with values {−1, 0, 1}:

If Xn = (xn, xn),(
(
1

2
− 4

an
)

x2
n

x2
n + (xn − 1)2

, 1−(
1

2
− 4

an
)

x2
n

x2
n + (xn − 1)2

−(
1

4
+

2

an
),

1

4
+

2

an

)
(59)

If Xn = (xn, xn − 1),(
1

4
− 2

an
, 1−(

1

4
− 2

an
)−(

1

2
+

4

an
)

(xn − 1)2

x2
n + (xn − 1)2

, (
1

2
+

4

an
)

(xn − 1)2

x2
n + (xn − 1)2

)
(60)

Notice that during phase i, if xn > i− 1, with our choice of an

1

4
+

2

an
> (

1

2
+

4

an
)

(xn − 1)2

xn2 + (xn − 1)2
> (

1

2
− 4

an
)

(xn)2

(xn)2 + (xn − 1)2
>

1

4
− 2

an
(61)

This means that if xn > i − 1 for all phase i, the ”balance” for the next step
is tipped: the probability that X̃n+1 − X̃n takes value 1 is larger than it takes
value −1.

Claim: if xn > i − 1 during phase i, there exists an i.d.d random variable
Zi,n = −1, 0, 1 that is stochastically smaller than X̃n+1 − X̃n, ∀n such that
Si−1 < n ≤ Si with the following distribution

{ai, 1− ai − bi, bi}, where bi > ai (62)

and as a result, X̃n+1 − X̃n can be coupled to Zi,n in a way that X̃n+1 − X̃n >
Zi,n.
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Proof. Since xn > i− 1, and an is constant during phase i as defined above

1

4
+

2

an
> (

1

2
+

4

an
)

(xn − 1)2

xn2 + (xn − 1)2
≥ (

1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
(63)

1

4
− 2

an
< (

1

2
− 4

an
)

(xn)2

(xn)2 + (xn − 1)2
≤ (

1

2
− 4

an
)

i2

i2 + (i− 1)2
(64)

With our choice of an, there exists some σi > 0, which is constant during phase
i,

(
1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
− (

1

2
− 4

an
)

i2

i2 + (i− 1)2
> σi (65)

Thus, an obvious choice of ai and bi is:

ai = (
1

2
− 4

an
)

i2

i2 + (i− 1)2
+ σi/3 (66)

bi = (
1

2
+

4

an
)

(i− 1)2

i2 + (i− 1)2
− σi/3 (67)

Note that we can always choose σi small enough to make sure ai < 1.

For every {Zi,n} as specified above, ei := E(Zi,n) > 0.

Now we seek to construct a positive integer sequence Mi as the following, for
later use.

Construction of {Mi}: Before we construct {Mi}, let’s first define some variables
and establish some relations. Define Ii,n :=

∑n
j=1 Zi,j . Since Zi is strictly

bounded by [−1, 1], by Hoeffding’s inequality, for any t > 0,

P (|Ii,n − E(Ii,n)|≥ t) ≤ 2 exp(− t
2

2n
) (68)

For any n > 1, let the ”bound” t be tn = 2
√
n ln(n) for each n. Then the

probability of ”exceeding the bound” for each n is

P

(
|Ii,n − nei|≥ 2

√
n ln(n)

)
≤ 2

n2
(69)

Therefore,

P

(
Ii,n > nei − 2

√
n ln(n)

)
> 1− 2

n2
(70)

We choose Mi for each i such that

Mi > 10,∀i > 0 (71)
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nei − 2
√
n ln(n) > 2,∀n > Mi (72)

∞∏
n=Mi

(1− 2

n2
) > pi := 1− 1

2i2
(73)

We choose Ni, i.e. the number of steps for each phase i such that

Ni > 2,∀i > 0 (74)

nei − 2
√
n ln(n) > 2 +Mi,∀n ≥ Ni (75)

Define event ΩM,i = {ω ∈ Ω : oi(ω) > 2 + Mi}. If we choose Ni as total steps
of each phase, by construction above,

P (ΩM,1) = P (X̃N1
> 2+M1) ≥ P (I1,N1

> 2+M1) > 1− 2

N2
1

> 1− 1

2 · 12
(76)

Now assume

P (∩i−1
j=1ΩM,j) >

i−1∏
n=1

(1− 1

2 · n2
) (77)

We want to prove the following, so that the result will be true for all i > 0 by
induction:

P (∩ij=1ΩM,j) >

i∏
n=1

(1− 1

2 · n2
) (78)

Under event ∩i−1
j=1ΩM,j ,

X̃Si−1
> 2i− 2 +Mi−1 =⇒ xSi−1

> i− 1 +
Mi−1

2
(79)

Claim: under event ∩i−1
j=1ΩM,j , X̃n − X̃n−1 ≥st Zi,n, for all n such that Si−1 <

n ≤ Si, if
Ii,m > mei − 2

√
m ln(m), for all m > Mi−1 (80)

Proof. For the first Mi−1 steps during phase i, by (79), we know xn > i− 1, i.e.

xn > i− 1,∀n, Si−1 < n ≤ Si−1 +Mi−1 (81)

And in case where n = m+Si−1 > Mi−1 +Si−1, we have Ii,m bounded by (80).
With this we can prove the claim by induction:

Assume for some n ≥Mi−1 + Si−1,

xk > i− 1,∀k ≤ n (82)
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Then we can couple X̃n − X̃n−1 and Zi,n as suggested in the claim so that:

xn+1 = xm+Si−1
> xSi−1

+
X̃m+Si−1

− X̃Si−1

2
− 1

> xSi−1 +
Ii,m

2
− 1

> i− 1 +
Mi−1

2
+ 1− 1

> i− 1

(83)

By our construction of an, during phase i, if xn−1 > i− 1, X̃n − X̃n−1 ≥st Zi,n
.

For each phase i > 1, define the event where Ii,n is indeed ”bounded” after
Mi−1 steps:

ΩI,i := {ω ∈ Ω : Ii,n(ω) > nei − 2
√
n ln(n), for all n > Mi−1} (84)

The direct result of the claim above is the following:

Under event ΩI,i ∩ (∩i−1
j=1ΩM,j)

oi > Ii,Ni > Niei − 2
√
Ni ln(Ni) > 2 +Mi (85)

This means,

ΩI,i ∩ (∩i−1
j=1ΩM,j) ⊆ ΩM,i

=⇒ ΩI,i ∩ (∩i−1
j=1ΩM,j) ⊆ (∩i−1

j=1ΩM,j) ∩ ΩM,i

=⇒ P (ΩI,i| ∩i−1
j=1ΩM,j) ≤ P (oi > 2 +Mi| ∩i−1

j=1ΩM,j)

(86)

Therefore,

P (∩ij=1ΩM,j) = P (oi > 2 +Mi| ∩i−1
j=1ΩM,j)P (∩i−1

j=1ΩM,j)

≥ P (ΩI,i| ∩i−1
j=1ΩM,j)P (∩i−1

j=1ΩM,j)

=

∞∏
n=Mi

(1− 2

n2
)

i−1∏
n=1

(1− 1

2 · n2
)

> (1− 1

2i2
)

i−1∏
n=1

(1− 1

2 · n2
)

=

i∏
n=1

(1− 1

2 · n2
)

(87)
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Therefore, if we choose Ni as the steps of each phase i, the probability of x-
coordinate of Xn will increase by at least 1 during phase i, is larger than pi.
Therefore, we can write

P (Xn →∞) > P (∩∞i=1ΩM,i) >

∞∏
i=1

(1− 1

2i2
) > 0.5 (88)

As a matter of fact, we can push 0.5 above infinitely close towards 1 by choosing
pi that converges faster.

90



4 APPENDIX I. Inequalities in Probability

Inequalities are very important tools to develop results in probability. In this
section, we will record some useful, well-known inequalities in probability. Some
of them are useful in my studies of the “stairway to heaven” example and the
quantitative convergence rates.

Markov’s Inequality can be used to bound random variables when the expecta-
tion are known (or known to be finite).

Theorem 4.1. (Markov’s inequality) Suppose that E|X|r<∞ for some r > 0
and let x > 0. Then,

P (|X|> x) ≤ E|X|r

xr

The Hoeffding’s inequality is instrumental in my “stairway to heaven” proof.
It can be generally used to bound partial sums to the expectation of partial
sums, which is essentially a deterministic sequence. It is very useful to gain
information regarding “speed of growth” of the partial sum Sn.

Theorem 4.2. (Hoeffding’s inequality) Let X1, X2, ..., Xn be independent ran-
dom variables, such that P (ak ≤ Xk ≤ bk) = 1 for k = 1, 2, ..., n, and let
Sn, n ≥ 1, denote the partial sums. Then,

P (Sn − ESn > x) ≤ exp[− 2x2∑n
k=1(bk − ak)2

],

P (|Sn − ESn|> x) ≤ 2 exp[− 2x2∑n
k=1(bk − ak)2

].

5 APPENDIX II. Useful Mathematics

In this section, we will record some useful mathematical results from real and
complex analysis. Some of them are useful for my studies of asymptotic be-
haviors of random process or derivation of quantitative rates of convergence of
specific Markov chains.

A common method to estimate functions is to use Taylor expansion. Here are
a few such estimates.

Proposition 5.1. We have

ex ≤ 1 + x+ x2, |x|≤ 1

−(
1

1− δ
)x < log(1− x) < −x
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|ez − 1|≤ |z|e|z|

|ez − 1− z|≤ |z|2

|log(1− z) + z|≤ |z|2

The function e−x
2/2 often appears due to its close relation to normal distribu-

tion. However, as it does not have a primitive function expressible of elementary
functions, we need to estimate its values via approximation. The following in-
equality is often useful.

Proposition 5.2.

(1− 1/x2)
φ(x)

x
< 1− Φ(x) <

φ(x)

x
.

In particular,

lim
x→∞

x(1− Φ(x))

φ(x)
= 1

When working with infinite sums, it is often easier to derive some bounds with
integrals. It is a very effective way to obtain order of decreasing/increasing speed
for partial sums. Some typical estimates are listed in the following proposition.

Proposition 5.3. For α > 0, n ≥ 2

1

αnα
≤
∞∑
k=n

1

kα+1
≤ 1

α(n− 1)α
≤ 2α

αnα
.

This is proven to be a very useful result in probability (see my proof)–with it
we know how fast the partial sum of a “quasi-harmonic series”(not exactly a
harmonic series since α > 0) is vanishing in reverse order. The decreasing speed
is on par with 1/(nα)

Similarly, for β > 0

lim
n→∞

n−β
n∑
k=1

kβ−1 = 1/β

The “rate of growth” of partial sum of harmonic series can be bounded as the
following:

log n+ 1/n ≤
n∑
k=1

1/k ≤ log n+ 1

So “rate of growth” of partial sum of harmonic series is of the same order as
log n.
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