
INFERENCE ON SPATIAL INFECTIOUS-DISEASE MODELS WITH
PLANTATION DATA

ALEXANDER REMOROV

996712598

SUPERVISOR: PROF. JEFFREY ROSENTHAL

BASED ON JOINT WORK WITH:

PATRICK BROWN, FLORENCIA CHIMARD, JEFFREY ROSENTHAL, XIN WANG

Date: December 13, 2011.

1

Contents

1. Introduction 3
2. Model 4
2.1. Discrete Model 5
2.2. Continuous Model 6
3. Data 6
4. MCMC with Gibbs Sampling and no Simplification 7
5. Particle MCMC 8
5.1. Background 8
5.2. Sequential Monte Carlo Sampling 9
5.3. Conditional SMC Algorithm 10
5.4. Particle Markov Chain Monte Carlo - PMMH 10
5.5. Particle Gibbs - PG 11
6. Toy Examples 11
6.1. Example 1: Hidden AR(1) Processes 11
6.2. Birth-Death Process 13
7. Application of Particle Gibbs to Sugar Canes Model 14
7.1. Application of Gibbs Sampler 14
8. MCMC with Gibbs Sampling and Simplification 18
8.1. Discrete Model 18
8.2. Kernel Truncation 20
8.3. Continuous Model 22
9. Conclusion 25
10. Acknowledgements 26
References 26

1. Introduction

In this report we summarize our work on estimation of parameters in Spatial Infectious-
Disease Models from sugar cane plant infection data, using MCMC methods. We fit a basic
infectious disease model, which is a case of a more general model studied by Gibson (1997) [2]
and by Keeling & Rohani (2008) [5]. For each plant the model assumes spontaneous infection
which follows a Poisson process with time-dependent rate determined by a parameter µ and the
state (healthy/infected) of other plants.

The likelihood function was highly dimensional, since it was determined by three parameters
and 1742 infection times of the plants. For simplicity we first started with a discrete time model
and tried MCMC with Gibbs Sampling. However, running a program in C implementing the
algorithm took a very long time, even for 500 iterations 1 (our goal was to use at least 11000
iterations). As a result, we decided to first consider other methods of estimating the parameters.

The first thing we considered was using Particle MCMC (PMCMC) methods. A good survey
paper on this rather new MCMC approach is by Andrieu, Doucet, and Holenstein (2010) [1].
They mention that PMCMC is useful for estimation of parameters in highly dimensional models
with a lot of dependence in the parameters. In particular, this approach has an advantage over
standard MCMC because the latter algorithm might get ”stuck” in a local maximum because
the likelihood function is very complex. The drawback is that the algorithm takes a significantly
longer time to complete one iteration in comparison to standard MCMC, especially if a large
number of particles are used.

Since we did not have previous experience with using MCMC, we first attempted applying
this method to several toy examples. The first two were simplified versions of a hidden AR(1)
model considered by Andrieu, Doucet, and Holenstein (2010), while the third was a simple hid-
den birth-death process studied by Läubli (2011) [6]. While the results for the first two examples
were not satisfactory (possibly because not enough particles were used), applying PMCMC to
the birth-death process produced reasonable results, and we decided to attempt to apply the
method to the discrete version of our model. However, we realized that the code was getting
rather complicated, and the running time would not be better than for standard MCMC with
Gibbs Sampling. Thus we abandoned this approach.

We considered running parts of the program in parallel, however before doing this, we thought
about whether it would be possible to simplify the likelihood function for the discrete version
of the model. It turned out that a few drastic simplifications were possible, which could signif-
icantly reduce running time. After implementing these simplifications, the new version of the
program ran faster, but would still take a relatively long time to complete.

1Xin Wang ran the algorithm for 500 iterations, and it took about 5 days to complete.

In order to further improve running time, we decided to use an approximation of the likelihood
function (by truncating the kernel of the gaussian functions which were part of the likelihood
function). Implementing this new idea required a programming trick, which when implemented,
led to a drastic reduction in running time. The final version of the program for the discrete time
model ran in around 40 minutes for 110000 iterations; the original version would take approxi-
mately 110 days to complete 2 .

Finally, we considered a continuous-time version of the program, which was more realistic
than the discrete one. After implementing similar simplifications as with the discrete version,
the resulting program also ran very fast and ran in around 30 minutes, while producing esti-
mates that were similar to the discrete version. We were pleasantly surprised that using standard
MCMC still allowed us to efficiently estimate the parameters in a highly dimensional and com-
plex model. We believe that it may be possible to use a similar approach to perform inference
in an even more complicated infectious disease model.

This report is organized as follows. In section 2 we present both the discrete and continuous
versions of the infectious disease model fit to the data. Section 3 includes a brief description
of the data. In section 4 we present the results of the original version Metropolis within Gibbs
Sampler algorithm applied to the data. Section 5 contains a background on PMCMC methods,
while Section 6 includes three toy examples of application of PMCMC. In section 7 we discuss
our attempts to apply PMCMC to our problem. Section 8 describes the application of MCMC
with Gibbs Sampling and Simplification for both the discrete and the continuous time models,
and the results of this application. Section 9 provides some concluding remarks, while section
10 contains the Acknowledgements.

2. Model

Consider a field of plants S1, S2, . . . , SN . We assume the infection is spread by aphids. When
aphids land on a plant, they stay there (and reproduce), so that at any point in time a plant is
either healthy or non-infected. Furthermore, once a plant gets infected, it stays infected.

Once a plant is infected, the infection spreads from this plant at constant rate θ (not dependent
on how long the plant has already been infected for). As a result, the rate at which the infection
spreads from an infected plant Si to a healthy plant Sj (for 1 ≤ i, j ≤ N) is θf(D(i, j)), where
D(i, j) is the Euclidian distance between plants Si and Sj , and f is a kernel function.

We restricted f to be a Gaussian depending on a parameter σ:

(1) f(D) =
1√
2πσ

e
−D2

σ2

For each plant Si let τi be the time when plant Si becomes infected. If plant Si is never
infected, we set τi :=∞.

We assume that for each healthy plant Si, the infection rate is determined by a constant µ
and the cumulative rate at which the infection spreads from infected plants to the healthy plant.

2Based on the assumption that it takes about 5 days to execute 500 iterations.

Therefore, we define this rate at time t to be:

(2) λi,t = µ+ θ
∑
j:τj<t

f(D(i, j))

The above form is similar to the model studied by Meyer et al. (2011) [7].

We set Inverse Gamma priors for the parameters µ, θ, σ so that µ ∼ IG(a1, b1), θ ∼ IG(a2, b2), σ ∼
IG(a3, b3). Define:

(3) S(µ, θ, σ) = −(a1 + 1)θ − b1
θ
− (a2 + 1)µ− b2

µ
− (a3 + 1)σ − b3

σ

We assume that the field of plants is observed at times t0 = 0, t1, t2, . . . , tl = K with 0 < t1 <

t2 < . . . < tk, and at time 0 all plants are healthy. At each observation time for each plant we
record whether it is healthy or infected. As a result for each plant Si, we can record Li - the
last time the plant was observed uninfected, with Li = tj for some j. If Li = K, we know the
plant is never infected during the whole observation period [0, T]. Otherwise the plant was first
observed infected at time Ui = tj+1, hence τi ∈ (Li, Ui]. We set uniform priors for τi (so in the
discrete model τi has a uniform distribution over the integers Li + 1, Li + 2, . . . , Ui, while in the
continuous model τi ∼ Uniform[Li, Ui]).

2.1. Discrete Model. In the discrete model we assume that time is discrete and K ∈ N, so
that τi ∈ {0, 1, . . . ,K}. Then for k = 1, 2, . . . ,K, the probability that the plant Si is healthy at
time k conditional on it being healthy at time k − 1 is e−λi,k , so that:

(4) P(τi > k|τi > k − 1) = e−λi,k ; P(τi = k|τi > k − 1) = 1− e−λi,k

We assume that whether a plant becomes infected in the next period depends only on the
state (healthy/infected) of the other plants in the current period. Therefore, by taking the
product over the times 1, 2, . . . ,K and over the plant infection probabilities at each time, we get
an expression for the likelihood function up to a multiplicative constant:

(5) π(θ, µ, σ, {τi}) ∝ eS(µ,θ,σ)
K∏
k=1

(
∏
i:τi=k

(1− e−λi,k)
∏
i:τi>k

e−λi,k)
∏
i∈X

I(Li < τi ≤ Ui)

where X = {1, 2, . . . , N}. We set log π(θ, µ, σ, {τi}) := −∞ if τi 6∈ (Li, Ui] for some i ∈ X ,
and otherwise:

(6) log π(θ, µ, σ, {τi}) = C + S(µ, θ, σ) +
K∑
k=1

(
∑
i:τi=k

log(1− e−λi,k)−
∑
i:τi>k

λi,k)

= C + S(µ, θ, σ) +
∑
i:τi≤K

log(1− e−λi,k)−
∑
i∈X

min(K,τi−1)∑
k=1

λi,k

for some constant C.

2.2. Continuous Model. In the continuous model, we assume the infections follow a homoge-
neous Poisson process with rate λi,t for plant Si at time t ∈ [0, T]. Then:

log π(θ, µ, σ, {τi}) = C + S(µ, θ, σ) +
∑
i:τi>K

(−
∫ K

0
λi,tdt) +

∑
i:τi≤K

(−
∫ K

0
λi,tdt+ log(λi,τi))

which can be written as:

(7) log π(µ, θ, σ, {τi}) = C + S(µ, θ, σ)−
∑
i:τi>K

[Kµ+ θ
∑

j:τj<K

(K − τj)f(D(i, j))]+

∑
i:τi≤K

[−µτi − θ
∑

j:τj<τi

(τi − τj)f(D(i, j)) + log(µ+ θ
∑

j:τj<τi

f(D(i, j)))]

3. Data

During the experiment a field of sugar cane plants in Guadeloupe was observed. The size of
the field was around 25 by 50 m, and the plants were in a grid with dimensions around 17 by
103 plants. The total number of plants was 1742.

Plants were first observed at time 0 and were all healthy at that time. They were then
observed after 6, 10, 14, 19, 23, and 30 weeks. For the discrete time model, we assume time is
measured in weeks, so that K = 30.

The state of the plants at the time of last observation is shown below. If a plant has a red
star in its location, it is infected.

4. MCMC with Gibbs Sampling and no Simplification

We first present our original approach to estimating the parameters in the discrete model (we
decided to start with the discrete model since it seemed simpler). We used Metropolis within
Gibbs Sampling as follows:

Step n = 1:
Set µ(1), θ(1), σ(1) arbitrary positive real numbers, and for every i ∈ X , set τi(1) an arbitrary
integer in (Li, Ui].

Steps n = 2, . . . ,M :

1. Propose µ′ ∼ N(µ(n − 1), σ2
1); set µ(n) := µ′ if log(U) < log π′ − log πold; otherwise set

µ(n) := µ(n− 1).
2. Propose θ′ ∼ N(θ(n − 1), σ2

2); set θ(n) := θ′ if log(U) < log π′ − log πold; otherwise set
θ(n) := θ(n− 1).

3. One-by-one for each i ∈ X propose τ ′i ∼ τi(n − 1) − 1 + 2 × Bernoulli(1
2). Set τi(n) := τ ′i if

log(U) < log π′ − log πold; otherwise set τi(n) := τi(n− 1).

4. Propose σ′ ∼ N(σ(n − 1), σ2
3); set σ(n) := σ′ if log(U) < log π′ − log πold; otherwise set

σ(n) := σ(n− 1).

In each of the above steps, U is a Uniform(0, 1) random variable, log π′ is the log likelihood
with the ”proposed” parameter instead of the old one (while the rest of the parameter values
from step n − 1), while log πold is the ”old” log likelihood, i.e. with the parameter values from
step n− 1.

Results
In the original program (included in Appendix 2) implementing the algorithm σ was set to 1
to reduce running time and keep the model simpler. Nevertheless, when Xin ran the program
for 500 iterations, it took approximately five days to complete. The goal was to execute the
algorithm for 11000 iterations (and burn-in of 1000), thus if we assume that each iteration takes
roughly the same amount of time (which is reasonable since the same number of steps in the
calculations is performed and we assume the values of the parameters are relatively stable), then
to complete this many iterations would take about 11000 × 500

5 = 110 days. This would be a
very long amount of time, thus we considered using other approaches, and we decided to look
into Particle MCMC.

5. Particle MCMC

5.1. Background.

5.1.1. Hidden Markov Models. Consider the following Hidden Markov Model (also known as a
State Space Model). We have a Markov process {Xn} with Xn ∈ X with initial and transition
probability densities given by:

(8) X1 ∼ µθ(·); Xn+1|(Xn = x) ∼ fθ(·|x)

where θ ∈ Θ is a parameter. The process {Xn} is observed through a process {Yn} with Yn ∈ Y,
and Yns assumed to be conditionally independent given {Xn}. Yn depends on {Xn} according
to the following marginal probability density:

(9) Yn|(X1, X2, . . . , Xn = x, . . . ,XT) ∼ gθ(·|x)

Let T be the length of the Markov chain {Xn}. For any k, l ∈ N, k ≤ l denote by xk:l the chain
(xk, xk+1, . . . , xl). Then for fixed θ ∈ Θ, the joint density of (x1:T , y1:T) is:

(10) pθ(x1:T , y1:T) = µθ(x1)
T∏
n=2

fθ(xn|xn−1)
T∏
n=1

gθ(yn|xn)

Therefore given a prior density p(θ) for θ, the posterior density pθ(x1:T |y1:T) satisfies:

(11) pθ(x1:T |y1:T) ∝ pθ(x1:T , y1:T)p(θ)

The goal is, after observing {Yn}, to perform Bayesian inference about θ. However, the joint
density in (10) may be highly dimensional and furthermore a complicated expression, especially
if there is high dependence of the Xns. As a result, standard MCMC methods may not be able
to efficiently sample from such a distribution and may ”get stuck” in local maxima.

5.2. Sequential Monte Carlo Sampling. The following Sequential Monte Carlo (SMC) algo-
rithm is used to produce a sample chain {Xn} ∈ X T with distribution according to pθ(x1:T |y1:T)
in (10) based on the observed data {Yn}1≤n≤T for a fixed θ ∈ Θ. We again assume that T is
the length of the Markov chain {Xn}. The idea is to sample N particles at each step; for n ≥ 2
every next particle Xk

n is sampled based on some ancestor particle Xk
n−1 and the corresponding

obervsed value yn. The sampling is done using impotance sampling (we assume we know the
joint density pθ(x1:T , y1:T) up to a multiplicative constant for a given θ).

Step n = 1:

1. Sample the first particles Xk
1 ∼ qθ(·|y1).

2. Compute and normalize weights:

W̃ k
1 :=

pθ(Xk
1 , y1)

qθ(Xk
1 |y1)

=
µθ(Xk

1)gθ(y1|Xk
1)

qθ(Xk
1 , y1)

W k
1 :=

W̃ k
1∑N

l=1 W̃
l
1

Steps n = 2, . . . , T :

1. Sample the ancestor indices Akn−1 ∼ F(·|Wn−1).

2. Sample the nth particles Xk
n ∼ qθ(·|yn, X

Akn−1

n−1). Set Xk
1:n := (X

Akn−1

1:(n−1), X
k
n).

3. Compute and normalize weights:

W̃ k
n :=

pθ(Xk
1:n, y1:n)

qθ(Xk
n|yn, X

Akn−1

n−1)pθ(X
Akn−1

1:(n−1), y1:(n−1))
=
fθ(Xk

n|X
Akn−1

n−1)gθ(yn|Xk
n)

qθ(Xk
n|yn, X

Akn−1

n−1)

W k
n :=

W̃ k
n∑N

l=1 W̃
l
n

Here F(·|Wn−1) is the discrete multinomial distribution.

The sample X̂1:T is produced by sampling an index k in {1, 2, . . . , N} using the discrete multi-
nomial distribution on the last vector of weights (W 1

T ,W
2
T , . . . ,W

N
T) and setting X̂1:T := Xk

1:T .

The SMC algorithm also allows to estimate the marginal likelihood pθ(y1:T) as follows:

p̂θ(y1:T) := p̂(y1)
T∏
n=2

p̂θ(yn|y1:(n−1))

where:

(12) p̂θ(yn|y1:(n−1)) :=
1
N

N∑
k=1

W̃ k
n

Problems with SMC algorithms:

1. It is not clear how to find ”good” proposal densities qθ(x1|y1) and qθ(xn|yn, xn−1) for n =
2, . . . , T . An ”extreme” case by Gordon et. al (1993) [3] is to use the prior densities:
qθ(x1|y1) = µθ(x1), qθ(xn|yn, xn−1) = fθ(xn|xn−1). According to Ionides et. al (2006) [4],
this is actually the only possible choice if fθ(xn|xn−1) is very difficult/expensive to sample
pointwise, but not hard to sample from.

2. As T becomes large, fewer and fewer components sampled at time n << T still have de-
scendants at time T , thus when T − n is large, the approximation of the marginal density
pθ(xn|y1:T) may be poor. However, according to Andrieu, Doucet, and Holenstein (2010) [1],
this is not a problem when using SMC in PMCMC.

3. The algorithm takes a long time to run.
4. It is possible that some of the un-normalized weights W̃n

k are so small, that they are perceived
as 0 by computer software. It may happen that during a particular step all steps are so small,
that they are perceived as 0; then they cannot be normalized and the program crashes.

5.3. Conditional SMC Algorithm. The following modification of the SMC Algorithm is used
in the Particle Gibbs (PG) Sampler. The idea is to start with a fixed chain X̃1:T (and a fixed
vector of ancestor indices B̃1:T with B̃i ∈ {1, 2, . . . , N}), generate the remaining particles as in
a standard SMC algorithm, but ensure that the chain X̃1:T survives all T sampling/resampling
steps.

Step n = 1:

1. For k 6= B̃1 sample the first particles Xk
1 ∼ qθ(·|y1); set XB̃1

1 := X̃1.
2. Compute and normalize weights:

W̃ k
1 :=

µθ(Xk
1)gθ(y1|Xk

1)
qθ(Xk

1 , y1)
; W k

1 :=
W̃ k

1∑N
l=1 W̃

l
1

Steps n = 2, . . . , T :

1. For k 6= B̃n sample the ancestor indices Akn−1 ∼ F(·|Wn−1); set AB̃nn−1 := B̃n−1.

2. For k 6= B̃n sample the nth particles Xk
n ∼ qθ(·|yn, X

Akn−1

n−1); set XB̃n
n := X̃n. For all k set

Xk
1:n := (X

Akn−1

1:(n−1), X
k
n).

3. Compute and normalize weights:

W̃ k
n :=

fθ(Xk
n|X

Akn−1

n−1)gθ(yn|Xk
n)

qθ(Xk
n|yn, X

Akn−1

n−1)
; W k

n :=
W̃ k
n∑N

l=1 W̃
l
n

The sample X̂1:T is then produced just like in the standard SMC algorithm.

5.4. Particle Markov Chain Monte Carlo - PMMH. We first present the Particle Marginal
Metropolis Hastings (PMMH) Algorithm for performing inference for {Xn} and θ based on
observed data {yn}1≤n≤T .

Step 1 :

1. Set θ(0) arbitrary.
2. Run an SMC algorithm targeting pθ(0)(x1:T |y1:T); sampleX1:T (0) ∼ p̂θ(0)(·|y1:T); let p̂θ(0)(y1:T)

be the estimate of the marginal likelihood.

Steps k = 2, . . . ,M :

1. Sample θ∗ ∼ q(·|θ(i− 1)).
2. Run an SMC algorithm targeting pθ∗(x1:T |y1:T); sample X∗1:T ∼ p̂θ∗(·|y1:T); let p̂θ∗(·|y1:T) be

the marginal likelihood estimate.
3. Compute the following acceptance probability π:

π := 1 ∧ p̂θ∗(y1:T)p(θ∗)
p̂θ(i−1)(y1:T)p(θ(i− 1))

q(θ(i− 1)|θ∗)
q(θ∗|θ(i− 1))

With probability π set θ(i) := θ∗, X1:T (i) := X∗1:T , p̂θ(i)(y1:T) := p̂θ∗(y1:T); otherwise set
θ(i) := θ(i− 1), X1:T (i) := X1:T (i− 1) , p̂θ(i)(y1:T) := p̂θ(i−1)(y1:T).

5.5. Particle Gibbs - PG. We now present the Particle Gibbs (PG) sampler. The algorithm
works in the same way as the standard Gibbs sampler, as it alternates between sampling from
p(θ|xt:T , y1:T) and p(x1:T |θ, y1:T) = pθ(x1:T |y1:T). However, the second type of sampling - from
pθ(x1:T |y1:T) - is often impossible, thus the Conditional SMC sampler is used for this part instead.

Step 1 :

1. Set θ(0) arbitrary, X1:T (0), B1:T (0) arbitrary.

Steps k = 2, . . . ,M :

1. Sample θ(i) ∼ p(·|X1:T (i− 1), y1:T).
2. Run a Conditional SMC algorithm targeting pθ(i)(x1:T |y1:T) conditional on X̃1:T := X1:T (i−1)

with ancestral lineage B̃1:T := B1:T (i−1); let p̂θ(i)(·|y1:T) be the marginal likelihood estimate.
3. Sample X1:T (i) from p̂θ(i)(·|y1:T) and record B1:T (i).

6. Toy Examples

6.1. Example 1: Hidden AR(1) Processes. Before attempting to apply PMCMC to our
model, we decided to try it on several toy examples. We first considered two simplified versions
of the non-linear hidden Markov model explored by Andrieu, Doucet, Holenstein (2010) [1]. The
first version was:

(13) X1 ∼ N(0, 1);Xn ∼ N(Xn−1, σ
2
1), n = 2, . . . , T

(14) Yn ∼ N((
Xn

2000
)2, σ2

2), n = 1, . . . , T

with parameters σ1, σ2. The second was:

(15) X1 ∼ N(0, 1);Xn ∼ N(Xn−1 + µ1, 0.012), n = 2, . . . , T

(16) Yn ∼ N(
Xn

10
+ µ2, 0.012), n = 1, . . . , T

with parameters µ1, µ2.
For the first model we used the proposal densities σ∗1 ∼ |N(σ1(i−1), τ2)|, σ∗2 ∼ |N(σ2(i−1), τ2)|
and for the second model µ∗1 ∼ N(µ1(i − 1), τ2), µ∗2 ∼ N(µ2(i − 1), τ2). Here, τ is a parameter
chosen before the algorithm is run.

For simplicity we assume a fat prior for the vector of parameters θ, so that p(θ) = 1 for all θ.
Then for each model the acceptance probability reduces to:

π := 1 ∧ p̂θ∗(y1:T)
p̂θ(i−1)(y1:T)

q(θ(i− 1)|θ∗)
q(θ∗|θ(i− 1))

Finally for SMC sampling, we also assume the simplest case, i.e. qθ(x1|y1) = µθ(x1),
qθ(xn|yn, xn−1) = fθ(xn|xn−1).

Note that in order to make sure the non-scaled weights W̃n
k do not get too small, we made

the mean of Yn small relative to the variance in the first model - in view of (13), (14) - and made
the variance of Xn and Yn small relative to the mean in the second model - in view of (15), (16).
We wanted to not allow the non-scaled weights to not get too small since in (12) the estimate
of marginal likelihood is based on those weights, and therefore if W̃n

k get sufficiently small, they
are perceived as 0 by the program and as a result the estimate of marginal likelihood becomes
0, which does not allow for proper execution of the algorithm.

Results
In the first model the parameter is (σ1, σ2) and in the second it is (µ1, µ2). For each model

we generated a sample Markov Chain {xn} and then a sample of ”observed” data {yn}, which
is then the only data used to make inference about the parameter. We set N = 200 particles,
T = 30 for the first model, and N = 100 particles, T = 20 for the second model. For the first
model we set the ”true” value of parameter to be (2, 0.25) and for the second - (2, 0.5). We used
11000 iterations with a burn-in of 1000. We tried the following values for τ : 0.1, 0.01, 0.005,
0.001. For each value of τ , the algorithm was run twice (if the program ”crashed” as will be
explained later, the algorithm was run again.) The C programs are included in Appendix 2.

The results of running the PMMH algorithm on each of the two models are presented in tables
1 and 2. They are very bad for all possible values of τ we tried. The acceptance probability
seems stuck around 0.75 for the first model, and also tends to be high for the second model,
while the estimates of the parameter are usually way off in comparison to the true value. Also,
quite often the non-scaled weights in some step of the SMC algorithm were all perceived as 0
by the program because they were too small, and as a result the program was not even able to
produce an estimate (i.e. it ”crashed”). In the tables, racc is the acceptance rate; the two lines
for each value of τ correspond to the two runs.

The unsatisfactory results may be attributed to the fact that there were not enough particles
used in the algorithm, or there were not enough iterations. Andrieu, Doucet, Holenstein used
50,000 iterations with a burn-in of 10,000, and found that when the length of the chain was T =
100, at least N = 2000 particles should be used. Furthermore, as we already mentioned, quite

often some of the non-scaled weights are perceived as 0, resulting in a bad approximation of the
marginal likelihood. Finally, it is possible that there were some mistakes in the code. However,
we focused more on carrying out successful estimation of the parameters for the infectious disease
model on the plant data, therefore we did not spend much time working with these two examples
and moved on to another, simpler example, just to make sure that the PMMH algorithm worked
at least on that one.

Table 1. Results of PMMH Algorithm applied to First Model

τ σ̂2
1 σ̂2

2 racc

0.1 2.502950 4.138815 0.747432
4.138815 2.039372 0.745704

0.01 0.982180 0.471581 0.759069
1.301243 0.244384 0.756978

0.005 1.811632 0.270937 0.752523
1.020260 0.375343 0.752978

0.001 1.247902 0.721446 0.757160
1.323852 0.439553 0.747886

Table 2. Results of PMMH Algorithm applied to Second Model

τ µ̂2
1 µ̂2

2 racc

0.1 7.635100 2.043363 0.701336
-3.148410 3.814380 0.944995

0.01 1.486573 1.840478 0.999818
1.319873 -0.591851 0.606055

0.005 1.842549 0.388695 0.999818
1.679002 0.801131 0.999909

0.001 1.933463 0.321237 0.999909
2.236695 0.378275 1.000000

6.2. Birth-Death Process. We next try to reproduce the results published by Läubli (2011)
[6] for estimating the parameters of a simple birth-death process. Läubli considers the following
model, in which the sample spaces X for Xn and Y for Yn are both {0, 1}, and:

P (Xn = 1|Xn−1 = 0) = θ1, P (Xn = 0|Xn−1 = 0) = 1− θ1, n = 2, . . . , T

P (Xn = 0|Xn−1 = 1) = θ2, P (Xn = 1|Xn−1 = 1) = 1− θ2, n = 2, . . . , T

for unknown parameters θ1, θ2, and X1 ∼ Bernoulli(p), for known parameter p. The process
{Xn} is observed through a process {Yn} defined as:

P (Yn = x|Xn = x) = q, n = 1, . . . , T

for a known parameter q.

The proposals for θ1(i + 1) and θ2(i + 1) are made independently as follows. For k = 1, 2,
θk(i) is transformed on a logit scale to h(θk(i)). Then a new value h′ is sampled conditional on
h(θk(i)) so that h′ ∼ N(h(θk(i)), σ2), where σ is a parameter chosen before the algorithm is run.

Then h′ is transformed using the inverse-logit transformation to get a value θk(i+1) := h−1(h′).

Just like with the first two toy examples, we assumed the simplest case, i.e. qθ(x1|y1) = µθ(x1),
qθ(xn|yn, xn−1) = fθ(xn|xn−1).

Results
We ran the PMMH algorithm using the code provided by Läubli for p = 0.99, q = 0.88, σ = 1.
We set the ”true” value of (θ1, θ2) to be (0.4, 0.7) for the first two runs and (0.3, 0.3) for the next
two runs. For chosen θ1, θ2 we generated a sample Markov Chain {xn} and then a sample of
”observed” data {yn}, which is then the only data used to make inference about the parameter.
We ran the algorithm for M = 1000 iterations and burn-in of B = 100 and obtained satisfactory
results, i.e. the mean of θ1(i) and θ2(i) for i = B+1, B+2, . . . ,M was relatively close to the true
values of θ1, θ2. The results are presented in Table 3. The R program is included in Appendix
2.

Table 3. Results of PMMH Algorithm applied to Birth-Death Process

True (θ1, θ2) Estimate (θ̂1, θ̂2) racc

(0.4, 0.7) (0.3708613, 0.7761187) 0.249
(0.5195078, 0.7059881) 0.260

(0.3, 0.3) (0.3022617, 0.2888999) 0.206
(0.2649763, 0.3029364) 0.226

We next decided to attempt to apply the Particle Gibbs algorithm to our model.

7. Application of Particle Gibbs to Sugar Canes Model

In order to apply the Particle Gibbs algorithm to the sugar canes data with discrete time,
we need to modify the model. In particular, we need to consider the state of the plants at each
time k = 0, 1, . . . ,K. Thus for i ∈ X and k ∈ {0, 1, . . . ,K} define:

Xi(k) =

1, if plant Si is infected at time k

0, otherwise

Then, as in the original model, we have for i ∈ X and time k ≥ 1:

(17) P(Xi(k) = 1|Xi(k − 1) = 0) = 1− e−λi,k

For k ∈ {0, 1, . . . ,K} denote by X(k) the plant sickness data at time k, i.e.
X(k) = (X1(k), X2(k), . . . , Xn(k)). We observe data Y = (X(t0),X(t2), . . . ,X(tl)), where
0 = t0 < t1 < . . . < tl = K. Let Z be the complete data, so that Z = (X(0),X(1), . . . ,X(K)).

7.1. Application of Gibbs Sampler. We will estimate the parameter from the observed data
Y as follows. We run a PG sampler, that iteratively samples θ(i) and Z(i):

Step 1 :

1. Set θ(0), Z(0) arbitrary.

Steps m = 2, . . . ,M :

1. Sample θ(m)|Z(m−1). (Note that with a usual Gibbs Sampler we sample θ(m)|Z(m−1),Y,
but in this problem Y is just a subsequence of Z(n) for all n, and so the information set Z(m)
is the same as the information set Z(m),Y). This will be done using the rejection sampler.
In particular:
• We first propose θ′ ∼ N(θ(m− 1), σ2

1), and accept (i.e. set θ(m) := θ′) iff
log(U) < log π′ − log πold.
• We then propose µ′ = N(µ(m− 1), σ2

2), and accept (i.e. set µ(m) := µ′) iff
log(U) < log π′ − log πold.
• We then propose σ′ = N(σ(m− 1), σ2

3), and accept (i.e. set σ(m) := σ′) iff
log(U) < log π′ − log πold.

2. Sample Z(m)|θ(m),Y,Z(m − 1). This part is done using the conditional SMC Algorithm.
There is however an issue with implementation of this algorithm. For convenience, we will
use T instead of K in the remainder of this section.

Suppose we want to sample X1:T from fθ(·|Y, X̃1:T), by sampling the elements of the chain
X1,X2, . . . ,XT one-by-one (as in the standard conditional SMC algorithm). Recall that for
2 ≤ k ≤ T , the weight corresponding to particle Xk

n is:

(18) W̃ k
n :=

fθ(Xk
n|X

Akn−1

n−1)gθ(Ỹn|Xk
n)

qθ(Xk
n|Ỹn,X

Akn−1

n−1)

where Ỹn is the observation at time n. However, we only observe Y = (X(t1),X(t2), . . . ,X(tl)).
Define h : I = {1, . . . , T} → J = {t1, . . . , tl} so that for each n ∈ {1, 2, . . . , T}, h(n) =
min{k|k ∈ J and k ≥ n}. Then all the information observed at time n is exactly the infor-
mation observed at time h(n) (because any observations made after time h(n) contain the
same amount, or less information, about the states of the plants up to time h(n), than the
observation made at time h(n)). Therefore Ỹn = Yh(n) for n = 1, . . . , T , and the formula for
the weight in (18) becomes:

W̃ k
n :=

fθ(Xk
n|X

Akn−1

n−1)gθ(Yh(n)|Xk
n)

qθ(Xk
n|Yh(n),X

Akn−1

n−1)

For the naive sampling, we assume qθ(Xk
n|Yh(n)),X

Akn−1

n−1) = fθ(Xk
n|X

Akn−1

n−1 and thus:

(19) W̃ k
n := gθ(Yh(n)|Xk

n)

However, in our model, we have some values of n for which h(n) − n ≥ 4. Take one
such value for n. Then gθ(Yh(n)|Xk

n) is evaluated by considering all possible chains X̂1 :=
Xk
n, X̂2, . . . , X̂h(n)−n, X̂h(n)−n+1 := Yh(n), calculating the likelihood for each chain, and

adding the resulting values. While calculating the likelihood for a single chain is not very
difficult, the number of possible chains when h(n) − n ≥ 4 may be huge. In the problem,

there are 1742 ≈ 1800 plants, and m = 6 observations made, with the time lapse between
consecutive observations usually at least 4, therefore there is a good chance that for some n
(corresponding to the day right after some day when an observation was made), h(n)−n ≥ 4
and the number of plants that get infected between time n and h(n) (inclusive) is at least
1800

6 = 300. Thus there are at least 4300 different sets of infection times for those plants, and
thus at least 4300 ≈ 4.1×10180 paths. It will take a very long time (even with parallelization)
to calculate so many paths (and this is only for one particle), thus another approach must
be used. One idea is to use an approximation for gθ(Yh(n)|Xk

n); this may be possible if Xt

follows a continuous process; however there does not seem to be an efficient way to produce
a good approximation when Xn is a discrete process.

We first recall the approach used by Läubli (2011) to run the PG sampler for a Stochastic
Oregonator. In that problem, the hidden Markov chain is {Xn} with Xn = (X1

n, X
2
n, X

3
n)

following a jump process with a specified jump matrix A ∈ Z3×5 (so that 5 different reactions
are possible). The rate (intensity) of reaction i (1 ≤ i ≤ 5) is:

µi(x) =
5∑
j=1

θjhj(x),

where h(x) = (x2, x1x2, x1,
1
2
x1(x1 − 1), x3)T

and θj are the unknown hazard rates. The process is observed at discrete times t1, t2, . . . , tm
with some measurement error εti ∼ N(xti ,Σν), where Σν is a diagonal matrix with diagonal
entries 1

ν , where ν is unknown; let yi be the observation at time i. Thus the probability
density of the observations is:

(20) fν(y1:m|xt1 , . . . ,xtm) =
m∏
i=1

3∏
k=1

√
ν

2π
e−

ν(yki −x
k
ti

)2

2

The problem is, given observations y1,y2, . . . ,ym, to make inference about ω := (θ1, . . . , θ5, ν)T .
Läubli applies the SMC sampler to this problem as follows. The algorithm must produce

a sample chain x̂1:T := (xt1 ,xt2 , . . . ,xtm) based on the observed chain y1:T and parameter
ω̂ = (θ̂1, . . . , θ̂5, ν̂)T . This is done by first producing N samples of x̂1 conditional on y1 and
ν̂ - which is easy in view of (20), so that x̂1 ∼ N(y1,Σν̂). The weights for these first particles
x̂1

1, . . . , x̂
N
1 are calculated using (20), and then standardized just like in Step 1 of the SMC

algorithm.

Then for every fixed n = 2, 3 . . . , T :
1. For k = 1, . . . , N ancestor indices Akn−1 are sampled as in the SMC algorithm.
2. (This is the key step) For k = 1, . . . , N the chain x(k)

t is simulated on the time interval

[tn−1, tn] with starting value xtn−1 := x̂
Akn−1

n−1 and hazard rates θ̂1, . . . , θ̂5. The value of

particle xkn is set to be the value of the chain at time tn, i.e. x̂kn := x(k)
tn .

3. The weights are calculated using (20) and standardized, as in the SMC algorithm.

We now show how this approach can be applied to our problem. First, we note that
forward-simulating the chain is easy, given the current state xt = (x1(t), . . . , xL(t)) (where L
is the total number of plants) and parameters µ, θ.
1. For every healthy plant j, i.e. for which xj(t) = 0, we calculate the rate λj , defined as:

λj := µ+ θ
∑
j:τj<t

f(D(i, j))

2. The next state xt+1 is sampled as:

xj(t+ 1) =

1, xj(t) = 1

Bernoulli(1− e−λj), xj(t) = 0

Note that sometimes we will impose the restriction that it is possible to obtain the next
observed state from our sampled next state. Thus, if t < h(t), we need to ensure that if a
plant is healthy at time t, and healthy at time h(t), then it is also healthy at time t + 1,
so that:

xj(t+ 1) =

1, xj(t) = 1

0, xj(t) = 0 and xj(h(t)) = 0

Bernoulli(1− e−λj), otherwise

If we try to apply Läubli’s approach to this problem, during ith step we would generate
N particles xk(ti) based on xA

k
i−1(ti−1) by forward-simulating the chain. The problem with

this approach is we would need to enforce xk(ti) to be equal to y(ti) since the sample values
x(t1), . . . ,x(tl) are generated only for the times when observations have been made. But if
y(ti) = xk(ti), each weight would be equal to 1, and thus every possible chain generated
would have the same likelihood of being sampled.

We propose a slightly different approach. For each j = 1, 2 . . . ,m we simulate the chain
on the time interval [tj−1, tj − 1], with starting value ytj and sample parameters µ, θ, σ. We
assign to the particle at time j the value of the chain at time tj − 1. Then for each particle
xkj the weights are calculated as W k

j := π̃µ,θ,σ(ytj |x
k
j), where:

π̃µ,θ,σ(x(t+ 1)|x(t)) :=
∏

j:xj(t+1)=0

e−λj,t
∏

j:xj(t+1)=1,xj(t)=0

(1− e−λj,t)

However, the issue with this ”naive” approach is that we are not using the information at
time tj which we do actually have. Thus, because P(xj(t+ 1) = 1|xj(t) = 0) is usually very
small, most of the plants at time tj − 1 in the simulated chain would be healthy because they
were observed as healthy at time tj−1, and in almost all of the generated chains the plants
that get infected between time tj−1 and tj have to do so at time tj , which is unrealistic. But
we know from the observed data that quite a few plants get infected between time tl−1 and
tl, so there is a rather significant probability that a significant portion of these plants were
already infected before time tl−1 − 1 and tl − 1, respectively.

As a result, it is necessary to simulate the chain one step at a time, taking into account not
just the ”forward-propagation” probability, but also the conditional probability gθ(Yh(n)|Xk

n),
which is possible to calculate using a similar trick (and is better than considering all possible
chains), but is complicated from a programming point of view, as it requires recursion on the
number of periods between the next observed state Yh(n) and the ”current” simulated state
Xk
n. Furthermore, it is not clear how many particles are needed to obtain an appropriate

approximation of gθ(Yh(n)|Xk
n) using this method. Finally, we realized that executing this

algorithm would also take a long time, and it might actually take longer than the standard
MCMC with Gibbs Sampling. We thus decided to go back to our original approach and
consider a simplification.

8. MCMC with Gibbs Sampling and Simplification

8.1. Discrete Model. We first analyze the complexity of the Metropolis within Gibbs algo-
rithm for the execution of a single iteration, if no simplifications are made. Consider an arbitrary
iteration of the algorithm. We propose a new value τ ′i = τi ± 1 (with probability 1

2 each) one-
by-one for each plant Si of the N plants. We then accept iff logU < log π(θ, µ, σ, {τ ′h}) −
log π(θ, µ, σ, {τh}) and reject otherwise.
Recall that if Ui < τi ≤ Li for every plant Si, the formula for log π(θ, µ, {τh}) is:

(21) log π(θ, µ, σ, {τh}) = C + S(µ, θ, σ) +
K∑
k=1

(
∑
i:τi=k

log(1− e−λi,k)−
∑
i:τi>k

λi,k)

(22) = C + S(µ, θ, σ) +
K∑
k=1

(
∑
i∈X

[I(τi = k) log(1− e−λi,k)− I(τi > k)λi,k])

where:

(23) λi,k = µ+ θ
∑
j:τj<k

f(D(i, j)) = µ+ θ
∑
j∈X

f(D(i, j))I(τj < k)

The calculation of log π(θ, µ, σ, {τh}) is done by iterating through each time k in the chain
(for k = 1, . . . ,K), and during each iteration, calculating λi,k for each plant Si using (23). The
calculation of each λi,k is done by iterating through all plants j and adding θf(D(i, j)) to the
running total if τj < k. Thus the calculation of each λi,k takes O(N) time, the calculation of
all λi,k for fixed k takes O(N2) time. Therefore the time complexity of a single computation of
log π(θ, µ, {τh}) takes O(N2K) time.

There are O(N) calculations of log π(θ, µ, σ, {τh}) made during a single iteration of the Gibbs
sampler (as we propose µ′, θ′, σ′ and τ ′i for each plant Si of the N plants). Therefore a single
iteration of the algorithm takes O(N3K) time.

There are O(N) calculations of log π(θ, µ, {τh}) made during a single iteration of the Gibbs
sampler (as we propose µ′, θ′ and τ ′x for each plant x of the N plants). Therefore a single itera-
tion of the Gibbs sampler takes O(N3K) time.

We now show how this running time can be significantly improved due to the large number
of cancelations in the expression log π(θ, µ, σ, {τ ′h})− log π(θ, µ, σ, {τh}) when τ ′i = τi for all but
one plant Si, and for that plant Si, τ ′i = τi ± 1. We will show what happens in the case when
τ ′i = τi + 1 (the case τ ′i = τi − 1 is similar). Let:

log πk(θ, µ, σ, {τh}) =
∑
i∈X

[I(τi = k) log(1− e−λi,k)− I(τi > k)λi,k]

We consider simplifying each of the expressions

Dk = log πk(θ, µ, σ, {τ ′h})− log πk(θ, µ, σ, {τh})

Case 1: k < τi or k > τi + 1. Then I(τj < k) = I(τ ′j < k) for each j ∈ X , therefore by (23),
λj,k = λ′j,k for all j. Again, since I(τj < k) = I(τ ′j < k) and I(τj = k) = I(τ ′j = k) for each
j ∈ X , it follows by (22) that Dk = 0.

Case 2: k = τi. Then (τj < k) = I(τ ′j < k) for each j ∈ X , therefore λj,k = λ′j,k for all j.
Furthermore I(τj < k) = I(τ ′j < k) for each j ∈ X − {i}. Therefore:

Dk = Dτi = − log(1− e−λi,k)− λi,k

The complexity of computation of Dτi is the same as the complexity of computation of λi,k,
which is O(N).

Case 3: k = τi + 1. Then I(τj < k) = I(τ ′j < k) for each j ∈ X − {i}. Therefore λ′j,k − λj,k =
−θf(D(i, j)) for each j ∈ X − {i}. We have:

Dk = Dτi+1 =
∑
j∈X

[I(τ ′j = τi + 1) log(1− e−λ
′
j,k)− I(τ ′j > τi + 1)λ′j,k]−

∑
j∈X

[I(τj = τi + 1) log(1− e−λj,k)− I(τj > τi + 1)λj,k]

=
∑

j∈X−{i}:τj=τi+1

[log(1−e−λ
′
j,k)−log(1−e−λj,k)]−

∑
j∈X−{x}:τj>τi+1

(λ′j,k−λj,k)+[log(1−e−λi,k)+λi,k]

=
∑

j∈X−{i}:τj=τi+1

[log(1−e−λ
′
j,k)−log(1−e−λj,k)]+

∑
j∈X−{i}:τj>τi+1

θf(D(i, j))+[log(1−e−λi,k)+λi,k]

The first sum cannot be simplified further. The computation of that sum takes O(Nsk) time,
where sk is the number of plants that get infected at time k = τi + 1 (excluding plant x). The
computation of the second sum takes O(N) time, while the computation of the third sum also
takes O(N) time. Thus the computation of Dτi+1 takes O(Nsτi+1) time.

Using the above simplification it follows that the computation of D = log π(θ, µ, σ, {τ ′h}) −
log π(θ, µ, σ, {τ ′h}) can be done in O(Nsτi+1) time. On average, about N

K plants get sick at a

particular time (and this number is usually twice less than that since at time K around a third of
all the plants get sick), so we can assume that sτi+1 ∈ O(NK) and thus the computation of D can
be done in O(N

3

K) time when τ ′i is proposed for a single plant Si. Hence the total computation
of D for each of the N plants takes O(N

3

K) time. The computation of D when we propose µ′

or θ′ takes O(N2K) time. Thus the complexity of a single iteration of the Gibbs Sampler can
be reduced to O(N2 max(NK ,K)). In our problem N > K2 and thus the complexity becomes
O(N

3

K), an improvement of a factor of K2 over the previous bound of O(N3K). In our problem
K = 30, thus this factor is around 900.

We also note that D = log π(θ, µ′, σ, {τh})− log π(θ, µ, σ, {τh}) can be significantly simplified,
leading to faster computation of the portion of the algorithm in which a new value of µ is
proposed. While this does not change the running time complexity (as such simplification is not
possible when a new value of θ is proposed), it still leads to a significant reduction in computation
time. Using (21), we have:

(24) D =
K∑
k=1

[
∑
i:τi=k

(log(1− e−λ
′
i,k)− log(1− e−λi,k))]−

K∑
k=1

[
∑
i:τi>k

(λ′i,k − λi,k)]

(25) =
K∑
k=1

[
∑
i:τi=k

(log(1− e−λ
′
i,k)− log(1− e−λi,k))]−

K∑
k=1

[
∑
i:τi>k

(µ′ − µ)]

The second sum in (24) contains a lot more terms than the first one, and each term in the sum
requires the calculation of λ′i,k, λi,k. However, in (25) we see the second sum is a very simple
expression that takes much less time to compute.

Results
The above simplification was implemented in the program by Alexander together with Xin. We
first did not implement the simplification in (25) and we kept σ fixed at 1, since we just wanted a
rough estimate of how much less time the new program would take to complete 11000 iterations
(burn-in of 1000). The program was run on a subset of the data - a 10 by 10 subgrid of the
whole grid containing 120 plants. It took around 15 minutes to complete (compared to the time
of about 90 minutes for the original program). For the smaller grid N = 120,K = 30, thus
N < K2 and the asymptotic improvement in running time should be O(N) - which was not the
case. Nevertheless, the improvement in running time was significant. However, we would still
expect the program to take over a day to complete on the full grid, and we therefore decided to
further simplify the likelihood function.

8.2. Kernel Truncation. We decided to truncate the kernel of the Gaussian function f . In
particular, we used a new model with a simpler expression for λi,k:

(26) λi,k = µ+ θ
∑

j:τj<k & D(i,j)≤4σ

f(D(i, j))

This significantly simplified the calculation of λi,k, since now in the summation of f(D(i, j)) we
would need to only consider the plants Sj ”close enough” to plant Si instead of all 1742 plants.

In particular, if σ ≈ 1, all plants Sj at distance at most 4σ from Si would be contained in a
8×8 square with center at the location of plant Si. The horizontal distances between the plants
are about 1.5, while the vertical ones are 0.5, therefore the plants contained in that square form
approximately a 5× 17 grid, containing 85 plants - which is around 20 times less than the total
number of plants.

The implementation of the truncated kernel in the program was non-trivial. Originally, the
plant locations were essentially stored in a two-dimensional array (the x-coordinates were stored
in one array, and the y-coordinates in the other). Thus, for a fixed plant Si and fixed σ, to
obtain the list of all plants Sj with D(i, j) ≤ 4σ, we would still need to traverse the whole array,
thus taking O(N) time, providing no improvement over the program version with no truncation
in terms of running time complexity.

Xin came up with the following solution. Before starting the MCMC algorithm, for each
plant Si, we would create an array SortedP lanti, which contained all plants j ∈ X , sorted
by their distance from plant Si (with SortedP lant[0] being plant Si, SortedP lant[1] being the
second closest plant to Si, etc.) Then, when the calculation of λi,k was necessary for some fixed
i, k, we would traverse the plants in SortedP lanti until we came across a plant Sj such that
D(i, j) > 4σ, at which point the loop would stop. This idea was proposed and implemented by
Xin.

(Note that I attempted a different solution at first, but it was not as efficient, and the code
implementation contained a few mistakes. This was then modified to arrive at Xin’s solution to
the problem.)

Results
Xin ran the new version of the program on the full grid for 11000 iterations (this time including
the estimation of σ), and it took around 90 minutes to complete. She then also implemented
the simplification for µ proposal using (25), and the resulting program took just 55 minutes to
complete - an improvement by a factor of around 2880 over the estimated time of 110 days it
would take for the original program to complete the same number of iterations (note the original
program kept σ fixed at 1). The program is included in Appendix 2.

The Inverse Gamma priors for the parameters were set to be:

µ ∼ IG(1, 0.01), θ ∼ IG(1, 0.05), σ ∼ IG(1, 1)

The values of σi used for parameter proposals were set to be:

σ1 := 0.01, σ2 := 0.002, σ3 := 0.1

I ran the program again. My computer is slower than Xin’s, and the program took 2.5 hours
to complete. The results of the run are presented below. For each parameter estimated, we

list the estimated value, acceptance rate, varfact, and standard error. The burn-in used was
B = 1000.

Table 4. Results of Estimation for Discrete Model

Parameter Estimate racc Varfact Std. Error
µ 0.003091912 0.207818 5.352486 0.0000201076
θ 0.041815 0.265182 32.33533 0.0002403047
σ 1.088274 0.448455 34.94238 0.0056628540

The average acceptance rate of τi was 0.734830 (averaging over all τi). We do not include
the estimated values for τi, since there are 1742 of them. We also present the time it took to
complete each portion of the algorithm:

• Sorting plants to produce the arrays SortedP lanti: 32.521 seconds.
• Updating mu: 100.077 seconds.
• Updating theta: 4079.273 seconds.
• Updating sigma: 727.8630 seconds.
• Updating τi: 4182.659 seconds.

Finally, we have included the trace plots for µ, σ and σ in the parameters in Appendix 1.
They look quite good.

8.3. Continuous Model. Now let us go back to the continuous model. To estimate the param-
eters in the model, we use the same Metropolis within Gibbs Algorithm as in the discrete model,
however the proposal for τ ′i is different. One-by-one, for each i ∈ X , we propose τ ′i ∼ N(τi, σ2

4).
We then accept (i.e. set τi(n) := τ ′i) iff log(U) < log π′ − log πold, where log π is defined as in
(7). We demonstrate how log π′ − log πold can be simplified.

Suppose τ ′x = τx for all plants Sx except for some plant Sz, for which τz ≤ K. Suppose τ ′z > τz

(the case τ ′z < τz is similar). Then:

log π(µ, θ, σ, {τ ′h})− log π(µ, θ, σ, {τh}) = −
∑

x:τ ′x>K

[Kµ+ θ
∑

y:τ ′y<K

(K − τ ′y)f(D(x, y))]

+
∑

x:τ ′x≤K
[−Kτ ′x − θ

∑
y:τ ′y<τ

′
x

(τ ′x − τ ′y)f(D(x, y)) + log(µ+ θ
∑

y:τ ′y<τ
′
x

f(D(x, y)))]

+
∑

x:τx>K

[Kµ+ θ
∑

y:τy<K

(K − τy)f(D(x, y))]

−
∑

x:τx≤K
[−Kτx − θ

∑
y:τy<τx

(τx − τy)f(D(x, y))− log(µ+ θ
∑

y:τy<τx

f(D(x, y)))]

(27) =
∑

x:τx>τ ′z

θ(τ ′z − τz)f(D(x, z)) +
∑

x:τz<τx≤τ ′z

θ(τx − τz)f(D(x, z))

(28) − µ(τ ′z − τz) +
∑

x:τz≤τx<τ ′z

[−θ(τ ′z − τx)f(D(x, z))] +
∑

x:τx<τz

[−θ(τ ′z − τz)f(D(x, z))]

(29) + log(λ′z,τ ′z)− log(λz,τz) +
∑

x:τz<τx≤τ ′z

[log(λ′x,τ ′x)− log(λx,τx)]

In (27) the first term corresponds to change in log likelihood for plants x, for which τx > τ ′z, to
get infected; the second - the change in log likelihood for plants satisfying τz < τx ≤ τ ′z. The
terms in (28) correspond to the change in log likelihood for plant z. (29) contains the terms
for which λs change since the values λx,τx change only for plant z and for plants x for which
τz < τx ≤ τ ′z. Note that:

λ′z,τ ′z = µ+ θ
∑

x:τx<τz

f(D(x, z)) + θ
∑

x:τz≤τx<τ ′z

f(D(x, z)); λz,τz = µ+ θ
∑

x:τx<τz

f(D(x, z))

⇒ λ′z,τ ′z = λz,τz + θ
∑

x:τz≤τx<τ ′z

f(D(x, z))

and

λ′x,τ ′x = µ+ θ
∑

y:τ ′y<τx

f(D(x, y)); λx,τx = µ+ θ
∑

y:τy<τx

f(D(x, y))

so that λx,τx = λ′x,τ ′x + θf(D(x, z)).
Finally, we note that the portion of the algorithm in which a new value of µ is proposed can

be simplified in essentially the same way as with the discrete model.

Results
I modified the final version of the program for the discrete model to implement the Metropolis
within Gibbs Sampler for the continuous model, including the simplification described above.
The program ran in only 40 minutes on my computer (and would thus take even less time on
Xin’s computer.) The reason why the program ran faster for the continuous version than for
the discrete one can be attributed to the fact that the expression for log π in (7) is simpler than
in (6). However, we realized that the expression in (6) can be rewritten in the same form as
(7), which would give faster computation time of log π and hence even faster execution of the
discrete version for the program. The program is included in Appendix 2.

We note that the continuous model is more realistic than the discrete one. Because the pa-
rameter estimates are similar for both models, and the computation time is rather small for
both models (after all simplifications have been implemented), it is more desirable to use the
continuous model.

The values of σi used for parameter proposals were set to be:

σ1 := 0.005, σ2 = 0.0005, σ3 = 0.07, σ4 = 1

The estimation results are presented below. For each parameter estimated, we list the es-
timated value, acceptance rate, varfact, and standard error. We see that the estimates and
standard errors for the continuous version are close to those for the discrete one.

Table 5. Results of Estimation for Continuous Model

Parameter Estimate racc Varfact Std. Error
µ 0.003108482 0.567091 16.37271 0.0000172784
θ 0.03929908 0.403364 30.68109 0.0002306296
σ 1.103936 0.530273 34.75518 0.00582527

The average acceptance rate of τi was 0.824523 (averaging over all τi). We do not include
the estimated values for τi, since there are 1742 of them. We also present the time it took to
complete each portion of the algorithm:

• Sorting plants to produce the arrays SortedP lanti: 35.882 seconds.
• Updating mu: 551.147 seconds.
• Updating theta: 546.323 seconds.
• Updating sigma: 553.214 seconds.
• Updating τi: 712.049 seconds.

We have included the trace plots for µ, σ and σ in the parameters in Appendix 1. They look
quite good. Finally, we have also included a histogram of the estimated values of τi in Appendix
1 (we have only included values for which τ̂i < K). We see that for each i ∈ X and τ̂i < K,
the estimated value τ̂i tends to be close to the midpoint of the interval in which the plant got
infected, i.e. the value Li+Ui

2 . This is not surprising, since we are looking at the mean of τi(n)
for n = B + 1, B + 2, . . . ,M , and from the observed infection states it seems that the plants
become infected in a relatively even manner. We note however that while the distribution of
the simulated values τi(n) may be rather interesting, the more important part in this problem
are the values of the model parameters µ, θ, σ.

We also ran the program (included in Appendix 2) estimating the parameters of the con-
tinuous time model using Metropolis within Gibbs (and using simplifications) but no kernel
truncation for 1000 iterations, with a burn-in of 100. The program ran in around 122.7 minutes,
which would correspond to around 1349.7 minutes (or 22.5 hours) for 11000 iterations, about
33.7 times slower than for the continuous time version with kernel truncation. The estimates
were close to those for the version with truncated kernel. (For greater confidence in our results,
we would need to run the program for more iterations, e.g. 11000 instead of 1000). The simi-
larity in estimated values suggests that using the truncated kernel is appropriate for this problem.

The estimation results are presented below. For each parameter estimated, we list the esti-
mated value, acceptance rate, varfact, and standard error.

The average acceptance rate of τi was 0.825757 (averaging over all τi). We do not include
the estimated values for τi, since there are 1742 of them. We also present the time it took
to complete each portion of the algorithm. Not surprisingly, most of the time was spent on
updating τi:

• Updating mu: 916.023 seconds.
• Updating theta: 914.963 seconds.

Table 6. Results of Estimation for Continuous Model, no Truncation

Parameter Estimate racc Varfact Std. Error
µ 0.003062761 0.576000 7.921256 0.00003762047
θ 0.03817787 0.379000 30.61165 0.0007866118
σ 1.131010 0.533000 31.73272 0.01966360

• Updating sigma: 914.369 seconds.
• Updating τi: 4615.493 seconds.

9. Conclusion

We have discussed our work on the problem of estimating the parameters in Spatial Infectious-
Disease Models from Guadeloupean sugar cane plant infection data, using MCMC methods. We
started with estimating a relatively basic discrete time model, but found our method of estima-
tion, Metropolis within Gibbs Algorithm, too inefficient. Particle MCMC was then considered
as an alternative, but was found to be too complex for this problem, especially from the com-
putational point of view - as we would probably need a lot of particles to obtain a decent
approximation of marginal likelihood.

We then went back to the MCMC with Gibbs Sampling, and realized that it was possible to
significantly simplify the computation of log π′ − log πold when new values of τi were proposed
(one-by-one), as well as when a new value of µ was proposed. Computation time was further
reduced by truncating the kernel of the Gaussian function included in the likelihood function ex-
pression, leading to a significant reduction of the number of terms that had to be computed. The
implementation of the simplification was relatively straightforward, while the implementation
of the truncated kernel idea required a programming trick, which was eventually successfully
completed by Xin. The final version of the program for the discrete model ran in 55 minutes on
Xin’s computer, which is 2280 times faster than the original estimated time of 110 days that it
would take to complete 11000 iterations for the original program.

Finally, we modified our program to estimate the continuous infectious-disease model. We
found that the calculation of log π could be significantly simplified, and the final version of
the program took 40 minutes to run on my computer (which is slower than Xin’s computer).
The parameter estimates were similar to the estimates produced for the discrete time model.
They were also similar to the estimates produced for the continuous time model with no ker-
nel truncation, suggesting that using the truncated kernel model is appropriate for this problem.

We were happy that we managed to reduce computation time a lot, and achieved the desired
estimation of the continuous time model in a short period of time. We believe that it may be
possible to use a similar approach to perform inference in an even more complicated infectious
disease model. One possible extension of our current continuous model is to consider λi,t depen-
dent on time. Furthermore, we could consider time-varying rate at which the infection spreads

from an infected plant (instead of just a constant θ) - for example, if the plant is infected for a
longer period of time, the infection on it is more severe, and the rate θ at which the infection
spreads from the plant is greater.

10. Acknowledgements

This project was jointly completed by Alexander Remorov, Patrick Brown, Florencia Chi-
mard, Jeffrey Rosenthal, and Xin Wang. When I started the project this term, the data was
already collected, the discrete version of the model was written down, and the C program for
estimating the model using the Metropolis within Gibbs Sampler with no simplification was
written down, as well as the R program for producing the display of the canes and the R pro-
gram for summarizing the estimation results. The description of the model, the data, and the
original estimation approach are described in Jeffrey Rosenthal’s Course Notes for the STA3431
Monte Carlo Methods Course (2010) [8]. The three programs were also presented during the
course by Jeffrey Rosenthal (2010) [9].

Throughout the course, the program for estimating the discrete time model was written
together by Alexander and Xin, with Alexander and Xin checking each other’s work on the
program to ensure no mistakes were made. Patrick Brown wrote some initial code to estimate
the continuous time model, and this was then combined with the final version of the program
for estimating the discrete time model to obtain the final version of the code to estimate the
continuous time model - which was written by Alexander.

Some parts of the introduction in the report are based on the starting manuscript of the
paper about this project (the part of the manuscript completed so far has been written by
Patrick Brown).

Throughout the term, prof. Brown, prof. Rosenthal, Xin, and Alexander met on a weekly
basis and exchanged regular email communication with the ideas on how to proceed with the
project. Thus the ideas and results presented in this individual report are the product of a joint
effort.

References

[1] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo methods.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342, 2010.

[2] G. Gibson. Markov chain monte carlo methods for fitting spatiotemporal stochastic models in plant epidemi-

ology. Journal of the Royal Statistical Society: Series C (Applied Statistics), 46(2):215–233, 1997.

[3] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear and non-gaussian bayesian state

estimation. Radar and Signal Processing, IEE Proc. F., 140:107–113, 1993.

[4] E. L. Ionides, C. Bret, and A. A. King. Inference for nonlinear dynamical systems. Proceedings of the National

Academy of Sciences, 103(49):18438–18443, 2006.

[5] M. Keeling and P Rohani. Modeling infectious diseases in humans and animals. Princeton University Press,

2008.

[6] Marco Läubli. Particle markov chain monte carlo for partially observed markov jump processes. 2011.

[7] S. Meyer, J. Elias, and M. Höhle. A space-time conditional intensity model for invasive meningococcal disease

occurrence. Biometrics, 2011.

[8] Jeffrey Rosenthal. Sta3431 (monte carlo methods) lecture notes, winter 2010. 2010.

[9] Jeffrey Rosenthal. Sta3431 (monte carlo methods) programs, winter 2010. 2010.

	1. Introduction
	2. Model
	2.1. Discrete Model
	2.2. Continuous Model

	3. Data
	4. MCMC with Gibbs Sampling and no Simplification
	5. Particle MCMC
	5.1. Background
	5.2. Sequential Monte Carlo Sampling
	5.3. Conditional SMC Algorithm
	5.4. Particle Markov Chain Monte Carlo - PMMH
	5.5. Particle Gibbs - PG

	6. Toy Examples
	6.1. Example 1: Hidden AR(1) Processes
	6.2. Birth-Death Process

	7. Application of Particle Gibbs to Sugar Canes Model
	7.1. Application of Gibbs Sampler

	8. MCMC with Gibbs Sampling and Simplification
	8.1. Discrete Model
	8.2. Kernel Truncation
	8.3. Continuous Model

	9. Conclusion
	10. Acknowledgements
	References

