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Abstract

Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithms and other popular MCMC algorithms
induce a Markov chain which has the target distribution as its stationary distribution. Optimal scaling refers to
the need to tune the parameters of the proposal kernel in order to ensure the Markov chain obtained from the
algorithm converges as fast as possible to stationarity. Theoretical results for optimal scaling are obtained by
approximating high dimensional algorithm trajectories by diffusions, and then maximizing the speed measure
of the corresponding diffusion with respect to a transformation of the scale parameter. These notes summarize
most of the literature regarding the optimal tuning of Markov chain Monte Carlo algorithms, and discuss the
applications of these findings in practice. We have added an extensive appendix which summarizes some needed
background to understand the proofs and concepts presented in the various papers.
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1 Introduction and First Results

1.1 The “Goldilocks” Principle

Achieving the optimal convergence speed for a Markov chain Monte Carlo (MCMC) algorithm is important and
often a crucial matter in order to ensure efficiency in computation. Due to the flexibility of the Metropolis-
Hastings algorithm and other popular Monte Carlo algorithms, it is usually not difficult to set up a Markov chain
that eventually converges to the stationary distribution of interest in many problems. However, the fundamental
question that must be answered after one is able to construct such a Markov chain is the following: how many
steps is sufficient in order for the chain to be close to the stationary distribution of interest? The amount of steps
necessary before we have “convergence” is called the “mixing time” of the chain/algorithm. One way of reaching
some level of optimality in the performance for Metropolis-Hastings algorithms is through the selection of the scaling
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parameter of the proposal distribution that leads to the fastest mixing time. This leads to the topic of optimal
scaling. The selection of the optimal scaling parameter is an interesting application of probability theory to MCMC,
as the results are often proven using the theory of Markov processes and weak convergence to diffusions, although
some recent extensions have instead relied on the results of functional analysis and infinite dimensional analysis of
probability spaces. As much as possible, we have summarized these results in the appendix (see A).

If we want to run a Metropolis-Hastings algorithm for a continuous d-dimensional density πu : Rd 7→ [0,∞) with
a large dimension d, then the optimal scaling problem is concerned with the question of how we should choose the
proposal distribution for this algorithm. If we consider the specific examples such as the random walk Metropolis
algorithm (RWM) with Gaussian proposals or the Metropolis-Adjusted Langevin algorithm (MALA), then the
specific concern is the choice of the scaling parameter σ2 in the proposal distribution, as was mentioned earlier.
These two types of Metropolis algorithms are explained in Section 1.2.1.

If σ2 is chosen to be too small, then nearly all proposed moves will be accepted, and the Markov chain induced
by the Metropolis algorithm will converge very slowly since each increment is very small. Thus, the problem with
such an algorithm is that this prevents sufficient “mixing”, in that the chain will move slowly and thus lead to a
poor performance. On the other hand, if σ2 is chosen to be too large, then the chain will almost never accept new
proposals, and thus remain idle in a few states for large periods of time. Extremal variances lead to an algorithm
which explores its state space in a lazy fashion, and thus converges slowly to the target stationary distribution.
Hence, practitioners are eager to find a value of σ2 that is optimal, which allows sufficient mixing and exploration
of the space in consideration (i.e., the one that satisfies the Goldilocks principle). Similar to the plots shown in
Section 2 of [Ros10], Figure 1 shows three trace plots of the Markov chain induced by a RWM algorithm applied
to a multivariate normal target distribution. The first two plots show poor mixing due to extremal choices of the
proposal variance. The third plot shows a well-chosen proposal variance, which provides sufficient mixing of the
Markov chain and a good estimate of the distribution of interest.

Indeed, from the onset of the Metropolis algorithms, practitioners and theoreticians were already aware of the
issue of optimal proposals. In the founding paper on Metropolis algorithms, [MRR+53], the authors considered
proposals of the form y ∼ Uniform [x− α, x+ α], and they observed (page 1089):

“it may be mentioned in this connection that the maximum displacement α must be chosen with some
care; if too large, most moves will be forbidden, and if too small, the configuration will not change
enough. In either case it will then take longer to come to equilibrium.”

An alternative way of looking at this dilemma is by examining the source of correlation in the induced Markov
chain. An ideal proposal distribution for the Metropolis algorithm would be one that reduces the correlation
between subsequence realizations of Markov chain. However, note that there are two sources which produce the
correlation within the Markov chain: the first one is due to the fact that there is correlation between the current state
and the subsequent proposed value through the proposal, and secondly, there is correlation introduced whenever a
proposal is rejected and thus the value of the Markov chain is retained. In order to eliminate these two sources we
would ideally want to a proposal distribution that allows for fast changes/mixing in the induced Markov chain, and
also a high probability of acceptance. Unfortunately, these are two competing goals, as discussed above, reducing
one source of correlation increases the other source.

The first two papers to obtain theoretical results on optimal scaling for Metropolis algorithms are discussed in
subsections 1.3 and 1.4. Remarkably, despite starting with fairly stringent conditions on the form of the target
density, the results obtained in these two papers have shown to apply in fairly general circumstances. The papers
discussed in the later sections very frequently reinforce the results found in these two papers.

1.2 Some Preliminaries and Notation

1.2.1 Metropolis Algorithms

Before we begin to provide theoretical results concerning optimality of the Metropolis algorithm, we first need to
describe the algorithm and explain why it works. We will be necessarily brief in this subsection, omitting several
key topics, which can be found in any treatise on Markov chain Monte Carlo methods (for instance, a thorough
review of the Metropolis-Hastings algorithm can be found in Chapter 7 of [RC04]).

The basic idea of the Metropolis algorithm as formulated in Metropolis, et al. [MRR+53] is that each new state
of the Markov chain is chosen by considering a small perturbation to the current state, and accepting or rejecting
this change based on how the probability of the altered state compares to that of the current state. For the random
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Figure 1: Trace plots of RWM applied to a MVN Target
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walk Metropolis algorithm, one proposes a Gaussian density,

q
(
x(d),y(d)

)
=

1

(2πσ2)
d/2

exp

{
− 1

2σ2

∣∣∣y(d) − x(d)
∣∣∣2} . (1.1)

We will denote this proposal increment qσ
(
x(d)

)
dx ∼ N

(
0, Idσ

2
)
.

The Metropolis adjusted Langevin algorithm (MALA) is obtained by discretization of the Langevin diffusion,

dVt = σdBt +
σ2

2
∇ log πd (Vt) dt, (1.2)

where Bt is a standard d-dimensional Brownian motion. The natural discrete approximation can be given by

Vt+1 = Vt + σZt+1 +
σ2

2
∇ log π (Vt) , (1.3)

where the random variables Zt are i.i.d. standard normal. The MALA thus has proposal increments qσ
(
x(d)

)
dx ∼

N
(
σ2

2 ∇ log π (Xt) , σ
2Id

)
. Analogous to equation (1.1), we have for the proposal distribution for the MALA given

by

q
(
x(d),y(d)

)
=

1

(2πσ2)
d/2

exp

(
− 1

2σ2

∣∣∣∣y − x− σ2

2
∇ log π (x)

∣∣∣∣2
)
.

As mentioned above, the MALA algorithm is obtained by considering a discrete approximation of the Langevin
diffusion. Unfortunately, discrete approximations like the one (1.3) can have different behaviors than the diffusion
process they attempt to approximate, such as (1.2). In particular, it is possible that the approximation is transient,
regardless of how small the step variance σ2

d is chosen to be (see [RT96]). Therefore, it is necessary to further
introduce a Metropolis accept and reject step to ensure that π is a stationarity distribution for the process.

For both algorithms, we shall denote the acceptance probability

α (Xt,Y t+1) = min

{
π (Y t+1) q (Y t+1,Xt)

π (Xt) q (Xt,Y t+1)
, 1

}
.

Due to the fact the Gaussian distribution proposal for the RWM is symmetric, we have the simplified acceptance
probability given by

α (Xt,Y t+1) = min

{
π (Y t+1)

π (Xt)
, 1

}
.

In case of rejection, which happens with probability 1− α (Xt,Y t+1), set Xt+1 = Xt.

1.2.2 Efficiency

To compare different implementations of MCMC, it is necessary to obtain some notion of efficiency of Markov chains
for comparison criteria. Suppose {Xt}t≥1 is the Markov chain of the algorithm in consideration, and suppose that
the chain has stationary distribution π (·). The Markov chain is said to be geometrically ergodic with stationary
distribution π (·) if

‖Pn (x, ·)− π (·)‖1 ≤M (x) rn,

for some r < 1 and M (·) ≥ 0, and where the metric above is the total variation distance between measures (see
[MT09] for a detailed explanation of stationarity, ergodicity, etc.). Efficiency of a geometrically ergodic algorithm
is measured by the geometric rate of convergence, r. Over a large number of iterations, the geometric rate of
convergence is well approximated by the second largest eigenvalue of the transition kernel (the largest eigenvalue
being 1, corresponding to the stationary distribution π (·)) .

What is crucial for practical MCMC is that any geometrically ergodic reversible Markov chain satisfies a central
limit theorem for all functions with finite second moment with respect to π (·). Hence, there exists σ2

f < ∞ such
that for any arbitrary square-integrable function g,

n
1
2 (ĝn − Eπ [g (X)])⇒ N

(
0, σ2

g

)
, (1.4)

where ĝn is the sample average of the generated Markov chain X,

ĝn =
1

n

n∑
i=1

g (X (i)) .
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The central limit theorem above not only guarantees convergence of the Markov chain, but also provides its standard
error, which decreases as n−1/2. Thus, for all k ≥ 0 and i ≥ 0, we have

Corr [g (Xk) , g (Xk+i)] = Corr [g (X0) , g (Xi)] .

This is simply the autocorrelation at lag i. Using (1.4), we have

σ2
g = lim

n→∞
nVar [ĝn]

= Var [g (X0)] + 2

∞∑
i=1

Corr [g (X0) , g (Xi)] .

If one observes that for a stationary chain with independent elements, σ2
g is simply Var [g (X0)]. Hence, a measure

of efficiency of the Monte Carlo estimate relative to the perfect i.i.d. sample is

σ2
g

Var [g (X0)]
= τg = 1 + 2

∞∑
i=1

Corr (g (X0) , g (Xi)) ,

which is often termed as the integration autocorrelation factor. This quantity represents the effective number of
dependent samples that is equivalent to a single independent sample. Furthermore, one could denote n∗ = n/τg as
the effective equivalent sample size, had the elements of chain been independent.

If a central limit theorem for X and g exists, then the variance of the estimator
∑n

1 g (Xi) /n for estimating
Eπ (g (X)) is approximately Varπ (g (X)) · τgn . This suggests that the efficiency of Markov chains can be compared
by the reciprocal of their integrated autocorrelation times, i.e.,

eg (σ) = (Varπ (g (X)) τg)
−1

=

(
lim
n→∞

nVar

(∑n
1 g (Xi)

n

))−1

. (1.5)

However, this measure of efficiency is highly dependent on the choice of the function g, and also, estimating the
higher order autocorrelations can be very difficult as these involve estimation of an integral with respect to Dirac
measure (see Section 1.2 of [PG10]). Hence, for two different Markov chains, different functions g could order their
efficiency differently, making this criteria not very robust, unless the specific interest is in a particular function.
When one is interested in a whole collection of functionals of the target distribution (i.e., the cdf of a component of
interest), then the use of this criterion is problematic.

Furthermore, in the high-dimensional limit, when these algorithms behave like diffusion processes, all efficiency
measures are virtually equivalent. The most sensible measure of efficiency for a diffusion process is the speed
measure of the given diffusion. Indeed, it turns out that a tractable quantity related to the speed measure is the
algorithm’s acceptance rate, given by α, which is the probability in stationarity that the chain’s proposed move is
accepted. By the ergodic theorem, the acceptance rate equals the long-term proportion of proposed moves accepted
by the chain,

a =

ˆ
α (x,y)π (x) q (x,y) dxdy

= lim
n→∞

n−1# {accepted moves} .

Roberts and Rosenthal [RR01], provides theoretical justification for a commonly used strategy of implementing
the multivariate RWM algorithm. The strategy involves estimating the correlation structure of the target distri-
bution (either empirically or perhaps numerically from curvature applications on the target density) and using a
proposal distribution for the random walk algorithm to be a scalar multiple of the estimated correlation matrix. In
the Gaussian case, if the correlation structure is accurately estimated, then scaling the proposal in each direction
proportional to the target scaling can be shown to optimize the algorithm’s efficiency.

Consider the continuous time version of (1.5):

e(∞)
g (`) =

(
lim
n→∞

nVar

(´ n
t=0

g (Xt)

n

))−1

.
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Using (1.5), we have

e(d)
g

(
`d−

1
2

)
=

 lim
n→∞

bndcVar

∑bndci=1 g
(
X

(1)
i

)
bndc

−1

=

 lim
n→∞

bndcVar

∑bndci=1 g
(
Zdi/d

)
bndc

−1

≈

(
lim
n→∞

bndcVar

(´ n
0
g (Zs) ds

n

))−1

≈ d−1e(∞)
g (`) ,

so we have
lim
d→∞

de(d)
g

(
`d−

1
2

)
= e(∞)

g (`) = h (`) eLg .

Another approach to measure the efficiency in Markov chains is with the estimator which is called the first order
efficiency, which is the average squared jumping distance for the article (see Section 3 in [RR98]). The first order
efficiency of a multi-dimensional Markov chain X with first component X(1) is given by

first order efficiency = E
[∥∥∥(X(1)

t+1 −X
(1)
t

)∥∥∥2
]

(1.6)

= 2
(

1− Corr
(
X

(1)
1 , X

(1)
0

))
·Var

(∑n
i=1Xi

n

)
. (1.7)

Note further that for a single component of the target with variance σ2
1 = Var

(
X

(1)
t

)
= Var

(
X

(1)
t+1

)
, and further-

more, E
[
X

(1)
t+1 −X

(1)
t

]
= 0 , so

E
[(
X

(1)
t+1 −X

(1)
t

)2
]

= Var
[
X

(1)
t+1 −X

(1)
t

]
= 2σ2

t

(
1− Corr

[
X

(1)
t , X

(1)
t+1

])
.

Thus, maximizing (1.6) amounts to minimizing the lag-1 autocorrelations in the Markov chain {Xt}t≥1.

1.3 Roberts, Gelman, and Gilks (1997): The Paper that Started it All

1.3.1 Introduction to the optimal scaling problem for i.i.d. targets

The line of research concerning weak convergence of Metropolis algorithms to tractable diffusions was initiated by
Roberts, Gelman, and Gilks in 1997. Their paper ([RGG97]) is the first paper to discuss theoretical results about the
optimal scaling for Metropolis algorithms with Gaussian proposals. The paper establishes that for high-dimensional
target distributions formed of i.i.d. components (1.8), the acceptance rate optimizing the efficiency of the process
approaches 0.234 as d → ∞. The i.i.d. components assumption for the d-dimensional target density amounts to
assuming that the density has the form

π
(
x(d)

)
=

d∏
i=1

f (xi) , (1.8)

where f (·) is positive, continuous over R and also belongs to C2 (continuous functions with continuous second
derivatives), and x(d) ∈ Rd. As the interest here is in the infinite-dimension process obtained in the limit as d→∞,
one needs need to introduce a time-scaling factor in order to prevent the algorithm from stopping as the size of
the dimension increases. By considering suitably regular sequences of canonical target densities and rescaling the
proposal density by a factor of d−1, the authors manage to obtain a weak convergence (convergence of distributions
in the Skorokhod topology) result for the sequence of algorithms restricted to a fixed finite set of components to a
Langevin diffusion. A Langevin diffusion for a multivariate probability density function π, is the unique (up to a
speed measure) non-explosive diffusion which is reversible with respect to π.
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In particular, the authors consider a proposal scaling of the form σ2 (d) = `2/d, where ` is a scaling parameter
to be chosen by the practitioners. This amounts to updating the algorithm every d−1 time units, allowing the
algorithm to update more quickly, and allows one to consider a non-trivial limiting process when d → ∞. In the
limit, the jump sizes become increasingly smaller and more frequent, causing the limiting process of the algorithm to
be characterized by a continuous sample path, and ultimately, a diffusion. In order to preserve the Markov property
for the limiting diffusion, it is necessary to use the memoryless property of the exponential distribution. More
specifically, one considers the new sped up version of the RWM algorithm where the jumps occur in accordance
to a Poisson process of rate d. The main result of the paper is that for each fixed one-dimensional component of
the Markov chain {X0,X1, . . . }, where the chain is updated using RWM algorithm, the one-dimensional process
converges weakly (in the Skorokhod topology) to the appropriate Langevin diffusion.

Furthermore, it was believed that the result would often hold in various regular and general circumstances.
The authors are able to transform the conclusion achieved in the weak convergence of the limiting process into a
statement about the efficiency as a function of the acceptance rate. It is found that the optimal choice of the scaling
parameter σ (as a function of parameter ` and dimension d) is that which maintains an acceptance rate of 0.234.
A very striking, and indeed counter-intuitive feature that will be discussed more below, is that low-dimensional
algorithms have higher optimal acceptance rates than higher-dimensional ones. An acceptance rate as small as 23%
indicates that high-dimensional algorithms should remain idle at 77% of the time in order to obtain the fastest
mixing chain, which is indeed an unexpected result for many practitioners.

1.3.2 Gaussian proposals and the Metropolis algorithm

We recall, the Gaussian proposal density for the RWM on Rd is given by

q
(
x(d),y(d)

)
=

1

(2πσ2d)
d/2

exp

{
− 1

2σ2 (d)

∣∣∣y(d) − x(d)
∣∣∣2} ,

which produces a Markov chain X(d) = {X0, X1, X2, . . . }, where each X(d) (t) is chosen according to a rule. The

rule is as follows: for given X(d) (t), consider a new proposal Y (d) (t+ 1) ∼ q
(
X(d) (t) ,Y (d) (t)

)
, which is accepted

with probability

α
(
X(d) (t) ,Y (d) (t+ 1)

)
= min

1,
π
(
Y (d) (t+ 1)

)
π
(
X(d) (t)

)
 , (1.9)

and in the case of rejection, X(d) (t+ 1) = X(d) (t). The Markov chain
{
X(d) (t)

}
t≥0

is reversible with respect to

π, and is π-irreducible, and hence ergodic. Thus, it indeed converges to the target density π.

Remark 1.1. Observe that although the arguments of the acceptance function (1.9) are multidimensional, the values
of the function are scalars. Hence, at any given time, the algorithm either accepts all the proposed moves for the d
components, or rejects them. Therefore, as d increases, and thus the number of proposed moves increases, which are
independent for each component, if one were to use the constant proposal scaling σ2, then it becomes increasingly
probable to obtain a rejection for at least one of the components (and thus reject entirely the proposed move).
It is for this reason that the authors choose to consider a proposal scaling that is inversely proportional to the
dimension. Algorithms which consider proposals for a fixed set of coordinates at a time are an interesting variation
of the Metropolis algorithm, examples of which are the Metropolis-within-Gibbs, and also the Gibbs algorithm.
These are considered in Section 2.4.

1.3.3 Conditions on target distribution f

Along with the assumption of the symmetric product form of the target density (1.8), the authors also fix certain
conditions on f . These conditions are more stringent than necessary, and a discussion of relaxation of assumptions
is discussed later. First, assume that f ′/f is Lipschitz continuous, and we have the moment conditions

Ef

[(
f ′ (X)

f (X)

)8
]
≡M <∞ and Ef

[(
f ′′ (X)

f (X)

)4
]
<∞. (1.10)

We let C2 denote the space of R-valued functions with continuous second derivatives, and let σ2 (d) = `2 (d− 1)
−1

,
for d ∈ Z. Since the target distribution is composed of identical and independent components, one can study any
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particular component of interest without loss of generality. For ease, the authors choose to study the first com-

ponent by defining a new process U
(d)
t which consists entirely of the first component of the Metropolis induced

Markov chain X(d) sped up by a factor of d, i.e., U
(d)
t = X

(1)
[td]. It has been parametrized to make jumps of size

O (σ (d)) = O
(
d−1/2

)
every d−1 time units. In finite dimensions, the RWM algorithm contains d components,

which are constantly interacting with one another. Therefore, there is no reason a priori to believe that in finite
dimensions, any individual component, or even subset of components, should behave like a Markov chain. However,
when d → ∞, each individual component does behave like a Markov chain, and due to the independent structure
of all the components, one can study the asymptotic behavior of a finite collection of components as well.

1.3.4 Theorems and Corollaries

The main result is given in the following theorem.

Theorem 1.2. (Theorem 1.1 in [RGG97]) Suppose the conditions (1.10) hold, and consider a RWM algorithm

with proposal distribution Y (d) ∼ N
(
x(d), `

2

d Id

)
applied to the target density as in (1.8). Consider the process{

U
(d)
t

}
t≥0

and let X(d) (0) be distributed according to the target density π. Then,

U
(d)
t ⇒ Ut as d→∞,

where Ut satisfies the Langevin SDE

dUt = (h (`))
1
2 dBt + h (`)

f ′ (Ut)

2f (Ut)
dt, (1.11)

where the speed measure h (`) follows

h (`) = 2`2Φ

(
−`
√
I

2

)
,

(Φ being the standard normal cdf), and

I ≡ Ef

[(
f ′ (X)

f (X)

)2
]
.

Equivalently, by unit speed measure, we can write Ut = Vh(`)t where V is the Langevin diffusion:

dVt = dBt =
f ′ (Vt)

2f (Vt)
dt.

It is thus clear that the most “efficient” asymptotic diffusion has the largest speed measure, as this corresponds
to the fastest convergence of our Markov chain Xn

[dt],1. Furthermore, since Ud is produced by speeding up time by
a factor of d, the complexity of the algorithm is d.

Remark 1.3. Since h (`) = `2 × 2Φ
(
−
√
I`
2

)
and I = Ef

[(
(log f (X))

′)2]
, it follows that

h (`) = `2 ×A (`) ,

where A (`) is the limiting overall acceptance rate of the algorithm, i.e., the proportion of proposed Metropolis
moves ultimately accepted. This leads to the fact that the formulation of the maximization problem of the limiting
diffusion’s speed measure can be written entirely in terms of the algorithm’s acceptance rate:

h (`) =
4

I

(
Φ−1 (A (`))

)2
A (`) .

Corollary 1.4. (Corollary 1.2 in [RGG97]) Denote the average acceptance rate of the RWM in d dimensions as
follows,

a (d, `) = E

min

1,
π
(
Y (d)

)
π
(
X(d)

)


=

ˆ ˆ
π
(
x(d)

)
α
(
x(d),y(d)

)
q
(
x(d),y(d)

)
dx(d)dy(d).

9



Then,
lim
d→∞

a (d, `) = a (`) ,

and h (`) is maximized by

` = ˆ̀= 2.38I−
1
2 .

Furthermore,

h
(

ˆ̀
)

= 1.3I−1.

Note 1.5. The optimal value of ` is scaled by I−1/2 , rather than the standard deviation of the target density as
is often suggested. However, in situations where f is Gaussian, it can be easily verified that I ≡ σ−2

f . Hence, I
is in fact the variance of the derivative of the log density of f . In general, I is a measure of the roughness of the
distribution f , and thus, it is negatively related with the optimal value ˆ̀.

Note 1.6. Although the Theorem in the paper is only proven for univariate components, the proof provides a
stronger statement which sufficiently shows for the case for integers c > 1, the process consisting of the first c
components of X [dt] converges to a collection of c independent processes, each distributed according to (1.2).

1.3.5 Lemmas and Proofs

In order to prove the above theorem, the paper provides a uniform convergence result of the generator Gn to G for
a suitably large class of real valued functions V , where G is the generator of the limiting one-dimensional Langevin
diffusion, where

GV (x) = h (`)

[
1

2
V ′′ (x) +

1

2

d

dx
(log f) (x)V ′ (x)

]
,

and the discrete time generator of Xn,

GdV
(
x(d)

)
= dEY (d)

(V (Y (d)
)
− V

(
x(d)

))1 ∧
π
(
Y (d)

)
π
(
x(d)

)
 .

The choice of the class of functions, for which V is a member is important, as it should be general enough to
encompass the necessary cases, but it also must make sense in the definition of the discrete time generator of
X(d). By virtue of working in the Skorokhod topology (see sectionB.2 for a brief introduction about the Skorokhod
topology), it is acceptable to treat Gd as a continuous time generator if we consider it as a process with jumps at
times of a Poisson process at rate d.

Then, by noting that the putative diffusion limit is Markov, and the sequence of approximations
{
U (d)

}
d≥1

,

while not Markov, are embedded in the sequence of Markov processes
{
Z(d)

}
d≥1

, with

Z
(d)
t =

(
X

(d)
[dt],1, . . . , X

(d)
[dt],d

)
,

so U (d) is the first component of Z(d).
The following sequence of sets is then defined:

{
Fd ⊂ Rd

}
d>1

with

Fd =
{
|Rd (x2, . . . , xd)− I| < d−

1
8

}
∩
{
|Sd (x2, . . . , xd)− I| < d−

1
8

}
,

where

Rd (x2, . . . , xd) =
1

d− 1

d∑
i=2

[
(log f (xi))

′]2
, and Sd (x2, . . . , xd) = − 1

d− 1

d∑
i=2

[
(log f (xi))

′′]
.

With the above sequences defined, the following Lemma is obtained.

Lemma 1.7. (Lemma 2.2 in [RGG97]) For fixed t,

P
[
Z(d)
s ∈ Fd, 0 ≤ s ≤ t

]
d→∞−→ 1.

10



Proof. Since the sequence starts in stationarity, with π being stationary, we have Z
(d)
0 ∼ π and Z(d)

s ∼ π. Therefore,

P
[
Z(d)
s /∈ Fd, for some 0 ≤ s ≤ t

]
≤ tdPπ [Z /∈ Fd] .

Furthermore, since E [Rd (X2, . . . , Xd)] = 1 according to distribution π, we have by the weak law of large numbers,
for all ε > 0

Pπ {|R (Z)− I| > ε} d→∞−→ 0.

Hence, by Markov’s inequality and the first assumption (1.10), we have

Pπ [Z /∈ Fd] ≤ Eπ
[
(Rd (Z)− I)

4
]
d1/2 ≤ 3M

(d− 1)
3/2

.

Therefore,

P
[
Z(d)
s ∈

{
|Rd − I| < d

1
8

}
, 0 ≤ s ≤ t

]
→ 1.

The proof of

P
[
Z(d)
s ∈

{
|Sd (x2, . . . , xd)− I| < d−

1
8

}
, 0 ≤ s ≤ t

]
→ 1

follows from the second assumption in (1.10).

Proposition 1.8. (Proposition 2.3 in [RGG97]) The function g (x) = min (1, ex) is Lipschitz with coefficient 1,
that is,

|g (x)− g (y)| ≤ |x− y| ,

for all x, y ∈ R.

Lemma 1.9. (Proposition 2.4 in [RGG97]) Let

Wd (xi) =

d∑
i=2

[
(log f (xi))

′′

2
(Yi − xi)2

+
`2

2 (d− 1)
(log f (xi))

′2
]
,

where Yi ∼ N
(
xi, `

2/d
)

are i.i.d. for all i = 2, . . . , d. Then

sup
x(d)∈Fd

E [|Wd|]
d→∞−−−→ 0.

Proof. Observe,

E [|Wd|]2 ≤ E
[
W 2
d

]
=

1

4 (d− 1)
2

(
d∑
i=2

(log f (xi))
′′

+
(
(log f (xi))

′)2)2

+
2

4 (d− 1)
2

d∑
i=2

(log f)
′′2

(xi) .

For x(d) ∈ Fd, ∣∣∣∣∣
d∑
i=1

(log f (xi))
′′

+
(
(log f (xi))

′)2
2 (d− 1)

∣∣∣∣∣ ≤ d−1/8.

Since (log f)
′′

is bounded, E [|Wd|]2 → 0 uniformly for x(d) ∈ Fd.

Proposition 1.10. (Proposition 2.5 in [RGG97]) If A ∼ N
(
µ, σ2

)
, then

E
[
min

(
1, eA

)]
= Φ

(µ
σ

)
+ exp

(
µ+ σ2/2

)
Φ
(
−σ − µ

σ

)
,

where Φ (·) is the standard normal cumulative distribution.

Lemma 1.11. (Lemma 2.6 in [RGG97]) For V ∈ C∞c ,

lim sup
d→∞

sup
x1∈R

d |EY1
[V (Y1)− V (x1)]| <∞,

with Y1 ∼ N
(
x1, σ

2
d

)
.
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Proof.

V (Y1)− V (x1) = V ′ (x1) (Y1 − x1) +
1

2
V ′′ (Z1) (Y1 − x1)

2
,

for some Z1 ∈ (x1, Y1) or (Y1, x1). Thus,

dEY1 [V (Y1)− V (x1)] ≤ Kd`2

d− 1
,

where K is an upper bound for V ′′.

Lemma 1.12. (Lemma 2.7 in [RGG97]) Suppose V ∈ C∞c is a function of the first component of Zd. Then

sup
x(d)∈Fd

∣∣∣GdV (x(d)
)
−GV (x1)

∣∣∣ d→∞−−−→ 0.

Proof. After decomposing the proposal Y (d) into
(
Y1,Y

(d)−
)

as

GdV
(
x(d)

)
= dEY1

(V (Y (d)
)
− V

(
x(d)

))
EY (d)−

min

1,
π
(
Y (d)

)
π
(
x(d)

)
 ,

one can focus on the inner expectation of this term. Let the inner expectation be denoted by E (Y1), so denoting

with ε (Y1) = log
(
f(Y1)
f(x1)

)
, we have

E (Y1) = E

[
min

(
1, exp

{
ε (Y1) +

d∑
i=2

(log f (Yi)− log f (xi))

})]
,

= E

[
min

(
1, exp

{
ε (Y1) +

d∑
i=2

(log f (xi))
′
(Yi − xi)

+
1

2
(log f (xi))

′′
(Yi − xi)2

+
1

6
(log f (Zi))

′′′
(Yi − xi)3

]}]
,

for some Zi ∈ (xi, Yi) or (Yi, xi). By Proposition 1.8,∣∣∣∣∣E (Y1)− E

[
min

(
1, exp

{
ε (Y1) +

d∑
i=2

[
(log f (xi))

′
(Yi − xi)−

`2

2 (d− 1)

(
(log f (xi))

′)2]})]∣∣∣∣∣
≤ E [|Wd|] + sup

z∈R

∣∣(log f (z))
′′′∣∣ 1

6 (d− 1)
1
2

4`3

(2π)
1
2

,

where Wd is as defined in Lemma 1.9. Furthermore, the term

sup
x(d)∈Fd

∣∣∣∣∣E (Y1)− E

[
min

(
1, exp

{
ε (Y1) +

d∑
i=2

[
(log f (xi))

′
(Yi − xi)−

`2

2 (d− 1)

(
(log f (xi))

′)2]})]∣∣∣∣∣ .
Denote this term by ϕ (d), which converges to zero as d→∞.

However,

ε (Y1) +

d∑
i=2

[
(log f (xi))

′
(Yi − xi)−

`2

2 (d− 1)

(
(log f (xi))

′)2]
,

is distributed according N
(
ε (Y1)− `2Rd/2, `2Rd

)
, so that by Proposition 1.10,∣∣∣∣∣E − E

[
min

(
1, exp

{
ε (Y1) +

d∑
i=2

[
(log f (xi))

′
(Yi − xi)−

`2

2 (d− 1)

(
(log f (xi))

′)2]})]∣∣∣∣∣
≤ E [|Wd|] + sup

z∈R

∣∣(log f (z))
′′∣∣ 1

6 (d− 1)
1
2

4`3

(2π)
1
2

.
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As was the case two equations ago, the above converges to zero as d→∞. However,

ε (Y1) +

d∑
i=2

[
(log f (xi))

′
(Yi − xi)−

`2

2 (d− 1)

(
(log f (xi))

′)2]
is distributed according to N

(
ε (Y1)− `2Rd/2, `2Rd

)
, so that Proposition 1.10,

E

[
min

(
1, exp

{
ε (Y1) +

d∑
i=2

[
(log f (xi))

′
(Yi − xi)−

`2

2 (d− 1)

(
(log f (xi))

′)2]})]

= Φ

(
R
− 1

2

d

(
`−1ε (Y1)− `Rd

2

))
+ eε(Y1)Φ

(
−
`R

1
2

d

2
− ε (Y1)R

− 1
2

d `−1

)
.

Denote the last equation by M (ε).
Therefore,

sup
x(d)∈Fd

∣∣∣∣GdV − dE [(V (Y1)− V (x1))M

(
log

(
f (Y1)

f (x1)

))]∣∣∣∣ ≤ ϕ (d) dE [|V (Y1)− V (x1)|] ,

and the right hand side converges to zero as d→∞.
Finally, consider the term

dE
[
(V (Y1)− V (x1))M

(
log

f (Y1)

f (x1)

)]
.

A Taylor expansion of the integrand about x1 yields

(V (Y1)− V (x1))M

(
log

f (Y1)

f (x1)

)
=

(
V ′ (x1) (Y1 − x1) +

1

2
V ′′ (x1) (Y1 − x1)

2
+
V ′′′ (Z1)

6
(Y1 − x1)

3

)
×
[
M (0) + (Y1 − x1)M ′ (0) (log f (xi))

′
+

1

2
(Y1 − x1)

2
T (x1,W1)

]
,

where

T (x1,W1) = M ′′
(

log
f (W1)

f (x1)

)(
(log f (W1))

′)2
+ (log f (W1))

′′
M ′
(

log
f (W1)

f (x1)

)
,

and where Z1,W1 ∈ [x1, Y1] or [Y1, x1]. Since V has compact support, which we denote by S, there exists K < ∞
such that

∣∣∣(log f)
(i)

(x)
∣∣∣ , ∣∣V (i) (x)

∣∣ ≤ K , for x ∈ S, i = 1, 2, 3, and one can show that M ′ and M ′′ are bounded,

say by K again. Thus,

M (0) = 2M ′ (0) = 2Φ

(
−
`R

1
2

d

2

)
,

so that

E
[
d (V (Y1)− V (x1))M

(
log

f (Y1)

f (x1)

)]
= 2nΦ

(
−
R

1
2

d `

2

)[(
1

2
V ′′ (x1)

+
1

2
(log f (xi))

′
V ′ (x1)

]
E
[
(Y1 − x1)

2
]

+ E [B (x1, Y1, d)]

where
E [|B (x1, Y1, d)|] ≤ a1 (K) dE

[
|Y1 − x|3

]
+ a2 (K) dE

[
|Y1 − x1|4

]
+ a3 (K) dE

[
|Y1 − x1|5

]
,

and ai are polynomials in K for i = 1, 2, 3. Hence, E [B (x1, Y1, d)] is uniformly O
(
n−

1
2

)
, and thus

sup
x(d)∈Fd

|GdV (x)−GV (x)| d→∞−−−→ 0.
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1.4 Roberts and Rosenthal (1998): The MALA Algorithm

Results similar to the paper discussed in the previous section can be obtained for other Metropolis-Hastings algo-
rithms. Following the approach of [RGG97], Roberts and Rosenthal (1998) [RR98] demonstrate that the Metropolis-
Adjusted Langevin Algorithm (MALA, see 1.2.1), applied to target distributions of the form (1.8), is optimized
by fixing the variance of the proposal distribution to be O

(
d−1/3

)
, which yields an overall asymptotically optimal

acceptance rate close to 0.574 and requires O
(
d1/3

)
steps to converge. This compares favorably to the RWM al-

gorithm, which require O (d) steps to explore the same class of target measures. The trade off being the need to
calculate the gradient of the Markov chain at every iteration, adding to the computational burden.

1.4.1 Target distribution and assumptions

Consider Metropolis-adjusted discrete approximations {Xt} to the Langevin diffusion for π as above, with

π
(
x(d), d

)
=

d∏
i=1

f (xi) =

d∏
i=1

exp {g (xi)} . (1.12)

Assume X0 ∼ π, i.e., the chain starts out in stationarity. Furthermore, we assume that g is a C8 function with
derivatives g(i) satisfying

|g (x)| ,
∣∣∣g(i) (x)

∣∣∣ ≤M0 (x) ,

for i ∈ [1, 8] for some polynomial M0 (·), and that

ˆ
R
xkf (x) dx <∞,

for k = 1, 2, 3, . . . . To be able apply results stemming from SDE theory, we assume that g′ is a Lipschitz function.
To compare the discrete approximations to limiting continuous-time processes, it is helpful to define the discrete

approximations as jump processes with exponential holding times. In particular, let {Jt} be a Poisson process

with rate d1/3, and let Γ(d) =
{

Γ
(d)
t

}
t≥0

be the d-dimensional jump process defined by Γ
(d)
t = XJt , where we set

σ2
d = `2nd−1/3 in the definitions above, with ` an arbitrary positive constant. It is assumed throughout that {Xt}

is non-explosive. Let

α (`, d) =

ˆ ˆ
π (x) q (x,y)α (x,y, d) dxdy = E

(
min

{
π (Y ) q (Y ,X)

π (X) q (X,Y )
, 1

})
, (1.13)

denote the π-average acceptance rate of the algorithm generating Γ.
The first primary result of the paper gives an analytic formula for the asymptotic acceptance probability of the

algorithm.

1.4.2 Main Results

Theorem 1.13. The sequence (1.13) converges as d→∞,

lim
d→∞

α (`, d) = α (`) ,

with α (`) = 2Φ
(
−K`3/2

)
, where Φ (x) = 1√

2π

´ x
−∞ e−t

2/2dt, and

K =

√√√√E

(
5g′′′ (X2)− 3g′′ (X)

3

48

)
> 0,

where the expectation is taken over X having density f = exp (g).

The second result of the paper shows that for the target density π as given above and large values of d, a
corresponding MALA algorithm for the target π with proposal variances given by σ (d), and ` = σdd

1/6, the speed

of the process is given by h (`) = 2`2Φ
(
−K`3/2

)
. Furthermore, the optimal value ˆ̀ of ` which maximizes this speed

function is such that the asymptotic acceptance probability α
(

ˆ̀
)
≈ 0.574.
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Theorem 1.14. Let
{
U

(d)
t

}
t≥0

be the process corresponding to the first component of Γ(d). With d → ∞, the

process U
(d)
t converges weakly (in the Skorokhod topology) to the Langevin diffusion U t, which follows the dynamics

of the SDE

dU t = (h (`))
1/2

dBt +
1

2
h (`)

d

dx
log π1 (Ut) dt,

with h (`) = 2`2Φ
(
−K`3/2

)
denoting the speed of the limiting diffusion. Furthermore, h (`) is maximized at the

unique value of ` for which α (`) = 0.574.

Remark 1.15. The theorem further implies that the proposal variances σ2 (d) should be tuned to be approximately
ˆ̀2d−1/3, which is the value for which the acceptance probability becomes approximately 0.574.

1.4.3 Simulation Studies

In order to measure efficiency of the algorithm, the authors use the first order efficiency as given by (1.6). We had
observed in section 1.2.2 that maximizing this quantity is equivalent to minimizing the lag-1 autocorrelations of
the Markov chain. The first simulation studies done by the authors show that the results hold well for symmetric
functions f . When f is not symmetric, then the asymptotic picture is more opaque, and results are usually
considered on a case by case basic.

1.4.4 Proofs

To prove the main results discussed above, we define generators of the discrete approximation process Γ(d) and of
the (first-component) Langevin diffusion process with speed h (`),

GdV
(
x(d)

)
= d1/3E

((
V (Y )− V

(
x(d)

))(
min

{
π (Y ) q

(
Y ,x(d)

)
π
(
x(d)

)
q
(
x(d),Y

) , 1})) ,
where the expectation is taken over Y ∼ q

(
x(d), ·

)
, and

GV
(
x(d)

)
= h (`)

(
1

2
V ′′ (x1) +

1

2
g′ (x1)V ′ (x1)

)
,

where g (x1) = log f (x1).

1.5 Discussion

The papers we have so far discussed provided very useful analytical framework for the optimal scaling for two
oft-used Metropolis-Hastings algorithms. However, the papers we discussed assumed a fairly stringent assumption
on the target density by assuming that it is comprised of i.i.d. components. Thus, we are begged to consider further
generalizations of this target density in order to see if the results found earlier are still valid. In their comprehensive
survey on MCMC algorithms ([RR98]), Roberts and Rosenthal pose the open question:

“Determine the extent to which the above optimal scaling results continue to apply, when when assumption
(1.8) is violated.”

The aim of the following two sections is to discuss how optimal scaling results can be obtained for more general
forms of the target distribution, and the papers therein partially answer the aforementioned open question. Many
of the papers corroborate with the findings in this section however, indicating that the acceptance rate of 0.234 for
RWM and 0.574 for MALA are considerably robust to different forms of the the target distribution.

2 Extensions to More General Target Distributions

2.1 Breyers and Roberts (2000): Finite Range Gibbs Random-Field Targets

Following the publication of the results described in the previous section, many researchers attempted to relax the
i.i.d. assumption for the target distribution. It was shown by Breyers and Roberts [BR00] that the acceptance rate
of 0.234 still holds when applied to suitably behaved target densities with partial correlations of finite range, i..e,
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when the local correlations are sufficiently small so that no phase transitions occur. The Gibbs measure used as
the target distribution for this model is such that the field’s correlations decrease exponentially fast as a function
of distance. In particular, they consider a Gibbs measure on RZr which has a density with respect to

∏
k∈Zr µ (dxk)

given by

exp

{
−
∑
k∈Zr

Uk (x)

}
,

where Uk is a finite-range potential, depending only on a finite number of neighboring terms of k. Markov random
fields with significant phase-transition behavior will require algorithms that use proposals with large jumps in order
to provide sufficient mixing. This will often yield degenerate algorithms, as the acceptance rate will converge to 0,
making the algorithm practically useless.

2.2 Roberts and Rosenthal (2001): & Inhomogeneous Targets

Another validation of the asymptotic optimal acceptance rate equaling 0.234 for the RWM was proven by Roberts
and Rosenthal (2001) [RR01] in the case of inhomogeneous target distributions. Specifically, they considered
inhomogeneous target distributions of the form

π (x) =

d∏
i=1

Cif (Cixi) , (2.1)

where the {Ci} are themselves i.i.d. for some fixed distribution, and f is again a fixed one-dimensional density
satisfying the regularity conditions discussed in (1.10). The components in this target are uncorrelated, but hetero-
geneously scaled. The target (1.8) used in [RGG97] corresponds to the case where the {Ci} are all constant in (2.1).
In order to obtain general results for the limiting theory of the RWM algorithm applied to (2.1), it is assumed that
Ci have mean 1 and variance b <∞.

Theorem 2.1. (Theorem 5 in [RR01]) Consider RWM with target density (2.1), and with proposal distribution
N
(
0, Id

(
`2/d

))
, for some ` > 0. Consider the time-rescaled process consisting of the first component of the induced

Markov chain, i.e., W
(d)
t = C1X

(1)
[td]. As d→∞, W d

t ⇒Wt, where Wt satisfies the Langevin SDE

dWt =
1

2
g′ (Wt) (C1s)

2
dt+ (C1s) dBt,

with Bt being a standard Brownian motion and where

s2 = 2`2Φ
(
−`b1/2I1/2/2

)
=

1

b
· 2
(
`2b
)

Φ
(
−
(
`2b
)1/2

I1/2/2
)
,

with I = Ef
[
(g′ (X))

2
]
.

Remark 2.2. When considering a functional of the first coordinate of the algorithm, the efficiency of the algorithm
as a function of acceptance rate is the same as that found in [RGG97], but multiplied with a global “inhomogeneous”
factor C2

1/b. For a fixed function of f , the optimal asymptotic efficiency is proportional to C2
1/bd. In particular,

the efficiency of the algorithm is now slowed down by a factor of b = E
(
C2
i

)
/E (Ci)

2
, which by Jensen’s inequality

is greater than or equal to 1, with equality coming only when the factors Ci are all constant, which is equivalent to
the form of (1.8).

Remark 2.3. When the values of Ci are known, then instead of using the proposal distribution N
(
0, σ2 (d) Id

)
,

one should use an inhomogeneous proposal which is scaled in proportion to Ci for each component, i..e, we should
consider proposals of the form N

(
0, σ̄2 (d) diag (C1, . . . , Cd)

)
. This would then yield a RWM applied to the form

of the target (1.8), since the scaling in the proposal and in the target would cancel each other out. This would
alleviate the inefficiency factor of b as discussed above. See Theorem 6 and the subsequent discussion in [RR01] for
a more detailed assessment of inhomogeneous proposals for such target distributions.

The results above provide some theoretical justification for a frequently used strategy as suggested by Tierney
in [Tie94], which is to use a proposal distribution that is a scalar multiple of the correlation matrix obtained
by estimating the correlation structure of the target distribution, perhaps through an empirical estimate based
on a sample MCMC run, or numerically through curvature calculations on the target distribution itself. Using
inhomogeneous proposals by first obtaining a preliminary estimate of the Ci can thus lead to more efficient Metropolis
algorithms.
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2.3 Bédard: Various Scaling Terms for Components of the Target

2.3.1 Target distribution with varying scaling terms

In a series of papers ([Béd06, Béd07, Béd08a, Béd08b, Béd10, BR08]), Bédard relaxes the i.i.d. assumption imposed
on the target distribution, and considers the case for d-dimensional target distributions with independent compo-
nents, where each component possesses its own scaling term which may be a function of the dimension of the target
distribution. Specifically, she analyzes the following d-dimensional target density:

π
(
d,x(d)

)
=

d∏
j=1

θj (d) f (θj (d)xj) . (2.2)

This target density does not consist of d identical components, as was the case in the sections above, but rather
the scaling term of each component (which is independent of the others) in the target is allowed to depend on the
dimension of the target distribution (hence, they are no longer identically distributed). The target distributions
considered in the papers above, (1.8 ) and (2.1) are special cases of (2.2) where the scaling terms are equal in the
first case, and identically distributed but independent of the dimension d in the second case.

The paper [Béd07] provides a necessary and sufficient condition on the scaling terms under which the algorithm
admits the same limiting process as discussed previously, and hence the asymptotically optimal acceptance rate
(AOAR) is again the seemingly ubiquitous 0.234. The condition is that the scaling terms converge at roughly the
same rate. This is achieved in the first place by determining the appropriate form for the proposal scaling as a
function of d, which is now different from the i.i.d. case. This is an important result for the class of targets (2.2),
where an explicit condition is provided [Béd07, Béd08a] for which one can calculate the exact form the optimal
scaling for the proposal variance. By verifying L1 convergence of the generators, she proves that the sequence of

stochastic processes formed by the ith component of each Markov chain (rescaled appropriately) converges to a
Langevin diffusion process with a certain speed measure. One is then able to obtain the AOAR by optimizing the
speed measure of this limiting diffusion.

Although the regularity conditions imposed in [Béd07] are weaker than those imposed in [RGG97], they are
still stronger than necessary. All that is required is that f be a C2 density, (log f)

′
be Lipschitz continuous, and

E
[
|f ′′ (X) /f (X)|1+ε

]
< ∞ for some ε > 0. When obtaining a limiting version of the Metropolis algorithm, one

will obtain an infinite-dimensional version of the target density (2.2), and thus a family of scaling vectors Θ2 (d) as
d→∞. Although the d target components are independent, they are not identically distributed. As d→∞, there
will be some scaling terms that will be repeated an infinite number of times, whereas other components that will
be non-replicated. Assume that there are 0 < m < ∞ terms that appear infinitely often in the limit, and n < ∞
terms that are distinct from the rest. Furthermore, let the first n+m components of the vector Θ2 (d) consist of the
n non-replicated scaling terms, followed by the m different scaling terms that are replicated. Lastly, assume that
within these two groups, distinct and repeating families of scaling terms, the components are arranged according
to an asymptotically increasing order.

For the first n components, the jth scaling term will be denoted by Kj/d
λj , and then denote the following m

terms by Kn+i

dγi for i = 1, . . . ,m, where γi and λj reside in R, and Kj resides in R+. While the components in the m
group of replicated terms appear infinitely often in the limit, for any fixed and finite value of d they may not each
be replicated the same amount of times. In order to determine the proportion of Θ2 (d) occupied by any particular
term in the replicated group, it is convenient to define the cardinality of the sets J (i, d) :

c (J (i, d)) = #

{
j ∈ {1, . . . , d} : θ2

j =
Kn+i

dγi

}
, for i = 1, . . . ,m.

To accommodate the feature that each of these scaling terms appear infinitely often in the limit, it follows that
c (J (i, d)) is some polynomial function of d satisfying limd→∞ c (J (i, d)) =∞.

In order to study the limiting distribution of each component forming the d-dimensional Markov process, one
must first set the scaling term of the target component of interest, to 1, i.e., θi∗ (d) = 1. This can be done by
applying a linear transformation to the target distribution.

2.3.2 Proposal scaling and time-acceleration factor

In this present scenario, the proposal variance needs to be selected so that it converges to zero faster than any of
the individual scaling components, θ2

i (d). It is shown in [Béd07] that the optimal form for the proposal scaling
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takes the form σ2 (d) = `2/dα, where α is the smallest number satisfying

lim
d→∞

dλ1

dα
<∞ and lim

d→∞

dγic (J (i, d))

dα
<∞, (2.3)

for i = 1, . . . ,m. For this to hold, it follows that at least one of the m + 1 limits above must converge to some
positive constant, and the rest converge to zero. Since the scaling term of the component of interest is taken to be
equal to 1, the largest possible form for the proposal scaling is σ2 = `2, and thus it will not diverge as d→∞.

Note 2.4. When we proceed to prove the convergence of the limiting process of the Metropolis algorithm to a
Langevin diffusion, it will be useful to consider the reciprocal of equation (2.3). This equivalent condition is

lim
d→∞

K1

dλ1

(
dλ1

K1
+ · · ·+ dλn

Kn
+ · · ·

c (J (i, d))
dγ1

Kn+1
+ · · ·+ c (J (m, d))

dγm

Kn+m

)
= ∞. (2.4)

Since all the distinct terms in the first n positions appear only a finite number of times, it follows that for (2.4) to
be satisfied, there must exist at least one i ∈ {1, . . . ,m} such that limd→∞

K1

dλ1
c (J (i, d)) dγi

Kn+i
=∞. Furthermore,

this stipulates that limd→∞
dλ1

dα = 0 and hence the scaling term θ−2
1 (d) is immaterial for the choice of α.

As was the case in the papers above, a time-accelerating adjustment is necessary in order to ensure the limit-
ing process of the Metropolis algorithm is non-trivial. For this purpose, a new sped-up continuous time version of the

original algorithm is introduced, paramterized to make jumps every d−α time units, i.e., Zd (t)=
(
X

(d)
1 ([dαt]) , . . . , X

(d)
d ([dαt])

)
,

where [·] is the integer function. As was the case earlier, the only way to preserve the Markov property of the discrete-
time process of the Metropolis algorithm while making it a continuous process is to resort to the memoryless property
of the exponential distribution. By allowing the process to jump according to a Poisson process with rate dα, the
new sped up process Zd (t) moves about dα times in every time unit, and furthermore, behaves asymptotically like
a continuous Markov process.

2.3.3 Optimal proposal and scaling values

As has been noted in the preceding paragraphs, the major difference between the target (2.2) and the targets
considered earlier is the inclusion of the various scaling terms. Since the preceding sections proved results for
targets where the scaling terms are all identical or identically distributed, the question that is of interest is how
big a discrepancy between these various scaling terms is required in order to effect the limiting behavior of the
algorithm. The results following show that if none of the first n scaling terms are significantly different than the
remaining scaling terms, then the limiting behavior is unaffected.

Theorem 2.5. (Theorem 1 in [Béd07]) Consider a RWM algorithm with proposals Y (d) (t+ 1) ∼ N
(
0, `2Id/d

α
)
,

with α satisfying (2.3), applied to a target distribution of the form (2.2), which satisfies the specified conditions on

f . Consider the i∗th component of the process
{
Z(d)

}
t≥0

, i.e.,
{
Z

(d)
i∗ (t)

}
t≥0

=
{
X

(d)
i∗ ([dαt])

}
t≥0

, and let the

algorithm start in stationarity (i.e., X(d) (0) ∼ π).

Then
{
Z

(d)
i∗ (t)

}
t≥0
⇒ {Z (t)}t≥0, where Z (0) is distributed according to the density f and {Z (t)}t≥0 satisfies

the Langevin SDE

dZ (t) = v (`)
1
2 dBt +

h (`)∇ log f (Z (t))

2
dt,

if and only if

lim
d→∞

dλ1∑n
j=1 d

λj +
∑m
i=1 c (J (i, d)) dγi

= 0. (2.5)

Here h (`) = 2`2Φ
(
−`
√
ER/2

)
, and

ER = lim
d→∞

m∑
i=1

c (J (i, d))

dα
dγi

Kn+1
E

[(
f ′ (X)

f (X)

)2
]
.

Furthermore, we have limd→∞ a (d, `) = 2Φ
(
−`
√
ER/2

)
≡ a (`). The speed measure v (`) is maximized at the

unique value ˆ̀= 2.38/
√
ER, where a

(
ˆ̀
)

= 0.234.
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Note 2.6. Theorem 2.5 provides a condition that when the asymptotically smallest scaling term of the distinct
component is not significantly smaller than the remaining scaling components, than the limiting process is the same
as the one found in [RGG97]. However, it is possible that θ−2

1 (d) is not the smallest scaling term, it could be that
θ−2
n+1 (d) is the smallest scaling term. This situation is verified in the theorem above with c (J (i, d)) θ2

n+1 (d) in the
denominator.

Remark 2.7. The function ER has an inverse effect on the optimal value of the scaling parameter ˆ̀. As was the case
in the section above, for smoother values of f , the smaller is ER and thus the larger is ˆ̀. The added component of
the scaling vector Θ2 (d) effects the optimal value of ˆ̀ through ER by the following: for larger values of Kn+i, and

thus the variance of the component, the larger is the value of ˆ̀.

Proof. (of Theorem 2.5). As is shown in the appendix (give citation to“core”section), to prove the weak convergence
result of the rescaled RWM to the Langevin diffusion, it suffices to show that for a test function h ∈ C∞c , the following
limit holds:

lim
d→∞

E
[∣∣∣Gh(d,X(d)

)
−GLh (Xi∗)

∣∣∣] = 0,

where

Gh
(
d,X(d)

)
= dαEY (d)

(h (Yi∗)− h (Xi∗))

min

1,
π
(
d,Y (d)

)
π
(
d,X(d)

)



denotes the discrete-time generator of the rescaled Metropolis algorithm, and

GLh (Xi∗) = v (`)

[
1

2
h′′ (Xi∗) +

1

2
h′ (Xi∗) (log f (Xi∗))

′
]

is the generator of a Langevin diffusion process with speed measure v (`) as in Theorem 2.5. Instead of proving the

convergence of these generators, one can define a generator G̃h
(
d,X(d)

)
that is equivalent to Gh

(
d,X(d)

)
in the

sense that
lim
d→∞

E
[∣∣∣Gh(d,X(d)

)
− G̃h

(
d,X(d)

)∣∣∣] = 0.

The result thus follows if one is able to show the L1 convergence of this equivalent generator G̃h
(
d,X(d)

)
to the

generator of a Langevin diffusion.
The equivalent generator is defined as

G̃h
(
d,X(d)

)
=

1

2
`2h′′ (Xi∗)EY (d)− min

1, exp

 d∑
j=1,j 6=i∗

ε (d,Xj , Yj)

+

+`2h′ (Xi∗) (log f (Xi∗))
′ EY (d)−

exp

 d∑
j=1,j 6=i∗

ε (d,Xj , Yj)

∣∣∣∣∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)<0

 ,

where

ε (d,Xj , Yj) = log
f (θj (d)Yj)

f (θj (d)Xj)
.

First we prove the L1 convergence of the generator G̃h
(
d,X(d)

)
to the generator of the Langevin diffusion. We
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compute the L1 distance

E
[∣∣∣G̃h(d,X(d)

)
−GLh (Xi∗)

∣∣∣] ≤ `2EX(d)−


∣∣∣∣∣∣∣∣
1

2
EY (d)−

min

1, exp

 d∑
j=1
j 6=i∗

ε (d,Xj , Yj)





−Φ

(
−`
√
ER
2

)∣∣∣∣]E [|h′′ (Xi∗)|]

+`2EX(d)−


∣∣∣∣∣∣∣∣EY (d)−

exp

 d∑
j=1
j 6=i∗

ε (d,Xj , Yj)

 :

d∑
j=1
j 6=i∗

ε (d,Xj , Yj) < 0


−Φ

(
−`
√
ER
2

)∣∣∣∣]E [∣∣h′ (Xi∗) (log f (Xi∗))
′∣∣] .

Since h has compact support, it is absolutely bounded and so are its derivatives. Therefore, the expectations
E [|h′′ (Xi∗)|] and E

[∣∣h′ (Xi∗) (log f (Xi∗))
′∣∣] are also bounded. Therefore, by Lemmas (add 8,9) the first expectation

on the right-hand side of the expression above converges to 0 as d → ∞. The same result holds for the remaining
expectations by use of Lemmas (add 10,11).

Theorem 2.5 yields that each component of the time-accelerated Metropolis algorithm follows the dynamics
of a Langevin diffusion process. Although the different components of X(d) (t) depend on one another in finite
dimensions, they become independent in the asymptotic limit, d→∞.

2.3.4 Inhomogeneous proposal scaling and extensions

In order for one to obtain a stochastic process from the rescaled Metropolis algorithm
{
Z(d) (t)

}
t≥0

, it is necessary

that each of its components are sped up by the same factor. Otherwise, some components would move more
frequently than the others in the same time unit, and thus the acceptance probability for a proposed move would
be ill-defined. However, it is still possible to consider a scheme that adjusts the proposal scaling of each component
as a function of d separately from the rest. In particular, Bédard considers the scheme where the proposal scaling
of the last d − n components are personalized, whereas the first n components are scaled as previously. One then
treats each of the m groups of scaling terms appearing infinitely often as a different portion of the scaling vector,
and then determine the appropriate α (from 2.3) for each group separately.

Consider the following scaling form for the proposals for each Xj : let σ2
j = `2/dαj , where αj = α for j = 1, . . . , n,

and let αj be the smallest number such that limd→∞ c (J (i, d)) dγi/dαj <∞ for j = n+ 1, . . . , d, j ∈ J (i, d). For

component of interest Xi∗ , it is still necessary to assume that θi∗ (d) = 1, but now let Z(d) (t) = X(d)
([
dα
∗
i t
])

.
A new theorem can be presented as an analogue to Theorem 2.5, but now with the new inhomogeneous proposal
scaling adopted.

Theorem 2.8. (Theorem 3 in [Béd07]) in the setting of Theorem 2.5 but with the inhomogeneous proposal
scaling adopted, the conclusions of Theorem 2.5 are preserved, but with

ER = lim
d→∞

m∑
i=1

c (J (i, d))

dαn+i

dγi

Kn+i
E

[(
f ′ (X)

f (X)

)2
]
.

Remark 2.9. The proposal considered in this theorem has been personalized for the terms which appear Since the
proposal scaling has been personalized for each distinct group of components, each constant term Kn+1, . . . ,Kn+m

has an impact on the limiting process, yielding a larger value for ER. Therefore, the optimal value of ˆ̀ will be
smaller in the current situation than before.

Note 2.10. While simulations showed ([RR01]) that the asymptotically optimal acceptance rate of 0.234 proved to
be fairly accurate in small dimensions (i.e., d ≥ 10) for targets of the form (2.1), this is not the case in the context
of targets of the form (2.2). For instance, if there exists a finite number of scaling terms λj that are close to the
exponent α in (2.3), then the optimal acceptance rate converges at a very slow rate to 0.234.
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2.3.5 Generalizing the Kj parameters

The conclusions of 2.8 can be extended to allow the terms {Kj , j ∈ J (i, d)} for i = 1, . . . ,m to be i.i.d. random
variables with some distribution with E

[
K−2

j

]
<∞. Denote the scaling vector now as

Θ−2 (d) =

(
K1

dλ1
, . . . ,

Kn

dλn
, . . . ,

Kn+c(J (i,d))

dγ1
, . . . ,

Kn+
∑m−1

1 c(J (i,d))+1

dγm
, . . .

Kd

dγm

)
. (2.6)

In order to provide meaningful results, it is helpful (and is costless in respect to the generality afforded by the
subsequent theorems) to denote E

[
K−1
j

]
= bi for j ∈ J (i, d). Since the scaling term of interest is not dependent

on dimension, it follows that θ−2
i∗ (d) = Ki∗ . To keep consistent with the ordering adopted above, we denote

−∞ < γm < γm−1 < · · · < γ1 < ∞. Furthermore, to prevent redundancy in the specification of scaling terms, all
the terms λj are assumed to be distinct from γi, for j = 1, . . . , n and i = 1, . . . ,m. Hence, all the scaling terms
appearing infinitely often in the limiting process are grouped together in one of the m groups.

Theorem 2.11. (Theorem 4 in [Béd07]) In the setting of Theorem 2.5, with scaling vector (2.6), consider

the parameter of interest with scaling parameter θi∗ = K
−1/2
i∗ (i.e., normalized so dλi = 1). We then have the

weak convergence of
{
Z

(d)
i∗ (t)

}
t≥0
⇒ {Z (t)}t≥0, where Z (0) is distributed according to the density θi∗f (θi∗x) and

{Z (t)}t≥0 satisfies the Langevin SDE

dZ (t) = (v (`))
1/2

dB (t) +
1

2
v (`) (log f (θi∗Z (t)))

′
dt,

if and only if (2.5) is satisfied. The speed measure is as in Theorem 2.5 , with

ER = lim
d→∞

m∑
i=1

c (J (i, d)) dγi

dα
biE

[(
f ′ (X)

f (X)

)2
]
,

with c (J (i, d)) = #
{
j ∈ [n+ 1, d] : θj (d) ∈ O

(
dγi/2

)}
.

There is a final extension that is given in [Béd07], allowing the terms
{
θ−2
j (d) , j ∈ J (i, d)

}
to vary within

each of the m subgroups, provided that they are at least of the same order. The interested reader can read of
this extension in the paper; the particular generalization itself should not be too difficult to deduce following the
discussion above.

2.3.6 Optimal scaling when there exists scaling terms significantly smaller than the rest

In the subsections above, the target distribution under consideration with such that its scaling terms were not
significantly different from the rest. This condition was stipulated by equation (2.5). Suppose this condition is
violated, i.e., we have the complement of equation (2.5) given by

lim
d→∞

θ2
1 (d)∑d

j=1 θ
2
j (d)

> 0, (2.7)

which states that there exists at least one scaling term that is significantly smaller than the rest. By the manner
with which we formulated the scaling terms, it is clear that the asymptotically smallest scaling term would have to
be θ−2

1 (d) or θ−2
n+1 (d). However, if condition (2.7) is satisfied, then K1/d

λ1 must be the smallest for large values
of d, as its inverse dominates the sum of the remaining components. This differs from the case considered above,
since before either θ−2

1 (d) or θ−2
n+1 (d) could have been the asymptotically smallest term. If there is more than one

target component possessing a scaling term of O
(
d−λ1

)
, then let

b = max
j∈{1,...,n}

(λj = λ1)

denote the number of such components.
For the optimal scaling problem in the current context, θ−2

1 (d) will be of paramount importance, since the choice
of proposal scaling must be such that the algorithm does not propose jumps too large for this component. It is
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shown by Bédard in [Béd08a] that the optimal scaling for the target still is given by σ2 (d) = `2/dα, where α is the
smallest number satisfying (2.3). If equation (2.7) holds as well, then its reciprocal has to satisfy

lim
d→∞

d∑
j=1

θ−2
1 (d) θ2

j (d)

= lim
d→∞

K1

dλ1

(
dλ1

K1
+ · · ·+ dλn

Kn
+ c (J (1, d))

dγ1

Kn+1
+ · · ·+ c (J (m, d))

dγm

Kn+m

)
< ∞.

Theorem 1 in [Béd08a] stipulates that in order for a diffusion limit to exist in the case where (2.7) holds, it is
necessary that there exists at least one i ∈ {1, . . . ,m} such that

lim
d→∞

c (J (i, d)) dγi

dλ1
> 0. (2.8)

Furthermore, it is proven there that the optimal value of ` maximizes

v (`) = 2`2EY (b),X(b)

[
Φ

(∑b
j=1 log (fθjYj) /f (θjXj)− `2ER/2√

`2ER

)]
(2.9)

= `2a (`) .

Example 2.12. Consider the distribution (2.2), for d = 10, where fi ∼ N
(
1, θ2

i (d)
)
, where θ2

i (d) = 1
d for the first

five components, and d = 25 for the remaining components. In this case, α = 1 in (2.3), so we consider proposal
variances of the form σ2 (d) = `2/d. In this situation, the first five components yield a finite limit in (2.3), and they
thus play an active role in the determination of the AOAR. Here we can use Theorem 1 in [Béd08a], and find the

value of ˆ̀ that maximizes (2.9). Doing so yields

lim
d→∞

d

5d+ (d− 5) /2
→ 0.1984 > 0

as d→∞, and ˆ̀= 1.95 with AOAR= 0.177.
The code in Section C.1 allows us to obtain empirical estimates as well.

Example 2.13. In this example we will consider a target distribution of the form of (2.2), with

π
(
x(d)

)
∝ x4

1 exp (−x1)x4
2 exp (−x2)

d∏
i=3

x4
i exp

(
−xi/5

√
d
)
,

for x > 0 and d = 100. In the increasing ordering notation as defined in section 2.3, we take the scaling vector
Θ−2 (d) = (1, 1, 25d, 25d, 25d, . . . ). The value of α satisfying (2.3) is α = 0, so we consider proposals of the form
σ2 (d) = `2. In this situation, we observe that the first two scaling terms are significantly smaller than the remaining
d− 2 scaling terms. In particular, it is clear that both conditions (2.7) and (2.8) hold, with

lim
d→∞

(
2 +

d− 2

25d

)−1

=
25

51
,

and

lim
d→∞

c (1, d) θ2
3 (d)

d0
= lim
d→∞

d− 2

25d
=

1

25
.

The graph below implements the code in Section C.2, where Monte Carlo simulation has been preformed first on
the easier to simulate pairs X1, X2 (since they are defined on a narrower interval than the rest), and the expectation
in (2.9) is subsequently replaced with ER = 1

75 . Integer values of `2 in the vector [13, 160] are all applied in the
proposal variance to obtain a vector of values for the speed measure v (`) .

A scan of the speed function h (`) yields a critical value for the scaling parameter as ˆ̀≈ 61, and an acceptance

rate a
(

ˆ̀
)

= 0.01213. Using (2.9), we are also able to obtain theoretical values for the maximization of the diffusion’s

speed measure. This is in the third panel of the Figure 2.
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Figure 2: Example 2.13
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2.4 Metropolis-within-Gibbs algorithms

In this section we move our consideration from Metropolis algorithms that make updates for all components simul-
taneously to partially updating algorithms. This means that the updates are chosen to be lower dimensional than
the target density itself. Optimal scaling in this context requires two choices, one for the scaling of the proposal
density, and the second for the dimensionality of the proposal. The paper by Neal and Roberts, [NR05], proves
optimality results for the Metropolis-within-Gibbs algorithm with random walk and Langevin updates separately.
In the first instance, they find that full-dimensional random walk Metropolis updates are not better asymptotically
than smaller dimensional updating schemes, and thus, with the added factor of computational cost for higher di-
mensional updates (computational overhead at every iteration is a non-decreasing function of the proportion of the
density being updated), it is always optimal to use lower dimensional updates when possible. On the other hand,
they find that full dimensional Langevin algorithms are worthwhile in general, although one needs to consider the
computational overhead associated with their implementation when deciding on optimality.

For RWM/MALA-within-Gibbs algorithms, the implementation of the MCMC algorithm requires choosing d ·cd
components, where cd denotes the fixed value of updating proportion, chosen at random at each iteration, and then
attempt to update them jointly according to the RWM/MALA mechanism, respectively. Hence, the two algorithms
(RWM and MALA, respectively) propose new values for coordinate i according to

Y
(d)
i = x

(d)
i + χ

(d)
i σd,cdZi,

Y
(d)
i = x

(d)
i + χ

(d)
i

{
σd,cdZi +

σ2
d,cd

2

∂

∂xi
log πd

(
x(d)

)}
,

where 1 ≤ i ≤ d. The random variables {Zi}i∈[1,d] are i.i.d. with distributions Z ∼ N (0, 1), and each of the

characteristic functions χ
(d)
i are chosen independently of the Zi’s. At each iteration, a new random subset A is

chosen from {1, 2, . . . , d}, and χdi = 1 if i ∈ A, and is zero otherwise. The Metropolis-Hastings acceptance rule for
the two above setup when applied to the i.i.d. components target (1.8) yields the acceptance probability

αcdd

(
x(d),Y (d)

)
= min

1,
π
(
Y (d)

)
q
(
Y (d),x(d)

)
π
(
x(d)

)
q
(
x(d),Y (d)

)
 ,

where q (·, ·) is the chosen proposal density. In case of rejection, we choose X(d)
m = X

(d)
m−1. As we had done for the

cases considered previously, we can use the notion of average acceptance rate as means for measuring efficiency and
optimality of the algorithm. We denote

acdd (`) = Eπ
[
αcdd

(
Xd,Y d

)]
= Eπ

min

1,
πd

(
Y d
)
q
(
Y d,xd

)
πd (xd) q

(
xd,Y d

)

 ,

where σ2
d,cd

= `2d−s. Furthermore, as always, it is assumed throughout that the algorithm starts at stationarity.

The scaling exponent s is given by s = 1 for RWM and s = 1
3 for MALA.

2.4.1 RWM-within-Gibbs

Consider first the RWM-within-Gibbs algorithm applied to the i.i.d. target density. As was done in [RR98], it is
helpful to express the density in the exponential target form

π
(
x(d)

)
=

d∏
i=1

f
(
x

(d)
i

)
=

d∏
i=1

exp
{
g
(
x

(d)
i

)}
,

The proposal standard deviation is denoted by σ (d) = `√
d−1

, for some ` > 0. Since the target is again formed

of i.i.d. components, all individual components of the target density are equivalent. For convenience, it will be
again useful to consider the first component of the resulting algorithm, with a time-increasing factor of d, which is
denoted by Udt,1, obtained from

U
(d)
t =

(
X[dt],1, X[dt],2, . . . X[dt],d

)
.
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Theorem 2.14. (Theorem 3.1 in [NR05]) Suppose f is positive, is of class C3, satisfies (1.10), and (log f)
′

= g′

is a Lipschitz function. Suppose cd → c as d→∞, for some 0 < c ≤ 1. Let X
(∞)
0 =

(
X

(1)
0,1 , X

(2)
0,2 , . . .

)
be such that

all of its components are distributed according to f and assume further that X
(j)
0,i = X

(i)
0,i . Then Ut ⇒ U as d→∞,

where U0 is distributed according to f and U satisfies the Langevin SDE

dUt = (hc (`))
1/2

dBt +
1

2
hc (`) g′ (Ut) dt

and

hc (`) = 2c`2Φ

(
−`
√
cI

2

)
,

and

I = Ef

[(
f ′ (X)

f (X)

)2
]

= Eg
[
g′ (X)

2
]
.

Corollary 2.15. (Corollary 3.2 in [NR05]) Suppose cd → c as d→∞, for some 0 < c ≤ 1. Then,

lim
d→∞

acdd (`) = ac (`) = 2Φ

(
−`
√
cI

2

)
,

and the unique value of ` , denoted by ˆ̀, which maximizes the speed function for c = 1, is given by ˆ̀= c1/2 ˆ̀
c, where

ˆ̀
c is the unique value of ` which maximizes hc (`) for all other values of c ∈ (0, 1]. Furthermore, for all c ∈ (0, 1],

the optimal acceptance rate is given by ac
(

ˆ̀
c

)
= 0.234.

Remark 2.16. As mentioned in the introductory paragraphs for this section, since the optimal acceptance rate is
independent of the value of c, there is no added efficiency to be gained by using larger block updates in the RWM
setup.

2.4.2 MALA-within-Gibbs

The above subsection showed that there is no theoretical justification for using high-dimensional updates for the
RWM algorithm. The results of this section will show that the same conclusion does not hold for MALA. Along
with the assumptions in 1.4.1, assume further that g′ is Lipschitz. A Poisson process {Jt} with rate d1/3 is again

needed for the theorem of this section, along with a d-dimensional jump-process Γ
(d)
t = X

(d)
Jt

, and suppose the

proposal form is given by σ2 (d) = `2d
1
3 .

Theorem 2.17. (Theorems 4.1 and 4.2 in [NR05]) Suppose that cd → c for c ∈ (0, 1], as d→∞. Then

lim
d→∞

{acdd (`)} = ac (`) = 2Φ

(
−
√
cK`3

2

)
,

where

K2 = E

[
5g′′′

(
X2
)
− 3g′′ (X)

3

48

]
> 0.

Let
{
U

(d)
t

}
t≥0

be the process corresponding to the first component of Γ(d). Then, U
(d)
t ⇒ Ut, where Ut satisfies the

Langevin SDE

dUt = hc (`)
1/2

dBt +
1

2
hc (`) g′ (Ut) dt,

and hc (`) = 2c`2Φ
(
−
√
c`3K
2

)
denotes the speed measure of the Langevin diffusion.

Corollary 2.18. (Corollary 4.3 in [NR05]) The unique value ˆ̀ of ` which maximizes h1 (`) = 2`2Φ
(
− `

3K
2

)
on

R+ is given by h1

(
ˆ̀
)

= hc

(
ˆ̀
c

)
· c−2/3, where ˆ̀

c = c−1/6 ˆ̀, is the unique value of ` which maximizes hc (`) on R+.

Furthermore, for all c ∈ (0, 1], the optimal acceptance rate ac
(

ˆ̀
c

)
= 0.574.
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2.5 Optimal Scaling of RWM with Discontinuous Target Densities

2.5.1 Inefficiencies of full-dimensional updates using RWM applied to discontinuous targets

All the results proven thus far have been for continuous target densities. In [NRY05], the authors provide a weak
convergence result for a high-dimensional RWM algorithm applied to a target distribution which has a discontinuous
probability density function. In particular, they show that when the proposal variance is scaled by d−2, the sequence
of stochastic processes formed by the first component of each Markov chain converges to a Langevin diffusion process
whose speed measure is optimized when the algorithm is tuned to yield an acceptance rate of e−2 ≈ 0.1353. Hence,
the mixing time for the RWM algorithm when applied to discontinuous densities is O

(
d2
)
. This work serves as a

validation of the result of [NR05], where it was found that lower dimensional updates are more efficient in the RWM
setting due to the lower computational cost. In fact, [NR05] showed that the Metropolis-within-Gibbs algorithms
mix with rate O (d), which compares favorably to the mixing rate of O

(
d2
)

required in the current context for
RWM algorithms applied to discontinuous target densities.

The target density in consideration is given by

π
(
x(d), d

)
=

d∏
i=1

f (xi) ,

where
f (x) ∝ exp (g (x)) ,

with 0 < x < 1, g (·) twice differentiable on [0, 1], and f (x) = 0 otherwise.

2.5.2 Algorithm and Main Results

For d ≥ 1, consider a RWM algorithm on the d-dimensional hypercube with target density π
(
x(d), d

)
as given

above. As always, suppose the algorithm starts in stationarity, so X
(d)
0 ∼ π (·), and for t ≥ 0 and i ≥ 1, denote by

Zt,i elements of a sequence of i.i.d. uniform random variables with Z ∼ U [−1, 1] , with Z
(d)
t = (Zt,1, Zt,2, . . . , Zt,d).

For d ≥ 1, t ≥ 0 and ` > 0, consider the proposals given by

Y
(d)
t+1 = X

(d)
t + σ (d)Z

(d)
t ,

where σ (d) = `/d. Accept these proposals with probability min

(
1,

π
(
Y

(d)
t+1

)
π
(
X

(d)
t

)). Thus, for d ≥ 1, let

h
(
z(d), d

)
=

{
2−d, z(d) ∈ (−1, 1)

d

0, otherwise.

Given the current state of the process x(d), denote by J
(
x(d), d

)
the probability of accepting a proposal,

J
(
x(d), d

)
=

ˆ
h
(
z(d), d

){
min

(
1,
π
(
x(d) + σ

(
z(d), d

))
π
(
x(d)

) )}
dz(d).

It is now necessary to define a pseudo-RWM process, which is identical to the regular RWM process except that it

moves at every iteration. For d ≥ 1, let X̂
(d)

0 , X̂
(d)

1 , . . . denote the successive states of the pseudo-RWM process,

with X̂
(d)

0 ∼ π (·). The pseudo-RWM process is a Markov process, where for t ≥ 0 X̂
(d)

t+1 = X̂
(d)

t + σ (d) Ẑ
(d)

t , and

given that X̂
(d)

t = x(d), the pdf of Ẑ
(d)

t is given by

ζ
(
z(d)|x(d)

)
= h

(
z(d), d

)
min

{
1,
π
(
x(d) + σ (d) z(d)

)
π
(
x(d)

) }/
J
(
x(d), d

)
,

with z(d) ∈ Rd .
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3 Nonproduct Target Laws and Infinite Dimensional Target Measures

3.1 Infinite-Dimensional Framework

3.1.1 Problem specific context and Radon-Nikodym derivative for target measure

It has been suggested by a group of authors to consider targets defined on an infinite dimensional Hilbert space
H. The target measure π, which lives in the function space defined by H, has density with respect to a Gaussian
reference measure, meaning that it is absolutely continuous with respect to this Gaussian reference measure (the
target distribution is thus defined as a change of measure from a product law). In this context, the target distribution
π can be expressed using its Radon-Nikodym derivative, which has the form:

dπ

dπ0
= MΨ exp (−Ψ (x)) , (3.1)

where π0 is the Gaussian reference measure, Ψ (·; y) is some potential function and MΨ is the inverse of a normaliza-
tion constant. Often, in specific examples, it is further assumed that the Gaussian reference measure π0 has known
mean and covariance operator, i.e., the eigenpairs (eigenvalues and eigenfunctions) of the covariance operator are
known. Such a framework has been used to tackle problems in various fields, not limited to: molecular dynamics,
inverse problems in Bayesian a framework where a product prior is combined with the likelihood (for instance, in
the setting of Navier-Stokes equations, continuous-time signal processing problems, etc.), and conditioned diffusions
([BS09] provides a good survey for a few of these applications, [HSV10] highlights an array of signal processing
problems which are tackled in the Bayesian framework, where the posterior measure arising in these problems all
have the common structure discussed in this section, and [BRSV08] looks solely at the problem of sampling for dif-
fusion bridges). In the context of optimal scaling, one reason for considering infinite dimensional space for the target
measure is that if the target distribution is not of product form, then the interactions of the various coordinates
with each other and thus could yield a limiting diffusion which take values in an infinite dimensional space.

3.1.2 Generality of non-product target measure

At first glance the framework developed in this section appears to be wholly general, as in finite dimensions it is
a trivial problem to find a reference measure for which the target measure is absolutely continuous with respect
to (i.e., the Lebesgue measure). However, in the infinite-dimensional context, this is not so clear, as no clear
analog of the Lebesgue measure exists in the infinite dimensional context (see the discussion in A.5). Furthermore,
provided the necessary reference measure exists, the assumption that the eigenpairs of the covariance is known is
a fairly stringent assumption. For some applications, such as for conditioned diffusions, this may be a reasonable
assumption; whereas for other cases, it may not be, and there it would be more natural to consider the isotropic
proposal covariance instead. (See [MPS11], page 5) We will not consider isotropic proposals in this paper.

Since the framework used here is drastically different than the one adopted in the previous sections, it is no
surprise that the proofs will use rather different methods. In particular, the papers considered here do not use the
theory of generators of the associated Markov processes as was done in the papers considered above and that is
given attention in [EK86], but instead rely on infinite dimensional analysis and functional analysis. For the benefit
of the reader not familiar with these aspects, the necessary background has been summarized in the Appendix.

As mentioned previously, this non-product target form arises naturally in many applications. We discuss the
specific application of sampling nonlinear diffusion bridges as motivation for this type of target measure in the
following section.

3.2 Likelihood Estimation for Discretely Observed Diffusions

Diffusion processes are often used for modeling continuous-time phenomena, and are ubiquitous in finance and
economics. A generic diffusion process V is defined as the solution of the stochastic differential equation (SDE) of
the type:

dVs = b (Vs; θ) ds+ σ (Vs; θ) dBs, (3.2)

where B is a scalar Brownian motion. The functionals b (·; θ) and σ (·; θ) are called the drift and diffusion coefficient
respectively, and are allowed to depend on some parameters θ ∈ Θ. Provided that they satisfy certain regularity
conditions (see chapter 4 of [KP99]), it is guaranteed that there exists a weakly unique, global solution of the SDE
above.
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If one considers a small time increment dt, Vt+dt − Vt is approximately Gaussian with mean and variance given
by the Euler-Maruyama approximation

Vt+dt ≈ Vt + b (Vt; θ) dt+ σ (Vt; θ)
√
dt · Y, Y ∼ N (0, 1) .

Higher order approximations are also available. The exact dynamics of the diffusion process are govern by its
transition density:

pt (v, w; θ) = P [Vt ∈ dw|V0 = v; θ] /dw, t > 0, w, v ∈ R. (3.3)

Suppose that there exists a finite set of observations for the diffusion process above, i.e., one has the collection of
time instances 0 < t0 < t1 < · · · < tn with corresponding observations given at v = {Vt0 , Vt1 , · · · , Vtn}. Denote the
time increment between consecutive observations by ∆ti = ti − ti−1 for 1 ≤ i ≤ n.

Then the log-likelihood of the data set v is given by

` (θ|v) =

n∑
i=1

`i (θ) , `i (θ) := log p∆ti

(
Vti−1

, Vti ; θ
)
.

Unfortunately, other than a few special cases, (e.g., when the diffusion follows a geometric Brownian motion),
this transition density is rarely available in an analytically tractable form. Hence, deriving maximum likelihood
estimates for generic discretely observed diffusions is a challenging problem. One approach started by Aı̈t-Sahalia
is to expand the transition density using Hermite polynomials. It is shown that this closed-form approximation is
an unbiased estimator of the true (unknown) transition density. A second approach is to use simulation to obtain
the MLE estimates. Exact simulation of diffusion sample paths is a recent approach that is feasible for a wide
class of diffusion processes, although not all diffusions can be handled by this method. The Exact Algorithm was
introduced by Beskos [BPR06], and it uses technique called retrospective sampling.

First it is necessary to apply a variance-stabilization transformation to the diffusion process (3.2). Consider the
Lamperti transform, Vs 7→ η (Vs; θ) = Xs,

η (u; θ) =

ˆ u 1

σ (z; θ)
dz.

If σ (·; θ) is continuously differentiable, then we can apply Itô’s rule to obtained the transformed diffusion’s SDE:

dXs = α (Xs; θ) ds+ dBs,

where X0 = x = η (V0; θ) for s ∈ [0, t], and

α (u; θ) =
b
{
η−1 (u; θ) ; θ

}
σ {η−1 (u; θ) θ; θ}

− σ′
{
η−1 (u; θ) ; θ

}
/2, u ∈ R;

η−1 denotes the inverse of the Lamperti transformation, and σ′ denotes the derivative w.r.t. the space variable.
Assume that α (·; θ) is continuously differentiable,

(
α2 + α′

)
(·; θ) is bounded below, and the Girsanov formula for

X, given by

exp

{ˆ t

0

α (ωs; θ) dωs −
1

2

ˆ t

0

α2 (ωs; θ) ds

}
,

is a martingale w.r.t. Wiener measure. Define

A (u; θ) =

ˆ u

α (z; θ) dz

to be any anti-derivative of α. Then the transition density of X is defined as

p̃t (x, y; θ) = P [Xt ∈ dy|X0 = x; θ] /dy, t > 0, x, y ∈ R.

Let Q(t,x,y)
θ denote the distribution of the process X conditioned to start at X0 = x and finish at Xt = y for some

fixed x, y, and W(t,x,y) be the probability measure for the corresponding Brownian bridge. The objective of the EA

is to obtain a rejection sampling algorithm to obtain draws from Q(t,x,y)
θ . The following Proposition provides the

necessary methodology for this. Let Nu (0, t) denote the density of a normal random variable with mean zero and
variance t evaluated at u ∈ R.

Proposition 3.1. Under the conditions above, Q(t,x,y)
θ is absolutely continuous with respect to W(t,x,y) with density:

dQ(t,x,y)
θ

dW(t,x,y)
=
Ny−x (0, t)

p̃t (x, y; θ)
exp

{
A (y; θ)−A (x; θ)−

ˆ t

0

1

2

(
α2 + α′

)
(ωs; θ) ds

}
.
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3.3 Optimal scaling for the RWM algorithm when applied to non-product target
measures

3.3.1 MCMC methods for function space

The topic of optimal scaling when implementing infinite-dimensional analogs of the RWM and MALA algorithm for
targets of the form (3.1) was started in [BRS09], and was made rigorous in [MPS11] for the RWM algorithm and
in [PST11] for MALA. This section will look at the method and the main results found for the RWM algorithm,
while the next section will look at the similar proof for MALA. While the target measures are defined on an infinite-
dimensional Hilbert space, the MCMC methods necessary for sampling these probability measures will require a
discretization of the function space leading to a high-dimensional measure Rd, d � 1. This will be done using a
spectral truncation method called the Karhunen-Loève expansion.

3.3.2 Karhunen-Loève expansion and invariant SPDEs for the target measure

As is shown in appendix A.2, Gaussian measures are the natural generalization of measures from RN to infinite
dimensional Hilbert spaces. In the current context, the Hilbert space in question, (H, 〈·, ·〉), is assumed to be real
and separable, with full-measure under π0. Furthermore, it is assumed that the mean and covariance operator of the
reference Gaussian measure π0 are known, and will be denoted by m and C respectively. In order for the Gaussian
law by π0 to be well defined it is necessary for its covariance operator to be of trace class, which simply means that
its eigenvalues are summable. With these conditions in place, it is possible to construct of an orthonormal basis of
eigenfunctions {ϕi}∞i=1 and corresponding eigenvalues

{
λ2
i

}∞
i=1

satisfying Cϕi = λ2
i ei with

∑
i λ

2
i < ∞. Since the

eigenfunctions form a orthonormal system in H, any function x ∈ H can be represented using the expansion

x =

∞∑
i=1

xiϕ, xi = mi + λiξi, (3.4)

where the sequence {ξi}∞i=1 is i.i.d. with ξ1 ∼ N (0, 1) and mi = 〈m,ϕi〉. This expansion is precisely the Karhunen-
Loève expansion. Since H has full measure under π0, the above statement is equivalent to saying that any realization

x
D∼ π0 (meaning x is distributed according to π0) can be expressed by allowing all the xi to be independent Gaussian

random variables, xj ∼ N
(
0, λ2

j

)
. By the form of Radon-Nikodym derivative (3.1), the measure π is absolutely

continuous with respect to π0, so any almost sure properties under π0 also hold for π. In particular, by the law of
large numbers, we have that almost surely with respect to π0 (and thus π),

1

N

N∑
i=1

x2
i

λ2
i

N→∞−→ 1.

Hence, a typical draw from the target measure π must behave similarly to a typical draw from π0 in large j coordi-
nates. This structure of absolute continuity between measures allows us to exploit the product structure underlying
Gaussian measure, when represented in the Karhunen-Loève coordinate system. Hence, in the coordinates {xi}i≥1,
the prior has product structure of the form

πN0 (x) =

n∏
i=1

λ−1
i f

(
λ−1
i xi

)
. (3.5)

Since it is assumed the eigenpairs are known, sampling from the reference measure is thus straightforward. Fur-
thermore, using the tensor product ⊗, it is also verified that

E [(X −m)⊗ (X −m)] =

∞∑
i=1

λ2
i (ϕi ⊗ ϕi) = C.

Using (3.4), it is clear that the isomorphism X 7→ {xi} allows one to view N (m, C) as a product measure on the
`2, the space of square summable sequences.

Since the target measure resides in an infinite dimensional Hilbert space, the limiting diffusion (if it exists) of
the Metropolis induced Markov chain will necessarily be an infinite dimensional Hilbert space valued SDE/SPDE.
However, without a link between the target (3.1) and the targets discussed earlier, it is hard to predict what this
limiting process will be. It is precisely due to the presence of the potential function Ψ (·; y) that we cannot use
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the results from the previous sections, as Ψ (·; y) provides interactions between the components, and so individual
components of the Markov chain cannot be expected, a priori, to convergence to a scalar SDE. Fortunately, it was
proven in a series of papers [HSVW05, HSV07] that the target measure (3.1) is in fact invariant for Hilbert-space
valued SPDEs with the form

dz

dt
= −h (`) (z + C∇Ψ (z)) +

√
2h (`)

dW

dt
, z (0) = z0, (3.6)

where W is a Brownian motion on H with covariance operator C. Hence, (3.6) will now play the role that was
occupied by the Langevin diffusion process in the previous sections, and optimization of the RWM algorithm in the
current context simply amounts to maximizing the speed measure of (3.6).

3.3.3 Sampling algorithm in finite dimensions

For sampling in the finite-dimensional context, the authors define ΨN (·) = Ψ
(
PN
)
, where PN denotes projection

in Honto the first N eigenfunctions of C (more precisely, this is a projection on a dense subset of H where Ψ is
defined) . One can then consider the finite-dimensional analog of (3.1), with the form

dπN

dπ0
(x) ∝ exp

(
−ΨN (x)

)
.

Finite dimensional versions of other operators can also be obtained by taking suitable transformations with respect
to PN . For instance, CN = PNCPN . This measure above coincides with π0 on H\PNH and has a density with

respect to Lebesgue measure on PNH, in the coordinates {xi}Ni=1, as shown below.

It is now possible to implement a random walk method on RN in the coordinate system {xi}Ni=1, enabling us to
sample from πN in PNH. Consider proposal distributions for the RWM which exploit the covariance structure of
π0 and can be expressed in H as:

y = x+

√
2`2

N
C1/2ξ, where ξ =

N∑
j=1

ξjϕj with ξj ∼ N (0, 1) .

Observe that the proposal variance scales as N−γ with γ = 1.
Suppose further that the tails of the potential are sufficiently light so that for some Hr ⊂ H we have π0 (Hr) = 1.

The subspace is defined by the inner-products described below. Now, if one denotes by XN the span of the
eigenfunctions of C, after they have been transformed by an operator Br with diagonal entries i2r, then on XN , πN

has Lebesgue density

πN (x) = MΨN exp

(
−ΨN (x)− 1

2

〈
PNx, C−1

(
PNx

)〉)
,

= MΨN exp

(
−ΨN (x)− 1

2

〈
x,
(
CN
)−1

x
〉)

,

for x ∈ XN . The acceptance probability corresponding to this RWM is given by

α (x, ξ) = min (1, Q (x, ξ)) ,

where

Q (x, ξ) =
1

2

∥∥∥C− 1
2

(
PNx

)∥∥∥2

− 1

2

∥∥∥C− 1
2

(
PNy

)∥∥∥2

+ ΨN (x)−ΨN (y) . (3.7)

The induced Markov chain of this algorithm is given by
{
xk
}
, for k ≥ 0 with

xk+1 = γk+1yk+1 +
(
1− γk+1

)
xk, (3.8)

yk+1 = xk +

√
2`2

N
C 1

2 ξk+1,

γk+1 = γ
(
xk, ξk+1

) D∼ Bernoulli
(
α
(
xk, ξk+1

))
ξk+1 =

N∑
i=1

ξk+1
i ϕi.
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The main result of this paper will look at the continuous interpolant of the Markov chain given by

zN (t) = (Nt− k)xk+1 + (k + 1−Nt)xk, (3.9)

for k ≤ Nt < k + 1.

3.3.4 Assumptions and Main Theorem

We won’t provide the proof here, but the paper shows that with the correct choice of scaling, the one step transition
for the RWM Markov chain behaves nearly like an Euler scheme applied to (3.6). Noise enters (3.6) additively, so
the induced Itô map which takes Wiener trajectories into solutions is continuous in the supremum-in-time topology.
The authors then proceed to show that the martingale increments converge weakly to a Hilbert-space valued Wiener
process using a martingale central limit theorem. Since weak convergence is preserved under a continuous map, the
fact that the Itô map is continuous implies the RWM Markov chain converges to (3.6). Such a limit is proven to

exist for the RWM algorithm with proposal variance 2`2

N C, and the time constant h (`) is maximized with average
acceptance probability of 0.234, as was shown by [RGG97] for the product case. Furthermore, from the form of the
interpolant (3.9), it is clear that the O (N) steps are required for the Markov chain to explore the invariant measure
(3.6).

In order to prove the theorem, it is necessary to impose certain conditions on the functional Ψ acting as the
potential in (3.1). For this, consider Sobolev spaces (inner product spaces with weak derivatives) Hr, r ∈ R, with
inner-products and norms given by

〈x, y〉r =

∞∑
i=1

i2rxiyi, and ‖x‖2r =

∞∑
i=1

i2rx2
i .

Assumption 3.2. (Assumption 3.1 in [MPS11]) The operator C and potential Ψ satisfy the following conditions:

1. Decay of Eigenvalues λ2
i of C: There exists M1,M2 ∈ (0,∞) and κ > 1

2 such that

M1 ≤ iκλi ≤M2,

for all i ∈ N.

2. Assumptions on Ψ: There exists constants Mi ∈ R, 3 ≤ i ≤ 6 and s ∈
[
0, κ− 1

2

)
such that

M3 ≤ Ψ (x) ≤M4

(
1 + ‖x‖2s

)
,

‖∇Ψ (x)‖−s ≤ M5 (1 + ‖x‖s)∥∥∂2Ψ (x)
∥∥
L(Hs,H−s) ≤ M6,

for all x ∈ Hs.

Suppose further that the functions ΨN : XN 7→ R satisfy the same conditions as above, with the same constants
uniformly in N .

Remark 3.3. The condition κ > 1
2 ensures that the covariance operator C is trace-class as required.

Theorem 3.4. (Theorem 3.6 in [MPS11]) Let Assumption 3.2 hold. Suppose the initial condition x0 of the

RWM algorithm is such that x0 D∼ πN and let zN (t) be a piecewise linear, continuous interpolant (3.9) of the RWM
algorithm (3.8). Then zN (t) converges weakly in C ([0, T ] ,Hs) to the diffusion process z (t) given by (3.6) with

z (0)
D∼ π.

3.4 Optimal scaling for MALA when applied to non-product target measures

Following the results of 3.3, [PST11] is a follow up to [MPS11]and studies the efficiency of the Metropolis-adjusted
Langevin algorithm (MALA) when applied to the same framework of non-product target laws. The authors show
that when started at stationarity, a suitably chosen interpolated and scaled version of the Markov chain correspond-

ing to the MALA algorithm applied to an N -dimensional approximation of the target will take O
(
N

1
3

)
steps to

explore the invariant measure, which is again provided by the infinite dimensional Hilbert space valued diffusion
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(3.6), rather than a scalar diffusion . Furthermore, as a by-product of the diffusion limit, it follows that the MALA
algorithm is optimized at an average acceptance probability of 0.574.

The Langevin proposal for the RWM obtained from the discretization of the Langevin diffusion is

y = xk,N + δ∇ log
(
πN
(
xk,N

))
+
√

2δZN , Zn ∼ N (0, IN ) ,

where 2δ is the proposal variance, which in the discretized case is a small parameter representing the discrete
time increment. In order to minimize the computational complexity of the algorithm, optimal scaling in the RWM
environment consists of determining the “optimal” size of the increment δ as a function of dimension N . In this
regard, the authors define a continuous interpolant of the Markov chain

zN (t) =
1

∆t
(t− tk)xk+1,N +

1

∆t
(tk+1 − t)xk,N for t ∈ [tk, tk+1), (3.10)

where tk
def
= k∆t. The proposal variance is chosen in the form 2`∆t, where ∆t = N−γ , so the scaling is in terms of

the dimension of the parameter ` is a tuning parameter. If the interpolated chain zN converges weakly to a suitable
stationary diffusion process, the number of Markov chain steps required in stationarity is inversely proportional to
the proposal variance, i.e., Nγ .

3.4.1 Sampling Algorithm

The difference in the two papers discussed in this section and the immediately preceding section is only in the form
of the algorithm being used. The discussion in subsection 3.3.2 applies in the current context as well, so we do not
repeat it here. Since the MALA algorithm incorporates the gradient of the previous iteration to make “smarter”
moves, the authors of the current paper have to incorporate this added complexity to the sampling algorithm. For
this purpose define µ (x) := − (x+ C∇Ψ (x)) and its N -dimensional counterpart µN (x) = −

(
PNx+ CN∇ΨN (x)

)
.

From state x ∈ XN , consider proposal y ∈ XN given by

y − x = δµN (x) =
√

2δ
(
CN
) 1

2 ξN , δ = `N−
1
3 , (3.11)

where ξN =
∑N

1 ξiϕi, and ξi ∼ N (0, 1). As above, ∆t := `−1δ = N−
1
3 . Now study the Markov chain

{
xk,N

}
k≥0

obtained by “Metropolizing” this proposal. As always, it is assumed the algorithm starts in stationarity. Therefore,
the initial position x0,N ∼ πN , so x0,N ∈ XN . The acceptance probability only depends on first N coordinates of
x and y, so

αN
(
x, ξN

)
= max

{
1,
πN (y)TN (y, x)

πN (x)TN (x, y)

}
= max

{
1, exp

(
QN

(
x, ξN

))}
,

where the transition kernel in the Langevin environment is given by the density

TN (x, y) ∝ exp

{
− 1

4δ

∥∥y − x− δµN (x)
∥∥2

CN

}
.

The local mean acceptance probability is given by

αN (x) = Ex
[
αN
(
x, ξN

)]
.

Therefore, the induced Markov chain for xN =
{
xk,N

}
k≥0

can also be expressed as{
yk,N = xk,N + δµN

(
xk,N

)
+
√

2δ
(
CN
) 1

2 ξk,N

xk+1,N = γk,Nyk,N +
(
1− γk,N

)
xk,N ,

where ξk,N ∼ ξN and γk,N = γN
(
xk,N , ξk,N

)
∼ Bernoulli

(
αN
(
xk,N , ξk,N

))
. The exponent in acceptance proba-

bility can be written as

QN
(
x, ξN

)
= −1

2

(
‖y‖2CN − ‖x‖

2
CN

)
−
(
ΨN (y)−ΨN (x)

)
= − 1

4δ

{∥∥x− y − δµN (y)
∥∥2

CN
−
∥∥y − x− δµN (x)

∥∥2

CN

}
. (3.12)

Observe that this exponent differs from (3.7) in the incorporation of the new gradient terms. Once projected
onto XN , the Markov chain in Hs is equivalent to the standard MALA on RN for πN .
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3.4.2 Main Theorem and Outline of Proof

Consider α (`) = E [max (1, exp {Z`})], with Z` ∼ N
(
− `

3

4 ,
`3

2

)
, and h (`) = `α (`), where α (`) denotes the limiting

expected acceptance probability of the MALA algorithm, and h (`) is the asymptotic speed function of the limiting
diffusion.

The normalizing constant h (`) defined above ensures the drift function dN (3.13) and the martingale difference
array (3.14) defined below are asymptotically independent from the parameter `.

Theorem 3.5. (Theorem 5.2 in [PST11]) Suppose the conditions 3.2 hold, and that the initial condition x0,N

of the MALA algorithm is such that x0,N ∼ πN , and let zN (t) be a piecewise linear, continuous interpolant of the

MALA algorithm with ∆t = N−
1
3 . Then, for any T > 0, zN (t)

C([0,T ];Hs)⇒ z (t) given by (3.6), with z (0) ∼ π.

Proof Strategy:

� The main result is that the quantity QN defined in (3.12) can be approximated by Gaussian random variables

QN
(
x, ξN

)
≈ Z`, with Z` ∼ N

(
− `

3

4 ,
`3

2

)
.

� Hence, the aforementioned Bernoulli random variables γN
(
x, ξN

)
can be approximated by a single Bernoulli

random variable, independent of x, which has probability of success given by α (`) = E
[
max

(
1, eZ`

)]
.

� The limiting acceptance probability of the MALA is thus given by α (`) in the prior line.

� For ∆t = N−
1
3 , consider the interpolant yielding the drift function, which acts like an operator on Hs, given

by
dN (x) = (h (`) ∆t)

−1 E
[
x1,N − x0,N |x0,N = x

]
, (3.13)

and the diffusion term, given by the martingale difference array
{

Γk,N
}
k≥0

, for Γk,N = ΓN
(
xk,N , ξk,N

)
with

Γk,N = (2h (`) ∆t)
−1 (

xk+1,N − xk,N − h (`) ∆tdN
(
xk,N

))
. (3.14)

� Thus, the drift-martingale decomposition of the Markov chain
{
xk,N

}
k≥0

is given by

xk+1,N − xk,N = h (`) ∆tdN
(
xk,N

)
+
√

2h (`) ∆tΓk,N .

� The Gaussian behavior of QN
(
x, ξN

)
given in (3.12) yields the approximations

dN (x) ≈ µ (x) and Γk,N ≈ N (0, C) .

� The sequence of continuous processes
{
WN

}
N≥1

, where each continuous process WN ∈ C ([0, T ] ;Hs) is

defined as

WN (t) =
√

∆t

k∑
j=0

Γj,N +
t− k∆t√

∆t
Γk+1,N , for t ∈ [k∆t, (k + 1) ∆t),

converges weakly in C ([0;T ] ,Hs) to a Brownian motion W in Hs with covariance operator Cs.

� Main theorem follows from a continuous mapping argument, using the Itô map

Θ : Hs × C ([0, T ] ;Hs)→ C ([0, T ] ;Hs) .

� The Itô map is continuous, and z = Θ
(
z0,W

)
solves the SPDE in (3.6).

� Moreover, the piecewise constant interpolant z̄N of xN is defined by z̄n (t) = xk for t ∈ [tk, tk+1), with
tk = k∆t, and the continuous piecewise linear interpolant zN from (3.10) satisfies

zN (t) = x0,N + h (`)

ˆ t

0

dN
(
z̄N (u)

)
du+

√
2h (`)WN (t) , for all t ∈ [0, T ] .
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� By using closeness of drift function (3.13) with µ (x), and zN with z̄N , it follows there exists a process
ŴN ⇒W as N →∞ such that

zN (t) = x0,N + h (`)

ˆ t

0

µ
(
zN (u)

)
du+

√
2h (`)ŴN (t) ,

so zN = Θ
(
x0,N , ŴN

)
.

– Since Θ is continuous, it follows zN = Θ
(
x0,N , ŴN

)
⇒ Θ

(
z0,W

)
= z as N →∞.

A Infinite Dimensional Analysis

A.1 Introduction

There is no natural analogue of the Lebesgue measure on an infinite dimensional Hilbert space. A natural substitute
is provided by Gaussian measures. The theory expounded in these notes define Gaussian measures on a finite
dimensional space, and then through an infinite product of measures, on the infinite dimensional Hilbert space H,
assumed to be separable.

Later we talk about the Cameron-Martin formula, which is an important tool discussing absolute continuity and
singularity of a Gaussian measure and its translates.

We consider first Gaussian measure on (H,B (H)), where H is a real separable Hilbert space with inner product
〈·, ·〉 and norm ‖·‖, and B (H) is the Borel sigma algebra onH. Let L (H) denote the Banach algebra of all continuous
linear operators on H, L+ (H) denote the set of all T ∈ L (H) that are symmetric (〈Tx, y〉 = 〈x, Ty〉 , ∀x, y ∈ H)
and positive (〈Tx, x〉 ≥ 0, ∀x ∈ H), and finally L+

1 (H) the set of all operators Q ∈ L+ (H) of trace class, i.e.,
operators Q such that trace (Q) :=

∑
k≥1 〈Qek, ek〉 <∞ for all complete orthonormal systems {ek}k≥1 ∈ H.

A.1.1 Infinitely Divisible Laws

The law of a random variable X is the probability measure X#P on (E,B (E)) defined as

X#P (I) = P
(
X−1 (I)

)
= P (X ∈ I) , I ∈ B (E) .

The convolution ν1 ? ν2 of two finite Borel measures ν1 and ν2 on RN is given by

ν1 ? ν2 (Γ) =

ˆ
RN

ˆ
RN

IΓ (x+ y) ν1 (dx) (dy) , Γ ∈ BRN ,

and the distribution of the sum of two independent random variables is the convolution of their distributions. We
want to describe the probability measure µ that, for each n ≥ 1, can be written as the n-fold convolution power
µ?n1
n

of some probability measure µ 1
n

.

Recall that the Fourier transform takes convolution into ordinary multiplication, the Fourier formulation for
infinite divisibility involves describing those Borel probability measures on RN whose Fourier transform µ̂ has, for

each n ∈ Z+, an nth root which is again the Fourier transform of a Borel probability measure on RN .

A.2 Gaussian Measures in Hilbert Spaces

A.2.1 One-dimensional Hilbert spaces

Let us first consider the well-known case where H is a one-dimensional Hilbert space. Consider (a, λ) ∈ R2 with
a ∈ R and λ ∈ R+. We define a probability measure Na,λ in (R,B (R)) as follows. If λ = 0, we set

Na,0 = δa,

where δa is the Dirac measure at a,
δa (B) = I{a∈B},

for B ∈ B (R). This is a degenerate Gaussian measure, and is not of much use to us for our applications.
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Alternatively, for λ > 0 , we set

Na,λ (B) =
1√
2πλ

ˆ
B

exp

(
− (x− a)

2

2λ

)
dx, B ∈ B (R) .

We are used to using λ = σ2 in standard notation, but we have not adopted this notation here in accordance to the
definition in larger dimensions. Indeed, one can think of the standard deviation in one-dimension as an operator as
well. For example, in the case σ2 = 1, we can think of it as the identity operator. Note that Na,λ is a probability
measure in (R,B (R)) since

Na,λ (R) =
1√
2πλ

ˆ
R

exp

(
− (x− a)

2

2λ

)
dx

=
1√
2π

ˆ
R

exp
(
−x2/2

)
dx = 1.

Note that if λ > 0, then Na,λ is absolutely continuous with respect to the Lebesgue measure, and thus we may
write

Na,λ (dx) =
1√
2πλ

exp

(
− (x− a)

2

2λ

)
dx.

The case where a = 0 corresponds to centered Gaussian measures, and we denote them by Nλ for short.
We may easily calculate the mean, variance and Fourier transform (characteristic function) of the Gaussian

measure Na,λ:

ˆ
R
xNa,λdx =

ˆ
R

x√
2πλ

exp

(
− (x− a)

2

2λ

)
dx = a

ˆ
R

(x− a)
2Na,λ (dx) =

ˆ
R

(x− a)
2

√
2πλ

exp

(
− (x− a)

2

2λ

)
dx = λ

N̂a,λ (h) =

ˆ
R
eihxNa,λ (dx) = eiah−

1
2λh

2

, h ∈ R.

Also observe that the normal (standard Gaussian) distribution function Φ is defined by the relation

Φ (t) =

ˆ t

−∞
N0,1 (dx) .

Its inverse function, Φ−1, is defined on (0, 1), and by convention we employ the rules Φ−1 (0) = −∞ and Φ−1 (1) =
∞. Thus, we arrive at the following lemma which gives bounds for Φ (t).

Lemma A.1. For any t > 0, the following inequalities hold

1√
2π

(
1

t
− 1

t3

)
e−t

2/2 ≤ 1− Φ (t) ≤ 1√
2π

1

t
e−t

2/2.

Proof. By the integration of parts formula, we have

ˆ ∞
t

se−s
2/2 1

s
ds =

e−t
2/2

t
−
ˆ ∞
t

1

s2
e−s

2/2ds

≤ e−t
2/2

t
.

The lower bound is by an identical argument.

In order to motivate some of the theory, we look at the following classical result.

Theorem A.2. Let ξn be a sequence of independent, centered Gaussian random variables with variances λn. Then
the following conditions are equivalent:
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1. The series
∑∞

1 ξn converges almost everywhere.

2. The series in (1) converges in probability.

3. The series in (1) converges in L2.

4.
∑∞

1 λn <∞.

Proof. By the dominated convergence theorem and the independence condition, any of the first three conditions
implies convergence of the product

∞∏
n=1

exp (iξn) dP =

∞∏
n=1

exp (−λn/2) ,

which yields the last condition. That the last condition implies the third condition is true by virtue of independence
and symmetry of the random variables in question, i.e., we may write

ˆ
(ξk + · · ·+ ξk+m)

2
dP =

ˆ m∑
j=0

ξ2
k+jdP,

so we have that the second condition is verified. It remains to show that the last condition implies the first. Towards
this end, note that the conditional expectation of the square-integrable random variable ξ =

∑n
1 ξn with respect

to the σ-field Fm, generated by ξ1, . . . , ξm, coincides with
∑m

1 ξn, since the random variables ξn are centered and
independent. Furthermore, the sequence of partial sums of the series defining ξ is a martingale with respect to
{Fn}. Almost sure convergence thus follows from Doob’s inequality.

A.2.2 Finite Dimensional Gaussian measures

We now suppose H is a finite-dimensional Hilbert space, and proceed to define a Gaussian measure Na,Q for any
a ∈ H and any Q ∈ L+ (H). Suppose we have a trace class operator, Q ∈ L+ (H) and let (e1, . . . , ed) denote an
orthonormal basis on H such that Qek = λkek, for k = 1, . . . , d, for λk ≥ 0. Next we set

xk = 〈x, ek〉 , x ∈ H, k = 1, . . . , d,

and identify H with Rd through the isomorphism γ,

γ : H → R, x 7→ γ (x) = (x1, . . . , xd) .

We now define a probability measure Na,Q on
(
Rd,B

(
Rd
))

by setting

Na,Q =

d∏
k=1

Nak,λk .

(Note the product here is defined on the product σ-algebra of the d Gaussian measures). As we had written in the
one-dimensional case, when a = 0, i.e., the centered case, we shall denote the measure simply by NQ.

Proposition A.3. Let a ∈ H, Q ∈ L+ (H) and µ = Na,Q. Then we have

ˆ
H
xNa,Q (dx) = a,

and ˆ
H
〈y, x− a〉 〈z, x− a〉Na,Q (dx) = 〈Qy, z〉 , y, z ∈ H.

Furthermore, the Fourier transform of Na,Q is given by

N̂a,Q (h) =

ˆ
H
ei〈h,x〉Na,Q (dx)

= ei〈a,h〉−
1
2 〈Qh,h〉,
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for h ∈ H. Lastly, if the determinant of Q is positive, then Na,Q is absolutely continuous with respect to Lebesgue
measure in Rd and we have

Na,Q (dx) =
1√

(2π)
d

detQ
exp

(
−1

2

〈
Q−1 (x− a) , x− a

〉)
dx.

We call a the mean and Q the covariance operator of Na,Q.

By uniqueness of the Fourier transform, we obtain the following result.

Corollary A.4. Let H be a finite dimensional Hilbert space, and suppose a ∈ H, Q ∈ L+ (H). Let µ be a probability
measure on (H,B (H)) such that

ˆ
H
ei〈h,x〉µ (dx) = ei〈a,h〉−

1
2 〈Qh,h〉, h ∈ H.

Then we have µ = Na,Q.

We may define Gaussian measures on Rn, or any finite-dimensional H, as the image of standard Gaussian
measure on Rn, i.e., as the product of n copies of the standard Gaussian measure on R1, under affine mappings
x 7→

√
Qx+ a. On the linear subspace

√
K (Rn) we may define the inner product

(u, v)Na,Q =
(√

Q
−1
u,
√
Q
−1
v
)
.

A.2.3 Measures in Hilbert spaces

Consider an infinite dimensional separable Hilbert space H and suppose {ek}k≥1 denotes a complete orthonormal
system in H. For any n ∈ N, consider the projection mapping Pn : H → Pn (H) defined as

Pnx =

n∑
k=1

〈x, ek〉 ek, x ∈ H. (A.1)

Clearly, limn→∞ Pnx = x for all x ∈ H.

Proposition A.5. Suppose µ, ν are (Borel) probability measures such that

ˆ
H
ϕ (x)µ (dx) =

ˆ
H
ϕ (x) ν (x) dx,

for all continuous and bounded functions ϕ : H 7→ R in H. Then µ = ν.

Proof. See Prop 1.5 in [Da06].

Proposition A.6. Let µ and ν be probability measures on (H,B (H)). If (Pn)# µ = (Pn)# ν for any n ∈ N, then
µ = ν.

Proposition A.7. Let µ and ν be probability measures on (H,B (H)) . If µ̂ (h) = ν̂ (h) for all h ∈ H, then we have
µ = ν.

A.2.4 Mean and Covariance of Probability Measures

Consider a fixed probability measure µ on (H,B (H)). Assume that

ˆ
H
|x|µ (dx) <∞.

Then, for any h ∈ H, the linear functional F : H → R defined as

F (h) =

ˆ
H
〈x, h〉µ (dx) , h ∈ H,
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is continuous, since

|F (h)| ≤
ˆ
H
|x|µ (dx) |h| , h ∈ H.

It follows from the Riesz representation theorem there exists m ∈ H such that

〈m,h〉 =

ˆ
H
〈x, h〉µ (dx) , h ∈ H.

We call m the mean of the probability measure µ. Furthermore, we shall write

m =

ˆ
H
xµ (dx) .

If we further assume that ˆ
H
|x|2 µ (dx) <∞,

then we may consider a bilinear form G : H×H → R defined as

G (h, k) =

ˆ
H
〈h, x−m〉 〈k, x−m〉µ (dx) , h, k ∈ H.

Furthermore, another application of the Riesz representation theorem guarantees the existence of a unique linear
bounded operator Q ∈ L (H) such that

〈Qh, k〉 =

ˆ
H
〈h, x−m〉 〈k, x−m〉µ (dx) , h, k ∈ H.

The operator Q is called the covariance of the probability measure µ.

Proposition A.8. Let µ be a probability measure on (H,B (H)) with mean m and covariance operator Q. Then
Q ∈ L+

1 (H), i.e., Q is symmetric, positive, and of trace class.

Proof. That Q is symmetric and positive is clear from its construction. To prove that it is of trace class, observe

〈Qek, ek〉 =

ˆ
H
|〈x−m, ek〉|2 µ (dx) , k ∈ N.

By the monotone convergence theorem and an application of Parseval’s identity, we have

traceQ =

∞∑
k=1

ˆ
H

∣∣∣〈x−m, ek〉2∣∣∣µ (dx) =

ˆ
H
|x−m|2 µ (dx) <∞.

A.3 Gaussian Measures

For a ∈ H and Q ∈ L+
1 (H), we call the measure µ := Na,Q on (H,B (H)) a Gaussian measure µ with mean a and

covariance operator Q. Its Fourier transform is given by

N̂a,Q (h) = exp

{
i 〈a, h〉 − 1

2
〈Qh, h〉

}
, h ∈ H.

The Gaussian measure Na,Q is said to be non-degenerate if Ker (Q) = {x ∈ H : Qx = 0} = {0}.

A.3.1 Existence and Uniqueness

We can show that for arbitrary a ∈ H and Q ∈ L+
1 (H), there exists a unique Gaussian measure µ = Na,Q

in (H,B (H)). Observe that since Q ∈ L+
1 (H), there exists a complete orthonormal basis {ek}k≥1 on H and a

sequence of non-negative numbers {λk}k≥1 such that

Qek = λek, k ∈ N.
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Thus, for any x ∈ H, we may set xk = 〈x, ek〉 , k ∈ N. Let us now consider the natural isomorphism γ between H
and the Hilbert space `2 of all sequences {xk}k≥1 of real numbers such that

∑∞
k=1 |xk|

2
<∞,defined by

H → `2, x 7→ γ (x) = {xk} .

We thus may identify H with `2. We shall later consider the product measure

µ :=

∞∏
k=1

Nak,λk .

Although µ is defined on the space R∞ =
∏∞
k=1 R rather than `2, we shall show that it is concentrated in `2.

Furthermore, we shall prove that µ is a Gaussian measure Na,Q.

A.3.2 Preliminaries on Countable Product of Measures

Let (µk) be a sequence of probability measures on (R,B (R)). We want to define a product measure on the space
R∞ =

∏∞
k=1 R, consisting of all the sequences x = (xk) of real numbers. Let us endow R∞ with the metric

d (x, y) =

∞∑
n=1

2−n
max {|xk − yk| : 1 ≤ k ≤ n}

1 + max {|xk − yk| : 1 ≤ k ≤ n}
.

With this metric, R∞ is a complete metric space and the topology corresponding to this metric is in fact the product
topology.

We then define µ =
∏∞
k=1 µk on the family C of all cylindrical subsets In,A of R∞ , where n ∈ N and A ∈ B (Rn) ,

and
In,A = {x = (xk) ∈ R∞ : (x1, . . . , xn) ∈ A} .

Observe that
In,A = In+k,A×Xn+1×···×Xn+k

, k, n ∈ N.
Hence, with this identity, it is easy to observe that C is an algebra. In particular, if In,A and Im,B are two cylindrical
sets, we then have

In,A ∪ Im,B = Im+n,A×Xn+1×···×Xn+m
∪ Im+n,B×Xm+1×···×Xm+n

= Im+n,A×Xn+1×···×Xn+m∪B×Xm+1×···×Xm+n,

and Icn,A = In,Ac . More crucially, the σ-algebra generated by C coincides with B (R∞) since any ball (with respect
to the metric of R∞) is a countable intersection of cylindrical sets.

Let us now consider the product measure

µ (In,A) = (µ1 × · · · × µn) (A) , In,A ∈ C.

The previous relation shows that µ is additive. An application of Caratheodory’s extension theorem shows that µ
is σ-additive on C, and so µ can be uniquely extended to a probability measure on the product σ-algebra B (R∞).

Theorem A.9. The measure µ is aσ-additive on C and it possesses a unique extension to a probability measure
(R∞,B (R∞)).

Proof. See Theorem 1.9 in [Da06].

A.3.3 Definition of Gaussian measures

We now show that

µ =

∞∏
k=1

Nak,λk

is a Gaussian measure on H = `2 with mean a and covariance Q. First observe that `2 is Borel subset of R∞.
Furthermore, we have µ

(
`2
)

= 1. The second statement follows from the monotone convergence theorem,

ˆ
R∞

∞∑
k=1

x2
kµ (dx) =

∞∑
k=1

ˆ
R
x2
kNakλkd (xk) =

∞∑
k=1

(
λk + a2

k

)
. (A.2)

Thus,

µ
({
x ∈ R∞ : |xk|2`2 <∞

})
= 1.
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Theorem A.10. There exists a unique probability measure µ on (H,B (H)) with mean a, covariance Q and Fourier
transform

µ̂ (h) = exp

{
i 〈a, h〉 − 1

2
〈Qh, h〉

}
, h ∈ H. (A.3)

We denote µ by Na,Q, and if a = 0 we simply write NQ.

Proof. We check that the restriction of `2 of the product measure µ, defined by (A.2) fulfills the necessary properties.
First note that by (A.2) we have ˆ

H

∣∣x2
∣∣µ (dx) = traceQ+ |a|2 . (A.4)

Assume for simplicity, that Ker (Q) = {0}, and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · . Let (Pn) be the sequence of projectors
defined by (A.1), and let h ∈ H. Since |〈x, h〉| ≤ |x| |h|, and

´
H |x|µ (dx) is finite by (A.4), the dominated

convergence theorem thus implies
ˆ
H
〈x, h〉µ (dx) = lim

n→∞

ˆ
H
〈Pnx, h〉µ (dx) .

However,

ˆ
H
〈Pnx, h〉µ (dx) =

n∑
k=1

ˆ
H
xkhkµ (dx)

=

n∑
k=1

hk

ˆ
R
xkNak,λk (dxk)

=

n∑
k=1

hkak = 〈Pna, h〉 → 〈a, h〉 ,

as n→∞. Therefore, the mean of µ is a. Likewise, in order to determine the covariance of µ, we fix y, z ∈ H and
write ˆ

H
〈x− a, y〉 〈x− a, z〉µ (dx) = lim

n→∞

ˆ
H
〈Pn (x− a) , y〉 〈Pn (x− a) , z〉µ (dx) .

Furthermore,

ˆ
H
〈Pn (x− a) , y〉 〈Pn (x− a) , z〉µ (dx) =

n∑
k=1

ˆ
H

(xk − ak)
2
ykzkµ (dx)

=

n∑
k=1

ykzk

ˆ
R

(xk − ak)
2
Nak,λk (dxk)

=

n∑
k=1

ykzkλk = 〈PnQy, z〉 → 〈Qy, z〉 ,

as n→∞. Hence, the covariance of µ is indeed Q.
Finally, for any h ∈ H,

ˆ
H
ei〈x,h〉µ (dx) = lim

n→∞

ˆ
H
ei〈Pnx,h〉µ (dx)

= lim
n→∞

n∏
k=1

ˆ
R
eixkhkNak,λk (dxk)

= lim
n→∞

n∏
k=1

eiakhk−
1
2λkh

2
k

= lim
n→∞

ei〈Pna,h〉e−
1
2 〈PnQh,h〉

= ei〈a,h〉e−
1
2 〈Qh,h〉.

This verifies that the Fourier transform of µ is given by (A.3).
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Note A.11. For any ε < 1
λ1

, the linear operator 1− εQ is invertible, and (1− εQ)
−1

is bounded. Furthermore,

(1− εQ)
−1
x =

∞∑
k=1

1

1− ελk
〈x, ek〉 ek, x ∈ H.

In this case, we define the determinant of (1− εQ) by setting

det (1− εQ) := lim
n→∞

n∏
k=1

(1− ελk) :=

∞∏
k=1

(1− ελk) .

By assuming
∑
k≥1 λk <∞, the infinite product above is finite and positive.

A.4 Brownian Motion and Wiener Measure

Brownian motion is a real-valued stochastic process. They are interesting to study since an extremely large set of
interesting class of processes contain Brownian motion, including, Gaussian processes, Markov processes, diffusions,
Lévy processes, and more.

A.4.1 Infinite Dimensional Wiener Process

In the sections previous, we have discussed the standard finite dimensional Wiener process Wt =
(
w

(1)
t , . . . , w

(d)
t

)
.

We now consider an infinite sequence Wt =
{
w

(j)
t

}
j≥1

of independent Wiener processes. Treating Wt as an infinite

sequence at each t is the point of view of the theory of cylindrical Wiener process. We focus on the view where Wt

is a random element of a state space in which the whole stochastic process {Wt}t≥0 could be realized.

A.4.2 Wiener Measure

The distribution of Brownian motion is called Wiener measure in honor of the first mathematician to construct it,
Norbert Wiener. Wiener constructed this measure by looking at a Gaussian measure on an infinite dimensional
space, and we follow his method of construction in these notes. We are thus dealing with measures on a real Banach
space E that are centered Gaussian in the sense that for each x∗ ∈ E∗, x ∈ E 7→ 〈x, x∗〉 ∈ R is a centered Gaussian
random variable. We thus call the measure this measure in consideration a centered Gaussian measure at x.

Note that C
(
RN
)

is a separable, complete metric space. We would like to consider a separable Banach space.

With this in mind, we define Θ
(
RN
)

to be the space of continuous paths θ : [0,∞)→ RN with the properties that
θ (0) = 0 and limt→∞ t−1 |θ (t)| = 0.

Lemma A.12. The map

ψ ∈ C
(
RN
)
7→ ‖ψ‖Θ(RN ) ≡ sup

t≥0

|ψ (t)|
1 + t

∈ [0,∞]

is lower semicontinuous, and the pair
(

Θ
(
RN
)
, ‖·‖Θ(RN )

)
is a separable Banach space that is continuously embedded

as a Borel measurable subset of C
(
RN
)
. Furthermore, BΘ(RN ) coincides with BC(RN )

[
Θ
(
RN
)]

=
{
A ∩Θ

(
RN
)

: A ∈ BC(RN )

}
.

Moreover, the dual space Θ
(
RN
)∗

of Θ
(
RN
)

can be identified with the space of RN -valued, Borel λ on [0,∞) with
the properties that λ ({0}) = 0 and

‖λ‖Θ(RN )∗ =

ˆ
[0,∞)

(1 + t) |λ| (dt) <∞,

when the duality relation is given by

〈θ,λ〉 =

ˆ
[0,∞)

θ (t) · λ (dt) .

If (B (t) ,Ft,P) is a RN -valued Brownian motion, then B ∈ Θ
(
RN
)
P-almost surely and

EP
[
‖B‖2Θ(RN )

]
≤ 32N.
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Thus, RN -valued Brownian motion induces a Borel measure W(N) on the separable Banach space Θ
(
RN
)
, and

throughout we refer to this measure as the classical Wiener measure.

Lemma A.13. Let E with norm ‖·‖E be a separable, real Banach space, and denote

(x, x∗) ∈ E × E∗ 7→ 〈x, x∗〉 ∈ R

the duality relation between E and its dual space E∗. The Borel field BE coincides with the σ-algebra generated
by the maps x ∈ E 7→ 〈x, x∗〉 as x∗ runs over E∗. For any Borel probability measure µ on E, define its Fourier
transform µ̂ : E∗ → C by

µ̂ (x∗) =

ˆ
E

exp
[√
−1 〈x, x∗〉

]
µ (dx) , x∗ ∈ E∗,

and then µ̂ i s continuous function of weak* convergence on Θ∗, and µ̂ uniquely determines in the sense that if ν is
a second element of M1 (Θ) and µ̂ = ν̂, then µ = ν.

A.4.3 Cameron-Martin Space

To proceed from Wiener measure on a Banach space to Wiener on a Hilbert space, we use the results from Cameron-
Martin. Note, that in finite dimensions, every centered, Gaussian measure with non-degenerate covariance can be
thought of as the canonical/standard Gaussian measure on a Hilbert space. If µ0,C is the Gaussian measure
on RN with mean 0 and non-degenerate covariance Q, consider RN as a Hilbert space H with inner product
(g,h)H = (g,Qh)RN , and take λH to be the natural Lebesgue measure, the one which assigns measure 1 to a unit
cube in H, or equivalently, the one which is obtained by pushing the usual Lebesgue measure λRN forward under

the linear transformation C
1
2 .We may thus write

µ0,Q (dh) =
1

(2π)
N
2

exp

(
−1

2
‖h‖2H

)
λH (dh)

and

µ̂0,Q (h) = exp

(
−1

2
‖h‖2H

)
.

One question would be the equivalence and singularity of the measures µ0,Q and µa,Q for some a ∈ H.
Recall that for two measures on (Ω,F) , µ and ν, we say that µ is absolutely continuous with respect to ν, which

we will denote by µ � ν, if for each null set of ν, ν (A) = 0, we have µ (A) = 0. An important result regarding
absolute continuity of measures is the Radon-Nikodym derivative (see [SS05]), which states that if µ � ν, then
there exists a unique function f ∈ L1 (Ω,F , ν) such that

µ (A) =

ˆ
A

fdν,

for all A ∈ F . If µ � ν and ν � µ, then we say µ and ν are equivalent. Clearly, µ and ν are both absolutely
continuous with respect to ζ = 1

2 (µ+ ν) on (Ω,F). This fact gives rise to the Hellinger integral of µ and ν, defined
by

H (µ, ν) =

ˆ
Ω

√
dµ

dζ

dν

dζ
dζ.

If H (µ, ν) = 0, say the pair µ and ν are singular.

Theorem A.14. (Cameron Martin Theorem, see Theorem 2.8 in [Da06]) Let a ∈ H, and consider two
measures µ = N0,Q and ν = Na,Q, with Q ∈ L+

1 (H).

1. If a /∈ Q1/2 (H), then µ and ν are singular.

2. If a ∈ Q1/2 (H), then µ and ν are equivalent.

3. If µ and ν are equivalent, then the density dν
dµ is given by

dν

dµ
(x) = exp

{
−1

2

∣∣∣Q−1/2a
∣∣∣2 +WQ−1/2a (x)

}
, x ∈ H.

42



A.5 Lack of a Canonical Gaussian Distribution in Infinite Dimensions

The construction above the Gaussian measure in an infinite-dimensional Hilbert spaceH, requires that the covariance
operator of the Gaussian measure is of trace class, i.e., the trace is finite. Amongst other issues, this requirement
rules out the canonical N (0, I∞) Gaussian distribution.

Consider the projection of this distribution onto finite subspaces of the Hilbert space. We would like this
distribution to be Gaussian as well. Furthermore, we would want every ε-ball in the Hilbert space to have non-zero
probability measure, otherwise we are dealing with the trivial measure (in that we assign measure zero to every
bounded set; one can further generalize by the method of cylindrical measure, which is a way of setting a countable
union of bounded sets to have measure one) which is of not much use. However, one can easily observe that the
measure of the projection of any particular ε-ball onto a finite subspace is greater than the measure of the original
ε-ball, while the measure of the projection converges to zero as the dimension increases.

Probabilistically, we can use the following argument to explain why no such distribution can exist. Suppose H
is an infinite-dimensional Hilbert space equipped with a Gaussian Borel measure µ. Furthermore, suppose that the
covariance matrix of µ is the identity. Let {e1, e2, . . . } be an orthonormal sequence. If we define Xi : H 7→ R as
the continuous linear functional Xi (x) = 〈x, ei〉, then Xi is a centered Gaussian random variable on the probability
space (H, µ) with unit variance. Since the Xi are jointly Gaussian distributed and are uncorrelated (since the ei
were orthogonal), they are thus independent. Hence, {Xi} forms an i.i.d. N (0, 1) sequence. However,∑

i

|Xi (x)|2 =
∑
i

|〈x, ei〉|2 ≤ ‖x‖2 <∞,

by Bessel’s inequality (see page 166 in [SS05]). In particular, we have that Xi → 0 surely, which is an absurd
implication for an i.i.d. sequence.

If we take a deeper look at the sequence of the finite canonical Gaussians, we my intuitively expect them to
converge to a point mass (Dirac δ-distribution) at infinity in the Hilbert space, or we might expect them to lead
to a distribution in the surface of an infinite dimensional hypersphere with infinite radius (these are two different
implications however, due to the strong law of large numbers).

If we have a vector of i.i.d. Gaussian random variables, Xi
i.i.d.∼ N (0, 1), then the squares of the vector

components are χ2 random variables with one degree of freedom. Therefore, as d→∞, we have

1

d

d∑
i=1

X2
i = 1, almost surely.

That is, if X = (X1, . . . , Xd), then the norm of X,

‖X‖ →
√
d, almost surely as d→∞.

Furthermore, by the strong law of large numbers we have that the mean vector is the zero vector, so whatever the
infinite-dimensional distribution may be, it is also centered at the origin. Furthermore, if X and X ′ are any two
such vectors, then 〈

X

‖X‖
,
X ′

‖X ′‖

〉
d→∞−−−→ 0.

Since X is the zero vector with probability zero, it follows that almost surely each pair of vectors is orthogonal in
the limit. This leads to the implication that points end up mutually orthogonal in the surface of a hypersphere
about the origin.

B Markov Processes

In this section we provide some results and proofs about the class of continuous parameter stochastic processes
that satisfy the Markov property, i.e., those processes that are known as Markov processes. The aim here is to
discuss briefly the weak convergence of these processes, which will require a foray into the infinitesimal generator of
the process and a look at operator semigroups. The presentation here is necessarily concise, only looking at those
elements which are of immediate concern to the topic of this paper. For a comprehensive survey of convergence of
Markov processes and characterization methods of such processes, the reader is referred to the classic text of Etheir
and Kurtz [EK86], from which the majority of these notes are based. A more modern treatment of the theory
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expounded here can be found in Chapter VI of Jean Jacod’s and Albert Shiryaev’s text [JS03], Section III of Cosma
Shalizi’s manuscript entitled Almost None of the Theory Stochastic Processes and Olav Kallenberg’s Probability
textbook (Chapters 7, 14 and 17 in particular), [SK11, Kal97].

It is worth mentioning that the theory expounded here is not the unique theory for which convergence of Markov
processes has developed. In fact, there are three different strands of development that have been used to deal with the
convergence of Markov processes. The method used used, using operator semigroups convergence theorems, is only
one method of proving Markov process convergence. This method was originally spearheaded by H.F. Trotter using
diffusion approximations. A second approach was developed by Daniel Stroock and S.R.S. Varadhan also using
convergence of generators, but instead of using operator semigroups, they authors developed weak compactness
arguments and the martingale characterization of the limit. The last method used requires representing the process
as a solution to a stochastic equation, and then by use of classical analysis, one tries to show that convergence of
the equations implies convergence of their solutions.

B.1 Introduction to the Problem

When proofs of weak convergence were given for the Metropolis algorithm (properly rescaled) to the Langevin SDE
in this paper, it was supposed that this convergence was under the Skorokhod topology, and this convergence relied
on some general conditions that needs to be elucidated. The main result that provides the necessary character-
ization of convergence is the fact that Markov processes can be expressed according to a corresponding operator
semigroup, which then allows one to characterize the process by the generator of this semigroup. This is the result
of Theorem 8.2 of Chapter 4 in [EK86]. It is through convergence of generators (in the appropriate sense) that
implies convergence of semigroups, which in turn provides convergence of Markov processes. Furthermore, weak
convergence is characterized by convergence in the Skorokhod topology, which is the topology that equips the space
of right continuous functions with left limits in such a manner that the resulting space is complete and separable
(i.e., the space is Polish).

B.2 The Skorokhod Topology

The space D
(
Rd
)

is defined to be the space of cádlág functions on [0,∞), i.e., those functions which are right
continuous and possess left limits. Such functions are also said to possess discontinuities of the first kind, i.e., for
each t ≥ 0 and each function x ∈ D

(
Rd
)
, the limits limx→t+ x (s) = x (t) and limx→t− x (s) = x (t) exist. It would

be a great advantage if for a complete and separable metric space E, there is a metric ρ that makes D
(
Rd
)

complete
and separable as well. This metric induces the aforementioned Skorokhod topology. The main usefulness of this
topology for the purposes used in the topic of optimal scaling is that it allows for a small deformation of the time
scale. Indeed, for a probability space µ, the Skorokhod topology is the coarsest topology for which the mappings:
µ µ (f) are continuous for all bounded continuous functions f on D

(
Rd
)
.

B.3 Operator Semigroups

As mentioned in the introduction to this section, operator semigroups are a useful tool for developing the charac-
terization and convergence of Markov processes. Consider a real Banach space (complete normed vector space) L
with norm ‖·‖.

Definition B.1. (Page 6, [EK86]) A one-parameter family {T (t)}t≥0 of bounded linear operators on L is called
a semigroups if

1. T (0) = I, where I denotes the identity matrix.

2. T (s+ t) = T (t)T (s) for all s, t ≥ 0.

A semigroup is thus an operator varying with t.

Definition B.2. (Page 6, [EK86]) A semigroup {T (t)} on L is said to be strongly continuous if for all h ∈ L

lim
t→0

T (t)h = h.

Definition B.3. (Page 6, [EK86]) A contraction semigroup is such that ‖T (t)‖ ≤ 1 for all t ≥ 0, where

‖T (t)‖ = sup
h∈L
h6=0

‖T (t)h‖
‖h‖
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denotes the operator norm.

The following definition of a generator of a semigroup can be used to characterize a semigroup on L.

Definition B.4. (Page 8, [EK86]) The infinitesimal generator of a semigroup {T (t)} on L is the linear operator
A defined by

Ah = lim
t→0

(
T (t)h− h

t

)
.

The domain D (A) of A is the subspace of all h ∈ L for which this limit exists.

The following proposition says that strongly continuous contraction semigroups are uniquely determined by their
corresponding generator.

Proposition B.5. Let {T (t)} and {S (t)} be strongly continuous contraction semigroups on L with generators A
and B, respectively. If A = B, then T (t) = S (t) for all t ≥ 0.

Proof. See page 15 in [EK86].

B.4 Markov Processes and Semigroups

For a given metric space (E, r), denote the collection of all real-valued, Borel measurable functions on E byM (E).
The Banach space of bounded functions with supremum norm, B (E) is a subset of M (E), i.e., any bounded
function with

‖h‖ = sup
x∈E
|h (x)| ,

is Borel measurable . Finally denote the space of all bounded continuous functions on E (which are clearly Borel
measurable on E) by C̄ (E).

Let {X (t)}t≥0 be a stochastic process defined on the probability space (Ω,F ,P) with values in E, and denote

the filtration up to t by FX (t) = σ (X (s) : s ≤ t). The process X is said to be Markov if

P
(
X (t+ s) ∈ Γ|FX (t)

)
= P (X (t+ s) ∈ Γ|X (t)) ,

for all s, t ≥ 0 and Γ ∈ B (E), where B (E) is the Borel sigma algebra corresponding to the metric space E Therefore,
for any bounded function h we have

E
[
h (X (t+ s)) |FX (t)

]
= E [h (X (t+ s)) |X (t)] ,

for all s, t ≥ 0.

Definition B.6. An operator semigroup may be defined as

T (t)h (x) =

ˆ
h (y)P (t, x, dy) .

Remark B.7. Observe that

‖T (t)‖ = sup
h bounded on E

h6=0

‖T (t)h‖
‖h‖

= sup
h bounded on E

h6=0

(
supx∈R |T (t)h (x)|

supx∈R |h (x)|

)

= sup
h bounded on E

h6=0

(
supx∈R

∣∣´ h (y)P (t, x, dy)
∣∣

supx∈R
∣∣´ h (y) δx (dy)

∣∣
)
≤ 1.

Therefore, {T (t)} is a contraction semigroup by Definition B.3.

C R Codes for Simulations

Listed below are various functions with annotations used for the simulations displayed in this paper.
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C.1 Code for Example

This code corresponds to Example 2.12.

> library(mvtnorm)

> # it is the number of iterations for each Monte Carlo

> # Simulation

> it = 50000

> # number of dimensions for target

> dim = 10

> # n is number of scaling parameters used

> n = 50

> # vector of scaling terms

> ell = (1:n)/10

> # exponent satisfying condtn

> # for iid case, RWM ep = 1, MALA ep = 1/3, HMC = 1/4.

> ep = 1

> targmean = c(rep(1, dim))

> targSigma = diag(c(rep(1/dim, 5), rep(25, dim - 5)))

> logpi = function(X) {

+ dmvnorm(X, targmean, targSigma, log = TRUE)

+ }

> # initialise acceptances

> accr = rep(0, n)

> # initial efficiencies

> vlist = rep(0, n)

> for (j in 1:n) {

+ # set overdispersed starting distribution

+ X = runif(dim, -5, 5)

+ # initialize Markov chain values

+ x1list = rep(0, it)

+ # proposal variance vector as fn of scaling and dimension

+ propSigma = diag(ell[j]/dim^ep, dim)

+ for (i in 1:it) {

+ # proposal value

+ Y = X + rmvnorm(1, sigma = propSigma)

+ # for accept/reject U = runif(1)

+ # We will use logarithmic scale to avoid zeroes in

+ # accept/reject step

+ if (log(U) < logpi(Y) - logpi(X)) {

+ X = Y

+ # accept proposal

+ accr[j] = accr[j] + 1

+ }

+ x1list[i] = X[1]

+ }

+ varfact = function(xxx) {

+ 2 * sum(acf(xxx, plot = FALSE, lag.max = 250)$acf) -

+ 1

+ }

+ vfact = varfact(x1list)

+ vlist[j] = vfact

+ }

> accr = accr/it

> vvlist = vlist^-1

> plot(accr, vvlist)
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C.2 Code for Example 2.13

> # This function is based on the M. Bedard's code for Figure

> # 3 in Bed08b.

> GamS <- function(it = 5e+05, dim = 100, ep = 0, n = 50) {

+ # it is the number of iterations for each Monte Carlo sim

+ # ep is the smallest expnt stsfng fntnss of scaling trms

+ # (condition 3.5)

+ # dim is the dimension of the space

+ # in this case, ep = 0, meaning sigma(d)=ell

+ # n is the number of scaling parameters used

+ # ell is vector for values of the squared scaling parameter

+ ell <- 10 + (1:n) * 3

+ # vsd is proposal vsd as fn of ell, dim and ep

+ vsd = ell/dim^ep

+ # a is scale parameter for gamma distribution

+ a <- 5

+ # lamb is the scaling vector

+ lamb <- c(rep(1/sqrt(dim)/5, dim - 2), 1, 1)

+ # ll is number of observations for target & proposal

+ ll <- n * dim

+ # now form the target distribution

+ x <- rgamma(ll, a, rep(lamb, n))

+ xp1 <- x[((0:(n - 1)) * dim) + 1]

+ sx1 <- 0

+ # accr is the vector of accptnce rates

+ accr <- rep(0, n)

+ for (i in 1:(it - 1)) {

+ # initialize the proposals

+ y <- rnorm(ll, mean = x, sd = rep(vsd^0.5, each = dim))

+ # set negative values to zero

+ y[y < 0] <- rep(0, ll)[y < 0]

+ # calculate number of zeroes

+ vv <- cumsum((y == 0) * 1)[(1:n) * dim]

+ # take first order lags

+ vv <- diff(c(0, vv))

+ y <- (rep(vv, each = dim) == 0) * y

+ yl <- y

+ yl[yl == 0] <- x[yl == 0]

+ sum1 <- cumsum(log(yl) - log(x))[(1:n) * dim]

+ sum1 <- diff(c(0, sum1))

+ sumxy <- cumsum(rep(lamb, n) * (yl - x))[(1:n) * dim]

+ sumxy <- diff(c(0, sumxy))

+ alphal <- pmin((a - 1) * sum1 - sumxy, 0) + (vv != 0) *

+ (-10^7)

+ rrl <- log(runif(n))

+ x[rep(rrl, each = dim) < rep(alphal, each = dim)] <- y[rep(rrl,

+ each = dim) < rep(alphal, each = dim)]

+ sx1 <- sx1 + (x[((0:(n - 1)) * dim) + 1] - xp1)^2

+ xp1 <- x[((0:(n - 1)) * dim) + 1]

+ accr <- accr + (rrl < alphal)

+ }

+ aacr <- accr/it

+ plot(accr, dim^ep * sx1/it)
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+ # plot(ell, dim^ep*sx1/it)

+ result = list(ell, accr, dim^ep * sx1/it)

+ return(result)

+ }

Subsequently, one can scan through the returned vectors easily using the following code, which also yields
theoretical curves for the same example:

> ScanGam = function(it = 5e+05, dim = 50, ep = 0, n = 50) {

+ ell = 10 + (1:n) * 3

+ ER = 1/75

+ vsd = ell/dim^ep

+ a = 5

+ # initialize the speed measure

+ esp = 0

+ for (i in (1:it)) {

+ x = rgamma(2 * n, a, 1)

+ y = rnorm(2 * n, x, rep(vsd^0.5, each = 2))

+ eps = matrix(log(dgamma(y, a, 1)/dgamma(x, a, 1)), 2,

+ n)

+ # calculate the ratio

+ eps = (eps[1, ] + eps[2, ] - ell * ER/2)/sqrt(ell * ER)

+ esp = esp + pnorm(eps)

+ }

+ # scan the vectors

+ ell[which.max(2 * ell * esp/it)]

+ OAR = 2 * esp[which.max(2 * ell * esp/it)]/it

+ plot(2 * esp/it, 2 * ell * esp/it, type = "l")

+ result = list(ell, 2 * esp/it, 2 * ell * esp/it, which.max(2 *

+ ell * esp/it), ellhat, OAR)

+ return(result)

+ }
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