
AMCMC: An R interface
for adaptive MCMC

by

Jeffrey S. Rosenthal*

(February 2007)

Abstract. We describe AMCMC, a software package for running adaptive
MCMC algorithms on user-supplied density functions. AMCMC provides the
user with an R interface, which in turn calls C programs for faster computa-
tions. The user can supply the density and functionals either as R objects,
or as auxiliary C files. We describe experiments which illustrate that for fast
performance in high dimensions, it is best that the latter option be used.

1. Introduction.

Since at least the publication of [6], Markov chain Monte Carlo (MCMC) algorithms have

been extremely widely used in statistics. Since many related MCMC algorithms are available,

a major issue is the appropriate choice of algorithm and tuning parameters (e.g. [16]). While

such choices can sometimes be made through human ingenuity, a long-standing goal in

MCMC (see e.g. [10]) is to make such choices, and the application of MCMC, more routine.

One recent development in this direction has been work on adaptive MCMC algorithms,

which get the computer to update tuning parameters and other choices as the algorithm

runs. Naive adaption can destroy ergodicity (e.g. [20]), but carefully designed adaption can

be valid and effective ([11], [2], [3], [17], [18], [1], [9]), and may hold promise for wider

application of MCMC methods in the future.

One limitation of widespread use of adaptive MCMC methods is software. While some

general-purpose MCMC software is available, notably the widely-used BUGS [4], such soft-

ware generally does not take advantage of adaptive techniques. And while it may conceivably

incorporate adaption at some later stage, the main version of BUGS runs only on a propri-

etary operating system [22], and an alternative open-source version [14] may perhaps have

stalled, so the future is unclear on this point.

*Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3. Email:
jeff@math.toronto.edu. Web: http://probability.ca/jeff/ Supported in part by NSERC of Canada.

1

Meanwhile, the statistical software R [15] is now very well developed and widely used,

and it is completely open source. Since R is an interpreted language, it runs somewhat slowly

and is not ideal for running computationally intensive MCMC. However, the C programming

language is freely compiled (usually with [7]), runs very quickly, and can be called from R

using the built-in .C() and .Call() functions. So, it seems reasonable to develop new software

to run MCMC from R, with cross-calls to C.

There have been some previous MCMC packages written for R ([8], [12]), but they do not

use adaptive techniques, and also they require evaluating the target density directly within R

(see Section 4). In this paper, we describe (Section 3) a new software package, AMCMC,

for this purpose. We also consider (Section 4) issues of how best to harness the speed of C

from within R.

2. The Adaptive Metropolis-within-Gibbs Algorithm.

MCMC concerns itself primarily with estimating the expected value of a given functional,

with respect to a given (usually high-dimensional) density function. One way of performing

this estimation is with an adaptive Metropolis-within-Gibbs algorithm ([18], Section 3).

Specifically, for each variable i in turn, the addition of a N(0, σ2
i) random quantity to that

variable is proposed. The proposal is then accepted with the usual Metropolis probability,

min[1, π(new) / π(old)], otherwise it is rejected and variable i remains as it was.

This Metropolis step is performed for each variable in turn, and repeated some fixed

number of times, in each “batch”. At the end of each batch, each of the σ2
i proposal variances

is adapted, i.e. modified by a small amount to better balance the fraction of acceptances

(cf. [16]). This leads to new Metropolis-within-Gibbs algorithms with different, hopefully

better scalings σ2
i .

In runs of dimension as high as 500, this algorithm performed very well [18] when pro-

grammed directly in C. The question is whether such algorithmic success can be combined

with the ease and interactivity of R.

3. The AMCMC Package.

The AMCMC package [21] is written in R and C. It allows a user to specify a target

density function π, and a desired real-valued functional h. The package then estimates the

expected value of that functional with respect to that density function, using the adaptive

Metropolis-within-Gibbs algorithm described above.

2

The package allows for numerous other quantities: the batch length, the number of

batches to be performed, the Markov chain’s initial value, the fraction of initial output to be

discarded as “burn-in”, etc. Each of these quantities can be specified by the user if desired,

or left to its built-in default value if the user prefers. The result is an R function that is easy

to use, but which gives the user significant control if desired.

The package provides an R function, which in turn calls a C program using .Call().

Normally, the C program then it turn makes calls to R to evaluate new density and functional

values whenever needed, similar to other R packages (e.g. [8]). This raises the question of

whether some of C’s speed is being sacrificed by using R for function evaluation.

To deal with this problem, AMCMC also allows the user to optionally specify their own

density and functional directly in C, by modifying a simple auxiliary C file. This does require

that the user specify certain lines of C code, but the amount needed is quite minimal. If

the user chooses to do this, then the R function can be told to do the function evaluation

directly in C, resulting in much faster running speed, as we now discuss.

4. Timing: R versus C.

Since R is an interpreted language, it runs much slower than C in general. So, a common

practice is for R functions to in turn call C programs for computations. One obstacle with

MCMC algorithms is that, even with efficient programming, one new target density value

must be evaluated every time a new proposal is considered, and one new functional value

must be evaluated every time a new state is accepted (after the burn-in period). If those

functions are defined as R objects, then the C program must in turn call R to do the

evaluation (e.g. [8]).

As discussed above, AMCMC provides an optional interface to allow the user to specify

their functions directly in C. The question is, how much speed-up does this provide?

We tested this on the target density for the 20-dimensional statistical model analysed

in [19], based on the models of [5] and [13] for baseball hitting percentage data. The run

involved 1000 different batches, each consisting of 10 updates of each of the 20 different vari-

ables, for a total of 200,000 individual Metropolis steps. Each step required computing both

the functional value (simply the first coordinate squared), and the log target density (a rather

complicated formula involving sums of logs of various normal and gamma distributions). For

consistency, all runs were done with verboselevel = 3.

We ran the AMCMC package on a modern personal Linux computer. In all case the

user interface was in R, and the main algorithm and loops were (of course) in C. However,

3

we tested each of four different configurations: where the density and functional evaluations

are both done in C, where one is done in C and the other in R, and where both are done

in R. For comparison, we also re-programmed the overall algorithm to run purely in R, i.e.

without using the AMCMC package and without any calls to C at all.

We then ran each of these five configurations (only) once, and recorded the resulting

estimates and running times. The results were as follows:

algorithm density functional estimate time (secs)
C C C 0.3931286 2.57
C C R 0.3907571 2.90
C R C 0.3926776 259.81
C R R 0.3926751 260.16
R R R 0.3928319 306

Looking at the table, we see that all configurations computed roughly the same estimate,

close to 0.392. So, that is a nice confirmation that the algorithm is indeed running correctly

and giving accurate answers in all configurations.

However, the running times are vastly different. Interestingly, there is only a modest

speed-up (less than a minute) from running the overall algorithm in C instead of R. And,

there is very small speed-up (about one-third of a second) from computing the functional in C

instead of R. However, there is tremendous speed-up from computing the density function

in C instead of R: over four minutes, or a factor of about 100.

We learn from this that the amount of “overhead” in making function calls to R from C

(as with the functional evaluation) is very small indeed. What affects the running time is the

actual intensive computations: somewhat from the loops, accept/reject, etc. of the overall

algorithm, and especially from the complicated evaluation of the target density function.

Doing these intensive computations in C rather than R results in very large speed-up.

5. Conclusion.

AMCMC appears to be a promising package for applying recent advances in adaptive

MCMC to general target densities, incorporating the speed of C while providing the inter-

activity and convenience of R. However, to achieve excellent speed-up, it is necessary to

use AMCMC’s option of specifying the target density function directly in an auxiliary C

file. It is to be hoped that others will add to AMCMC (which is freely available [21]) and

similar packages, to make adaptive MCMC algorithms more convenient and wide-spread in

the future.

4

More generally, it appears that any packages that wish to combine C’s speed with R’s

convenience would be wise to allow for all intensive computations to (optionally) be done

directly within C.

References

[1] C. Andrieu and Y.F. Atchadé (2005), On the efficiency of adaptive MCMC algorithms.

Preprint.

[2] C. Andrieu and E. Moulines (2003), On the ergodicity properties of some adaptive

Markov Chain Monte Carlo algorithms. Preprint.

[3] Y.F. Atchadé and J.S. Rosenthal (2005), On Adaptive Markov Chain Monte Carlo

Algorithms. Bernoulli 11, 815–828.

[4] The BUGS Project. At: http://www.mrc-bsu.cam.ac.uk/bugs/

[5] B. Efron and C. Morris (1975), Data analysis using Stein’s estimator and its general-

izations. J. Amer. Stat. Assoc., Vol. 70, No. 350, 311-319.

[6] A.E. Gelfand and A.F.M. Smith (1990), Sampling based approaches to calculating

marginal densities. J. Amer. Stat. Assoc. 85, 398–409.

[7] GCC, the GNU Compiler Collection. At: http://gcc.gnu.org/

[8] C.J. Geyer (2005), MCMC R Package. At: http://www.stat.umn.edu/geyer/mcmc/

[9] P. Giordani and R. Kohn (2006), Adaptive independent Metropolis-Hastings by fast

estimation of mixtures of normals. Preprint.

[10] P.J. Green and D.J. Murdoch (1998), Exact sampling for Bayesian inference: towards

general purpose algorithms. In Bayesian Statistics 6, J. M Bernardo et al. (eds.), Oxford

University Press. 301–321

[11] H. Haario, E. Saksman, and J. Tamminen (2005), Componentwise adaptation for high

dimensional MCMC. Comput. Stat. 20, 265–274.

[12] A.D. Martin and K.M. Quinn (2007), MCMCpack. At:

http://mcmcpack.wustl.edu/wiki/index.php/Main Page

5

[13] C. Morris (1983), Parametric empirical Bayes confidence intervals. Scientific Inference,

Data Analysis, and Robustness, 25-50.

[14] OpenBUGS. At: http://mathstat.helsinki.fi/openbugs/

[15] The R Project for Statistical Computing. At: http://www.r-project.org/

[16] G.O. Roberts and J.S. Rosenthal (2001), Optimal scaling for various Metropolis-

Hastings algorithms. Stat. Sci. 16, 351–367.

[17] G.O. Roberts and J.S. Rosenthal (2005), Coupling and Ergodicity of Adaptive MCMC.

Preprint.

[18] G.O. Roberts and J.S. Rosenthal (2006), Examples of Adaptive MCMC. Preprint.

[19] J.S. Rosenthal (1996), Convergence of Gibbs sampler for a model related to James-Stein

estimators. Stat. and Comput. 6, 269–275.

[20] J.S. Rosenthal (2004), Adaptive MCMC Java Applet. At:

http://probability.ca/jeff/java/adapt.html

[21] J.S. Rosenthal (2007), The AMCMC package. At: http://probability.ca/amcmc/

[22] WinBUGS. At: http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

6

