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Part I: DECISION THEORY - 
Concepts and Methods 

 
 

Decision theory as the name would imply is concerned with the process of making 
decisions.  The extension to statistical decision theory includes decision making in the 
presence of statistical knowledge which provides some information where there is 
uncertainty.  The elements of decision theory are quite logical and even perhaps intuitive.  
The classical approach to decision theory facilitates the use of sample information in 
making inferences about the unknown quantities.  Other relevant information includes 
that of the possible consequences which is quantified by loss and the prior information 
which arises from statistical investigation.  The use of Bayesian analysis in statistical 
decision theory is natural.  Their unification provides a foundational framework for 
building and solving decision problems.  The basic ideas of decision theory and of 
decision theoretic methods lend themselves to a variety of applications and computational 
and analytic advances.   
  
This initial part of the report introduces the basic elements in (statistical) decision theory 
and reviews some of the basic concepts of both frequentist statistics and Bayesian 
analysis.  This provides a foundational framework for developing the structure of 
decision problems.  The second section presents the main concepts and key methods 
involved in decision theory.  The last section of Part I extends this to statistical decision 
theory – that is, decision problems with some statistical knowledge about the unknown 
quantities.  This provides a comprehensive overview of the decision theoretic framework. 



Part I: Decision Theory – Concepts and Methods 

 2

Section 1:  An Overview of the Decision Framework: 
Concepts & Preliminaries 

 
Decision theory is concerned with the problem of making decisions.  The term statistical 
decision theory pertains to decision making in the presence of statistical knowledge, by 
shedding light on some of the uncertainties involved in the problem.  For most of this 
report, unless otherwise stated, it may be assumed that these uncertainties can be 
considered to be unknown numerical quantities, denoted by θ.  Decision making under 
uncertainty draws on probability theory and graphical models.  This report and more 
particularly this Part focuses on the methodology and mathematical and statistical 
concepts pertinent to statistical decision theory.  This initial section presents the 
decisional framework and introduces the notation used to model decision problems. 
 
Section 1.1: Rationale 
 
A decision problem in itself is not complicated to comprehend or describe and can be 
simply summarized with a few basic elements.  However, before proceeding any further, 
it is important to note that this report focuses on the rational decision or choice models 
based upon individual rationality.  Models of strategic rationality (small-group behavior) 
or competitive rationality (market behavior) branch into areas of game theory and asset 
pricing theory, respectively. Thus for the purposes of this report, these latter models have 
been neglected as the interest of study is statistical decision theory based on individual 
rationality.   
 
“In a conventional rational choice model, individuals strive to satisfy their preferences for 
the consequences of their actions given their beliefs about events, which are represented 
by utility functions and probability distributions, and interactions among individuals are 
governed by equilibrium conditions” (Nau, 2002[1]).  Decision models lend themselves 
to a decision making process which involves the consideration of the set of possible 
actions from which one must choose, the circumstances that prevail and the consequences 
that result from taking any given action.  The optimal decision is to make a choice in such 
a way as to make the consequences as favorable as possible. 
 
As mentioned above, the uncertainty in decision making which is defined as an unknown 
quantity, θ, describing the combination of “prevailing circumstances and governing 
laws”, is referred to as the state of nature (Lindgren, 1971).  If this state is unknown, it is 
simple to select the action according to the favorable degree of the consequences 
resulting from the various actions and the known state.  However, in many real problems 
and those most pertinent to decision theory, the state of nature is not completely known.  
Since these situations create ambiguity and uncertainty, the consequences and subsequent 
results become complicated. 
 
Decision problems under uncertainty involve “many diverse ingredients” -  loss or gain 
of money, security, satisfaction, etc.,  (Lindgren, 1971).  Some of these “ingredients” can 
be assessed while some may be unknown.  Nevertheless, in order to construct a 
mathematical framework in which to model decision problems, while providing a rational 
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basis for making decisions, a numerical scale is assumed to measure consequences.  
Because monetary gain is often neither an adequate nor accurate measure of 
consequences, the notion of utility is introduced to quantify preferences among various 
prospects which a decision maker may be faced with. 
 
Usually something is known about the state of nature, allowing a consideration of a set of 
states as being admissible (or at least theoretically so), and thereby ruling out many that 
are not.  It is sometimes possible to take measurements or conduct experiments in order 
to gain more information about the state.  A decision process is referred to as “statistical” 
when experiments of chance related to the state of nature are performed.  The results of 
such experiments are called data or observations.  These provide a basis for the selection 
of an action defined as a statistical decision rule. 
 
To summarize, the “ingredients” of a decision problem include (a) a set of available 
actions, (b) a set of admissible states of nature, and (c) a loss associated with each 
combination of a state if nature and action.  When only these make up the elements of a 
decision problem, the decision problem is referred to as the “no-data” or “without 
experimentation” decision problem.  However, if (d) observations from an experiment 
defined by the state of nature are included with (a) to (c), then the decision problem is 
known as a statistical decision problem.  This initial overview of the decision framework 
allows for a clear presentation of the mathematical and statistical concepts, notation and 
structure involved in decision modeling.   
 
Section 1.2 The Basic Elements 
 
The previous section summarized the basic elements of decision problems.  For brevity 
purposes, this section will not repeat the description of the two types of decision models 
and simply state the mathematical structure associated with each element.  It is assumed 
that a decision maker can specify the following basic elements of a decision problem. 
 

1. Action Space: A = {a}. 
 

The single action is denoted by an a, while the set of all possible actions is denoted as A.  
It should be noted that the term actions is used in decision literature instead of decisions.  
However, they can be used somewhat interchangeably.  Thus, a decision maker is to 
select a single action Aa ∈ from a space of all possible actions.   

 
2. State Space: Θ = {θ}. (or Parameter Space) 
 

The decision process is affected by the unknown quantity Θ∈θ  which signifies the state 
of nature.  The set of all possible states of nature is denoted by Θ.  Thus, a decision maker 
perceives that a particular action a results in a corresponding state θ.  

 
3. Consequence: C = {c}. 
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The consequence of choosing a possible action and its state of nature may be multi-
dimensional and can be mathematically stated as Cac ∈),( θ . 

 
4. Loss Function: Θ×∈ Aal ),( θ . 
 

The objectives of a decision maker are described as a real-valued loss function ),( θal , 
which measures the loss (or negative utility) of the consequence ),( θac . 

 
5. Family of Experiments: E = {e}. 
 

Typically experiments are performed to obtain further information about each Θ∈θ .   A 
single experiment is denoted by an e, while the set of all possible experiments is denoted 
as E.  Thus, a decision maker may select a single experiment e from a family of potential 
experiments which can assist in determining the importance of possible actions or 
decisions.   
 

6. Sample Space: X = {x}. 
 

An outcome of a potential experiment Ee ∈ is denoted as Xx ∈ .  The importance of this 
outcome was explained in (3) and hence is not repeated here. However, it should be noted 
that when a statistical investigation (such as an experiment) is performed to obtain 
information about θ, the subsequent observed outcome x is a random variable.  The set of 
all possible outcomes is the sample space while a particular realization of X is denoted as 
x.  Notably, X is a subset of nℜ . 

 
7. Decision Rule: Ax ∈)(δ . 
 

If a decision maker is to observe an outcome X = x and then choose a suitable action 
Ax ∈)(δ , then the result is to use the data to minimize the loss )),(( θδ xl .  Sections 2 and 

3 focus on discussing the appropriate measures of minimization in decision processes.    
 
8. Utility Evaluation: ),,,( ⋅⋅⋅⋅u on Θ××× AXE . 
 

The quantification of a decision maker’s preferences is described by a utility function 
),,,( θaxeu which is assigned to a particular conduct of e, a resulting observed x, 

choosing a particular action a, with a corresponding θ.  The evaluation of the utility 
function u takes into account costs of an experiment as well as consequences of the 
specific action which may be monetary and/or of other forms.  
 
Section 1.3 Probability Measures 

 
Statistical decision theory is based on probability theory and utility theory.  Focusing on 
the former, this sub-section presents the elementary probability theory used in decision 
processes.  The probability distribution of a random variable, such as X, which is 
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dependent on θ, as stated above, is denoted as )(EPθ or )( EXP ∈θ where E is an event.  It 
should also be noted that the random variable X can be assumed to be either continuous 
or discrete.  Although, both cases are described here, the majority of this report focuses 
on the discrete case.  Thus, if X is continuous, then 

 

∫∫ ==
E

X

E
xdFdxxfEP )|()|()( θθθ . 

 
Similarly, is X is discrete, then  

 
∑
∈

=
Ex

xfEP )|()( θθ . 

 
Although, E has been used to describe a family of experiments, an event and will be used 
in the next sub-section to denote expectations, the meaning of E will be clear from the 
context. 

 
For Ee ∈∀ (where e represents an experiment or even an event), a joint probability 
measure )|,(, eP x ⋅⋅θ or simply denoted exP |,θ is assigned and more commonly referred to as 
the possibility space.  This is used to determine other probability measures (Raiffa & 
Schlaifer, 2000): 

 
(i) The marginal measure )(⋅′θP on the state space Θ.  Of course, here the 

assumption is that )(⋅′θP does no depend on e. 
(ii) The conditional measure ),|( θePx ⋅ on the sample space X for a given e and θ. 
(iii) The marginal measure )|( ePx ⋅ on the sample space X for a given e.   
(iv) The conditional measure )|( xP ⋅′′θ on the state space Θ for a given e and x.  The 

condition e is not stated as x is a result of the experiment and hence the 
relevant information is contained in x. 

 
Before concluding this sub-section, it is important to make two remarks.  The first is to 
summarize the three basic methods for assigning the above set of probability measures.  
That is (a) if a joint probability measure is assigned to X×Θ , then the marginal and 
conditional measures on Θ and X can be computed, (b) if a marginal measure (probability 
distribution) is assigned to Θ and the conditional for X, then the joint can be found and 
similarly (c) if a marginal measure (probability distribution) is assigned to X and the 
conditional for Θ, then the joint can be determined.  These elementary “methods” or 
concepts of probability have a more practical importance. 

 
The second remark is simply to clarify that the prime on the probability measure indicates 
a prior probability where as the double prime indicates a posterior probability.  For the 
most part, these notations are redundant but at certain times will help to keep things clear.  
When it is obvious these superscripts will not required. A further discussion of priors is 
provided in Section 1.5. 

 



Part I: Decision Theory – Concepts and Methods 

 6

Section 1.4 Random Variables and Expectations 
 

In many instances, real numbers or n-tuples (of numbers) describe the states of nature {θ) 
and sample outcomes {x}.  In the sections of this report a tilde sign may be used to 
distinguish a random variable or function from a particular value of the function.  For 
example, the random variables x~ andθ~ may be used to define θθθ =),(~ x and xxx =),(~ θ , 
respectively. 

 
Expectations of random variables are almost always considered necessary when dealing 
with decision processes such as loss functions.  The expectation for a given value of θ, is 
defined to be 

 







= ∑
∫

∈Xx

X

(discrete)  ),|()(
s)(continuou  ),|()(

)([ θ
θ

θ xfxh
xfxh

XhE  

 
As before, the superscripts and subscripts on the expectation operator will perform in 
much the same way as for the probability measure.  When necessary, such scripts will be 
minimized when the context is clear.  Thus, with respect to points (i)-(iv) in the previous 
section, the notation for the following expectations is provided below: 

 
(i) θE′ or )~(θE ′ is taken with respect to θP′ . 
(ii) xE |θ′′ is taken with respect to xP |θ′′ . 
(iii) θ,|ezE is taken with respect to θ,|ezP . 
(iv) exE | is taken with respect to exP | . 
 

Section 1.5 Statistical Inference (Classical versus Bayesian) 
 

Statistical inference is considered here within the decision framework.  Both classical and 
Bayesian perspectives are briefly presented to show the varying approaches.  Classical 
statistics uses the sample information to make inferences about the unknown quantity, θ.  
These inferences (within decision theory) are combined with other relevant information 
in order to choose the optimal decision.  These other relevant information/sources include 
the knowledge of the possible consequences of the decisions and prior information which 
was previously mentioned.  The former non-sample information, consequences, can be 
quantified by determining the possible loss incurred for each possible decision.  The 
latter, prior information, is the information about θ arising from other relevant sources 
such as past experiences.   

 
Bayesian analysis is the approach which “seeks to utilize prior information” (Berger, 
1985).  This third type of information is best described in terms of a probability 
distribution.  The symbol )(θπ or simply )(θp will be used to represent a prior density of 
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θ.  Similar, to the other definitions, under both the continuous and discrete cases, the prior 
probability distributions can be written as 

 







==∈ ∑
∫

∫
∈E

E

E

d
dFEP

θ

π

θπ
θθπ

θθ (discrete) ),(
s)(continuou ),()(

)()(  

 
The uses of prior probabilities are discussed in the proceeding sections.  Both the non-
Bayes and Bayesian decision theory are discussed in this report. 

 
Section 1.6: Convex Sets 
 
Various concepts presented throughout this report make use of the concepts of convexity 
and concavity; hence, the required definitions and properties are summarized below. 
 
Definition: 
 
A linear combination of the form 21 )1( xx αα −+  with 10 ≤≤ α  is called a convex 
combination of 1x and 2x . (Lindgren, 1971)  If 1x and 2x in Ω , then it can be said that Ω  
is convex if the line segment between any two points in Ω  is a subset of Ω . (Berger, 
1985). 
 
This definition simply suggests that the set of all combinations of two given points is 
precisely the set of points which make up the line segments jointing these two points.  It 
may be conceived that the values α  and )1( α− which fall between 0 and 1 may be 
interpreted as probabilities.  A convex combination of two points then becomes a 
combination of probabilities.   
 
Definition: 
 
If ,...},{ 21 xx is a sequence of points in mR , and 10 ≤≤ α are numbers such that 

∑∞

=
=

1
1

i iα , then∑∞

=1i ii xα (and finite) is called a convex combination.  The convex hull 
of a set Ω  is the set of all points which are convex combinations of points in Ω .  
(Berger, 1985). 
 
Figure 1-1: 

 

 
 

Ω1 Ω2
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The set 1Ω is convex while the 2Ω is not, for the figure above.  So a convex hull is a set 
with no holes in its interior and no indentations on its exterior—e.g. an egg is convex, 
while a doughnut or a banana or a golf ball is not.  Formally, X is a convex set if every 
line segment connecting two distinct points in X is wholly contained in X, and it is strictly 
convex if the interior points of such a line segment are in the strict interior of X. Thus, a 
strictly convex set has no flat sides or edges: its exterior consists only of curved surfaces 
that are bowed outwards. A sphere is strictly convex, while a cube is convex but not 
strictly convex. (Nau, 2000). 
 
Convex sets play a central role in the geometric representation of preferences (utility 
theory) and choices (statistical decision theory), as will be shown. 
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Section 2:  “Non-statistical” Decision Processes 
 

Statistical decision problems include data or observations on the unknown quantity, θ, 
(also referred to as the state of nature) which may be used to choose a more optimal 
decision.  One approach to handling such problems, is to consider the non-statistical 
approach.  Simply, this excludes the data available on the state of nature.  This is reduces 
the problem to a simpler one.  The basic elements or “ingredients” of this no-data 
problem were presented in the previous section. 
 
In simple decision problems, the most important elements are the state space {θ}, the 
action space {a} and the loss function ),( al θ .   These aspects form the theoretical 
analysis of decision making.  The state space Θ and the action space A are both finite – 
i.e. “there are only finitely many actions [states]”.  The loss incurred is assumed to be 
measured in negative utility units where utility is defined by a function defining the 
prospects of a decision maker.  In this instance, however unrealistic, we assume that the 
loss function is known.  These concepts will be defined in the proceeding section within 
the no-data decision problem constructs. 
 
Section 2.1 The Set of Randomized  Actions 
 
A simple way to explain the general theory of decision making is to consider a typical 
coin toss.  This introduces an extraneous random device which is useful in providing 
decision rules that under some criteria are better than those that use only the given, 
nonrandom actions (Lindgren, 1971).  In general, a random device (such as a coin 
(ordinary or biased)) is an experiment of chance having as many possible outcomes as 
there are actions from which to choose; each outcome is associated with an action, and 
when a particular outcome is observed, the corresponding action is taken. 
 
The use of a random device to select an action from the set of possible actions is called a 
randomized or mixed action.  Choosing a randomized action from among all possible 
actions amounts to selecting a random device from among all random devices that could 
be used to determine the action actually taken; and further selecting a set of probabilities 
for the various actions.  This leads to the following definition of a random action. 
 
Definition: 
 
A randomized action, for a problem with action space consisting of actions a1, a2,…, ak, 
is a probability vector (p1, p2,…, pk), that is a sequence of nonnegative numbers pi whose 
sum is 1. 
 
To summarize, consider constructing an experiment of chance producing outcomes z1, 
z2,…, zk with probabilities p1, p2,…, pk assigned, respectively.  If the outcome of the 
experiment performed is z1 then action a1 is taken.  To distinguish between pure (or 
original) actions a1, a2,…, ak and randomized actions, probability vectors are used to 
define the latter type.  A singular probability vector can be used to determine a pure 
action.  For instance, the action a2 can be equivalently written as the probability vector 
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(0,1,0,…0) that assigns all of the probability mass to action  a2.  Thus, pure actions 
constitute a subset of the randomized actions. 
 
Section 2.2 The Loss Function 
 
The use of a randomized action in a decision problem with a given loss function 
inevitably sets the loss to be a random variable, for each state of nature.  The most natural 
expected loss to consider when making a decision involves the uncertainty in θ.  Thus, 
taking the expected value of the random variable (θ or ),( al θ ) measures the consequence 
of employing a given randomized action (when nature is in a given state).  In particular, if 
the loss of a function ),( al θ and the randomized action (p1, p2,…, pk) is used to choose 
among the actions a1, a2,…, ak, the expected loss is the following weighted sum: 
 

kk palalpal ),(...),(),( 211 θθθ +++ . 
 

Notably, this can be written as taking the integral over all ),( ial θ and pi, for the 
continuous case.  The above definition of expected loss is explained in detail in Chapter 2 
of Berger’s Statistical Decision Theory and Bayesian Analysis (1985).   
 
In a decision problem with m states θ1, θ2,…, θm, there are m L’s corresponding to each 
randomized action.  For the case of k actions, these L’s are the following expected losses: 
 

kkmmm

kk

kk

palpalalEL

palpalalEL
palpalalEL

),(...),()],([

),(...),()],([
),(...),()],([

111

211222

111111

θθθ

θθθ
θθθ

++==

++==
++==

M
 

 
defined by the randomized action (p1, p2,…, pk).  These relations can be written in the 
matrix form 
 










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


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
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
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L
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which suggests the interpretation of the vector of losses (L1, L2,…, Lm) is a point in m-
dimensional space computed as a convex combination of the points 
( ),(),...,,( 1 imi alal θθ ), for i=1,…,k.  The notion of convex sets was introduced in sub-
section 1.6. The latter points are the loss vectors defined by the pure actions while those 
defined by randomized actions are convex combinations of those defined by the pure 
actions (Berger, 1985) and (Lindgren, 1971). 
 
The closing example to this sub-section shows that the set of loss points (L1, L2,…, Lm) 
defined by all possible randomized actions (p1, p2,…, pk) is a convex set in m-
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dimensional space as described above.  It forms a convex polyhedron where the extreme 
points are pure actions, although some pure actions may fall inside the set.  The following 
example demonstrates a two dimensional case – i.e. there are two states of nature. 
 
Example 2-1: 
(Lindgren, 1971) 
 
The following table describes a problem with five possible actions, two states of nature 
and the respective loss function. 
 

 a1     a2     a3     a4     a5 
θ1 
θ2 

2      4      3      5      3 
3      0      3      2      3 

 
The pure actions define the loss vectors (the columns in the table) and the randomized 
actions define the convex set generated by these five actions which is founding the figure 
below.  Note that one action, a3 falls within the convex polyhedron. 
 
Figure 2-1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recall from Section 1.6 that a convex combination of a set of points corresponds to the 
“center of gravity of a system of point masses at those points” where these masses are 
proportional to the weights in the convex combination.  Thus, the randomized action (p1, 
p2,…, pk) yields a point (L1, L2,…, Lm), which is the center of gravity of a system of 
masses with p1 units at a1, p2 units at a2,…, and pk units at ak.  
 
Interpreting randomized actions as centers of gravity helps geometrically interpret the 
state.  For instance, if only p1 and p2 are positive, with no mass at a3,…, ak, then the center 
of gravity (and therefore the point (L1, L2)) must lie on the line segment joining a1 and a2.  
If these actions are represented by extreme points, then such a mixture of just these two 
actions lies on the edge of the convex set of points representing all randomizations 
(Lindgren, 1971).  Thus, for this example, the action a3 results in the same losses as a 

L1

L2

a1

a5

a4

a2

a3
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certain mixture of a1, a2 and a5, or as a mixture involving only a1, a4 and a5,  as well as 
many other mixtures of a1, a2, a4 and a5.  However, it could not be obtained by mixing 
actions a2, a4 and a5. 
 
Section 2.3 Regret 
 
If the state of nature is known then the action which results in minimal lost would be 
taken.  Thus, if it were known that θi were the state of nature, the action a for which 

),( al iθ is smallest should be taken, and the minimum loss 
 

 ),(min alm iAi θ= , 

 
is a loss that could not be avoided with even the best decision.  Suppose, one takes the 
action aj, which does not produce this minimum, and then discovers that nature is indeed 
in state θi, the decision maker would regret not having chosen the action that produces the 
minimum; the amount of loss that could have saved by knowing that state of nature is 
called the regret.  Regret is defined for each state θi and action ai as follows: 
 

),(min),(),( alalar iAjiji θθθ −= . 

 
So for each state of nature, subtract the minimum loss mi from the losses involving that 
state to obtain the regret.   
 
Regret is often referred to as opportunity loss and represents a “thinking” in terms of gain 
rather than loss (Lindgren, 1971).  The gain resulting from taking action a when nature is 
in state θ is the negative of the loss: 
 

),(),( alag θθ =− . 
 

Hence, the minimum loss is the negative of the maximum gain: 
 

),(max),(min agal
AA

θθ −=  

 
and the regret can be re-expressed in terms of gain as follows: 
 

),(),(max),(min),(),( jiiAiAjiji agagalalar θθθθθ −=−=− . 

 
This represents the maximum that could have been gained if the state of nature had been 
known, minus the amount that actually was gained by taking action aj. 
 
Example 2-1: (cont’d.) 
(Lindgren, 1971) 
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Recall the example presented in the previous sub-section.  The table has been replicated 
below with the addition of another column representing the minimum loss over all five 
actions.  The regret table is provided below and computed by subtracting the minimum 
loss from each of the losses in their respective rows. 
 

 a1     a2     a3     a4     a5 ),(min al
A

θ  

θ1 
θ2 

2      4      3      5      3 
3      0      3      2      3 

2 
0 

 
 a1     a2     a3     a4     a5 
θ1 
θ2 

0      2      1      3      1 
3      0      3      2      3 

 
There is at least one zero in each state and the remaining entries are positive in the regret 
table.  Geometrically, the objective or effect is to translate the set of points so that at least 
one action is on each axis.  This is demonstrated in the figure below. 
 
Figure 2-2: 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Notice that the whole convex set of randomized actions shifts along with the five pure 
actions.  This is generally the case because “the amount subtracted from each loss is 
independent of the action a, upon which a probability distribution is imposed in a mixed 
action” (Lindgren, 1971): 
 

iiiAiii mLalalEarER −≡−== ),(min)],([)],([ θθθ . 

 
Question: Would it make any difference, in studying a decision problem, if one used 
regret instead of loss?  In some instances, the regret may be more painful then the losses, 
depending on the role of the decision maker and his or her stakes.  The classical treatment 
of statistical problems in statistical decision theory, usually results in assuming a loss 
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L2

a1

a5
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function that is already a regret function; however this is not always the case and leads to 
a discussion in cases where it does make a difference.    
 
Section 2.4 The Minimax Principle 
 
Decision problems present a difficulty in determining the best decision because an action 
that is best under one state of nature is not necessarily the best under the other states of 
nature.  Although, various schemes have been proposed - decision principles that lead to 
the selection of one or more actions as “best” according to the principle used – none is 
universally accepted.  (See Berger, 1985 §1.5.)  
 
By linearly ordering the available actions, assigning “values” to each action according to 
its desirability is a frequentist principle.  The minimax principle places a value on each 
action according to the worst that can happen with that action.  For each action a, the 
maximum loss over the various possible states of nature: 
 

),(max)( alaM θ
Θ

= , 

 
is determined and provides an ordering among the possible actions  (Lindgren, 1971 and 
French & Insua, 2000).  Taking the action a for which the maximum loss M(a) is a 
minimum lends itself to the name minimax.   
 
Berger states the same principle within the context of a decision rule.  If ∆∈δ is a 
randomized rule then the quantity ),(sup δθ

θ
R

Θ∈
represents the worst that could happen in 

the decision δ is used.  Furthermore, the decision rule 1δ is preferred to a rule 2δ if 
 

),(sup),(sup 21 δθδθ
θθ

RR
Θ∈Θ∈

< . 

 
Similarly, a minimax decision rule is a minimax decision rule if it minimizes 

),(sup δθ
θ

R
Θ∈

among all randomized rules in ∆. 

 
Example 2-1: (cont’d.)  
(Lindgren, 1971) 
 
Again the loss table is repeated below with the addition a row stating the maximum loss 
for the various actions.  The smallest maximum loss is determined by action a1 to be 1.   
 

 a1     a2     a3     a4     a5 
θ1 
θ2 

2      4      3      5      3 
3      0      3      2      3 

),(max al θ
Θ

 3      4      3      5      5 
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The table of regrets is produced below and shows different results then that of the 
maximum loss table. The table shows that the minimum maximum regret is determined 
by action a2. 
 

 a1     a2     a3     a4     a5 
θ1 
θ2 

2      4      3      5      3 
3      0      3      2      3 

),(max al θ
Θ

 3      2      3      3      5 

 
Recall the question posed at the end of the last sub-section: 
 

Question: Would it make any difference, in studying a decision problem, if 
one used regret instead of loss? 

 
A graphical approach of determining the minimax point-which is feasible when there are 
two states of nature is a useful in approaching the previously stated question.  For a given 
action a with losses ),( 21 LL  under ),( 21 θθ , respectively, the maximum of these losses is 
the first co-ordinate if the point lies below the bisector of the first quadrant while if the 
point lies above that bisector, or 45˚ line, the maximum loss is the second co-ordinate L2.  
If two points lie above the bisector, the lower one has the smaller maximum; and if two 
points both lie below it, the left-most point has the smaller maximum.  This approach can 
be generalized to many states, but becomes more messy in deciphering all the 
combinations.   
 
The graphical approach to the minimax action is simply that the minimax process is 
related to the location of the origin of the co-ordinate system, and that moving the action 
points relative to the co-ordinate system can alter the process of finding the minimax 
point.  Of course, in some instances, the minimax loss action and the minimax regret 
action will not differ. 
 
To determine the minimax action among the set of all randomized actions is generally 
more complicated, because instead of choosing an action from a finite set of actions one 
must choose a probability vector from a set of possible probability vectors that is infinite 
in number (even if the set of actions is finite).  There are two cases that can be considered 
for brevity sake at this point - when there are just two states of nature, and when there are 
just two actions.  When there are just two states of nature, a graphical solution to the 
problem of determining a minimax mixed action can be carried out by representing the 
randomized actions in terms of ),( 21 LL  and ),( 21 RR  .   This can be shown by returning 
to the example. 
 
Example 2-1: (cont’d.)  
(Lindgren, 1971) 
 
Continuing with the same example and looking at the figure below, it is clear that this 
point (where the bisector meets the convex polyhedron) lies on the segment joining the 
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points representing a1 and a2, and so represents a mixture involving only those two 
actions. The point (x,y) in question is a convex combination of a1 and a2: 
 









−+








=








0
4

)1(
3
2

pp
y
x

. 

 
Moreover, it is the point on that line segment with equal co-ordinates: 
 

)1(03)1(42 ppyxpp −+===−+ , 

and equating these two functions of p yields 
5
4

=p .   

Figure 2-3: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The minimax action therefore puts 
5
4  of the total probability (1) at a1, 5

1 at a2, and none 

at any other action, producing the probability vector )0,0,0,
5
1,

5
4( .  The minimax loss, 

that is, the smallest maximum expected loss, is the value obtained by setting 
5
4

=p , 

namely, 
5

123 =p .  The point on the graph representing the minimax actions is thus 

(
5

12,
5

12 ).  Notice that this minimax expected loss is actually less that the minimum 

maximum loss achieved when only pure actions are admitted, 3, as determined in the 
“earlier example” presented in the previous section. 
 
The case of two action is discussed only briefly as it can be determined in a similar 
fashion as above.  The randomized actions are vectors of the form (p, 1 - p), defined by a 
single variable p.  The expected losses under the various states of nature can be computed 

L1

L2

a1

a5

a4

a2

a3
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as functions of p, and from this one can determine (at least graphically) the function 
)],([max alE θ

Θ
.  The minimum point of the latter function then defines the minimax 

action.  See both Berger (1985) and Lindgren (1971) for examples and further discussion. 
 
Section 2.5 Bayes Solutions 
 
The frequentist approach has considered the states of nature to be fixed.  In contrast, 
considering concept of randomness for the state of nature is the Bayes decision principle.  
This stance considers nature as random or not, nevertheless, it is rational to incorporate 
into the decision making process one’s prior “hunches, convictions, or information about 
the state of nature-and how “likely” (whatever that means) the various states of nature are 
to be governing the situation” (Lindgren, 1971).  This is accomplished by weighting the 
states and ordering the actions to permit the selection of a “best” action.  Thus, if a large 
loss can occur for a given action when nature is in a state that the decision maker feels is 
highly unlikely, the extreme loss is minimized slightly by the state of nature that would 
have produced it.  
 
The role of prior probabilities was briefly introduced in Section 1 and will be expanded 
upon here.  In a general decision problem, a probability weight )(θg 1is assigned to each 
state of nature θ, where these assigned weights are nonnegative and add up to 1.  Such a 
set of probabilities or weights is called a prior distribution for θ.  Given the distribution 

)(θg , the loss incurred for a given action a is a random variable, with expected value 
 

∑=
i

ii algaB ),()()( θθ . 

This is referred to as the Bayes loss corresponding to action a (Lindgren, 1971).  The 
Bayes action is then defined to be the action a that minimizes the Bayes loss B(a).  That 
is, the computation of the expected loss according to a given prior distribution provides a 
means of arranging or ordering the available actions on a scale (namely, B(a)) such that 
the action farthest to the left on that scale is the most desirable, and is to be taken. 
 
When randomized actions are considered, a Bayes loss can be defined as the expectation 
with respect to a given prior distribution of the expected loss (with respect to the 
randomized action): For a randomized action p = ),...,,( 21 kppp , which assigns 
probability pi to action ai, the expected loss for a given state θ is 
 

j
j

j palalE ∑= ),()],([ θθ , 

 
and the Bayes loss is obtained by averaging these (for the various θ’s) with respect to 

)(θg : 

                                                 
1 This notation is used so as to diffuse any confusion from the probability vectors assigned to each action. 
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∑ ∑ ∑








==
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jjiiii palgalEgB ),()()],([)()( θθθθp . 

Since this Bayes loss is a function of ),...,,( 21 kppp , or k – 1 variables (pk is determined 
as soon as 121 ,...,, −kppp are specified), the problem of determining the minimum Bayes 
loss is that of minimizing a function of (k – 1) variables. 
 
Example 2-2: 
(Lindgren, 1971) 
 
Consider the following loss table where there are just two states of nature and two 
actions.  The prior probabilities are given and )( 1θg  = w, )( 2θg  = 1- w and the expected 
losses are simply calculated as 
 

.45)1(51)(
66)1(60)(

2

1

wwwaB
wwwaB

−=−+•=
−=−+•=

 

 
 θ1              θ2 B(a) 

a1   
a2   

0            6 
1            5 

6 – 6w 
5 – 4w 

)(θg  w       1 - w  
 

The figure below illustrates that for any w to the left of 0.5, the value of w for which the 
Bayes losses are equal, the smaller Bayes loss is incurred by taking action a2.  For any w 
to the right of 0.5, the Bayes action is a1 as it yields the smaller Bayes loss.  When w = 
0.5 then it is irrelevant whether action a1 or a2 is taken.  Examination of that figure shows 
that for a prior distribution defined by a w in the range 10 ww <≤ the Bayes action is a1; 
for 21 www << it is a2; for 12 ≤< ww  it is a3.  
 
Figure 2-4: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

w

w .5

6

a1

a2

0 1
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The interpretation of small or large w is of course dependent on the problem; however, it 
can be generalized that small w refers to a least favorable outcome where as w refers to a 
more favorable outcome.  In general, the Bayes losses for the various actions will be 
linear functions of w, in a problem with two states of nature and )( 1θg  = w, )( 2θg  = 1- 
w.  These functions of w will be represented by straight lines, and for a given value of w 
the action corresponding to the line whose ordinate at that w is smallest is the Bayes 
action.   
 
Now when considering randomized actions (p1, p2,…, pk) for actions a1,… ak, 
respectively, produces the expected losses  
 

∑ ∑∑ ∑








=








=
j i

jiij
i j

jjii algppalgB ),()(),()()( θθθθp . 

 
Thus, the value of B(p) is a convex combination of the values of the Bayes losses for the 
various pure actions, and is at least as great as the smallest of those values (Lindgren, 
1971).  This means that there is no gain possible in the use of randomized actions; a pure 
action can always be found which yields the minimum Bayes loss.   
 
The result that the Bayes actions are the same using the regret as using loss-is evident for 
the problem involving only two states of nature; however, it is also true in general.  
Substitution of  
 

),(min),(),( alalar ijiji θθθ −=  

 
into the expression for expected regret: 
 

)(),()],([ i
i

jij gararE θθθ ∑=  

yields 

.),(min)()],([

),(min)()(),()],([

∑

∑∑
−=

−=

i
iaij

i
iaii

i
jij

algalE

alggalarE

θθθ

θθθθθ
 

 
Thus, )],([ jarE θ differs from )],([ jalE θ  by a term that does not involve aj.  The action 
that minimizes one must therefore minimize the other.  This is illustrated the following 
example. 
 
Example 2-3: 
(Lindgren, 1971) 
 
 Consider the following decision problem with its corresponding loss table. 
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 a1     a2     a3      
θ1 
θ2 

2      5      3       
3      1      5       

 
The regrets are  
 

1),(),(
2),(),(

22

11

−=
−=

alar
alar

θθ
θθ

 

 
The expected regrets, given prior weights )( 1θg and )( 2θg , are 
 

)]()(2[)(5)(3)],([
)]()(2[)()(5)],([
)]()(2[)(3)(2)],([

21213

21212

21211

θθθθθ
θθθθθ
θθθθθ

ggggarE
ggggarE
ggggarE

+−+=
+−+=
+−+=

 

so that )].()(2[)],([)],([ 21 θθθθ ggalEarE i +−=  
 
Thus the action that minimizes )],([ jarE θ also minimizes )],([ jalE θ by a difference of, 
irrespective of the action. 
 
Section 2.6 Dominance and Admissibility 
 
The concepts of dominance and admissibility are counterparts to decision rules.  Some 
examples have been encountered in which certain of the available actions would never be 
used because there are others for which losses are always less. It is important to state 
some definitions before discussing their importance any further. 
 
Definition: 
 
An action a* (pure or randomized) is said to dominate an action a if the loss incurred by 
using action a is always at least as great as that incurred by using a: 
 

*),,(),( alal θθ ≥  for all θ. 
 

Definition: 
 
An action a* (pure or randomized) is said to dominate strictly an action a if it dominates 
action a and if, in addition, there is some state of nature for which the loss inequality is 
strict: 

*),,(),( alal θθ >  for some θ. 
 

Definition: 
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An action (pure or randomized) is said to be admissible if no other action dominates it 
strictly. 
 
The proceeding paragraph was extracted from Lindgren (1971). 
 
Returning to the case of two states of nature, an action is represented as a point in the (L1, 
L2) plane, where Li is the loss (or expected loss, in the case of a randomized action) 
incurred when that action is taken and θi is the state of nature.  The figure below shows 
points corresponding to actions a*, a1 and a2, for which losses are such that a* dominates 
both a1 and a2.  In the case of a1 the losses are greater than for a* for both states of 
nature; in the case of a2 only the loss for θ1 is strictly greater than with a*.  Incidentally 
the action a* would strictly dominate every action represented by points in the shaded 
quadrant (including the boundaries), with the exception of the point a* itself.  (In this 
kind of representation, an action that dominates action a but does not strictly dominate it 
would be represented by the same point as action a, since the losses would be the same.) 
 
 
Figure 2-5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If an action a* dominates an action a there is no need to leave a in the competition for a 
best action.  If the dominance is not strict, then the losses are the same for a as for a*, and 
a can be dispensed with; if it is strict, then one may actually do worse by using a than by 
using a*.  
 
Before ending this section, we can re-iterate this concept in terms of risk functions and 
decision rules.  In Chapter 5 of French and Insua (2000), “it is stated that risk functions 
induce a natural ordering among decision rule:  a decision rule which performs uniformly 
better in terms of risk than another for each value of θ seems better overall”.  Let )(1 ⋅δ and 

)(2 ⋅δ be two decision rules.  Then )(1 ⋅δ dominates )(2 ⋅δ if ,),,(),( 21 θθδθδ ∀≤ RR  with 
strict inequality.  Similarly, it can be stated that the )(1 ⋅δ and )(2 ⋅δ are equivalent if 

.),,(),( 21 θθδθδ ∀= RR  
 

a1

a* a2

L1

L2
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Definition: 
 
A decision rule (or action) is admissible if there exists no R-better decision rule where R 
is referring to the risk function.  A decision rule is inadmissible is inadmissible if there 
exists an R-better decision rule. 
 
The above definition was provided by Berger (1985).  An action that is not admissible is 
said to be inadmissible, and can be dispensed with because there is an action that does at 
least as well under the circumstances.  On the other hand, an action that is close to the 
lower left boundary of a set of mixed actions (in the L1, L2 representation) may not be so 
bad as the name inadmissible would imply (Lindgren, 1971). That is, there are degrees of 
inadmissibility which the terminology ignores.  In statistical problems, for example, there 
may be solutions that are slightly inadmissible but are preferred for some reason to those 
that dominate-because of computability, for instance. 
 
Section 2.7 Bayesian and Classical Approaches –  

Bayes versus Minimax Principle 
 
This section explores the connections between Bayesian and classical approaches through 
their respective forms of decision principles, namely the Bayes and Minimax Principle.  
The latter is essentially based on the risk function ),( θδR 2which induces a partial 
ordering among the decision rules3, leading to the concept of admissibility.  Since this is 
only a partial ordering, the Bayesian approach introduces a prior distribution which may 
be used to weight the risk function and orders according to Bayes risk (French and Insua, 
2000).  Much of this discussion centers around the concept of admissibility.  From the 
preceding three sub-sections, some possible generalities can be made – (1) Bayes 
solutions are usually admissible; (2) A minimax action is a Bayes action; and (3) 
Admissible actions are Bayes, for some prior distribution (Lindgren, 1971).  These are 
non-formal statements; however they are discussed in detail with proofs in 4.8 (Bayes 
admissibility) and 5.5 (Minimax admissibility and Comparison with Bayes) of Berger 
(1985).  (See also Chapter 6 of French and Insua (2000).   
 
Again a geometric representation of just two states of nature is instructive as the set of all 
possible (randomized) actions is represented in the L1L2 plane as a convex set.  That a 
minimax solution is Bayes for some prior distribution is evident, for the case of two states 
of nature, from the geometrical representation in the L1L2 plane (Lindgren, 1971).  The 
figures below illustrate four cases that may arise.   

                                                 
2 It is important to recall here that risk function is the expected loss (as defined by the Frequentist or 
classical approach).  The risk function is further explored in Section 3. 
3 It is important to note that decisions and actions are sometimes interchangeable, especially in the no-data 
decision problems.  Thus, although the notion of decision rules has been brought in this section it is 
discussed in more detail in the next section. 
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Figure 2.6: 
 

(a) The minimax action occurs on 
the boundary of the set of 
actions, and is a mixture of two 
pure actions; this action would be 
Bayes for the prior distribution 
(w, 1- w) such that – w/(1 – w) is 
equal to the slope of the line 
through the two pure actions 
involved.   

 
 
(b) The minimax action, which is a 

pure action, would be Bayes for 
any prior distribution such that – 
w/(1 – w) is a slope between the 
slopes of the line segments which 
meet in that pure action.   

 
 
 
(c) The prior distribution which 

produces the minimax action as a 
Bayes action corresponds to the 
tangent line at L1 = L2; this kind 
of set of randomized actions 
would only occur if there are 
infinitely many pure actions at 
the outset.   

 
 
(d) The minimax action would be 

any that yields an (L1, L2) on the 
bottom edge of the action set; 
these are Bayes for the prior 
distribution, which assigns 
probability 1 to θ2.   
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Example 2-3: 
(Lindgren, 1971) 
 
Revisiting the problem introduced in Section 2.5 produces the following Bayes losses 
with given prior probabilities )1,( ww − .  The loss table has been repeated for ease. 
 

 a1     a2     a3      
θ1 
θ2 

2      5      3       
3      1      5       

 

.25)1(53)(
41)1(5)(

3)1(32)(

3

2

1

wwwaB
wwwaB
wwwaB

−=−+=
+=−+=

−=−+=
 

 
The graphs of these are shown in figure 2.7 below.  The lowest point of intersection and 

the highest minimum is at 
5
2

=w .  That is, of all the prior distributions that Nature might 

choose, the highest minimum Bayes loss (loss incurred by using the Bayes action) is 

achieved for the prior distribution )
5
3,

5
2( 4.   

Figure 2.7: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The minimax randomized action is easily found (by the graphical procedure described in 

Section 2.4) to be )0,
5
1,

5
4( with losses L1 = L2 = 13/5.  The point on the line through (2, 

3) and (5, 1) with equal co-ordinates: 

                                                 
4 This is said to be a least favorable prior distribution (Lindgren, 1971). 

w

6

0 12/5
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A prior distribution that would yield this randomized action as Bayes action is defined by 
a w such that 

3
2

1
−=

−
−

w
w , 

 
where -2/3 is the slope of the line through (5, 1) and (2, 3).  Notice that this w, which is 

5/2=w , is precisely the w of the least favorable distribution5 determined above.  A 
graphical representation of this has not been shown here but can be achieved in much the 
same manner described in Section 2.4 and 2.5.   
 
 
The Bayes Perspective… 
 
Mathematically the Bayes approach is just postulating a weighting function that provides 
an ordering among the actions; practically, the decision maker is incorporating into that 
weighting function personal preferences about what that unknown state of nature is likely 
to be.  The concept of subjective probability is discussed in Part C on utility theory.  In 
the role of rational decision making, the inclusion of such personal preferences deems 
reasonable.  However, non-Bayesians do criticize this approach due to its view of 
subjectivity.  In defence of this approach, it is not terribly sensitive; therefore, in small 
inaccuracies in specification is not treacherous.  Furthermore, the Bayes solutions are 
usually admissible. 
 
The Minimax Approach… 
 
The minimax approach, on the other hand, is not nearly so easy to defend.  Berger (1985) 
goes on to say that “when considered from a Bayesain viewpoint, it is clear that the 
minimax approach can be unreasonable.  It is pessimistic view - making the assumption 
that the worst will happen.  Although it is frequently admissible (and Bayes for some 
prior distribution), the distribution is least favorable.  A more significant objection is that 
the minimax principle, by considering ),(sup δθ

θ
R , may violate the rationality principles 

(Berger, 1985). 
 
Sometimes a minimax solution can be computed by determining among the Bayes 
solutions one for which the losses under the various states of nature are equal.  That is, if 

),...,(* **
1 kpp=p is a randomized action that is Bayes with respect to some prior )(θg and 

is such that the (expected) loss function 

                                                 
5 The notion of a least favorable distribution giving rise to the minimax action as a Bayes action is general, 
but not trivial to establish.  This idea is discussed more indepthly in sources on game theory which is not 
included in this report. 
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is constant in θ, then p* is minimax.  The development follows (Lindgren, 1971): The 
assumption that p* is Bayes for )(θg means that for any randomized action p, 
 

)()(min*)( ppp BBB
P

≤= . 

 
But since *),( pθL is constant, its mean value with respect to (wrt) the weighting )(θg is 
just that constant value: 
 

*),(*)],([*)( ppp θθ LLEB == . 
 

On the other hand, since B(p) is the expected value of ),( pθL , which cannot exceed the 
maximum value of ),( pθL → ),(max)( pp θ

θ
LB ≤  and it follows for any p that 

 
),(max*),( pp θθ

θ
LL ≤ . 

 
Similarly, the constant *),( pθL cannot exceed the smallest of these maxima 
 

),(maxmin*),( pp θθ
θ

LL
P

≤ , 

 
where the right side of this inequality is the minimax loss. 
 
Since *),( pθL is defined to be constant in θ, it is equal to its maximum value, which in 
turn is greater than or equal to the smallest such maximum: 
 

),(maxmin*),(max*),( ppp θθθ
θθ

LLL
P

≥= . 

 
And then because *),( pθL is neither less than nor greater than the minimax loss, it must 
be equal to it-and this means that p* is a minimax solution, as was asserted.  This can 
also be visually easing with just two states of nature.  Lindgren (1985) has described this 
phenomenon more in depth both algebraically and graphically.  A similar proof can be 
found in Berger (1985) and is discussed in brief in French and Insua (2000). 
 
Before closing this section, I would like to make one note.  Two of three key decision 
rules have been discussed here.  The third, the Invariance Principle, has not been included 
in a theoretical discussion but for completeness is mentioned.  The Invariance Principle, 
as the name would have it imply, basically states that if two problems have identical 
formal structures (sample size, parameter space, densities and loss function), then the 
same decision rule should be used in each problem.  An entire chapter in Berger’s 1985 
book Statistical Decision Theory and Bayesian Analysis is devoted to this principle. 
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Section 3:  “Statistical” Decision Processes 
 

Statistical decision problems include data - meaning “the results of making one or more 
observations on some random quantity that is thought to be intimately related to the state 
of nature in some decision problem” (Lindgren, 1971).  The availability of such data 
provides some illumination in the selection of an action such that the state of nature is not 
completely unknown.  It will be shown that the use of data will define procedures which 
result in an expected loss that is lower than what would be incurred if the data were not 
available.  However, even the availability of data will not avoid completely the kind of 
situation encountered in the no-data case, in which there is no clear-cut criterion for 
rating the various candidate procedures as a basis for choosing one of them as best. 
 
Section 3.1 Data and the State of Nature 
 
To obtain data for use in making decisions an appropriate experiment of chance should be 
performed – one in which the state of nature determines the generation of the data, and so 
the probability distribution for the data depends on that state of nature. 
 
The data of a given problem may consist of a single number (value of a random variable), 
or a sequence of numbers - usually resulting from performing the same experiment 
repeatedly, or sometimes a result or results that are not numerical.  In general, a random 
variable X will be employed to refer to the data, and in the problems considered here X 
will denote either a single random variable, or a sequence of random variables: 
(X1,…,Xn).  In any case X will have certain possible “values” and a probability for each, 
according to the state of nature.  Thus, for each value of x of the random quantity X there 
is a probability 
 

)();( xXPxf == θθ  
 

assigned to that value x by the state of nature θ. (The notation )(EPθ will mean the 
probability of the event E when the state of nature is θ.)6  
 
Section 3.2 Decision Functions 
 
Section 2 introduced the concept of a decision rule within the no-data context.  It’s 
relevance develops in this section as a procedure for using data as an aid to decision 
making involving a rule, or set of instructions, that assigns one of the available actions to 
each possible value of the data X.  Thus, when the pertinent experiment is performed and 
a value of X obtained, say X = x, an action has been assigned by the rule to that value, and 

                                                 
6 It is important to realize that in order for the data to be of value in making a decision, the dependence of 
the probability distribution for X on the state of nature must be known.  That is, );( θxf is assumed to be 
given or known. 
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that action is taken.  A decision rule is a function a = δ(x), and is called a decision 
function, or statistical decision function.  Berger (1985) gives the following definition. 
 
Definition: 
 
A (nonrandomized) decision rule )(xδ is a function from X into A.  (It is always assumed 
that the functions are measureable.)  If X = x is the observed value of the sample 
information, then )(xδ is the action that will be taken.  (Recall for a no-data problem, a 
decision rule is simply an action.)  Two decision rules, )(1 xδ and )(2 xδ , are considered 
equivalent if 1))()(( 21 == XXP δδθ  for all θ. 
 
Question: How many distinct rules are there? If there are just k available actions (a1, 
a2,…, ak), and if the data X can have one of just m possible values (x1, x2,…, xm), then 
there are precisely km

 distinct decision functions that can be specified.  “Of the km
 possible 

decision functions, some are sensible, some are foolish; some ignore the data, and some 
will use it wrongly” (Lindgren, 1971). 
 
Example 3-1: 
(Lindgren, 1971) 
 
Consider the following table with 8 decision rules to between two actions and where the 
observed value X={0,1,2}.  The first decision rule ignores the data as it takes action a2 
regardless; the last decision rule performs in much the same way.  The second decision 
rule suggests taking action a2 is X = 0 or 1. 
 

x δ1      δ1        δ1        δ1        δ1        δ1        δ1        δ1 
0 
1 
2 

a2        a2        a2        a1        a2        a1        a1        a1 
a2        a2        a1        a2        a1        a2        a1        a1 
a2        a1       a2        a2        a1        a1        a2        a1 

 
Decision rules can be randomized in much the way actions are randomized – an 
extraneous random device to choose among the available rules. A randomized decision 
function is then a probability distribution over the set of pure decision functions, 
assigning probability pi to decision function δi(x).  A randomized decision rule can be 
defined alternatively by attaching an outcome xi of the data X (from an experiment), 
which selects one of the actions (a1, a2,…, ak) according to some probability distribution 
(g1, g2,…, gk) (Lindgren, 1971).  This is rule is equivalent to a randomization of pure 
decision functions, when the numbers of actions and possible values of X are finite.  The 
following definition provided by Berger (1985) closes this part.  
 
Definition: 
 
A randomized decision rule ),( ⋅xδ is, for each x, a probability distribution on A, with the 
interpretation that if x is observed, ),( axδ is the probability that ac action in A will be 
chosen.  (Again a randomized decision rule in no-data problems is simply referred to as a 
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randomized action.)  Nonrandomized rules can be considered a special case of 
randomized rules, in that they correspond to the randomized rules which, for each x, so 
that a specific action chosen has probability one.  Let 〉〈δ denote the equivalent 
randomized rule (at this time) for the nonrandomized rule )(xδ given by 
 





∉
∈

==〉〈
.)(if  0
,)(if  1

))((),(
Ax
Ax

xIax A δ
δ

δδ  

 
Section 3.3 The Risk Function 
 
Section 2 first introduced the concept of risk function as that understood by the classical 
approach.  This section defines and explores this concept more explicitly.  Following 
from the previous sub-section, when a given decision function δ(x) is used, the loss 
incurred depends not only on the state of nature that governs it, but also on the value of X 
that is observed.  Since X is random, the loss incurred can be restated as, 
 

))(,( xl δθ , 
 

and is a random variable.  The frequentist decision-theoretic evaluates, for each θ, the 
expected value of loss if such a decision rule δ(x) was used repeatedly with varying X in 
the decision problem.   
 
Definition: 
  
The risk function of a decision rule δ(x) is defined by 
 

))](,([),( xlER δθδθ =  
 

which depends on the state of nature θ and on the decision rule δ.  (Notably, for a no-data 
problem, ),(),( aLR θδθ = ). 
 
Assuming a distribution for X defined by );()( θθ xfxXP == , the risk function would be 
calculated as  

∑=
i

ii xfxlR );())(,(),( θδθδθ . 

Or simply stated, the risk function is the weighted average of the various values of the 
random loss.  Notice that the dependence of risk on the state θ arises because of two 
facts: the loss for a given action depends on θ, and the probability weights used in 
computing the expected loss depends on θ.  
 
Thus, when the decision is based on observed results of an experiment, a decision rule 
(pure or randomized) can be selected from those available, knowing the risk function but 
ignorant of the true state of nature.  The problem of selecting a decision rule knowing the 
risk function is mathematically exactly the same as that of selecting an action in the 
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absence of data, knowing the loss function.  The methods (minimax, Bayes) used in 
attacking the no-data problem can be used for the statistical problem (with data). 
 
In a similar fashion to a loss table, a risk table can be created in much the same way with 
the number of rows representing the possible states of nature and the number of columns 
producing the number of distinct decision rules.  The decision rules are also representable 
graphically as before, where (R1, R2) is plotted, with ),( δθ ii RR = , for each rule δ.  The 
plot in the figure below shows in addition to the pure decision rules the set of randomized 
of the pure rules, as the convex set generated by them (French and Insua, 2000). 
 
Figure 3-1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Several observations can be made (Lindgren, 1971) when using or neglecting the data: 

• The pure decision functions δ1 and δ8, which ignore the data, give points (R1, R2) 
which are exactly the same as the corresponding (L1, L2) for the no-data problem.   

• The straight line joining δ1 and δ8 would consist of randomizations that are exactly 
equivalent (as regards risk) to randomizations of the pure actions a1and a2, 
respectively, in the absence of data.   

• The data provides risk points which clearly dominate these no-data points; in 
particular, δ4, δ6 and δ7 are all better, and indeed δ4 and δ7 are admissible.   

• There are several rules (δ2, δ3 and δ5) which are worse than rules that make no use of 
the data, and consequently make poor use of the data.   

 
The availability of data permits a reduction of losses if the data is used properly and if the 
set of (R1, R2) points representing the various procedures is pulled in toward the zero 
regret point.  In this instance, the data cannot be independent of the state of nature. If the 
distribution of X is independent of θ: 
 

)();()( xkxfxXP === θθ , 

6

5

1

R2

R1

d5

d2
d3

d6
d7

d4

d1

d8
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then the risks for a given rule δ(x) are 
 

.,...,1for         )())(,())](,([ sixkxlXlER
j

jjiii === ∑ δθδθ  

 
In vector form this becomes 

∑
















=

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













j
js

j

j

s xl

xl
xk

R

R

))(,(

))(,(
)(

11

δθ

δθ
MM , 

 
which is a convex combination of the points (L1,…, Ls), where ))(,( 1 ji xlL δθ= , 
corresponding to the m actions )(),...,( 1 mxx δδ .  These losses can be achieved by the 
randomization )(),...,( 1 mxkxk of pure actions )(),...,( 1 mxx δδ , and so the data does not 
extend the convex set of loss points to risk points that are any better (Lindgren, 1971). 
 
Section 3.4 Selecting a Decision Function 
 
Section 2.6 introduced the concepts of dominance and admissibility which are extended 
to the decision function, by defining them in terms of the risk function.  (Although this 
concept was addressed in the previous section, this section discusses more in depthly 
within the constructs of modeling statistical decision problems.  So, a decision function 

*δ dominates a decision function δ if and only if 
 

θδθδθ  allfor    ,),(*),( RR ≤ . 
 

The dominance is strict if the inequality is strict for at least one state of nature.  A 
decision function is admissible if it is not dominated strictly by any other decision 
function.  This was defined by Berger (1985) and stated in Section 2.6.  
 
A decision function that involves an inadmissible action is inadmissible.  If a is not 
admissible, it is dominated by some action a* (Lindgren, 1971): 
 

000  somefor     ,),(*),( θθθ alal < . 
 

If δ(x) assigns the action a to some possible value xj of positive probability under θ0, a 
new rule )(* xδ  is defined to be identical with )(xδ except that *)(* ax j =δ , and then 
 

),();())(,(

);())(*,(*),(

000

000

δθθδθ

θδθδθ

Rxfxl

xfxlR

ii
j

ii
j

=<

=

∑

∑
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(The inequality follows because the losses in the sums are identical except for the term 
where i = j, in which case δ* = a* instead of a, yielding a smaller loss.)  For states other 
than θ0 the inequalities < are replaced by ≤, and the strict dominance of δ by δ* follows. 
 
The Minimax Approach… 
 
The minimax principle provides a numerical measure of decision rules, namely, the 
maximum risk over the various states of nature: 
 

),(max)( δθδ
θ

RM = . 

 
The minimax decision function is the δ that minimizes this maximum risk.   
 
The Bayes Approach… 
 
Assigning prior probability weights )(θg to the various states of nature determines the 
average risk over the states: 
 

∑==
j

jj gRREB )(),()],([)( θδθδθδ . 

This is the Bayes risk.  The preferred decision rule is the decision function δ which 
minimizes this Bayes risk.  
 
Recall the question posed at the last section: 
 

Question: Would it make any difference, in studying a decision problem, if 
one used regret instead of loss? 

 
 
As in the no-data case, it can make a difference - at least, if one considesr a minimax 
approach.  There are two ways to introduce the idea of regret - by applying it to the initial 
loss function, and by applying it to the risk, or expected loss.  These result to the same 
thing and are shown below.  The regret function was defined as  
 

),(min),(),( alalar
aii θθθ −= , 

 
so for each x, 
 

),(min))(,())(,( alxlxr
a

θδθδθ −= ; 

 
and the expected regret is then 
 

),(min))](,([))](,([ alXlEXrE
a

θδθδθ −= . 
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Now for any decision rule δ, 
 

xalxl
a

 allfor     ),,(min))(,( θδθ ≥ , 

 
so that 
 

),(min))](,([ alXlE
a

θδθ ≥  

 
and 

 
),(min),(min))](,([min alRXlE

a
θδθδθ

δδ
≥= . 

 
But if a* is the action that gives the minimum ),( al θ , and one considers the decision rule 

*)(* ax ≡δ , then  
 

),(min*),(*)],([*),(),(min alalalERR
a

θθθδθδθ
δ

===≤  (Lindgren, 1971). 

 
Since the minimum regret over all rules δ is neither > nor < the minimum loss over all 
actions a, these must be equal.  Therefore, the expected regret is the same as the 
“regretized” risk and is given as ),(min),())](,([ δθδθδθ

δ
RRXrE −= . 

 
Example 3-1: (cont’d) 
(Lindgren, 1971) 
 
Recall this example with the updated table of expected regrets.  Shown also are the 
maximum risks and the Bayes risk for the corresponding prior probabilities )(θg . 
  

)(θg  δ1      δ2        δ3        δ4        δ5        δ6        δ7        δ8 
.8 
.2 

1       .9      .7      .4     .6     .3     .1       0 
0       .5      .4      .1     .9     .6     .5      1 

M(δ) 
B(δ) 

1       .9      .7      .4     .9     .6     .5       1 
.8     .82    .64     .34    .66   .36    .18    .2 

 
Suppose we now from graphically analyzing this problem that the minimax mixed 
decision rule is a mixture decision rules 4 and 7 and can be computed as 
 









−+








5.
1.

)1(
1.
4.

pp  

 
which gives 
 

.5.5.1.1.1.4. pppp −+=−+  
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Thus, 7/4=p  and the minimum maximum risk is computed by substituting the value for 
p back in the equation above and obtaining the value 19/70.  The Bayes approach works 
in much the same way, except that the prior distribution would be utilized. 
 
Section 3.5: The Posterior Distribution 
 
For completeness, a brief description of the posterior distribution is provided here within 
the decision model framework.  Some of the concepts or relationships between 
conditional, marginal and joint were addressed in Section 1 on probability measures.   
 
Let X represent data with possible values kxx ,...,1 and let Θ denote the state of nature, 
with possible values mθθ ,...,1 .  Assume that the distributions of X under the various states 
of nature are given: 
 

)|()|( jiji xXPxf θθ =Θ== , 
 

as well as the prior distribution for Θ: 
 

)()( jj Pg θθ =Θ= . 
 

From these the joint probabilities ),( jixp θ : 
 

)()|(),( jjiji gxfxp θθθ = , 
 

and the marginal probabilities for X: 
 

)()|()( j
j

jii gxfxp θθ∑=  

can be constructed.  The conditional probabilities for Θ given X=xi are 
 

∑
==

j
jji

jji

i

ji
ij gxf

gxf
xp

xp
xh

)()|(
)()|(

)(
),(

)|(
θθ

θθθ
θ . 

This relation is essentially Bayes theorem.  The function )|( ij xh θ is the posterior 
probability function for Θ, corresponding to the given prior, )(θg . 
 
There are 2 notes to make before closing this section (Lindgren, 1971). 
1. When the distribution of the data X is unrelated to the state of nature (that is, is the 
same for all states), then the posterior probabilities are equal to the prior probabilities.  
Thus, if )()|( ii xkxf ≡θ , 

)(
)(

)()|(
)|( θ

θθ
θ g

xk
gxf

xh
i

i
i == . 
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So the observation X does not alter the odds on the various states of nature from what 
they were before the observation. 
 
2. If a prior belief is sufficiently strong, observations will not alter it.  Thus if 

0)( and 1*)( == θθ gg  for any other θ, then 
 

∑ ==
i

ii xfgxfxk *);|()()|()( θθθ  

 
and then provided ,0*)|( ≠θxf  
 



 =

==
.other any for    ,0

*,0 if   ,1
*)|(

)()|()|(
θ

θ
θ

θθθ
xf

gxfxh  

 
Section 3.6 Successive Observations 
 
This is adapted from Lindgren (1971) and will be discussed further in the Part on 
Sequential Statistical Decision Theory. 
 
The previous subsection has indicated that an observation can alter prior odds to posterior 
odds.  The concern or question arises that if the first posterior distribution were 
considered as if it were a prior, should it result in yet a new posterior distribution?  The 
interest holds as if a posterior distribution is used as a prior distribution with new data, 
the resulting posterior distribution is the same as if one had waited until all the data were 
at hand to use with the original prior distribution for a final posterior distribution. 
 
Suppose that two observations are made, (X, Y), with probability function 
 

)|,()|,( θθ =Θ=== yYxXPyxf . 
 

Expressing conditional probabilities using the defining formulas in terms of joint 
probabilities gives 
 

) and |()|()|,( θθθ =Θ===Θ===Θ== xXyYPxXPyYxXP , 
 

which can be re-written as 
 

),|()|()|,( θθθ xyfxfyxf = . 
 

The posterior probabilities for θ given X=x, and given a prior )(θg are 
 

)(
)()|(

)()|(
)()|()|(1 xk

gxf
gxf

gxfxh
ii

θθ
θθ

θθθ ==
∑

. 
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Using this as a prior probability for θ=Θ together with the new observation Y=y yields 
the posterior probability 
 

.
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1
2

∑

∑

∑

=

=

=

jj

jjj

jj

gyxf
gyxf

xkgxfxyf
xkgxfxyf

xhxyf
xhxyfyxh

θθ
θθ

θθθ
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This is precisely the posterior probability that would be computed based on data (X, Y) 
and the prior )(θg . 
 
Section 3.7 Bayes Actions from Posterior Probabilities 
 
The following discussion is found in Chapter 4 of Lindgren (1971), Chapter 4 of Berger 
(1985), Chapter 6 of French and Insua (2000) and Chapter 3 of Raiffa and Schlaifer 
(2000). 
 
The Bayes decision rule for a given problem, corresponding to a certain prior distribution 
can be found by applying the Bayes principle to the risk table - weighting the various 
states of nature and choosing the decision function )(⋅δ so as to minimize the Bayes risk, 

)(δB .  This function of δ is the expected value of the risk 
 

∑=
i

ii gRB )(),()( θδθδ . 

 
Consider a different formalization. 
 
Step 1:  Recall the expression for ),( δθR as it is computed from the loss function is: 
 

∑=
j

jj xfxlR )|())(,(),( θδθδθ . 

 
Step 2:  Substitute this into )(δB yields 
 

∑∑=
i j

iijji gxfxlB )()}|())(,({)( θθδθδ . 

 
Step 3:  According to Bayes’ theorem, the product )()|( iij gxf θθ can be replaced by the 
product of the conditional probability in which the condition is the value of X, and the 
marginal probability X=xj: 
 



Part I: Decision Theory – Concepts and Methods 

 37

)()|()()|( jjiiij xpxhgxf θθθ = . 
 

This is calculated by summing the joint probabilities for ),( XΘ over θ (which would be 
relevant in determining the posterior probabilities but is not at the moment): 
 

.)()|(

),()(
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∑
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==Θ=
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iij

i
jij

gxf
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θ
 

 
Step 4:  The indicated double summation can be calculated equally well by summing first 
on i and then on j: 
 

),()|())(,(
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where the last expression is obtained by making the substitution from Bayes’ theorem, as 
given above.   
 
Note: The quantity in braces depends on the observed value xi and on the action 
assigned to xi by the decision function used: 
 

)|())(,(),( ji
i

jijh xhxlxL θδθδ ∑= . 

 
It is the average of the losses ))(,( jxl δθ with respect to the posterior probability weight 
which is referred to as the expected posterior loss.   
 
Step 5:  Since )(δB is a weighted sum of expected posterior losses with nonnegative 
weights: 
 

)(),()( j
j

jh xpxLB ∑= δδ , 

 
where Lh is made as small as possible.  So if (for the observed to xi) )( jxδ is taken to be 
the action that minimizes the expected posterior loss Lh, the resulting rule is one that 
minimizes the Bayes risk and is a Bayes procedure (Lindgren, 1971). 
 
To obtain the Bayes action given a particular X, it is not necessary to go through the 
computation of the whole decision rule where the number of decision functions is of a 
higher order than the number of actions. 
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Mathematically, the present approach is a simple process of minimizing a function of the 
actions, namely, the expected posterior loss, by selecting one of those actions; the earlier 
approach is a more complicated process of minimizing a function of the decision rules, 
over all possible decision rules.  In summary, the earlier approach incorporates the data 
into the loss function to obtain the risk function where the original prior is then used on 
those risks to determine the Bayes rule.  The present approach incorporates the data into 
the prior distribution to obtain the posterior distribution, which is used as an educated 
“prior” distribution on the original losses.  The results are equivalent. 
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Part II: UTILITY THEORY - 
Concepts and Methods 

 
 

Decision making under uncertainty places the evaluation of the consequences of possible 
actions at the forefront of the problems concerning decision problems.  There are two 
main paradigms for modeling human uncertainty which has been applied to decision 
making under uncertainty.  One involves probabilistic and statistical reasoning.  Most 
common is the Bayesian perspective coupled with expected utility maximization.  The 
other classification is rule-based deductive systems which are based on axiomatic 
foundations.  Of particular interest is Savages expected utility which involves binary 
relations over functions defined on a measurable space.  In contrast, von Neumann-
Morgenstern’s theory of expected utility maximization under risk derived a basic set of 
axioms from which was deduced the existence of mathematical functions which have 
useful properties in comparing alternative states and preferences.   
 
The first section of this part presents the basic ideas and concepts of utility theory.  It also 
introduces the utility within the context of monetary values.  Sections 5 and 6 focus on 
the development of utility theory based on axiomatic foundations.  The middle section 
focuses on the concept of ordinal utility and shifts to discuss the concept of subjective 
probability.  The last section is a comparative assessment of the various theories that 
were developed, demonstrating the differences and similarities in their conception. 



Part II: Utility Theory - Concepts and Methods 

 40

Section 4: Utility Theory – From Axioms to Functions 
 

An analytic study of a decision problem seems to require the assumption of a 
mathematical model or structure of ordering among the various possible consequences of 
taking an action in the face of a particular state of nature.  In evaluating these 
consequences of possible actions, two major problems are encountered.  The first is that 
the values of the consequences may not have any scale of measurement; and the second is 
that even when there is a clear scale (usually monetary) by which consequences can be 
evaluated, the scale may not reflect the “true” value to the decision maker (Berger, 1985). 
 
In speaking about what one is faced with as the result of making a decision when nature 
is in a certain state, the term consequence has been used, because the situation has been 
brought about in part by the making of the decision.  In discussing utility, it is preferable 
to use the term prospect, without the implication that the future history has necessarily 
been brought upon by a decision-which happens to be the case in decision theory but is 
not generally so in the theory of utility. 
 
A mathematical analysis is simpler, if it is possible to put prospects, not just in order, but 
on a numerical scale-to assign a numerical measure to each prospect.  With reasonable 
assumptions about one’s preferences among the various prospects, such an assignment, or 
function, can be achieved.  The numbers are referred to as utilities and subsequently 
utility theory deals with the development of such numbers.  Thus, utility is a function 
defined on the various prospects (or consequences) with which one is faced, measuring 
the relative desirability of these prospects on a numerical scale.   
 
This section focuses on the basic axioms and general concept of utility while the 
proceeding sections discuss the development of the different “types” of utility within 
individual rational decision making. 
 
Section 4.1: Preference Axioms 
 
Every mathematical structure is based on a set of axioms.  Acceptance of the axioms 
consolidates the acceptance of a whole string of consequences, or theorems, that follow 
from the axioms.  This section presents the underpinning axioms, dealing with 
preferences, which imply the existence of a utility function, providing a numerical scale 
in terms of which the consequences of actions are assumed to be measured. 
 
A notion of preference, or relative desirability, among prospects is assumed.  The 
following notation1 of the basic binary relation represents a weak preference taken to be 
at least as desirable: 
 

21
~

PP f  means:  prospect P1 is at least as desirable as prospect P2. 

                                                 
1 The symbols f and

~
f will occasionally be used in the other direction, with the obvious meaning, namely, 

that the prospect on the small end of the symbol is the less desirable. 
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This relation is weak which assumes properties of completeness and transitivity (French 
and Insua, 2000).  This latter trait – transitivity is stated below as axiom 2 and holds for 
the following two relations as well.  This aforementioned weak order can be used to 
define the equal desirability of two prospects: 
 

21 ~ PP  means: prospect P1 and P2 are equally desirable,  
 

which is defined to mean that both 21
~

PP f and 12
~

PP f  or simply that they are indifferent. 

Strict preference is expressed in the following manner: 
 

21 PP f  means:  prospect P1 is preferred over prospect P2, 
 

which is a condition that (by definition) exists when and only when 21
~

PP f , but P1 and P2 

are not equally desirable. This latter relation ~ is reflexive, that is, 11 ~ PP , if it is 
understood that a prospect is at least as good as itself.  Moreover, by definition it is 
symmetric; that is 21 ~ PP is equivalent to 12 ~ PP  (Lindgren, 1971). 
 
These relations (along with axiom 2 – transitivity) result in the following consequences: 
 

(i) If QP ~ and RQ ~ , then .~ RP  
(ii) If QP

~
f and RQ ~ , then RP

~
f . 

(iii) If QP f and RQ ~ , then RP f . 
(iv) If QP f and RQ f , then RP f . 

 
Before clearly stating the key axioms, it is necessary to address the concept of a 
“mixture” of prospects (Lindgren, 1971).  These are summarized into three aspects. 
 
(1) If ∃  with probability p of a prospect P1 and a probability (1-p) of a prospect P2, 
this is called a random prospect and is considered to be a mixture of the prospects P1 and 
P2 and is denoted by pPP ],[ 21 . 
 
(2) More generally, if one faces P1 with probability p1, P2 with probability p2, and Pk 
with probability pk, this is again a random prospect, called a mixture of P1,…, Pk and 
denoted ),...,(1 1

],...,[
kppkPP . 

 
(3) Similarly, the notation for considering random prospects composed of infinite 
prospects, P1 with probability p1, P2 with probability p2, and so forth, where p1+ p2+…=1 
is ,...),(21 21

,...],[ ppPP . 
 
These have been summarized into the adopted axioms as follows (Lindgren, 1971) & 
(Berger, 1985): 
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AXIOM 1: Given any prospects P and Q, then either 
 

QP f , or QP p , or QP ~ . 
 

Axiom 1 states that, given any two prospects, either one is preferred over the other, or the 
other over the one, or they are equally desirable.   

 
AXIOM 2: If QP

~
f and RQ

~
f then RP

~
f . 

 
Axiom 2 is the axiom of transitivity of the preference relation.  Its assumption precludes a 
type of inconsistency in the mathematical structure that may or may not accurately 
describe one’s preferences.   
 
AXIOM 3: If 21 PP f , then for any probability p and prospect P, it follows that 
 

.],[],[ 21 pp PPPP f  
 

AXIOM 3`: If P1, P2,… and Q1, Q2,… are sequences of prospects such that ii QP f for i 
=1,2,…, then for any set of probabilities )1,...(, 21 =∑ iααα  

.,...],[,...],[ ,...),(21,...),(21 2121 αααα QQPP f  
 

Axiom 3 says that improving one of the prospects in a finite mixture improves the 
mixture, and Axiom 3` extends this notion to countably infinite mixtures.   

 
AXIOM 4: Given three prospects in the order 321 PPP ff , there are mixtures 

pPP ],[ 31 and rPP ],[ 31 such that 
.],[],[ 3312311 PPPPPPP rp ffff  

 
Axiom 4 says when 321 PPP ff  that there is no P1 so wonderful that the slightest chance 
of encountering it instead of P3 is better than any ordinary P2; and that there is no P3 so 
terrible that the slightest chance of encountering it instead of P1 is worse than any 
ordinary P2. 
 
The following consequences are implied (Lindgren, 1971).  For instance 01 PP f , it then 
follows that 
 
(v) .10for   ,],[ 0011 << pPPPP p ff  
 
Since P1 can be thought of as pPP ],[ 11 and pPP ],[ 00 , so that (by Axiom 3) 
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.],[][],[ 00001111 PPPPPPPP ppp == fff 2 
 
 (vi) .10 and  if  ,],[],[ 010101 ≤<≤ pqPPPPPP qp ff  
 
This states that one mixture of two prospects is preferred over another if there is a 
stronger probability of the more desirable prospect in the first mixture.  That is as p 
increases from 0 to 1, the mixture pPP ],[ 01 becomes increasingly more desirable.  A 
further consequence of the axioms is the existence of a utility function which is to follow. 
 
Section 4.2 Coding Intermediate Prospects 
 
The previous sub-section showed that given any two distinct prospects 10  and PP  
with 10 PP p , all mixtures of these prospects lie between them in order of desirability: 
 

.],[ 1010 PPPP p pp  
 

Moreover, the larger p the more desirable is the mixture.  Now, consider that if P is an 
arbitrary prospect between 10  and PP : 
 

,10 PPP pp  
 

then there is some mixture of 10  and PP equivalent to P. 
 
THEOREM: Given any two prospects 10   PandP such that 10 PP p , and given any prospect P 
such that 10 PPP pp , then there is a unique number p between 0 and 1 such that 

pPP ],[ 01 is equivalent to P. (Lindgren, 1971) 
 
This result means that the prospects intermediate to given prospects can be thought of as 
lined up on the scale of numbers from 0 to 1, each being identified with a number on that 
scale.  Equivalent prospects are located at the same point on the scale, and the ordering of 
prospects in desirability corresponds to ordering on the scale – from least desirable to 
more desirable prospects.  A utility function is now easily constructible which provides a 
coding of utilities that gives a numerical representation of preferences-by taking the 
utility of a prospect to be just the number on the scale from 0 to 1.  Thus, if pPPP ],[~ 01 , 
define pPu =)( .  For all prospects between 10  and PP , as well as for 10  and PP themselves 
 

1)(  and  ,0)( 10 == PuPu . 
 

                                                 
2 The equality of two prospects means that they are precisely the same prospect.  
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There are certain properties satisfied by the utility function3, defined for any P between 
given 10  and PP , as the value p in the mixture pPP ],[ 01 which is equivalent to P, as follows: 
 
 Utility Property A: If QP f , then )()( QuPu ≥ . 
 
Property A, for any prospects P and Q between 10  and PP , follows from the fact that 
mixtures of 10  and PP are ordered according to the proportion of P1 in the mixture; thus, if 

pPPP ],[ 01= and qPPQ ],[ 01= , and QP f , then p > q.  But pPu =)( and qQu =)( , which 
yields Property A.   
 
 Utility Property B: ).()1()()],([ QurPruQPu r −+=  
 
Property B, for these P and Q, observe that 
 

)1(010101 ],[]],[,],[[],[ ′−+== rqprrqpr PPPPPPQP  
 

which implies that the utility in rQP ],[ is 
 

).()1()()1()]([ QurPrurqprPQu r −+=−+=  
 

Property B can be expressed in terms of expectation.  For a mixed prospect rQP ],[ , the 
utility is a random variable with possible values )(Pu and )(Qu and corresponding 
probabilities r and 1-r; the expected utility is therefore )()1()( QurPru −+ , which is the 
utility assigned to the random prospect.  The utility of a random prospect is the expected 
value of the utility (Berger, 1985). 
 
Berger (1985) describes a 5 step procedure in constructing a utility function much of 
which is described above.  He also includes in his construction of the utility function the 
fact that any linear function of such a utility would also satisfy Utility Properties A and 
B4, and serve just as well as a utility function.   
 
Defining a function )(Pv on prospects between 10  and PP as follows: 
 

bPauPv += )()( , 
 

for a > 0, has the simple effect of shifting the origin and introducing a scale factor.  The 
utility of 10  and PP in this new scheme would be  
 

baPvbPv +== )(  and  )( 10 . 
 

                                                 
3 Berger, 1985. 
4 French and Insua, 2000. 
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Property A, for )(Pv is satisfied.  To obtain property B compute 
 

).()1()(
])()[1(])([

)]()1()([
)],([)],([

QvrPrv
bQaurbPaur

bQurPrua
bQPauQPv rr

−+=
+−+==

+−+=
+=

 

 
The matter of utilities for prospects that are not between two given prospects 10  and PP has 
been neglected in this report.  This concludes this sub-section. 
  
Section 4.3 Utility for Money 
 
In many practical situations, prospects are expressible in terms of amounts of money.  In 
such cases, it is tempting to treat the number of dollars as utility, or as proportional to 
utility: MMu =)( or kMMu =)( .  Recall the introduction to this section which addressed 
that discounting the possibility that such a utility function overlooks other aspects of 
prospects addresses the issue that this scale of values is not usually a totally adequate 
basis in terms of which to analyze decision problems involving money.  For one thing, 
the function MMu =)( is not a bounded function of M, at least if M is allowed to range 
over all real numbers.  The famous example of the “St. Petersburg Paradox” illustrates 
the difficulty (Lindgren, 1971) and (Berger, 1985): 
 
Example 6-1: 
 
You are offered, for a fee, the following random prospect.  You will be given $2N if in 
repeated tosses of a coin the first heads does not appear until the Nth toss.  What entry fee 
would you be willing to pay? 
 
If money is utility, (that is MMu =)( ), you should be willing to pay any fee up to the 
expected value of the payoff, because your utility would not be decreased by so doing.  It 
can be shown that the probability of obtaining heads for the first time on the Nth toss is 
½N, and accepting this one obtains as the expected payoff: 
 

....111
2
12)(

1
∑

∞

∞=+++=•= N
NpayoffE  

 
(That is, the sum is not a finite number.)  Despite the infinite expected payoff, it is found 
that people generally will not pay even a large but finite entry for the proposed game.   
 
On the other hand, if it is assumed that one’s utility function is  
 





>=
≤

=
,20 if    576,048,12
,20 if                      2

)( 20 M
M

Mu
M
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the expected utility of the payoff is 
 

.21...
4
1

2
120

2
1)2(

2
12]0([

20

1 21

20∑ ∑ =





 +++=+•=

∞

NN
NPayoffuE  

 
The game then has the same utility as $21. 
 
Another aspect of the paradox is that no one could in fact offer the game honestly - no 
one has $240 to pay out in the event of 39 tails in a row before the first heads, for 
example.  On the other hand, if a gambling house with a capital of $1,048,576 agrees to 
pay out the entire amount of N =20 or more, the expected payoff is $21, as the 
computation above also shows. 
 
Even without the paradox arising from permitting one’s capital M to have any finite 
value, as in the example above, most people’s utility for money is not strictly linear; 
although, it may be approximately linear over a restricted range of values of M.  Figure 
4-1 shows a utility function )(Mu plotted against M that is something like most people’s 
utility functions for money. 
 
Figure 4-1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The function shown above is an increasing function of M, corresponding to the 
assumption that the greater the monetary value of a prospect the greater its desirability.  It 
is unusual to encounter a situation in which a greater amount of capital is “worth” less 
than a smaller amount.  The monotonic nature of the curve representing utility for money 
would show that that if one is offered a favorable chance prospect involving money 
repeatedly, the offer should be accepted.  That is, if there is a net monetary gain each 
time, the decision maker’s monetary assets increase - and therefore utility increases. 
 
The expected utility is the appropriate guide for action in a single experiment, rather than 
expected monetary gain, but in a long sequence of experiments the monetary gain is 
relevant.  In dealing with a given problem it is often convenient to focus attention on the 

u(M)

M0
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small portion of the curve representing the function )(Mu . Label the money axis in terms 
of the amount of money to be lost or gained, rather than in terms of total assets.  If M 
denotes an increase or decrease from an initial status M0, )(Mu is really )( 0MMu + .  It 
may also appear as though a person’s utility function is different in different situations 
reflected as different points on the overall utility curve. Figure 4-1 showed that it is 
possible to have (locally) a utility for gain or loss that is concave down in some instances, 
and concave up in others, as shown in the figure below.   
 
Figure 4-2(a): 
 
 
 
 

This would be appropriate if  
the initial capital was near 0. 

 
 
 
Figure 4-2(b): 
 
 
 
 

This would be appropriate if 
the initial capital was large. 

 
 
 
 
Section 4.4 Bets, Fair and Unfair 
 
“A bet is a random or mixed prospect [of the type encountered at the beginning of the 
previous section]:  One starts with an initial capital M0 and according to the outcome an 
experiment of chance ends up either with ML, an amount less than M0, or with MW, an 
amount greater than M0.  In the former case he loses, his capital being reduced by the 
amount LMMy −= 0 , and in the latter case he wins, his capital being increased by the 
amount 0MMx W −= .  It is said he “puts up with” y and his opponent “puts up with” x, 
the winner taking both amounts.”  (Lindgren, 1971) 
 
Definition: 
 
The money odds in such a bet are said to be “y to x” that one wins the bet, or y/x.  The 
probability odds in such a bet are said to be “p to 1-p” that one wins the bet, or p/(1-p), 
where p is the probability that he wins.  A bet is said to be a fair bet of the probability 
odds and the money odds are equal. 

M
0

0
M
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A fair bet can be thought of as the invariant principle addressed in Section 2.  It is “fair” 
in the sense that neither side is favored.  If the bet is fair, then 
 

.0)1(or  ,
1

=−−
−

= pxpy
p

p
x
y  

 
Substitution of LMMy −= 0 and 0MMx W −=  yields 
 

,0)()1)(( 00 =−−−− pMMpMM WL  
or 

.)1( 0MMppM LW =−+  
 

A bet can be redefined as one in which the expected capital after the bet is equal to the 
capital of before the bet.  There is no loss nor gain in capital on the part of the one bettor; 
however, if one player experienced a net expected loss, the bet would not be fair. 
 
When utility is measured in terms of money, that is when kMMu =)( , the indifference 
relation stands – accepting or not accepting the bet are equally desirable: 
 

).(
))1(()()1()()(

00 MukM
MppMkMupMpubetu LWLW

==
−+=−+=

 

 
The equal desirability follows from the fact that taking the bet has the same utility as the 
initial capital and will be re-addressed in the sections concerning the development of 
utility theory. 
 
Consider a general non-linear utility function )(Mu , and a fair bet: 
 

.)1(0 LW MppMM −+=  
The utility of the bet is 
 

).()1()( LWB MupMpuU −+=  
 

In vector notation 
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which is interpreted geometrically to mean that the point ),( 0 BUM is a convex 
combination of the two points ))(,( WW MuM and ))(,( LL MuM .  Thus, the 
point ),( 0 BUM lies on the line segment joining those two points, as shown in the figures 
below.  Two cases are shown when the person is not indifferent to the fair bet. 
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Figure 4-3(a): 
 
 
 
 

This represents a utility function 
and fair bet that is attractive. 

 
 
 
 
 
Figure 4-3(b): 
 
 
 
 

This represents a utility function 
and fair bet that is unattractive. 

 
 
 
 
 
 
 
Consider a bet that is not fair, biased against the person whose interests are of concern 
and in terms of whose utility the situation is being studied; in such a case the expected 
capital after the bet is less than the initial capital: 
 

,)1( 0MMMpMp LW <′=′−+′  
 

where p′ is the probability of winning, and is smaller than the p corresponding to a fair 
bet for the same amounts of money.  The above inequality can be restated in the form 
 

,
1 0
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which says that the money odds are higher than the actual probability odds. 
 
IfU ′ denotes the utility in this unfair bet: 
 

),()1()( LW MupMupU ′−+′=′  
 

M
MwM0ML

U(ML)
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then the point ),( UM ′′ lies on the line segment joining the points ))(,( WW MuM and 
))(,( LL MuM : 
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This is shown in figure 4-4, in which is also plotted M0, the initial capital, which is 
greater than the expected capital after the bet, M ′ .  Decreasing M ′ amounts to 
decreasing p′ , that is, altering the probability odds, and there is a p* corresponding to the 
smallest M* for which the bet would be worth taking: 
 

**)1(* MMpMp LW =−+  
or 

.**
LW

L

MM
MMp

−
−

=  

 
figure 4-4: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It was shown above a case in which the utility is such that a fair bet is advantageous.  In 
much the same manner, it can be shown that a utility is such that a fair bet is not 
advantageous, which can be used to determine how unfair it is.  This is omitted here.  
Nau (2000) discusses the issues surrounding fair bets and utility for money under 
equilibrium in depth.  He characterizes those who are risk averse and those who are not in 
delimitating their actions under varying conditions. 
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Section 5: Development of Utility Theory I – Ordinal Utility 
 

The development of rational choice5 [decision] theory (in its modern form) dates back 50 
years to a trio of publications: von Neumann and Morgenstern’s Theory of Games and 
Economic Behavior (1944/1947), Kenneth Arrow’s Social Choice and Individual Values 
(1951), and Savage’s Foundations of Statistics (1954)6.  These papers laid the foundation 
in the use of mathematical methods such as some of those discussed in Section 6.  These 
include axiomatic methods, concepts of measurable utility and personal probability, and 
tools of general equilibrium theory and game theory.  The focus of the previous section 
was to address some of these aspects while these next two sections discuss the 
development of utility theory.   
 
For brevity purposes, this report only reviews models of individual rationality.  These 
include ordinal utility (for choice under conditions of “certainty”), expected utility (for 
choice under conditions of “risk,” where probabilities for events are objectively 
determined), subjective expected utility and state-preference theory (for choice under 
conditions of “uncertainty,” where probabilities for events are subjectively determined—
or perhaps undetermined), and several kinds of non-expected utility theory. The prior 
presentation of the underpinning preference axioms is revisited briefly in this section, 
providing some background on the concept of “ordinal” utility, prior to the discussions of 
“cardinal” expected utility presented in the next section.   
 
Section 5.1: Ordinal Utility  
 
Returning to the notation for preference relations and the stated axioms, suppose that 
there are only two preferences – for instance, apples and bananas7. A pair of numbers (a, 
b) then represents a possible bundle of commodities (namely a apples and b bananas) that 
a person might possess. Now suppose that this person has preferences among such 
groups of apples and bananas. If those preferences are complete, reflexive, transitive, and 
continuous (see Section 6.1), then there exists a utility function U which represents them, 
so that (a, b) = (a′, b′) if and only if U(a, b) = U(a′, b′).  Recall the notion of indifference.  
Then it can be said that for any group or bundle (a, b) it is possible to find a unique 
number x such that the bundle (x, x), which has equal amounts of every preference, is 
precisely indifferent to (a, b). Let that number x be defined as U(a, b). But this is not the 
only possible way to define a utility function representing the same preferences. For 
example, we could just as well define U(a, b) to be equal to 2x

 or f(x) where f is any 
monotonic (i.e., strictly increasing) function.  This was shown in Section 4.  
 
Definition: 

                                                 
5 Several economics and operations research papers interchange between the terms choice and decision 
theory. 
6 Nau, 2000. 
7 This could be anything.  Lindgren uses beef and chicken in his example.  The idea is to be able to assign a 
numeric value to something which may be numerically measured in terms of preference for a particular 
person.  Much of this theory presented here is crucial to the understanding of consumer theory as found in 
microeconomics. 



Part II: Utility Theory - Concepts and Methods 

 52

 
An ordinal value function ℜ→Av : is a real-valued function which represents –or agrees 
with a weak preference in the following sense: 
 

babvavAba
~

)()(,, f⇔≥∈∀ . 

 
The above definition was provided by French and Insua (2000) and simply states that an 
ordinal value function is a numerical assignment to a set of alternatives which represents 
the person or decision maker’s preference ranking by a numerical ranking.  Thus, the 
utility function representing a decision maker’s preferences is said to be merely an 
ordinal utility because only the ordering property of the utility numbers is meaningful.  
 
Example 5-1: 
 
For example, suppose that U(1, 1) = 1, U(2, 1) = 2, U(1, 2) = 3, and U(2, 2) = 4. In other 
words, referring back to apples and bananas, one apple and one banana yield one unit of 
utility, two apples and one banana yield two units of utility, etc. Then this means only 
that the preference ordering is (2, 2) > (1, 2) > (2, 1) > (1, 1), i.e., two apples and two 
bananas are better than one apple and two bananas which are better than two apples and 
one banana which are better than one apple and one banana. However, it may not be 
concluded that two apples and one banana are “twice as good” as one apple and one 
banana or that one additional apple yields the same “increase in utility” regardless of 
whether you have one banana or two bananas to start with.  
 
Recall that any monotonic transformation of U carries exactly the same preference 
information: if f is a monotonic function, and if V is another utility function defined by 
V(a, b) = f(U(a, b)), then V encodes exactly the same preferences as U. For example, 
letting f(x) = 2x

, we obtain a second utility function satisfying V(1, 1) = 2, V(2, 1) = 4, 
V(1, 2) = 8, and V(2, 2) = 16, which provides a completely equivalent representation of 
this hypothetical decision maker’s preferences.    
 
Ordinal value functions represent preference rankings and nothing more.  There is no 
further information in the numbers used to represent the decision maker’s preferences, 
such as strength of preference.  More formally, the following theorem is given by French 
and Insua (2000). 
 
THEOREM:  For any domain of objects A with a weak order 

~
f , there exists an ordinal 

value function if an only if there exists a countable order dense subset .,vizAB ⊂  B is 
such that BbaaAaa ∈∃∈∀ ,

~
,, 2121 f such that 21

~~
aba ff . 

Thus, any strictly increasing transformation of an ordinal value function also agrees with 
the underlying weak preferences.  Conversely, any two ordinal value functions which 
agree with the same preference relation are related by a strictly increasing transformation.  
Thus, the representation is said to be “unique up to a strictly increasing transformation” 
(French and Insua, 2000). 
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Section 5.2: Marginal Utility 
 
Suppose now that the non-unique ordinal utility function of concern is differentiable—
i.e., it is a smooth function of the numbers of apples and bananas.  Then marginal utility 
(of an additional apple or banana)8 can be defined as the partial derivative of the utility 
function (with respect to apples or bananas), evaluated at the point of interest. Since it 
was previously stated that ordinal utilities are nearly-meaningless numbers, it might be 
plausible to believe that marginal utilities would be nearly-meaningless numbers as well; 
however, the ratios of marginal ordinal utilities are always uniquely defined. The ratios 
of marginal utilities are precisely the marginal rates of substitution between the 
prospects that leave total utility unchanged. Marginal rates of substitution are uniquely 
determined by preferences and as such they are observable, hence any two utility 
functions that represent the same preferences must yield the same ratio of marginal 
utilities between any two preference groups (Nau, 2000).  
 
For example, if the ratio of the marginal utilities of apples to bananas is equal to 1/2 when 
the decision maker already has one apple and one banana means that the person would 
indifferently trade an ε fraction of an additional banana for a 2ε fraction of an additional 
apple. Then the same ratio must be obtained for any other utility function that is a 
monotonic transformation of the original one.  
 
Section 5.3: Indifference Curves 
 
Section 6 illustrated the geometrical perspective of a decision maker’s utility curve.  So, 
to recap, geometrically, an ordinal utility function determines the shape of indifference 
curves in the space of possible prospects or groups of prospects. An indifference curve is 
a set of points representing endowments that all yield the same numerical utility—i.e. that 
are equally preferred.  A decision maker’s indifference curves in 2ℜ space is illustrated in 
figure 5-1.  
 
Figure 5-1: 

Points x and y are on the same 
indifference curve, meaning that 

they yield exactly the same utility 
—i.e., the decision maker is precisely 

indifferent between them—whereas 
point z lies on a “higher” indifference 

curve, so it would be preferred to either 
 x or y.  The slope of a tangent line 

to an indifference curve (such as the 
dotted line through point y) is precisely the marginal rate of substitution between 
prospects at that point. 

                                                 
8 The marginal utility of an apple is not necessarily the increase in utility yielded by an additional whole 
apple—it is the increase in utility yielded by an additional ε fraction of an apple, divided by ε, where ε is 
infinitesimally small. 
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Note 1: A person wishes to climb higher (to another indifference curve) if at all 
possible. Thus, if the person started at point x on the map, he or she would be indifferent 
to walking over to point y, which is at the same elevation, but would prefer to climb 
higher up to point z.  
 
Note 2: While the shapes of the indifference curves are uniquely determined by 
preferences, the relative heights of the utility surface above different indifference curves 
are completely arbitrary.  
 
Note 3: Another utility function that represented the same preferences would have 
to yield the same indifference curves, whose tangent lines would have exactly the same 
slopes at all points, but the corresponding utility surface might otherwise look very 
different.  
 
Section 5.4: Assumptions - Marginal Utility and  

Multi-Attributed Theory 
 
The assumption of diminishing marginal utility was briefly addressed in Section 6.  This 
assumption means that if the holdings of all prospects are fixed except one, then the 
marginal utility of that prospect should decrease as the “endowment” of it increases (Nau, 
2000). The term non-satiation refers to the fact that the marginal utility of every prospect  
always remains positive—i.e., it approaches zero only asymptotically, so that more is 
always better no matter how much you already have. (See Section 4.3.)   
 
Decreasing marginal utility is actually not a strong enough condition for the decision 
maker’s problem to always have a unique solution unless the utility function is also 
additively separable—i.e., of the form U(a,b) = u1(a) + u2(b).  If the number of prospects 
is increased to some n - i.e., there exists prospects a, b, c, d, …, etc., then the additive 
form of utilities refers to the consequences or alternatives to be multi-attributed in nℜ .9   
 
A stronger assumption of strictly convex preferences is usually made, which means that if 
x = z and y = z, then αx+(1-α)y > z for any number α strictly between 0 and 1, where the 
vectors x, y, and z denote general multidimensional preferences. In other words, if x and y 
are both weakly preferred to z, then everything “in between” x and y is strictly preferred 
to z10. In particular, if x and y are indifferent to each other, then αx+(1-α)y is strictly 
preferred to either of them—i.e., the decision maker would prefer to have an average of x 
and y rather than either extreme.  
 
This property captures the intuition of diminishing marginal utility, namely that ½ x 
provides “more than half as much utility” as x, but it does so by referring to observable 
preferences rather than unobservable utility. Lindgren (1971) discusses the case of 
arbitrary prospects more in depth in Chapter 2.3.   

                                                 
9 This is explored in Section 8. 
10 See Section 6.2. 
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If preferences are strictly convex, then any utility function that represents those 
preferences is necessarily strictly quasi-concave, which means that its level sets are 
strictly convex sets, i.e., the set of all y such that U(y) = U(x) is a strictly convex set. The 
strict convexity of the level sets ensures that the decision maker’s problem has a unique 
solution (Nau, 2000)11. 
 
Section 5.5 Subjective Probability 
 
The classical concept of probability was initially introduced (in Part A) as a repeatable 
experiment (of chance) that (at each trial) results in one of a given set of possible 
outcomes.  The probability assigned to each outcome is thought of as an idealization of 
its relative frequency of occurrence in a long sequence of trials.  In the case of a chance 
or random variable, these outcomes are ordinary numbers, characterized by non-
numerical descriptions.  When the outcomes are thought of as prospects with 
corresponding probabilities is termed a random prospect.  However, this frequency 
concept does not always suffice when dealing with θ. 
 
The theory of subjective probability was created to enable one to talk about probabilities 
when the frequency viewpoint does not apply (Berger, 1985).  A quantification of 
“chances” involving one’s beliefs or convictions concerning the occurrences of the event, 
and embodying the odds indicates that the matter of chance in this kind of experiment is 
actually personal.  The term subjective probability is used to refer to probability that 
represents a person’s degree of belief concerning the occurrence of an event.  Although it 
can be assumed that the subjective probability of a given state exists, it is seldom easy to 
determine that probability (Lindgren, 1971).   
 
Nau (2000) states that there are four “best-known” concepts of probability – (1) the 
classical interpretation, (2) the frequentist (or objective) interpretation, (3) the logical (or 
necessary) interpretation, and (4) the subjective interpretation.  Although objective 
probability and subjective probability are different in conception and interpretation, they 
are not different as mathematical entities, in as much as the same basic axioms are 
assumed to hold for both.  Any definitions or theorems concerning objective probabilities 
apply equally well to subjective probabilities.  In particular, the expected value of a 
random variable, defined earlier (in Section 6) for the case of objective probabilities, 
would be defined in exactly the same way if the probabilities are subjective, namely, as 
the weighted sum of the possible values, where the weights are the corresponding 
(subjective probabilities).   
 
This section discussed the role of ordinal utility.  This closing sub-section has introduced 
the topic to be discussed in the following section which more formally develops the 
utility theory within its three comparable forms. 
 
                                                 
11 Nau (2000) discusses this within the constructs of consumer theory as understood in microeconomic 
theory.   He also provides a detail development of utility theory and equilibrium states as they formed in 
utility theory and impacted microeconomic theory. 
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Section 6: Development of Utility Theory  II–  
Comparing Axiomatic Theories 

 
In the last section, ordinal utility functions were discussed according to the marginalist 
view of modeling decision problems under conditions of certainty. This section compares  
the main elements of the theory of individual rational modeling under risk and 
uncertainty.  These were developed in the mid-1900’s: the theories of subjective 
probability (SP), expected utility (EU), and subjective expected utility (SEU). The 
primary sources of information for this section are Nau (2000) and French and Insua 
(2000) and were stated at the beginning of Section 5.  Both provided detailed accounts of 
the developments of all three works and provide citations for the original publications 
and other perspectives on these developments.  
 
Nau discusses these three theories in terms of four attributes or concepts – “axiomatic 
fever”, “primitive preferences”, “concepts of probability”, and “”the independence 
condition for preferences → cardinal utility”.  Of these four concepts, the first two have 
been discussed thoroughly in the Section 4.  The third topic of interest was addressed 
briefly in the closing sub-section of Section 5.   However, this last concept has not been 
addressed this far.  Before beginning a comparative look at the three theories of concern, 
a little insight into the importance of this last topic will be given first. 
 
Section 6.1: The Independence Condition for Preferences →  

Cardinal Utility 
 
Von Neumann and Morgenstern in their aims to establish a “new game-theoretic 
foundation for economics”, decided it was necessary to first axiomatize a concept of 
cardinal measurable utility that could serve as a “single monetary commodity” whose 
expected value the players would seek to maximize through their strategy choices.  
 
Recall from the previous section that decision making under conditions of certainty were 
modeled as ordinal utility functions.  It was discussed that under such conditions, it is 
meaningless to say something like “the utility of y is exactly halfway between the utility 
of x and the utility of z.”  von Neumann and Morgenstern discovered that such a 
statement can be made if the decision maker has preferences not only among definite 
objects such as x, y, and z, but also among probability distributions over those objects.  
 
Thus, it can be said that by definition, a 50-50 gamble between x and z has a utility that is 
exactly halfway between the utility of x and the utility of z, and if y is indifferent to such 
a gamble, then it too has a utility that is exactly halfway between the utility of x and the 
utility of z.  There are several important things to note here (Nau, 2000) and (French and 
Insua, 2000).  
 
Note 1: Additional “psychological” data is required to construct a cardinal utility 
function, namely data about preferences among probability distributions over rewards, 
not just data about preferences among the rewards themselves.  
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Note 2: Those preferences must satisfy an independence condition, namely that x 
is preferred to y if and only if an α chance of x and a 1−α chance of z is preferred to an 
α chance of y and a 1−α chance of z, regardless of the value of z—i.e., a preference x 
over y is independent of common consequences received in other events.12  
 
Note 3: Once probabilities have been introduced into the definition and 
measurement of utilities, a cardinal meaning cannot be attached to the utility values 
except in a context that involves risky choices: if the utility of y is found to lie exactly 
halfway in between the utilities of x and z, then it cannot be conclude that the increase in 
the measure results from the exchange of x for y  to be exactly the same as the increase 
that results from the exchange of y for z. All that can be said is that y is indifferent to a 
50-50 gamble between x and z.  
 
While von Neumann-Morgenstern utility function was being established other 
economists had discovered that a simple behavioral restriction on preferences-under-
certainty implies that a consumer must have an additively-separable utility function, i.e., 
a utility function of the form U(x1, x2, …, x3) = u1(x1) + u2(x2) + … + un(xn), which is 
unique up to an increasing linear transformation and is therefore cardinally measurable 
(Nau, 2000).  
 
Section 6.2: Comparative Axioms of SP, EU, and SEU 
 
Many authors contributed to the development of axiomatic theories of rational decision 
making under uncertainty; however this section concentrates on three main contributions: 
de Finetti’s theory of subjective probability (SP), von Neumann and Morgenstern’s 
theory of expected utility (EU), and Savage’s theory of subjective expected utility (SEU). 
Savage’s theory is essentially a merger of the other two and will be presented in 
conjunction with the works of Anscombe and Aumann. I have tried to be consistent with 
my notation; however various authors present various different aspects and thus, this is an 
amalgamation of work published by (Nau, 2000) and (French and Insua, 2000). 
 
Table 6-1 (appended to the end of section 6) presents the axioms at a glance as a 
comparative means and was adapted from Nau (2000).  This is followed by a discussion 
on some of the key elements of comparison for the three theories of concern.   
 
In all three theories, there is a primitive ordering relation, which I will denote by 

~
f .  In 

SP theory, the objects of comparison are events A, B, etc., which are subsets of some 
grand set of possible states of nature. The ordering relation between events is one of 
comparative likelihood: A = B means that event A is considered “at least as likely” as 
event B.  In EU theory, the objects of comparison are probability distributions f, g, etc., 
over some set of possible consequences, which could consist of amounts of money or 

                                                 
12 The independence condition is implicit in von Neumann and Morgenstern’s axiomatization.  
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other tangible rewards or prizes, or they could simply be elements of some abstract set. 
The ordering relation is one of preference: f = g means that distribution f is “at least as 
preferred” as distribution g.  SEU theory merges the main elements of these two 
frameworks: the objects of comparison are “acts,” which are real or imaginary mappings 
from states of nature to consequences. In other words, an act is an assignment of some 
definite consequence to each state of nature that might obtain. The ordering relation is 
preference, as in EU theory.  
 
Similarity of Axioms Across Theories 
 

1. Assumption that the relation is complete: for any A and B, either A 
~
f  B or B 

~
f  A or both.  Hence, it is always possible to determine at least a weak 

direction of ordering between two alternatives. 
 
2. Assumption that the ordering relation is transitive: i.e., A

~
fB and B

~
fC 

implies A
~
fC.  

 
3. Assumption that the relation has a property called independence or 

cancellation, which means that in determining the order of two elements (such 
as A 

~
f  B), there is some sense in which common events or consequences can 

be ignored on both sides. 
 
A Closer Look at the Independence Condition Across Probability Theories 
 
1. The independence condition for subjective probability states: 
 

CBCABA ∪∪⇔
~~
ff  

 
for any C that is disjoint from both A and B. Simply stated, if the same non-overlapping 
event is joined to two events whose likelihoods are being compared, the balance of 
likelihood is not “tipped”. This condition also implies:  
 

*
~

*
~

CBCACBCA ∪∪⇔∪∪ ff  

 
for any C, C* that are disjoint from both A and B. Thus, a common disjoint event on both 
sides of a likelihood comparison can be replaced by another common disjoint event 
without tipping the balance. 
 
2. The independence condition for expected utility is:  
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.)1(
~

)1(
~

hghfgf αααα −+−+⇔ ff  

 
The expression αf + (1-α)h is an “objective mixture” of the distributions f and h—i.e., an 
α chance of receiving f and a 1-α chance of receiving h, where the chances are 
objectively determined.  Thus, if f and g are objectively mixed with the same other 
distribution h, in exactly the same proportions, the balance of preference is not tipped 
between them. The a decision-tree illustration of this condition is and its interpretation is 
explained in Section 9. 
 
The condition also implies:  
 

*)1(
~

*)1()1(
~

)1( hghfhghf αααααααα −+−+⇔−+−+ ff , 

 
which says that if f is preferred to g when they are both mixed with a common third 
distribution h, then the direction of preference isn’t changed if they are mixed with a 
different common distribution h* instead. In other words, the “common element” h can 
be replaced with any other common element. 
 
3a. The independence condition for subjective expected utility (Savage’s axiom 
P2, otherwise known as the “sure thing principle” as noted by Nau (2000)) states: 
 

*)1(
~

*)1()1(
~

)1( hAAghAAfhAAghAAf −+−+⇔−+−+ ff , 

 
for any non-null event A13. The expression Af + (1−A)h is a “subjective mixture” of f and 
h: it means the consequence specified by act f in every state where event A is true is 
achieved, and the consequence specified by act h in all other states is achieved. Simply, 
this condition says that comparing two acts which happen to agree with each other in 
some states (namely the states in which A is not true), then different agreeing 
consequences in those states can be substituted without tipping the balance. This property 
is necessary to define the concept of a conditional preference between two acts: the 
relation Af + (1−A)h 

~
f  Ag + (1−A)h means that f is preferred to g conditional on event A. 

 
3b. There is also a second kind of independence condition that also appears in SEU 
theory, namely an assumption about the state-independence of preferences for particular 
consequences. This assumption (Savage’s P3) states that if x, y, and z are constant acts 
(acts that yield the same consequence in every state of nature) and A is any non-null 
event, then:  

zAAyyAAxyx )1(
~

)1(
~

−+−+⇔ ff . 

                                                 
13 A non-null event is an event that has non-negligible probability in the sense that at least some preferences 
among acts are affected by the consequences received in that event. 
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Thus, if the consequence x is preferred to the consequence y “for sure,” then it is also 
preferred to y conditional on any event, other things being equal. This assumption is 
needed to help separate utilities from probabilities—i.e., to ensure that relative utilities 
for consequences don’t depend on the states in which they are received.  
 
The important thing to note is that, in all these conditions, the common additive factors 
can be ignored or canceled (e.g., C, h, z, etc.) on opposite sides of the ordering relation. 
This property is necessary in order for the relation to be represented by a probability 
distribution that is additive across mutually exclusive events and/or a utility function that 
is a linear in probability. The additivity or linearity of the preference representation, in 
turn, means that the direction of preference or comparative likelihood between two 
alternatives depends only on the difference between them.  
 
Section 6.3: Subjective Probability versus Expected Utility theory 
 
In de Finetti ‘s 1937 paper, he pointed out that there are actually two equivalent ways to 
axiomatize the theory of subjective probability. One way is in terms of a binary relation 
of comparative likelihood (as illustrated in the table above). The other way is in terms of 
the acceptance of monetary gambles. The two theories are “dual” to each other—i.e., they 
are really the same theory but their working parts are merely labeled and interpreted in 
different ways (Nau, 2000). 
 
Suppose that there is some set S of mutually exclusive, collectively exhaustive states of 
nature. Consider possible distributions of monetary wealth over those states. Thus, if f is 
a vector representing a wealth distribution, then f (s) is the amount of money you get if 
state Ss ∈ occurs.   
 

 
In the presence of the completeness axiom, the independence axiom also works in 
reverse, i.e., .)1(

~
)1(

~
hghfgf αααα −+−+⇔ ff  for all 0 < α < 1.  This is so because 

the completeness axiom requires the decision maker to have a definite direction of 
preference between f and g, and if it were not the same as the direction of preference 
between αf + (1-α)h and αg + (1-α)h, the independence axiom would produce a 
contradiction. 
 

A0: (reflexivity) f 
~
f  f for all f. 

A1: (completeness) for any f and g, either f 
~
f  g or g

~
f  f or both. 

A2: (transitivity) if f 
~
f  g and g 

~
f  h, then f 

~
f  h. 

A3: (strict monotonicity) if f(s) > g(s) for all s, then f f  g (i.e., NOT g 
~
f  f). 

A4: (independence) f 
~
f  g ⇔  αf + (1−α)h 

~
f  αg + (1−α)h for all h and 0 < α < 1. 



Part II: Utility Theory - Concepts and Methods 

 61

This means the decision maker effectively has linear utility for money, because scaling 
both f and g up or down by the same positive factor and/or increasing the decision 
maker’s initial wealth by a constant amount h does not lead to a reversal of preference.  
 
There are many results and important conclusions that follow from this line of thought 
which are discussed in some depth in Nau (2000).  Two of prominence are: The first of 
which is that the direction of preference between any two wealth distributions depends 
only on the difference between them.  And the second of which states that the inequalities 
between different pairs of wealth distributions can be added. 
 
Now consider the following set of axioms.  Consider now the differences between wealth 
distributions as gambles – of which there are two types: acceptable and unacceptable. 
 
 

 
These are the assumptions used by de Finetti in his gamble-based method of 
axiomatizing subjective probability, and (by the arguments above) they are logically 
equivalent to A0−A4 (Nau, 2000).  
 
SP THEOREM: If preferences among wealth distributions over states satisfy A0-A1-A2-
A3- A4 (or equivalently, if acceptable gambles satisfy B0-B1-B2-B3-B4), then there exists 
a unique subjective probability distribution π such that f = g if and only if the expectation 
of the wealth distribution f is greater than or equal to the expectation of distribution g 
according to π (or, equivalently, x is an acceptable $-gamble if and only if its expectation 
is non-negative according to π) . 
 
This is de Finetti’s theorem on subjective probability. 
 
Consider reversing the role of money and probabilities. Let C be some set of 
consequences or prizes, and let f, g, etc., denote probability distributions over those 
prizes. Thus, f(c) now represents the probability of receiving prize c rather than an 
amount of money.  The axioms are as follows: 
 
 

B0: (reflexivity) 0 ∈ G 
B1: (completeness) for any x, either x ∈ G or –x ∈ G or both 
B2: (linearity) if x ∈ G, then αx ∈ G for any α > 0 
B3: (additivity) if x ∈ G and y ∈ G, then x + y∈G 
B4: (coherence) G contains no strictly negative vectors 
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There is a small difference in Axiom 3 which is the strict monotonicity condition is 
weakened to a non-triviality condition.  
 
The direction of preference between any two probability distributions depends only on 
the difference between those two distributions. Note that a difference between two 
probability distributions also a kind of “gamble” in the sense that it changes your risk 
profile—it just does so by shifting the probabilities attached to fixed prizes rather than by 
shifting the amounts of money attached to events with presumably-fixed subjective 
probabilities. Then the followings axioms are developed: 
 
 

 
The continuity/closure (A5/B5) requirement is needed to rule out unbounded utilities as 
well as lexicographic preferences (Nau, 2000) and French and Insua (2000). 
 
Let u denote a utility function for prizes, because f = g if and only if f′u = g′u, and the 
quantities on the left and right of this expression are just the expectations of u under the 
distributions f and g, respectively. The function u is subject to arbitrary positive scaling, 
and a constant can also be added to it without loss of generality (wlog), because this will 
just add the same constant to the expected utility of every probability distribution.  
 
EU THEOREM: The results are summarized as the expected utility theorem.  If 
preferences among probability distributions over consequences satisfy A0-A1-A2-A3-A4 
(or equivalently, acceptable p-gambles satisfy B0-B1-B2-B3-B4), there exists a utility 
function u, unique up to positive affine transformations, such that f = g if and only if the 
expected utility of f is greater than or equal to the expected utility of g (or, equivalently, x 

A0: (reflexivity) f 
~
f  f for all f 

A1: (completeness) for any f and g, either f 
~
f  g or g 

~
f  f or both 

A2: (transitivity) if f 
~
f  g and g 

~
f  h, then f 

~
f  h 

A3: (non-triviality) there exist f* and g* such that f* f  g* (i.e., NOT g* 
~
f  f*) 

A4: (independence) f 
~
f  g ⇔  f + (1-α)h 

~
f g + (1-α)h where 0 < α < 1. 

A5: (continuity): for fixed f, the set of g such that f 
~
f  g is closed, and vice versa 

 

B0: (reflexivity) 0 ∈ G. 
B1: (completeness) for any x, either x ∈ G or –x ∈ G or both. 
B2: (linearity) if x ∈ G, then αx ∈ G for any α > 0. 
B3: (additivity) if x ∈ G and y ∈ G, then x + y∈G. 
B4: (non-triviality) there is at least one non-zero p-gamble not in G. 
B5: (closure): G is closed.  



Part II: Utility Theory - Concepts and Methods 

 63

is an acceptable p-gamble if and only if it yields a non-negative change in expected utility 
according to u). 
 
This is von Neumann-Morgenstern’s theorem on expected utility, and it is 
isomorphic to de Finetti’s theorem on subjective probability, merely with the roles of 
probabilities and payoffs reversed (French and Insua, 2000). 
 
The axioms of subjective probability or expected utility are satisfied if and only if (a) 
your set of acceptable directions of change in (stochastic) wealth is a convex cone, (b) it 
excludes at least some directions—especially those that lead to a sure loss—and (c) it is 
always the same set of directions, no matter what your current distribution.  
 
Section 6.4: Subjective Expected Utility (Anscombe-Aumann & Savage) 
 
Savage combined the features of subjective probability and expected utility theory in 
order to model situations in which the decision maker may attach their own subjective 
probabilities to events and their own subjective utilities to consequences.  Anscombe & 
Aumann followed in much the same way, but had a simpler approach by simply merging 
Savage’s concept of an “act” (a mapping of states to consequences) with von Neumann 
and Morgenstern’s concept (an objective probability distribution over consequences), 
(French and Insua (2000).  
 
Anscombe and Aumann proposed that the objects of choice should be mappings from 
states to objective probability distributions over consequences. Such objects are known 
as “horse lotteries” in the literature. This is supposed to conjure up an image of a horse 
race in which each horse carries a different lottery ticket offering objective probabilities 
of receiving various prizes.  By applying the von Neumann-Morgenstern axioms of 
expected utility to horse lotteries, together with one more assumption, you get 
probabilities and utilities together.  Henceforth, let f, g, and h denote horse lotteries.  
Think of them as vectors with doubly-subscripted elements, where f (c,θ) denotes the 
objective probability that the horse lottery f assigns to consequence c when state θ occurs 
(i.e., when horse s wins the race). Furthermore, let x, y, and z, denote horse lotteries that 
are “constant” in the sense that they yield the same objective probability distribution over 
consequences in every state of the world (i.e., no matter which horse wins).  
 
Let the usual axioms A0-A5 apply to preferences among horse lotteries, together with 
one additional axiom, which is essentially the same as Savage’s P3:  
 

A6: (state-independence): x
~
f y ⇔  Ax + (1−A)z 

~
f  Ay + (1−A)z 

for all constant x, y, z and every event A 
 
Here, Ax + (1−A)z denotes the horse lottery that agrees with x if A occurs and agrees with 
z otherwise, where A is an event (a subset of the states of the world).  
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Note1:  From axioms A0-A5 and some work, the existence of an expected-utility 
vector v such that f = g if and only if f′v = g′v.  The elements of the vector v are 
subscripted the same as those of f and g, with v(c, θ) representing the expected utility of 
consequence c when it is received in state θ. Intuitively, v(c, θ) combines the probability 
of the state with the utility of the consequence.  
 
Note 2: Axiom A6 then implies the further restriction that the expected utilities 
assigned to different consequences in state θ must be proportional to the expected 
utilities assigned to the same consequences in any other state, because it requires 
conditional preferences among objective probability distributions over consequences to 
be the same in all states of the world. It follows that v can be decomposed as v(c, s) = 
p(s)u(c), where p(s) is a (unique!) non-negative probability assigned to state s and u(c) is 
a state-independent utility assigned to consequence c. 
 
Note 3: By convention, the utilities attached to particular consequences are 
assumed to be identical—not merely proportional—in different states, in which case the 
ratio of v(c, θ) to v(c, θ′) can be interpreted as the ratio of the subjective probabilities of 
states θ and θ′.  
 
Note 4: Preferences among Savage acts are represented by a unique probability 
distribution p over states and a state-independent utility function u over consequences, 
with act f preferred to act g if and only if the expected utility of f is greater than or equal 
to the expected utility of g.  This is summarized as the subjective expected utility 
theorem. However, before stating the theorem, one further remark is made which 
addresses  a weakness in this point. 
 
Remark: It should be noted that the uniqueness of the derived probability 
distribution depends on the unstated assumption that consequences are not only similarly 
ordered by preference in every state of the world (which is the content of axiom A6 
above), but they also have the very same numerical utilities in every state. 
 
SEU THEOREM: If preferences among horse lotteries satisfy A0-A1-A2-A3-A4-A5-
A6, then there exists a unique probability distribution p and a state-independent utility 
function u that is unique up to positive affine transformations such that f = g if and only if 
the expected utility of f is greater than or equal to the expected utility of g. 
 
Section 6.5: Incomplete Preferences 
 
The completeness axiom causes some distress.  It forces the notion that a “gamble” must 
be accepted.  So, although, it may be unacceptable according to some axioms – it is still 
acceptable according to the completeness axiom.  The three theorems staed above with 
respect to each theory is restated generally with incomplete preferences. 
 
SP THEOREM with incomplete preferences: If preferences among wealth 
distributions over states satisfy A0-A2-A3-A4-A5, then there exists a convex set P of 
subjective probability distributions such that f = g if and only if the expectation of the 
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wealth distribution f is greater than or equal to the expectation of distribution g for every 
distribution π in P (or, equivalently, x is an acceptable gamble if and only if its 
expectation is non-negative for every distribution π in P) . 
 
Similar results are obtained when you drop the completeness axiom from EU or SEU 
theory: you end up with convex sets of utility functions or expected-utility functions. 
 
EU THEOREM with incomplete preferences: If preferences among probability 
distributions over consequences satisfy A0-A2-A3-A4-A5 (or equivalently, acceptable p-
gambles satisfy B0-B2-B3-B4-B5), there exists a convex set U of utility functions, 
unique up to positive affine transformations,14 such that f 

~
f  g if and only if the expected 

utility of f is greater than or equal to the expected utility of g for every utility function u 
in U (or, equivalently, x is an acceptable p-gamble if and only if it yields a non-negative 
change in expected utility for every utility function u in U ).  See French and Insua 
(2000). 
 
SEU THEOREM with incomplete preferences: If preferences among horse lotteries 
satisfy A0-A2-A3-A4-A5-A6, then there exists a convex set V of expected-utility 
functions, at least one of which can be decomposed as the product of a probability 
distribution p and a state-independent utility function u, such that  f 

~
f  g if and only if the 

expected utility of f is greater than or equal to the expected utility of g for every 
expected-utility function v in V. 
 
 

                                                 
14 Note: Theorem 3 addresses positive affine transformations in Chapter 2 of French and Insua, (2000). 



Part II: Utility Theory – Concepts and Methods 

 66

Table 6.1: Comparing Axioms: SP, EU & SEU 
 de Finetti Von Neumann-Morgenstern Savage 
Theory of… Subjective Probability Expected utility Subjective expected utility 
Features States Abstract set closed under probability 

mixtures 
States, consequences 

Objects of comparison Events A,B,C (sets of states) Probability distributions f,g,h “Acts” f,g,h, (mappings from states to 
consequences); constant acts x,y,z 

Primitive relation 
~
f  Comparative Likelihood Preference Preference 

Reflexivity axiom AA
~
f  ff

~
f  ff

~
f  

Completeness axiom For all A,B: if BA
~
f  

or AB
~
f or both 

For all f,g: if gf
~
f  or fg

~
f or both P1a:For all f,g: if gf

~
f  or fg

~
f or both 

Transitivity axiom For all A,B,C: if BA
~
f  

or CB
~
f then CA

~
f  

For all f,g,h: if gf
~
f  

or hg
~
f then hf

~
f  

P1b: For all f,g,h: 
if gf

~
f or hg

~
f then hf

~
f  

Independence axiom 
(a.k.a. substitution, 
cancellation, 
separability, sure-thing 
principle) 

If ∅=∩=∩ CBCA  
then BA

~
f iff CBCA ∪∪

~
f  

If gf
~
f then 

hghf )1(
~

)1( αααα −+−+ f  

for all α strictly between 0 and 1.  the 
converse is also true as a theorem, 
whence: 

hghf )1(
~

)1( αααα −+−+ f iff 

*)1(
~

*)1( hghf αααα −+−+ f  

P2: For all f,g,h,h*, if event A is non-null, then 
hghf )1(

~
)1( Α−+ΑΑ−+Α f iff 

*)1(
~

*)1( hghf Α−+ΑΑ−+Α f  

State-independent 
utility axiom (“value 
can be purged of 
belief”) 

  P3: For all constant acts x,y,z, if event A is 
non-null, then yx

~
f iff 

zyzx )1()1( Α+ΑΑ+Α f
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zyzx )1(
~

)1( Α−+ΑΑ−+Α f  

Qualitative probability 
axiom (“belief can be 
discovered from 
preference”) 

  P4: For all events A & B and constant acts 
x,y,z*,y* such that yx f  and 

** yx f : yBBxyAAx )1()1( −+−+ f  
iff *)1(**)1(* yBBxyAAx −+−+ f  

Non-triviality axiom ∅Ω ff A for any A that is 
“uncertain” 

gfgf fsuch that   and  ∃  P5: gfgf fsuch that   and  ∃  

Continuity axiom There exists a fair coin If ,hgf ff then 
hghf )1()1( ββαα −+−+ f  

for some α and β strictly between 0 
and 1. 

P6: If gf f , there exists a finite partition of 
the set of states into events{Ai} such that 

hghf iiii Α+Α−Α−+Α )1()1( f  for 
any event Ai in the partition and h. 

Dominance axiom   P7: If )()( θθ gf f one every state θ in event 

A, then hghf )1(
~

)1( Α−+ΑΑ−+Α f  

Conditional 
probability axiom 

If CBCA ⊆⊆  and then 
BACBCA

~
 iff |

~
| ff  
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Part III: SEQUENTIAL STATISTICAL 
DECISION THEORY - 

Introduction to Markov Decision Processes 
 
 

Concepts of decision processes (as those presented in prior sections) have assumed single 
decision making problem.  However, this is rarely the case.  In most instances, decisions 
are “nested in a series of related decisions” (French and Insua, 2000).  This iterates the 
concept that a decision is contingent upon the outcome of previous decisions made.  The 
formulation of sequential problems is most naturally expressed as a recursive equation 
and its solution is credited to Bellman.  Subsequent developments in sequential methods 
have instigated growth in sequential probability leading to a large body of theory on 
Markov decision processes.  This sequential pattern of decision processes is a concept 
that has wide applications to all areas of the sciences, engineering, operations research, 
finance, etc.  Consequently, these developments and their applicability to a wide range of 
problems have propagated the use of sequential methods in subsequent fields.  
 
This final theoretical part of the report focuses on sequential decision processes.  An 
examination of sequential sampling leads to the formulations of decision rules and 
stopping rules in statistical decision theory.  These concepts establish the goal for pre-
posterior and sequential analysis.  Since many problems can be formulated in Markovian 
ways, the latter section focuses on Markov chains and Markov decision processes as an 
extension to the developments in sequential probability.  Emphasis is placed on abstract 
and technical formulations of the concepts and methodology.  This provides a framework 
for formulating sequential decision problems. 
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Section 7: Preposterior and Sequential Methods 
 

The framework for decision problems as introduced in Part I assumed a fixed sample of 
observations for a single decision.  Noted in the framework, decisions lead to 
consequences which may subsequently lead to further decision making.  A natural 
extension of the framework to encompass sequential decision processes establishes new 
concepts for statistical decision theory.  That is the option to experiment or make new 
observations before making a decision – a term which is coined pre-posterior analysis.  
With a goal to minimize cost, sampling is the principle issue in sequential statistical 
decision theory and establishes the concepts of optimal stopping rule and decision rules.  
This instigated the expansion of hypothesis testing to encompass sequential methods. 
 
Section 7.1: A Framework for Sequential Decision Problems 
 
The framework for decision problems thus far, has centered on decision making either 
with or without experimentation.  However, the choice or the decision to experiment is 
also a very important aspect of statistical decision theory.  This decision making process 
is frequently termed pre-posterior analysis.  The goal is to minimize the overall cost 
which incorporates both the decision loss as well as the cost of conducting the 
experiment.   
 
The first introduction to statistical decision problems introduced the concept of having 
observations upon which a decision could be based.  Those statistical procedures 
assumed a fixed sample size, although it was not explicitly stated.  Other strategies 
suggest sequential sampling and moreover, multi-stage procedures.  Extending the 
framework for decision problems, denote the sample space for independent random 
variables ,..., 21 XX to be iΧ and define ),....,,( 21 j

j XXX=Χ where jΧ is assumed to have 

density )|( θj
jf x .  Now suppose that ,..., 21 XX  is a sequential sample from the 

density )|( θxf ; then 

∏
=

=
j

i
i

j
j xff

1

)|()|( θθx . 

 
The cost of the experiment is attributed to two factors: n – the number of observations 
taken and s – the way in which the observations are taken (Berger, 1985).  Thus, 

),,,( snal θ  denotes the overall loss when θ  is the true state of nature and a is the action 
taken.  Note that ),,,( snal θ can be considered to be a sum of the general loss function 

),( al θ and the sampling cost ),( snc .  Berger(1985) states that these functions are additive 
when the decision maker has a linear utility function which can be stated as 
 

∑
=

+=
n

i
icalnal

1
),(),,( θθ , 
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where ),,( nal θ is the shortened form of the overall loss function for a given sampling 
approach and ic represents the ith observation cost. 
 
Recall that the loss function can be defined as ),(),( aual θθ −= .  Thus, if the utility 
function is nonlinear and there is a monetary gain or loss, ),( ag θ , then 

)),(),((),,,( sncagusnal −−= θθ . 
 
The difficulty in sequential decision problems resides in all the possible ways in which 
the observations are taken.  The two most common approaches are (a) the fixed sample 
method and (b) the sequential sampling approach.  Although the latter approach is of 
primary interest, this section begins by describing the methodology of determining the 
optimal fixed sample size, leaving the latter approach for the remainder of this section. 
 
Recall that pre-posterior analysis was coined as such as the choice is made before the 
data is obtained.  Thus, the “non-statistical” decision problem – that is the no-observation 
problem first.  Within the Bayesian context, let )(⋅= θπ P and )(πnr be the Bayes risk of the 
optimal policy with at most n stages with knowledgeπ .  Then the situation in which the 
decision maker has no option to make an observation and must choose an action can be 
expressed as: 
 

)],([min)(0 θπ θ alEr
Aa∈

=  

 
where the expectation overθ is taken with respect toπ .  Another way of expressing this is 
to let πδ n denote a Bayes decision rule for this problem and incorporating the loss in 
observing ),...,( 1 n

n XX=Χ .  The equivalent expression is then 
 

)]),(,([)(0 nlEEr n
n

n

Χ= Χ π
θ

π δθπ . 
 

To determine the optimal fixed sample size in a decision problem requires resolving the n 
which minimizes )(πnr .  In simplicity, this can be resolved by differentiating )(πnr with 
respect to n and setting the equation equal to zero.   
 
If it assumed that the overall loss function has the aforementioned additive structure, then 

πδ n is the Bayes decision rule for the loss function.  Furthermore, if the fixed sample size 
loss is equal to the sequential loss, a sequential analysis of the problem is considered 
cheaper then a fixed sample size analysis (Berger, 1985).  The advantages of sequential 
analysis are somewhat obvious and at the forefront lies the decision maker choice to 
gather the required amount of data needed to make a decision for a specified degree of 
precision.  The remainder of this section of the report focuses on the foundations, 
concepts and methods of sequential analysis. 
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Section 7.2: Sequential Analysis – The Basics 
 
The distinguishing feature of sequential analysis is the ability to take observations one at 
a time with the decision maker or experimenter having the option of stopping the 
experiment and making a decision.  Keeping within the sequential decision problem 
framework presented earlier, let’s assume that the cost is proportional to the number of 
observations; and moreover that the loss function is increasing in n.  Thus, it can then be 
reiterated that if n observations are taken sequentially, at which point the decision maker 
chooses to take action Aa∈ , then the loss function when θ is the true state of nature can 
be expressed as ),,( nal θ .   
 
A nonrandomized sequential decision procedure is denoted ),( δϕ=d  and consists of 
two components: ϕ  – a stopping rule; and δ – a (terminal) decision rule.  A stopping rule 
is characterized by a family of functions of the form 
 

)...}(),(,{ 22110 XX ϕϕϕϕ = . 
 

In the nonrandomized case, 
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That is to say that 0ϕ  is the probability of making an immediate decision without 
sampling while nϕ  is the probability (zero or one) of stopping sampling and making a 
decision after nX is observed.  Thus, given the functions nϕ  one can determine when to 
stop; If the rule is given in other terms, one can determine the functions nϕ  from the rule. 
 
Alternatively, the stopping rule can be characterized by the following family of functions 
 

}),....,(),(,{ 22110 XX ττττ =  
 

where ,00 ϕτ =  and 
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Similar to the nϕ  functions, given the nτ  functions one can determine when to stop, or 
given the stopping rule, one can determine the nτ  functions. 
 
The (terminal) decision rule is simply defined as a collection of decision rules of the type 
used in problems with fixed sample size (Lindgren, 1971).  Thus, a terminal decision rule 
consists of a series of decision functions ),...(),(, 22110 XX δδδ  where )( ii Xδ is the action 
taken after sampling has stopped after observing iX .  Thus, 0δ is the action taken when 
no data is available and a decision is taken immediately. 
 
Since the overall problem at hand, is to determine the final sample size at which ϕ says to 
stop and make a decision, it is favorable to discuss this issue in terms of the stopping time 
N.  Thus, given a sequence of observations ,....,, 21 XX the function nτ  gives the 
conditional probability that precisely n observations are called for: 
 

),....,(,...),|( 121 nn XXXXnNP τ== . 
 

Further, the probability of stopping at the nth observation, is simply the expected value 
assuming a particular decision and stopping rule: 
 

)},....,({ 1},{ nn XXEP τδτθ == , (Lindgren, 1971). 
 

More formally, the stopping time is the random function of X given (for a nonrandomized 
sequential procedure) by 
 

}1)(:0min{)( =≥= n
nnN XX τ , (Berger, 1985). 

 
Thus, }{ nN = is the set of observations for which the sequential procedure stops at time 
n; and hence there is nothing to prevent ∞=N , as shown in Berger (1985): 
 

∑ ∫

∑
∞

= =

∞

=

+==

=+==∞<

1

1

)|()0(

)()0()(

i nN

n
n

i

dFNP

nNPNPNP

θx
 

 



Part III: Sequential Statistical Decision Theory 

 73

But, in applying sequential procedures it is favorable to have a rule for which 
)( ∞<NP =1. 

 
Section 7.3: Bayesian Sequential Procedures 
 
Recall in section 7.1 that a pre-posterior analysis includes both the decision loss and the 
sampling or experiment cost when a particular action is taken for a particular state of 
nature.  If a sequence of observations is taken at a cost of )(Nc , for n observations and a 
sequential procedure ),( δϕ=d  is used, the loss incurred is 
 

)(),( Ncdl +θ  
 

where N is the random variable whose value is the number of observations actually used 
in reaching a decision.  And the expected loss, or risk function, is subsequently expressed  
 

)](),([),( NcdlEdr += θθ . 
 

The Bayes risk of a sequential procedure ),( δϕ=d is defined to be 
 

)],([),( drEdr θπ π= . 
 

Bayesian analysis with fixed sample size problems is straightforward; Bayesian 
sequential analysis is quite cumbersome.  So the objective of Bayesian sequential 
analysis is to find the sequential procedure which minimizes ),( dr π .  This is defined as 
 

),(inf)( drr ππ
d

= . 

 
Note that the idea here is that every stage of the procedure, one should compare the 
(posterior) Bayes risk of making an immediate decision with the “expected” (posterior) 
Bayes risk (Berger, 1985).  Now suppose that there are potentially n stages, 
corresponding to observations nXXX ,....,, 21 .  If the Bayes decision rule πδ calls for 
taking all n observations in a particular application, the terminal decision is made 
according to the Bayes criterion.  That is, the posterior distribution is applied to the given 
loss function to obtain averages over which the possible actions are ordered and the 
optimum chosen (Lindgren, 1971).  Assuming that Knal −≥),,(θ , it then follows that 
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(Note that the subscript m refers to the marginal density.)  Thus, ),( dr π  is minimized if 

0δ and nδ are chosen to minimize the posterior expected loss.  This is equivalent to the 
fixed sample size issue (Berger, 1985).  Subsequently, if the stopping rule τ  suggests at 
least n – k observations, then the problem of whether to stop (using the Bayes terminal 
decision) or obtain more data is solved by comparing two conditional expected losses 
(Lindgren, 1971).  One of these conditional expressions is based on those n – k 
observations, while the other is to take more observations.  This is summarized by the 
following theorem found in Lindgren (1971). 
 

If τ  is a given stopping rule and π a given prior, then the Bayes risk ),( dr π  
is minimized by that τ by the decision rule d where di is the Bayes decision 
rule based on the first i observations considered as a sample of fixed sample 
size i. 
 

Thus, half the problem of determining the Bayes sequential problem is deciphered as 
regardless of the stopping rule used, the optimal action, once one has stopped, is simply 
the Bayes action for the given observations (Berger, 1985).  Furthermore, if the posterior 
Bayes risk is at time n is a constant, independent of the actual observation then the 
optimal stopping rule corresponds to the choice, before an experiment, of an optimal 
fixed sample size n. However, this situation is rare.  Yet when they are independent, the 
problem of determining the optimal stopping time is still a question and is the focus of 
the next section. 
 
Section 7.4: Optimal Stopping Time 
 
The difficulty of determining a Bayes sequential stopping rule resides in the fact that 
there is an infinite “stream of identically distributed observations” upon which to base a 
sequential test.  However, this is made easier if the Bayes stopping rule can be 
determined stage by stage.  This simplification arises because at every stage the future 
looks exactly the same (Berger, 1985).  The conditional expected loss (given the 
observations) is the function corresponding to the posterior probabilities at each stage.  
Hence, those posterior probabilities depend on the observations (at hand) which enter the 
decision process through the posterior distribution (Lindgren, 1971). 
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There are many situations which may arise when trying to determine the optimal stopping 
rule.  Before considering these situations it is important to develop the framework for 
such a test.  So, for a given procedure ),( δτ=d and given losses al and bl corresponding to 
the erroneous acceptance and rejection of the null hypothesis, respectively, the expected 
loss is 
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where α  and β  are the usual error sizes, c is the cost per observation and N is the 
number of observations used in making a decision.  Then assuming a prior distribution π  
assigned to 0H , the Bayes risk is 
 

,)1(),( 10 RRdr πππ −+=  
 

and the Bayes procedure which minimizes ),( dr π .  Lindgren (1971) demonstrates that if 
no observations are permitted by the stopping rule τ , the minimum Bayes risk is just its 
value when the no-data Bayes procedure is used (as mentioned previously): 
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This is shown graphically in figure 7-1 below.  Recall that this was shown in section 2 as 
it is essentially the no data problem or “non-statistical” decision problem.   
 
Figure 7-1: 
 
Now consider a set of rules, ,1C  which suggest obtaining at least one observation.  The 
minimum Bayes risk for this set of rules is denoted: 
 

])1([min)( 101
1

RRr
C

πππ −+= . 

 
Figure 7-2: 
 
The figure above represents a general graphical view of this function of π  and has the 
following properties (Lindgren, 1971): 
  

(a) ,)(1 cr ≥π  
(b) ,)1()0( 11 crr ==  
(c) the graph of )(1 πr is concave down. 
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The first property suggests that at least one observation should be taken at cost c.  The 
second property suggests that if the prior is either 0 or 1, then no amount of sampling will 
alter the distribution, so the cost is just c plus the 0 of the no-data curve.  The last 
property simply implies that the curve )(1 πr  is made up of a “family of line segments 
joining pairs of points ),0( 0R  and ),1( 1R .  Berger (1985) and Lindgren (1971) both 
establish more formally the concavity.  With these properties, it is now possible to 
graphically compare the curves.  For instance, if the graph of )(1 πr  lies above )(0 πr  then 
this suggests not to take any observations.  This visual analysis can be carried out for the 
given hypotheses.   
 
Lindgren (1971) provides three steps for determining the appropriate Bayes sequential 
procedure.  This can be summarized as follows: 
 

1. Given losses al and bl , and cost c per observation, the values of C and D as shown 
in figure 7-2 can be determined from the graphs of  )(0 πr  and )(1 πr . 

2. If C≤π , reject 0H , and if D≥π , do not reject 0H ; otherwise sample and 
determine A and B (from C and D and π ) where  
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This is established since the condition for continuing sampling, can be expressed in 
terms of the likelihood ratio for the first n observations such that BA n <Λ< . 

3. After each observation nX determine the corresponding likelihood ratio nΛ  for 

nXX ,...,1 ; if An ≤Λ , reject 0H , and if Bn ≥Λ , do not reject 0H .  If BA n <Λ< , 
take any other observation. 

 
The draw back to this procedure is that )(1 πr is rarely known; however, given the 
properties of )(1 πr , it is possible to determine the form of the Bayes sequential procedure. 
 
Section 7.5: Sequential Probability Ratio Test 
 
The sequential probability ratio test is provides one of the first applications of sequential 
analysis within statistical analysis (French and Insua, 2000).  It tests a simple hypothesis 

0H against a simple alternative 1H .  As constructed in the previous sub-section, the 
following constants are defined where α andβ  are the respective error sizes: 
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These constants form the limits for the likelihood ratio nΛ computed after each 
observation is taken.  Then if An ≤Λ , the sampling stops and the null hypothesis is 
rejected.  If Bn ≥Λ , the sampling stops and the hypothesis is not rejected.  And 
subsequently, if BA n <Λ< , then another observation is taken.   
 
Notice that this is essentially the Bayes sequential procedure described earlier.  The 
essential difference is that there is no formal loss structure in this instance; however given 
any sequential probability likelihood ratio test essentially means that there exist losses 
and a sampling cost per observation such that the Bayes sequential test for some prior 
distribution is the given sequential probability ratio test.  Thus, the analysis both 
statistically and graphically proceeds in the same manner. 
 
The decision theoretic approach of balancing the competing factors of expected losses 
and sampling costs resides in both the Bayesian and non-Bayesian approaches; and thus 
makes it difficult to determine an optimal policy or rule.  However, French and Insua 
(2000) state that there is an intuitive structure for the optimal policy.  That it is to say, 
that if the likelihood ratio of the observations is not sufficiently small or large, then keep 
sampling – otherwise, stop and take action.  Even the constant values of A and B remain 
undefined, knowing the general structure of the optimal policy allows for finding possible 
good values.  Berger (1985), French and Insua (2000), and Lindgren (1971) provide 
further details on the development, theory and other methodological issues (constraints) 
with regards to the sequential probability ratio test. 
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Section 8: Markov Decision Processes 
 

The previous section provided a framework for sequential decision problems.  Such 
problems can be formulated in Markovian ways which has led to large body of theory on 
Markov decision processes.  Decision processes which make a sequence of probabilistic 
transitions and in which the transition probabilities depend only on the current state of the 
system are said to undergo a Markov process.  Subsequently, if there are alternative 
actions amongst which a choice can be made then this is referred to as a Markov decision 
processes.  Since such processes are comprised of Markov chains they are also attributed 
with the Markovian properties which provide favorable analytic abilities.  This section 
begins with introducing the underlying concepts of Markov chains and their properties as 
well as other attributes of both finite and infinite chains.  This section concludes with the 
framework and computational aspects of Markov decision processes for determining 
optimal policies. 
 
Section 8.1: Sequential Decision Problems Formulated in  

Markovian Ways 
 
The previous section introduced a framework for sequential decision making under 
uncertainty.  Intervals of time separate the stages at which decisions must be made, and 
the effect of a decision at any stage is to influence the transition from current to 
succeeding state.  If the transition from state to state is a probabilistic sequence and the 
transition probability from current to succeeding state is only dependent on the current 
state, then the decision process is said to have the Markovian property.  This section 
begins by providing the basic notation and framework for sequential decision making 
processes which can be formulated in Markovian ways. 
 
A random process when observed over time will be in different states at different times; 
and this change in state is referred to as state transition.  Suppose a process has N states 
and its behavior over time is specified by the state the “system” is in at each stage in 
time.  In this report, the stage structure for the sequential problems considered (whether 
they are time based or not) will be discrete.  More formally, a typical random process X is 
a family }:{ TtX t ∈ of random variables indexed by some set T.  Further, if we define 

,...}2,1,0{=T , the system is a discrete-time process (Grimmett and Stirzaker, 1982).  In 
sequential decision problems, we may define ,....},,{ 210 XXX to be a sequence of random 
variables which take values in some countable set S, the state space.  Thus each nX  is a 
discrete random variable taking on one of N possible values, where || SN = .  It is evident 
that this system is not deterministic, and hence can be neither prophesied nor achieved.  It 
is possible, however, to deduce some statistical description about the behavior of the 
process (Buchanan, 1982).   
 

Definition: The process X is a Markov chain if it satisfies the Markov 
property 

)|(),...,,|( 1110 −− === nnnn XsXPXXXsXP  
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for all 1≥n  and Ss∈ .  (Grimmett and Stirzaker, 1982) 
 
For simplicity (of notation), let )(npij  denote the transition probability from i to j if the 
transition takes place at the nth step.  The Markovian assumption that only the current 
stage (n) and the state (i) are relevant to the determination of the future behavior of the 
process is described as being memoryless.  This assumption is attributable to the 
attractive use of Markov chains in sequential decision problems.  
 
Much of theory of Markov chains is simplified by the condition that S is finite (Grimmett 
and Stirzaker, 1982).  A finite Markov chain is said to be time-homogenous if for every 
pair of states i and j, )(npij = ijp  for all n.  Such a chain is also described as having 
stationary transition probabilities.  The transition matrix for a Markov chain is the NN ×  
matrix ][ ijpP = , where N is the number of states.  The transition probability for a 
Markov chain is a stochastic matrix. 
 

Theorem: P is a stochastic matrix, which is to say that 
(a) P has non-negative entries, or 0≥ijp  

(b) P has row sums equal to one, 1=∑
j

ijp . 

 
This summarizes the basic elements of Markov chains.  The remainder of this section 
presents the favorable attributes of Markov chains which demonstrate the potential 
applicability of Markov chains, especially in infinite stage Markov decision processes. 
 
Section 8.2: Multi-step Transition and State Probabilities 
 
The previous subsection focused on finite stage Markov decision problems.  This part 
now shifts to work with infinite stage Markovian decision problems.  The transition 
probability matrix P describes the likelihood of transitions from state to state; and since 
our interest lies in the evolution of X, it becomes important to determine the multi-step 
transition probability values.   
 
Define )|()( 0XsXpn nij ==ϕ  for Nji ≤≤ ,1  and ...2,1,0=n  as the n-step transition 
probabilities for the Markov chain (defined by P).  If the system starts in state i at time 0 
and is in state j at time (n+1), the result is achieved by transition in n steps from state i to 
some state k (for which the probability is )(nikϕ ) followed by transition from k to j (for 
which the probability is kjp ).  Thus, given that the state at the nth step is k, the 
probability of transition to j in (n + 1) steps is kjik pn)(ϕ .  These N stages for the 
transitions from i to j given the nth state are mutually exclusive and exhaustive, hence 
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1
)()1( ϕϕ , (Buchanan, 1982). 
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Buchanan (1982) provides the following justification. 
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Since multi-step transition probabilities are probabilities, they must also adhere to the 
regular conditions of probability.  That is they must satisfy the relationship that 

10 ≤≤ ijϕ  and ∑ =
=

N

j ij n
1

1)(ϕ .  The next step is to formulate this into a matrix form 

which in turn develops the Chapman-Kolmogorov equations (Grimmett and Stirzaker, 
1982).   
 
The equation for the multi-step transition probabilities can be represented in (stochastic) 
matrix form (quite simply).  Define )]([)( nn ijϕ=Φ as the n-step transition probability 
matrix for all n.  From the justification above, we can rewrite the final statement as 
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where I is the NN × identity matrix.  So, 
 

,)2()3(
,)1()2(

,)0()1(

3

2

PP
PP
PP

=Φ=Φ

=Φ=Φ

=Φ=Φ

 

 
and thus more generally nn PPPPnn ==−Φ=Φ −1)1()( .  This can then be deduced to 
the special case of the Chapman-Kolmogorov equations as stated in Grimmett and 
Stirzaker (1982):   
 

.)()()( ∑=+
k

kjik npmnm ϕϕ  

 
Hence, nmnm PPP =+ and so nP is the nth power. 
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Now define n
n P∞→=Φ lim (if it exists) and call Φ  the limiting multi-step transition 

probability matrix or summarized as the limiting distribution for the chain.  Note as the 
number of transitions increases, the influence of the original state diminishes.  This is 
expected since the Markovian property assumes no memory to the process.  It is 
important to keep clear that the probabilities of transitions from state to state are fully 
described by P, while Φ  summarizes the long-term behavior of the process.  Thus, the 
above theorem relates the long-term development to short-term development, and 
informs us how nX depends on 0X . 
 
Section 8.3: Some Classes of Markov Chains  
 
This next sub-section considers the way in which the states of a Markov chain are related 
to each other.  This will lead to a classification of the states.  First we begin with some 
basic terminology which essentially focuses on the term communication (which exists 
between states). 
 

Definition: It is said that i communicates with j, written ji → , if the 
chain may ever visit j with positive probability, starting from i.  That is, 

ji → if 0)( >mijϕ for some 0≥m .  It is also said that i and j 
intercommunicate if ji → and ij → , in which case we write ji ↔ . 

 
Thus, two states intercommunicate if transition is possible in either direction in some 
finite number of steps.  The number need not be the same for the directions of 
communication (Buchanan, 1982).  Grimmett and Stirzaker (1982) proceed by stating the 
following theorem. 
 

Theorem: If ji ↔ then 
(a) i and j have the same period 
(b) i is transient if and only if j is transient 
(c) i is null persistent if and only if j is null persistent 

 
The first property, period is defined as the greatest common divisor of the epoch at which 
return is possible (Grimmett and Stirzaker, 1982).  Further, the state is said to be periodic 
if the divisor is > 1 and aperiodic if the divisor is equal to one.  The second is probably 
the most important property of the relationship of communication.  Buchanan (1982) 
demonstrates this property by claiming that since ji ↔ and kj ↔ , then there exists 
numbers 1n and 2n such that )( 1nijϕ and )( 2njkϕ are both positive.  From the Chapman-
Kolmogorov equation, we get 
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This establishes the communication from ik ↔ .  The last property which draws upon 
the term persistent simply claims that state i is persistent if the probability of eventual 
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return to i, having started from i, is 1.  Subsequently, if this probability is strictly less than 
1, i is transient.  In any Markov chain, sets of states (or at least one set of states) where all 
states which are members of the same set can be found which communicate with one 
another (Buchanan, 1982). 
 
There are many classifications of states besides the ones already mentioned.  We now 
define an ergodic set of states which is said to be a set of in which every state 
communicates with every other state of the set.  Grimmett and Stirzaker (1982) define a 
state to be ergodic if it is persistent, non-null, and aperiodic.  Thus, an ergodic set of 
states is a set of states in which every state can be reached from every other state of the 
set, and once the set is entered there can be no transition out of the set.  Of course, an 
ergodic state is an element of an ergodic set.  Buchanan (1982) suggests considering 
ergodic states to be “collective” trapping states, whereby every Markov chain contains at 
least one ergodic state.  It should also be noted that there may be states which do not 
belong to an ergodic state; these are referred to as transient states.   
 
We now provide another definition or classification of states which leads to a 
classification of chains. 
 

Definition: A set of C of states is called 
(a) closed if 0=ijϕ  for all CjCi ∉∈ ,  
(b) irreducible if ji ↔  for all Cji ∈,  

 
Once a chain has taken a value in a closed set C of states, it never leaves.  States of this 
type are absorbing states.  The equivalence class ji ↔ simply iterates that an irreducible 
set C is aperiodic if all states in the set are aperiodic.  (Grimmett and Stirzaker, 1982) 
 
The final remark to be made here is with regard to defining a regular Markov chain.  That 
is a Markov chain whose states form a single ergodic set is an ergodic chain.  If such an 
ergodic set has all entries of the multi-step transition probability matrix nPn =Φ )( greater 
than zero, then it is said to be regular.  Since )()1( nPn Φ=+Φ , then 1+nP will have no 
zero entries if nP does not have any  (Buchanan, 1982).  Thus, reaching a sufficient 
number of transitions at which all state to state transitions are possible, any additional 
transitions will not lead to any such transitions having zero probability again.  And, such 
an ergodic chain which is regular in subsequently termed a regular Markov chain. 
 
It is a property of regular Markov chains that the limiting multi-step transition probability 
matrix ][ ijϕ=Φ will have identical rows.  Denote the state probability as )(niπ .  

Buchanan (1982) shows that the state probability vector nPnn )0()()0()( πππ =Φ= at 
time n.  From this, we get Φ= )0(ππ by taking the limit of both sides as n tends to 
infinity.  Buchanan (1982) uses this to show that for a regular Markov chain that the 
limiting state probability vector π  is independent of the initial state probability vector 

)0(π and is the same as the identical rows of the limiting multi-step transition probability 
matrix Φ .  This concludes the introduction to Markov chains and their properties. 



Part III: Sequential Statistical Decision Theory 

 83

Section 8.4: Markov Decision Processes 
 
The section now extends the properties and method of Markov chains to develop the 
body of knowledge known as Markov decision processes.  In a Markov decision process 
there is a system with states labeled Ni ,...,1= .  In state i there are a number of actions 
available.  If action k is chosen a return ),( ikr is generated and the system goes to state j 
with probability ),,( kjip .  A set of actions, one for each state, constitutes a policy.  
Under a given policy δ the systems is a Markov process with returns and has steady state 
gain )(δg .  A policy which has the highest gain (or the lowest in a minimization 
problem) is an optimal policy.  A policy whose gain differs from the optimal by not more 
than a known amount is called a tolerance optimal policy.  The formulation and solution 
of Markov decision problems will be illustrated by extending the decision structure. 
 
Suppose a system has a finite number of states, },...,,{ 21 mi θθθθ =Θ∈ .  The system or 
process may move between states at each infinite series of equal stages (or time steps) 

,...2,1=t .  At each time step t, the decision maker is to select an action Aaa k
t ∈=  

where A is finite.  Depending on the action ka chosen by the decision maker at time t and 
its current state tθ , the system evolves to its next state 1+tθ .  Then the probabilities 
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describe the evolution of the system.  Thus, it is assumed that the probabilities hold the 
Markovian property and subsequently, do not depend on either the earlier states of the 
process nor any of the earlier actions.  Recall that in a decision framework, every action 
taken with the current state results in a consequence.  Similarly, we define ),( ik

t ac θ  
which is the consequence a decision maker receives at each stage.  Further, this can be 
extended to show the overall “timestream” of consequences (French and Insua, 2000). 
 
Now that Markov decision processes have been placed within a decision theoretic 
framework, we now extend this to include the concepts of utility theory.  That is, we now 
place things within the context of rewards rather than losses.  (Note that reward includes 
the cost of taking the action.)  Assume that the reward received at stage t is 

),()),(( ikracu tik
tt =θ .  It follows that all ),( ikrt are bounded.  Since the aim is to find 

the optimal policy with minimal long-term average costs, it is necessary to consider the 
increase in the value of state i from stage to stage.  Hastings and Mello (1978) provide the 
formulation for the bounds and convergence test.   
 
There are two common ways of evaluating the overall timestream of rewards in Markov 
decision processes.  The first includes a discount factor ρ  and a discounted additive 
utility function such that 
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The other common approach is to choose a series of actions to maximize her average 
reward: 
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In the first approach presented, the decision maker seeks a policy for choosing actions 
which maximize the total expected discounted reward.  The latter approach gives the 
long-run average monetary return or the expected monetary value of the policy.   
 
Finite Markovian decision processes decide upon a policy to be applied at a (previously 
known) finite number of decision epochs with the objective of optimizing some measure 
of performance.  However, in certain instances, the finite stage aspect may be too limiting 
a prospect which then “unbounds” the criterion presented above.  Having an infinite 
Markovian decision process has the problem of approximation itself, which due to the 
attributes of Markov chains, the infinite approximation is a feasible proposition.  For a 
finite stage problem, the criterion for discriminating between policies was the 
maximization of the expected reward associated with a policy.  In the infinite stage 
problem, the cumulative expected reward from using a given policy will not be finite and 
hence, will increase without bound.  Discounting the rewards by some factor as stated 
above, obviates this problem and consequently gives an expected discounted reward for 
each policy which is finite.  There are other propositions for handling infinite Markov 
decision process.  Some of these alternatives are presented in Hastings and Mello (1978) 
and Buchanan (1982).  French and Insua (2000) also provide a discussion on the merits of 
some of alternative functions of utility to solve Markov decision processes. 
 
Now a decision policy ,...),( 21 δδ for a Markovian decision process is a sequence of 
decision rules which prescribe for each stage t, the action the decision maker should take 
if the current state of the process is tθ  (French and Insua, 2000).  If the decision rule 
selected does not depend on the stage t, then the policies are said to be stationary.  A 
stationary policy applied to a Markov decision process determines the transition 
probabilities from state to state and thus, induces a Markov chain.  If it is assumed that 
this Markov chain is single and ergodic then the assumption can be made that for each 
policy there exists a state which can be reached from any other state under the policy.  It 
can then be further delineated to use the attributes of Markov chains to solve such 
decision processes.  (Computational issues are expounded in section 12.) 
 
There are several algorithms (or classes of algorithms) which can utilized for solving 
Markov decision processes.  Linear programming is one approach used.  However, value 
iteration and policy iteration are the most common.  The first of these, value iteration, 
considers that if the decision maker takes action ka and receives ),( ikrt  immediately and 
then passes to state jθ with probability k

ijp ,  and continues optimally receiving the 
expected total discounted reward, the sequence will eventually converge for any starting 
point.  There are many variants of this algorithmic procedure.  French and Insua (2000) 
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illustrate a couple of these and Mello and Hastings (1978) present another variant.  The 
latter algorithmic procedure, policy iteration has a similar objective.  It begins with an 
arbitrary policy, instead of an arbitrary function as defined for the value iteration 
algorithm.  This procedure begins with an arbitrary (stationary) policy, evaluates the 
function which defines the total expected discounted reward and seeks for an improved 
policy and until convergence is reached.  This has described the possible approaches for 
solving infinite Markov decision processes.  Finite Markov decision processes are 
simpler and can be solved by backward dynamic programming or backward induction 
which is presented in section 13. 
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Part IV: MODEL BUILDING 
FOR DECISION ANLYSIS: 

Topics in Probabilistic Graphical Models 
 
 

Methodologies for decision processes (as those presented in prior sections) are based 
upon probability and utility or different ways of handling uncertainty. Subsequently, 
certain criteria should be satisfied as a provision for guiding decision-based problems.  
For instance, French and Insua, list axiomatic basis, lack of counter examples, feasibility, 
robustness, “transparency to users”, and “comparability with a wider philosophy” as 
criteria which should be satisfactorily determined.  The first two provide the theoretical 
merit; the second two, feasibility and robustness, relate to the practicality of performing 
the analysis while the latter two entail the implementation of the analysis results.  These 
latter parts of the report focus on the practicality and implications of decision processes 
and attempt to bridge the gap between the conceptual and practical components of 
decision theory.  However, none of this is applicable without a decision model upon 
which the criteria is built and subsequently assessed. 
 
This part of the report focuses on building models to illustrate decision problems under 
various assumptions.  Emphasis is placed on probabilistic graphical models.  These 
probability models are extensions of the procedures and methodology presented in earlier 
sections of this report.  Concepts of problem structuring, parameters and attributes lay the 
foundation for model building and are introduced in the description of each inception of 
the model building process.  Each section presented in Part IV describes a modeling 
approach for a particular formulation and framework for a given decision problem. 



Part IV: Model Building for Decision Analysis 

 87

Section 9: Graphical Representation of Decision Problems 
 

Section 1 introduced the framework for decision problems.  The components of a 
decision problem provide the construction for a graphical representation.  An introduction 
to graphical models for describing decision processes is illustrated through the 
conception of decision trees and influence diagrams.  A comparative assessment of these 
two formulations demonstrates the strengths and weakness of the approaches in both 
structural and practical settings.  In this section, a formulation of a general decision 
problem is revisited in a concise manner in order to introduce the assumptions and 
criteria required for model building. 
 
Section 9.1: Modeling Decision Problems 
 
Sections 1 through 3 demonstrated the key concepts and ideas pertaining to decision 
modeling.  In essence, decision problems consist of actions, states of nature and 
consequences.  Without forgoing the complexities of modeling such problems, a decision 
model can be concisely formulated as 
 

ca →⊕θ . 
 
That is, the interaction between an action and a state of nature leads to a consequence.   
 
Recall that the choice of action or decision is under the control of the decision maker; but 
the state which pertains is beyond his/her control.  When both the action space A and the 
state space are finite, the model can be presented in a decision table as shown below. 
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The simplest discussions of decision theory assume that the decision maker chooses an 
action (row) in the table, whereupon nature will ‘choose’ a state (column), leading to the 
consequence.  This tabular representation of decision problems has very close conceptual 
and historical connections with game theory (which is not explored in this report).   
 
With respect to the three elements – actions, states and consequences, the terminology 
may vary; however, the distinction between these elements is common.  This separation 
is found throughout statistical decision theory, and leads to a model of decision making in 
which there is some representation of uncertainty relating to the unknown state, some 
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representation of preference between the possible consequences, and a mechanism for 
bringing these two representations together to guide choice.  This statement merely 
emphasizes the adoption of the model ca →⊕θ . 
 
Conceptually, the “consequences” considered thus far, need not have been considered to 
be numerical.  That it is to say, that they may be thought of as descriptions of the 
outcome of actions chosen under various possible “states of nature”.  Similarly, neither 
the actions nor the states of nature need to be thought of quantitatively.  Then the 
previously defined sets C and A can be taken in a general sense without any further 
mathematical structure other than the existence of suitable (σ-) fields required for the 
introduction of probability measures, (French and Insua, 2000). 
 
The tabular representation (shown above) is replaced by a functional one when the action 
and state spaces are infinite.  The notation CAc →Θ×: is commonly used however, 
other authors (such as Savage) employ an equivalent but more succinct notation which 
identifies the actions from the state space to the consequence space: Ca →Θ: .  Notably, 
neither notation recognizes the possibility that the set of possible states may depend upon 
the action chosen (French and Insua, 2000).   
 
Statistical decision theory, on the other hand, assumes that the observation X = x from an 
observation space X is observed according to the conditional distribution )|( θ⋅XP .  Thus, 
decision problems can be formulated as }:|{ AXddAD X →== which relates the 
decision maker’s actions with each possible observation and presents the set of all 
possible choices.  Thus, a choice Dd ∈ induces a probability distribution for each pair 

Θ×∈ Dd ),( θ as follows: 
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Consequently, this structure of statistical decision theory reduces to the general form of a 
decision problem.  Thus, three representations of decision modeling have been presented 
each shown to have the same general structure. 
 
Section 9.2: Model Building – Fundamental and Means Objectives 
 
Modeling a decision problem (in practicality) requires three fundamental steps, as stated 
by Robert T. Clemen in Making Hard Decisions.  These can be summarized concisely as 
(1) identifying and structuring the values and objectives, (2) structuring the elements of 
the decision situation into a logical framework, and (3) refining the precise definition of 
all of the elements of the decision model. The aforementioned steps not only provide the 
foundation for the decision making process but also provide the construction process for 
a graphical representation of decision problems and methodology. 
 
Much of the work presented in this report has focused on single objective problems; 
however, often, multiple objectives or multi-attribute problems surface which encompass 
conflicting goals.  For instance, the investor may wish to maximize the financial return of 
an investment portfolio but also minimize the volatility of the portfolio’s value.  Thus, it 
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is important to address the issue of value structuring which is necessary in order to 
graphically display complex decision processes. 
 
The consequence space C, thus far, has simply been stated as a set of objects which can 
be defined on an interval of the real line.  When considering multiple objectives, the 
consequence space becomes complex and presents a multi-attributed structure.  To 
clarify, by an attribute refers to a factor to be considered and when given a “direction” of 
preference, say minimize or maximize, it is termed objective.  Thus, the problem arises of 
structuring these objectives in a consequential manner.  
 
Once a set of objectives, consistent with the decision context, has been established, the 
objectives should be separated into means and fundamental objectives.  This step 
provides a value structuring process whereby distinguishing between those objectives that 
are important because they help achieve other objectives and those that are important 
because they reflect the goal – what we really want to accomplish.  This process of 
arranging attributes holds cognitive advantages through graphical modeling and 
representation. 
 
For example, fundamental objectives are organized into hierarchies. The upper levels in a 
hierarchy represent more general objectives, and the lower levels explain or describe 
important elements of the more general levels.  The figure below illustrates a possible 
hierarchy that might arise in the context of defining vehicle regulations.  A higher level 
fundamental objective might be “Maximize safety” where lower level fundamental 
objectives might be “Minimize Loss of Life,” “Maximize Serious Injuries,” and 
“Minimize Minor Injuries.”  Furthermore, these can be separated in order to pertain to 
particular issues for a particular group.  As seen in this example, these objectives are 
parsed out separately for adults and children.   
 
Figure 9-1: 
 
 
 
 
 
 
 
 
 
 
 
In contrast to a hierarchy organization, means objectives are organized into networks.  
For the same example, means objectives may include “Minimize accidents” and 
“Maximize Use of Vehicle Safety Features”.  There are several other possible means 
objectives which may work together (network) in order to accomplish the maximization 
of safety.  That is means objectives can be connected to several objectives in order to 
accomplish the task at hand.   

Maximize Safety

Minimize 
Minor Injuries

Minimize
Serious Injuries

Minimize 
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Figure 9-2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Structuring the fundamental objectives into a hierarchy or tree is crucial for a multiple 
decision process; however, the means objective network provides an important basis for 
generating creative new alternatives.  In some instances, a well measured means objective 
can sometimes substitute for a more difficult to measure fundamental objective (Clemen, 
1996).  Brownlow and Watson (1987) confer that structuring attributes assist the 
“cognitive overload” brought about by the complexities of a decision making process.  In 
reality, problems are much complex in structure than the one presented here.  However, 
the graphical interface that induces this methodology still requires the building of the 
model or decision problem. 
 
There are several ways in which a decision maker can choose to build such a model.  
Although, much of this discussion is intuitive, there are methods or techniques which 
facilitate this thinking process.  French and Insua (2000) refer to the “top-down” 
questions; subsequently, Clemen (1996) presents table 9-1 which summarizes the 
questions or four techniques for organizing the two types of objectives which are useful 
in constructing means objectives networks and fundamental objectives hierarchies. 
 
Table 9-1: Constructing Mean-Objectives Networks and Fundamental-Objectives Hierarchies 
 Fundamental 

Objectives 
Mean 

Objectives 
To Move: 

 
To Ask: 
 

Downward in the hierarchy 
 
What do you mean by that? 

Away from Fundamental Objectives 
 
How could you achieve this? 

To Move: 
 

To Ask: 
 

Upward  in the hierarchy 
 
Of what more general objective 
is this an aspect? 

Towards Fundamental Objectives 
 
Why is that important? 

 

Maximize
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Require
Safety features Educate Public Enforce

Traffic Laws
Reasonable
Traffic Laws

Minimize Driving
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It is obvious that attributes must hold certain properties or meet certain requirements in 
order to be useful.  Recall, that the intention is to quantify such attributes.  Hence, they 
must be measurable on some scale for each consequence.  French and Insua (2002) 
distinguish three types of scale, noting that they may be objective or subjective measures.  
The first, a natural scale, provides a direct measure such as cost.  The second, a 
constructed or subjective scale, defines the objective as well as indicates the impact of a 
specific consequence.  That is they are created specifically within the context of the 
decision problem, e.g. minimizing caregiver burden.  The third scale, a proxy, uses an 
attribute which is perceived to describe the objective and is measurable.  Keeney and 
Raiffa (1976) affirm that no two attributes should measure the same aspect and yet should 
distinguish between consequences. Other practical concerns such as decision ownership 
and feasibility, although important in the practical setting, are not explored in this report. 
 
Section 9.3: Model Building – A Graphical Approach 
 
The process of specifying, structuring, and sorting out the means objectives from the 
fundamental objectives is the initial step of building a graphical model of the decision 
problem.  The focus now turns on the graphical representation of the elements of a 
decision problem – decisions or alternatives, uncertain events or outcomes, and 
consequences.  The most common graphical representation of decision problems is a 
decision tree.  It has been superceded, in recent years, by influence diagrams.   
 
Decision trees and influence diagrams, both, provide a graphical approach to modeling 
decision problems.  This (sub-)section will focus on the common elements used is such 
model building processes.  The latter section delved into the specifics for each modeling 
approach and concludes with a comparative assessment.  Nonetheless, both approaches 
require the elements of a decision problem.  Although notation varies from source to 
source, there are three types of nodes which are used both in influence diagrams and 
decision trees and can be stated as follows: 
 

• Square nodes represent decisions (or actions) and mathematically are associated 
with a decision set D.   

• Circular nodes represent random quantities or events which are associated with a 
random outcome X.   

• Diamond or rounded square nodes represent consequences (value) of the decision 
process.  These are represented by the set of all possible consequences C. 

 
These shapes are generally referred to as decision nodes, chance nodes and consequence 
nodes.  Nodes are integrated into graphs or networks, connected by arrows/branches or 
(directed) arcs.  These nodes are assimilated such that they coincide with the progression 
of time.  These are useful aids in model building.  The following two sections describe a 
general procedure for constructing and modifying influence diagrams and decision trees 
to model the structure of a decision problem. 
 
Section 9.4: Constructing Influence Diagrams 
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Influence diagrams provide a visual perspective of the decisions, uncertain events (states 
of nature), and consequences and the subsequent interrelationships that exist within a 
decision problem.  An appropriate model ensures the probabilistic structure of a decision 
problem, the timing of available information and interdependence of decisions that can be 
taken and which may arise under certain states of nature, in a compact form (Marshall 
and Oliver, 1995).   
 
Model building of decision problems as seen can become quite complex; however, 
influence diagrams hold many advantages.  First, they provide a framework by which a 
decision maker can reject or confirm assumptions and accurately model dependencies 
through a graphical display.   Secondly, complex decision problems have the innate 
ability to become “messy”.  Influence diagrams provide a format whereby the large 
volume of information can be summarized into relevant and sufficient matters.  From a 
practical viewpoint, they provide alternative situations and are easily interpretable. The 
use of algorithms and numerical techniques also enable an efficient and simple analysis. 
 
The design and construction of influence diagrams are based on the aforementioned three 
basic elements – decision nodes, chance (states of nature) nodes, and consequence nodes, 
connected by arcs.  A node at the beginning of an arc is qualified as a predecessor; and 
consequently, a node at the end of an arc is referred to as a successor.  The rules for using 
arcs to represent relationships among the nodes are shown in figures 9-3 and 9-4.  In 
general, an arc can represent either relevance or sequence (Clemen, 1996).  The direction 
of the arc indicates the meaning and brings into the relevance or sequence context. 
 
Figure 9-3: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For example, the figure above illustrates an arrow pointing into a chance node, indicating 
relevance.  This demonstrates that the predecessor is relevant for assessing the chances 
associated with the uncertain event.  In the diagram above, the first cluster of nodes 
shows an arrow (arc) from A to C.  This suggests that the chances (states of nature) 
associated with C may be different for different outcomes of A.  Likewise, an arrow 
pointing from a decision node to a chance node means that the chosen decision is relevant 
for assessing the chances associated with the succeeding uncertain event.  For instance, 
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the choice taken in decision B is relevant for assessing the chances associated with C’s 
possible outcomes.  Relevance arcs can also point into consequence or calculation nodes, 
indicating that the consequence or calculation depends on the specific outcome of the 
predecessor node.  The second cluster of nodes shows that consequence node F depends 
both on decision D and event E. 
 
Figure 9-4: 
 
 
 
 
 
 
 
 
 
 
 
 
When the decision maker has a choice to make, the choice would normally be made on 
the basis of information available at the time.  Arrows that point to decisions represent 
information available at the time of the decision and hence represent sequence (figure 9-
4).  Such an arrow indicates that the decision is made knowing the outcome of the 
predecessor node.  An arrow from a chance node to a decision means that from a decision 
maker’s point of view, all uncertainty associated with a chance event is resolved and the 
outcome is known when the decision is made.  Thus, information is available to the 
decision maker regarding the event’s outcome.  This is the case, as illustrated in the 
figure above, with chance node H and decision node I.  The decision maker waits to learn 
the outcome of H before making decision I.  An arrow from one decision to another 
decision simply means that the first decision is made before the second, such as decision 
nodes G and I.  Thus, the sequential ordering of decisions is shown in an influence 
diagram by the path of arcs through the decision nodes. 
 
A simple procedure for constructing an influence diagram to model the structure of a 
decision problem is stated in Decision Making and Forecasting by Marshall and Oliver 
(1995).  These sequential steps are summarized below.   

1. Create a preliminary list of decisions and random events (or quantities of interest) 
whose outcomes are believed to be important in the formulation of the problem.  
Identify the attributes and objectives that are to be used to measure the 
consequence of the decisions and outcomes. 

2. Name each random quantity and decision.  Represent each random quantity with a 
circular node and a decision with a square node.  Draw them in order of 
occurrence from left to right.   

3. Identify any influences or dependencies between random quantities and decision.  
Insert directed arcs between nodes that influence one another with the direction 
corresponding to the natural influence believed. 

H

I

G

Sequence
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4. Determine any conditional independencies and represent them accurately. 
5. Check to see that there are no directed cycles – i.e. a connected set of arcs in a 

directed path that leads out of one node and back itself. 
6. Check that there any decision node that occurs before a later decision node has a 

directed arc from the former to the latter,  Similarly, a chance node known to a 
given decision mode must be known to a later decision node.  This is a 
requirement of the principle of coherence (Marshall and Oliver, 1995). 

 
This process is fairly simple and thus alternative diagrams can be easily drawn.  Clemen 
(1996) offers some other remarks on the construction of influence diagrams.  First, the 
nature of the arc-relevance or sequence can be ascertained by the context of the arc 
within the diagram.  Secondly, as stated in 5 of the procedure above, an influence 
diagram should not contain any cycles.  Furthermore, although the construction of an 
influence diagram may be technically correct, there is no clear cut supposition to suggest 
that the influence diagram constructed is the only correct one.  Thus, it cannot be stated 
that there is a unique correct diagram but that there are many ways in which a diagram 
can appropriately represent a decision problem.  The representation that is the most 
appropriate is the one that is requisite for the decision maker.  That is, a requisite model 
contains everything that the decision maker considers important in making the decision 
(Raiffa and Schlaifer, 2000).  Incorporating all of the important concerns1 of the decision 
is the only way to get a requisite model and adequate representation of the problem. 
 
Section 9.5: Constructing Decision Trees 
 
Influence diagrams are an excellent display of a decision problem’s basic structure; 
however, they hide much of the detail which may be pertinent to a decision maker.  To 
display more of these details, a decision tree can be constructed.  Yet, they hold the 
drawback that the size of the problem cannot always be practically represented.   
 
The design of a decision tree holds much of the character of an influence diagram.  That 
is, squares represent decisions to be made, circles represent chance nodes and 
consequence nodes are found at the ends of the branches which connect the nodes.  The 
interpretation of decision trees follows much the same path as explained in section 9.4 on 
influence diagrams.   
 
In designing a decision tree, the options represented by branches from a decision node 
must be such that the decision maker can choose only one option.  However, in some 
instances, combination strategies are possible.  Also, each chance node must have 
branches that correspond to a set of mutually exclusive and collectively exclusive 
outcomes.  Mutually exclusive means that only one of the outcomes can happen.  
Collectively exclusive means that no other possibilities exist; one of the specified 
outcomes has to occur.  Putting these two specifications together means that when the 
uncertainty is resolved, one and only one of the outcomes occurs. 
 

                                                 
1 Sensitivity analysis is helpful in determining which elements are important. 
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A decision tree represents all possible paths that the decision maker might follow through 
time, including all possible decision alternatives and outcomes of chance events.  In a 
complicated decision situation with many sequential decisions or sources of uncertainty, 
the number of potential paths may be very large.  Each path, consequently, represents a 
particular scenario that could unfold over time.  It is sometimes useful to think of the 
nodes as occurring in a time sequence.   
 
Figure 9-5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Including multiple objectives in a decision tree is straightforward; at the end of each 
branch, simply list all of the relevant consequences.  An easy way to accomplish this 
systematically is with a consequence matrix as shown in the figure above.  This is an 
example of a decision tree representation of FAA’s multiple objective bomb detection 
decision (Clemen, 1996).  Each column of the matrix represents a fundamental objective, 
and each row represents an alternative.  Evaluating the alternatives requires “filling in the 
boxes” in the matrix; each alternative must be measured on every objective.  Some basic 
decision trees will be described later in this section in conjunction with influence 
diagrams more illustratively. 
 
Marshall and Oliver (1995) provide a procedure for constructing decision trees, once the 
set of random events and actions have been defined together with their sets of 
probabilities and respective utilities (cost/payoff).  Much like (sequence) influence 
diagrams, decision trees are constructed in chronological order and nodes are connected 
by branches.  The steps include: 
 

1. Draw a branch for each possible action from the first (leftmost) decision node.  If 
it is a chance node, do the same drawing a branch for each possible consequence. 

2. Label each branch emanating from a chance node i with a unique element from 
set Θ∈iθ , with the corresponding probability and consequence.   

3. Label each branch emanating from a decision node and its respective loss or 
consequence. 

4. Place the consequence values from the set on the terminal nodes at the end of 
each branch.   
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The designation between decisions and chance nodes is critical.  Placing a chance event 
before a decision means that the decision is made conditional on the specific chance 
outcome having occurred.  Conversely, if a chance node is to the right of a decision node, 
the decision must be made in anticipation of the chance event.  The sequence of decisions 
is shown in a decision tree by order in the tree from left to right.  If chance events have a 
logical time sequence between decisions, they may be appropriately ordered.  If no 
natural sequence exists, then the order in which they appear in the decision tree is not 
critical, although the order used does suggest the conditioning sequence for modeling 
uncertainty (Clemen, 1996). 
 
The key to constructing a decision tree from an influence diagram is the specification of 
every possible outcome of every node: chance outcomes from each chance node, actions 
from each decision node, and all possible consequences defined.  Thus, a path in a 
decision tree is a series of decisions and random outcomes that lead from a single initial 
chance or decision node to a distinct end point or terminal node.  The one fundamental 
problem with decision trees, as stated in Marshall and Oliver (1995), is that the 
dependencies among branches on each path are not made evident as apparent by 
influence diagrams. 
 
Section 9.6: Comparing Problem Structuring 
 
Modeling decision problems can be formulated by use of graphical methods, such as 
those presented above.  Thus, for analysis purposes, it is beneficial to construct either a 
decision tree or influence diagram and bring the structure of the decision problem to the 
forefront.  In this section, a general formulation of decision problem is presented in both 
graphical forms and provides the basis for a comparative assessment of these approaches. 
 
Figure 9-6 below provides a decision tree representation of the general problem 
presented in the table in section 9.1.  The decision tree displays the different possible 
scenarios, but does not provide a clear picture of the interrelation and influences between 
the uncertainties and decisions.  Thus, it is not immediately clear whether the m chance 
nodes at the end of the action branches represent the same uncertainty about θ, i.e. the 
probability distribution of θ is not conditioned on the choice of action.  The influence 
diagram in Figure 9-7 makes this clear.   
 
Figure 9-6: 
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Figure 9-7: 
 
The arrows indicate that the consequence 
depends on the choice of action and the  
unknown state; but the absence of an arrow 
from the action node to the state nodes  
indicates that the uncertainty about the state  
is not conditioned on the choice of action. 
 
Figure 9-8 and 9-9 provide a decision tree and influence diagram for a statistical decision 
problem.  These emphasize a further difference between the two representations.  From 
the tree, it is clear that the observation X is made before an action is decided upon.  So, in 
this case, the uncertainty concerning θ differs between chance nodes, being conditional 
upon the observed value of X.  Within the influence diagram, it might appear that the 
arrow from X to a indicates that X becomes known to the decision maker before the 
action a is chosen.  But if this interpretation is made for all influence arrows, it may be 
assumed that the uncertainty about θ is resolved and becomes known to the decision 
maker before X is observed, which it does not. 
 
 
Figure 9-8: 
 
 
 
 
 
 
 
 
 

Figure 9-9: 
 
Generally in influence diagrams, an arrow entering a chance node indicates that the 
probability distribution represented by that node is conditional on the quantity (random 
variable or decision) at the other end of the arrow.  An arrow entering a decision node 
indicates that the quantity at the other end of the arrow is known to the decision maker at 
the time of the decision.  An arrow entering a value node indicates that the quantity in the 
value node is partially determined by the quantity at the other end of the arrow.  In 
summary, a decision tree representation displays two facets of a problem particularly 
clearly: contingency and temporal relationships between decisions and realizations of 
random events.  An influence diagram2 representation hides these facets but does bring 
influences-or, in probabilistic terms, conditionality-to the forefront.  Together they bring 
complementary perspectives on the issues facing a decision maker. 
                                                 
2 An influence diagram can be used to represent the structure of a decision maker’s knowledge, i.e. beliefs, 
simply by avoiding the use of decision or value nodes.  Such a diagram is referred to as a belief net and its 
use is most common in the field of artificial intelligence. 

θ

a

c

θ

X a

c

X=x1
X=x2

X=xq

a1

c1n

c12

c1nθ1
θ2

θn



Part IV: Model Building for Decision Analysis 

 98

Decision trees have a difficulty in that for many problems they rapidly become very 
large: too large for the eye to comprehend as one.  As such they have been described as a 
“bushy mess” (French and Insua, 2000).  Thus, decision trees are often displayed as a 
series of sub-trees.  Influence diagrams are a much more compact representation.  
However, their advantage in this respect is, in a sense, illusory.  Decision trees can 
represent asymmetric decision problems, i.e. problems in which a particular choice of 
action at a decision node makes available different choices of action at subsequent 
decision nodes that those available after an alternative choice (Raiffa & Schlaifer, 2000).  
Such asymmetric problems are rather the rule than the exception in decision analysis.  
Within the classes of problems commonly considered in statistical decision theory, 
asymmetry is less common.  It is the asymmetry within problems that causes the decision 
trees to grow into bushy messes; and it is unfortunate that, as commonly formulated, 
influence diagrams cannot model asymmetric problems. 
 
The discussion and the examples shown demonstrate, on the surface at least, that decision 
trees display considerably more information than do influence diagrams.  And is 
previously commented, decision trees get “messy” much faster than do influence 
diagrams as decision problems become more complicated.  Even one of the most 
complicated decision trees may not be capable of showing all of the intricate details 
contained in an influence diagram depicting the same decision problem.  In practice, the 
understanding of the graphical representation of influence diagrams is optimal as it is 
regarded as especially easy to understand regardless of one’s mathematical training 
(Clemen, 1996). 
 
Both methods are worthwhile, and they complement each other well.  Influence diagrams 
are particularly valuable for the structuring phase of problem solving and for representing 
large problems.  Decision trees display the details of a problem.  Yet, the ultimate 
decision need not depend on the representation, as influence diagrams and decision trees 
are isomorphic.  That is a properly built influence diagram can be converted into a 
decision tree, and vice verse; although the conversion may not be easy.  One strategy is to 
start by using an influence diagram to help understand the major elements of the situation 
and then convert to a decision tree to fill in details. 
 
Influence diagrams and decision trees provide two approaches for modeling a decision.  
Because the two approaches have different advantages, one may be more appropriate 
than the other, depending on the modeling requirements of the particular situation.  For 
example, if it is important to communicate the overall structure of a model to other 
people, an influence diagram may be more appropriate.  Careful reflection and sensitivity 
analysis on specific probability and value inputs may work better in the context of a 
decision tree.  Using both approaches together may prove useful; the goal, after all, is to 
make sure that the model accurately represents the decision situation.  Because the two 
approaches have different strengths, they should be regarded as complementary 
techniques rather than as competitors in the decision modeling process. 
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Section 10: Probabilistic Graphical Models 
 

The axiomatic developments presented in Part II justify the subjective expected utility 
representation of a rational decision maker’s preferences in a decision problem; but 
ignore the structure in the state, observation or consequence spaces.  This section focuses 
on the process of structuring the “unknowns” into parameters and observations thereby 
facilitating the probability model building.  This sections begins be re-visiting a decision 
model framework with emphasis on the statistical elements of parameters and 
observations.  This leads to probability modeling and the representation of probabilistic 
graphical models from a Bayesian perspective.  The development of models such as 
Bayesian networks (belief nets), multi-level or hierarchical models and exchangeability 
are the emphasis in the later portion of this section.  
 
Section 10.1: Subjective Expected Utility Model – Rebuilding the 

Decision Framework 
 
The modeling of a decision maker’s preferences or beliefs is justifiably represented 
through the established subjective expected utility axioms. Such a model has been 
described as having three essentials: the action {A}, states {Θ}, and consequence {C} 
spaces.  Drawing upon the scientific process of modeling, French and Insua (2000) 
restate the previously defined decision model in a more general framework containing 
parameters and observable variables.  Thus, let’s consider a model with parameters θ and 
input variables α of the form ),( θαM .  French and Insua (2000) proceed to develop 
comments of such a modeling framework. 
 
The model ),( ⋅⋅M used to predict a set of observed values ),( θαMy = , consists of α 
values which are observed while the parameters θ contain information obtained from 
previous studies.  That is the uncertainty lies within θ whereas α  is known.  It is 
proposed that in decision modeling, partitioning α into ),( aa αα relates back to the model 
previously defined.  If aα is defined to be the set of actions such that Aa ∈  and aα is 
defined to be those random quantities which are unknown, then re-labeling aα as θ 
gives ),( θαM .  As stated in section 9, there is no correct model.  Such models simply 
provide a means of encoding the current assumptions and stating the understood 
relationships.  These models are descriptive in nature and further taken to be 
deterministic accept when allowing a prescriptive interpretation of probability.   
 
The decision model presented in Part I and revisited in the previous section concedes that 
the consequences of a decision are assumed to be determined by the action chosen and 
the unknown state: 
 

ca →⊕θ . 
 
The decision model can be restated as 
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),(),( θαθα aMc = . 
Based on the axiomatic developments in Part II, the subjective expected utility model 
takes the following form: 
 

Choose ))].,(([maxarg θθ acuEa
a

=  

Thus, encoded in the model is the decision maker’s uncertainty and preferences.  The 
observed value X is subtly introduced into the model by redefining the parameter θ to 
include the observations: ),( Xθθ = .  The justification for the use of conditional 
probabilities is provided by the following axiom (French and Insua, 2000): 
 

TSTRTSTRQTSR ∩∩⇔∈∀ ~~ ))|()|(,,, ff . 

 
DeGroot (1970) proceeds with the following theorem based on the axioms stated in Part 
II of this report by asserting that )(⋅∃ θP , a probability distribution on Θ, such that 

(a) )()(:, ~ SPRPSRQSR θθ ≥⇔∈∀ f ; 

(b) )|()|()|()|(:0  ,, ~ TSPTRPTSTRTwithQTSR θθ ≥⇔/∈∀ ff . 

 
DeGroot’s next step is to construct the utility function.  Including the observed value 
X=x, gives the subjective expected utility model to be 
 

Choose ].|)),(([maxarg xacuEa
a

θθ=  

 
Note that the loss function axacual =−= )( and )),((),( δθθ which is the action taken 
after observing x.  This brings us back to the development of the statistical decision 
problem presented in Part I within the context of the developments found in Part II.  This 
leads directly into the building of probability models. 
 
Section 10.2: Building the Probability Framework 
 
The decision model elements: A, Θ, and C (subsequently defined as the action, state, and 
consequence spaces) which constitute the parameters and random and/or observed 
variables of the model have been prescribed as vectors of real or integer numbers or 
categorical variables.  In the previous section, both the general form of the model and the 
consequence model ),(),( ⋅⋅= Mc θα are given to be deterministic; unless accentuated by a 
“propensity interpretation of probability” (French and Insua, 2000).  Decision making 
under uncertainty is quantified or assessed through the development of probability 
distribution and epitomizes the intrinsic nature of statistical decision theory. 
 
The joint distribution of the unknown states of nature θ and the observed random variable 
X are expressed through the joint distribution ),(, XP X θθ .  The relationship between the 
deterministic model ),( ⋅⋅XM and the ascribed joint probability distribution ),(, XP X θθ  
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accounts for the decision maker’s uncertainties and the confounding effects within the 
modeling framework. 
 
As opposed to the descriptive structure of decision modeling construed in earlier sections, 
the prescriptive approach discussed here is indicative of the structure of a decision 
maker’s thoughts or belief process (French and Insua, 2000) and resides in the 
relationship between the construction of probability distributions and utility functions.  A 
review of the development of the form or structure of the joint probability distribution 
(the Bayesian perspective) leads to the construction of probability models and an 
understanding of the graphical approach. 
 
The development of the distributions ),(, XP X θθ , )|( XP θθ , and )|( θXPX is intrinsic in 
determining the confounding effects of both observations and parameter estimates.  The 
construction of the joint probability distribution elicits the Bayes’ theorem.  Furthermore, 
the Bayes’ theorem relates the joint distribution to the marginal and conditional 
distributions such that joint probability of two events A and B are given as: 
 

)()|(),( BPBAPBAP θθθ = . 
 
The Bayes’ theorem re-arranges this form to demonstrate that  

 

)(
)()|(

)|(
BP

APABP
BAP

θ

θθ
θ = . 

 
The events A and B are independent, denoted A ⊥ B.  Thus, the symmetry of the condition 
given above is immediate.  This concept of conditional probability within the utility 
context is introduced by DeGroot (1970) in his presentation of the subjective expected 
utility axioms as shown in section 10.1.   
 
The concept of conditional probabilistic independence extends further the modeling 
structure of a decision maker’s beliefs (French and Insua, 2000).  And the Bayes theorem 
tells us that “our revised belief for A”, the posterior probability )|( BAPθ , can be 
obtained by the product of the prior probability )(APθ and the ratio )(/)|( BPABP θθ  
where the numerator of the ratio is the likelihood of event A.  Thus, the posterior 
probability can be expressed in the following form: 
 

).|()()|( ABPAPBAP θθθ ×∝
×∝ likelihoodpriorposterior

 

 
This process of identifying conditional independence allows for the beliefs of a decision 
maker to be represented in the form of a probability distribution.  Furthermore, they aid 
in developing the structural form of the utilities and in the assessment of the problem.   
 
Section 10.3: Directed Acyclic Graphs (DAGs) and Probability 
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As illustrated in section 9 decision models can be represented graphically and provide 
insight into the structure of the problem.  It was stated that influence diagrams constitute 
the formation of a network through a graphical framework.  A formal description of 
directed acyclic graphs (DAGs) is given in this section and offers a graphical approach to 
Bayesian inference.  This section begins with a description of directed graphs as stated in 
graph theory and leads to its abilities to illustrate the Bayesian inference process. 
 
A directed graph consists of nodes and directed arcs, as stipulated in the section on 
influence diagrams.  Formally, we may consider a network with nodes nji ,...,2,1, =  and 
a subset of the possible ordered pairs ),( ji which specifies the directed arcs.  A path 
consists of a sequence: 
 

kiiii →→→→ ...321 . 
 

Such a directed graph is said to be acyclic when there exists no path with kii =1 .  The 
order of the nodes can be rearranged so that every directed arc ji → has ji < .  Bather 
(2000) gives the following proposition: 
 
If a directed network is acyclic, then the vertices can be renumbered in such a way that i 
< j for each directed arc ji → . 
 
Bather (2000) goes on to prove this proposition which is omitted from this report.  It 
should also be noted that a path only exists if there is a link from one node to another; 
else they are disconnected.  This representation is useful when discussing causation.  For 
completeness purposes, a few terms in relation to graph theory are provided below. 
 
Much of the terminology surrounding graph theory is centered on kinship relationships 
such as parents, child, ancestors, etc.  A node in a directed graph is said to be a root if it 
has no parents and a sink if it has no children (Pearl, 1988).  Every DAG has at least one 
root and one sink.  The term tree is used to qualify a connected DAG in which every node 
has at least one parent.  Similarly, if every node has a child then it is referred to as a 
chain.  A graph is said to be complete if every pair of nodes is connected by an arc.  The 
figure below illustrates an example of a DAG containing four nodes. 
 
Figure 10-1: 
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This mathematical structure, a directed graph, represents a causal network consisting of 
variables and directed links.  This causal framework suggests the way influence may run 
within a causal network.  Two nodes (variables) are said to be separated if “new evidence 
on one of them has no impact on our belief of the other” (Jensen, 2001).  There are three 
types of connections between triplets of variables A, B, and C. 
 
 
Figure 10-2a: 

 
 
Figure 10-2b: 
 

 
 
Figure10-2c: 
 

 
 
In both the linear and diverging cases, we have )|( CBA ⊥ while in the converging case 
we have )|( CBA ⊥/ . 
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Definition: (Jensen, 2001) 
Two variables A and B in a casual network are said to be d-separated if for all trails 
between A and B there is an intermediate variable V such that either 

i. the connection is serial (linear) or diverging and the state of V is known; or 
ii. the connection is converging and neither V nor any of V’s descendents have 

received evidence. 
 
This follows the properties of conditional independence (described in Section 10.2) as the 
quantification of uncertainty in causal structures must obey the principle that whenever A 
and B are d-separated then new information on one of them does not change the certainty 
of the other. 
 
Figure 10-3(a):  Figure 10-3(b):  Figure 10-3(c): 
 

 
 
For Bayesian inference, DAGs illustrate the prior to posterior inference process.  Each 
diagram above represents the joint distribution of two random variables A and B.  A 
causal interpretation follows from figure 10-3(a) which describes the prior beliefs.  The 
posterior beliefs are represented by figure 10-3(b) and elicits an inferential process. Such 
a representation forms the basis of Bayesian networks or belief nets. 
 
Section 10.4: Directed Acyclic Graphs (DAGs) for Inference on 

Bayesian Networks 
 
The use of DAGs for Bayesian inference illustrates the prior to posterior inference 
process as demonstrated in the previous section.  Bayesian networks, on the other hand, 
are generally more complicated than those presented above.  Robert Cowell in his article 
Introduction to Inference for Bayesian Networks, defines Bayesian networks as a  
 
“model representation for the joint distribution of a set of variables in terms of 
conditional and prior probabilities, in which the orientations of the arrows represent 

B 

A A 

B 

P(A)P(B|A) 

B 

A 

P(A,B) P(B)P(A|B) 



Part IV: Model Building for Decision Analysis 

 105

influence, usually though not always of a causal nature, such that these conditional 
probabilities for these particular orientations are relatively straightforward to specify 
(from data or eliciting from an expert)”.   
 
Hence, in this section, the focus falls on the inferential procedure which involves the 
calculation of marginal probabilities conditional on the observed data using Bayes’ 
theorem.  This is equivalent to (diagrammatically) to reversing one or more of the 
Bayesian network arrows.  This section defines a Bayesian network and shows how one 
can be constructed from prior knowledge. 
 
Let’s first consider a simple causal network where A is a parent of B.  Then it is simple to 
calculate the )|( ABPθ .  However, if C is also a parent of B then the individual 
conditional probabilities )|( ABPθ and )|( CBPθ are not sufficient in providing any 
information on the interaction between A and B.  Hence, a specification of ),|( CABPθ is 
required.  This ideology can be expanded to consider n random variables.  Typically, the 
interest lies in looking for relationships among a large number of variables for which the 
Bayesian network is suitable for. 
 
A Bayesian network for a set of variables },...,,{ 21 nXXX=X consists of a set of directed 
arcs which in turn provide (a) a network structure S that encodes a set of conditional 
independence assertions about variables in X, and (b) a set P of local probability 
distributions associated with each variable (Heckerman, 1998; Jensen, 2001).  Thus, the 
variables together with the directed arcs form a directed acyclic graph.  Together these 
components: 
 

i. define the joint probability distribution for X; and 
ii. provide a one-to-one correspondence between S and X. 

 
Thus, a Bayesian network is a DAG whose structure defines a set of conditional 
independence properties.  These properties can be found through graphical manipulations 
such as those presented in section 10.3 (Pearl, 1988). It has been contended that any 
uncertainty must obey the definition of d-separation (Jensen, 2001).  This is to say, that a 
conditional probability distribution is associated with each node where the conditioning is 
on the parents of the node ))(|( ii XparXP .  Further, d-separation can be used to read off 
conditional independencies from DAG representation of a Bayesian network. 
 
Given a network structure S, the joint probability distribution over the set of all variables 
U is given by 
 

∏=
i

ii XparXPUP ))(|()( , 

 
where the )( iXpar is the parent set of iX .  Thus, the local probability distributions P are 
simply the distributions corresponding to the terms in the product of the equation given 
above (Heckerman, 1999).  Jensen (2001) defines this as the chain rule. 
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Next let’s consider the process of building a Bayesian network.  Heckerman (1999) 
illustrates this process through an example.  Here, we generalize his “learning by 
example” approach.  The first task is much like that of the one described in developing a 
decision tree or influence diagram.  That is to say this initial task entails the more logical 
structuring of the parameters and/or variables of interest.  This can be characterized to 
include: (1) the correct identification of the goals of modeling (i.e. prediction versus 
explanation versus exploration); (2) the identification of all possible observations that 
may be relevant to the problem; (3) the identification of a subset of relevant observations 
to model; and (4) the classification of observations into variables having mutually 
exclusive and collectively exhaustive states.  As seen earlier, this is a task embedded in 
decision analysis and hence is not exclusive to Bayesian modeling.  This concludes the 
more logical framework development in the construction of a Bayesian network. 
 
The next step in the construction of a Bayesian network entails the more mathematical or 
statistical framework.  It is at this stage a DAG encoding the “assertions of conditional 
independence” are built.  This approach is based on the chain rule of probability which is 
equivalent to the )(UP shown above.  In general the chain rule of probability is defined as 
 

∏∏
==

− ==
n

i
ii

n

i
ii xPxxxPXP

11
11 )|(),...,|()( π . 

 
Then for every iX  there exists some subset },...,{ 11 −⊆Π ii XX  such that iX and 

iiXX Π− \},...,{ 11 are conditionally independent given iΠ .  Thus, it is clear that the 
variables sets ),...,( 1 nΠΠ correspond to the parent nodes of a Bayesian network and in 
turn specifying the arcs in the network structure S.   
 
It follows that in determining the structure of the Bayesian network requires ordering the 
variables and determining the most appropriate subset of variables.  DAGs can always 
have their nodes linearly ordered so that for each node X all of its parents precedes it in 
the ordering.  Such an ordering is referred to as a topological ordering (Cowell, 1999).  
 
Consider the graph shown below with nine nodes.  This has been taken from Cowell 
(1999). 
 
Figure 10-4: 

 
This example shows that (A, B, C, D, E, F, G, H, I) and (B, A, E, D, G, C, F, I, H) are two 
possible topological orderings.  Thus, this task (of ordering the variables) may not be the 
most feasible or reasonable process to be used unless done so under a more logical 
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framework.  For instance, if the variable ordering chosen is not probable, the resulting 
network structure may fail to reveal some of the important conditional independencies or 
in the worst case n! variable orderings may need to be explored.  Thus, applying the 
semantics of causal relationships (as observed naturally) readily asserts the corresponding 
conditional dependencies.   
 
Now, the task at hand is to compute the joint density over the set of all variables U as 
defined earlier.  According to the DAG, this is referred to as recursive factorization or 
“the distribution being graphical over the DAG” (Cowell, 1999).  It follows a similar 
procedure illustrated above by simplifying the individual terms (or nodes) with respect to 
their structural parents. Then, the final step in the construction of Bayesian networks 
“simply” entails the assessment of the local probabilities, defined as ))(|( ii XparXP for 
each i.  This concludes the systematic approach to the construction of Bayesian networks. 
 
It has been illustrated that each of these models determines a set of conditional 
constraints, represented implicitly in the DAG.  However, the implied criteria or 
assumptions have not been discussed explicitly, and hence is made mention of here which 
Pearl (1988) refers to as stability.  The stability condition requires that all of the 
probabilistic independence relations implied by the model should be invariant across 
(small) perturbations to the parameters of the model.  That is the parameters of the model 
should not be functionally related to each other.   
 
Furthermore, Verma & Pearl (1990) proved that two DAGs are observationally 
equivalent if they have (i) the same skeleton; and (ii) the same sets of nodal structure – 
i.e. two converging arcs whose tails are not connected by an arc.  Using this criterion, it 
can be seen that figure 10-5(a) and (b) that probabilistically they are indistinguishable 
while that figure 10-5(c) and (d) are not.  Thus, a variety of belief nets can represent the 
same conditional independencies. 
 
Figure 10-5: 
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So far the emphasis has been much on the construction of a Bayesian network (from prior 
knowledge, data or a combination).  And the need is usually to determine various 
probabilities of interest from the model.  Thus, we now focus on probabilistic inference in 
Bayesian networks.  Because a Bayesian network for U determines a joint probability 
distribution for U (a set of all variables), in principle, the Bayesian network can be used 
to compute any probability of interest as described above.  However, the task to refine the 
structure and local probability distributions of a Bayesian network given data results in a 
set of techniques for data analysis that combines prior knowledge with data to produce 
improved knowledge (Heckerman, 1999).  This is process referred to as “belief updating 
in Bayesian networks”.  Jensen (2001) summarizes the mathematical process involved: 
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This illustrates the basic ideas for learning probabilities (and structure) within the 
Bayesian or belief net framework.  This section has described the construction steps in a 
sequential manner; however, it is important to assert that many of these “steps” are 
intermingled in practice.  Both the problem of structuring and the assessments of 
probability can lead to changes in the network structure.  The section following presents 
an extension of both probability modeling and belief nets within a hierarchical form. 
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 Section 10.5: Hierarchical Structures in Belief Nets 
 
The natural occurrence of hierarchical structures in physical phenomenon is quite 
common.  Moreover, these structures find themselves in belief net representations as 
hierarchical models.  Hierarchical models were introduced in statistical modeling in 1972 
by Lindley and Smith (Gelman et. al, 1995).  Such models hold several advantages. 
 
The simplest form of a hierarchical model can be described as a representation of beliefs 
which consists of a layered structure.  For instance, consider a set of observations 

nYYY ...,, 21 each related independently to a set of parameters nθθθ ,...,, 21 which share some 
similarity or characteristic.  The assumption about iθ  having a common distribution 

)|( γθ ⋅P represents this “similarity”.  A third level suggests thatγ may be represented by a 
prior distribution with parametersξ .  Thus the model described is a three level model: 
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Thus, the concept here is to simply extend a common parameterθ  to model the 
distribution of many observable quantities iX .  If the parameter has many components 
then it may be useful to specify their joint prior distribution using a common hyper-
parameter, say γ  (Neal, 1996) which is given its own prior.  This hierarchy of a structure 
is referred to as hierarchical modeling.   
 
If the iθ are independent givenγ , then 
 

∫ ∏
=

==
n

i
in dPPPP

1
1 )|()(),...,()( γγθγθθθ . 

 
Although theγ could have been dispensed (with θ  given a direct prior); however, Neal 
(1996) states that using a hyper-parameter “may be much more intelligible”.  This could 
be extended to the level 1 data which would then require the decision maker to integrate 
overθ . 
 
In the hypothetical model illustrated above, the distribution )|( γθ ⋅P is common to all iθ , 
while the distributions )|( iYi

P θ⋅ may vary.  This allows for the articulation of dependence 
or independence in the beliefs about the components, if the iY are multi-dimensional 
(French and Insua, 2000).  Further, a variety of experimental conditions can be ascribed. 
 
A simple and natural occurring example of a hierarchy structure is in determining the 
school to school variability of student achievement.  Suppose the response is math 
achievement on a standardized test.  The innate structural formation describes students to 
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be nested within classrooms, classrooms nested within schools, and this could go on and 
on.  This would mean that iθ  is the mean math score for classroom i, specified by a 
normal distribution for that particular classroom.  Thus, this allows us to update or 
modify our belief of the math ability of students in general by adjusting the likely value 
of the hyper-parameterγ .  Gelman et al. (1995) presents the advantages of hierarchical 
models in terms of statistical inference.  Such strengths draw upon the ability to learn 
about the hyper-parameterγ as well as drawing upon some information about the 
particular effects of iθ .   
 
These three level hierarchical models are not restricted to the structural formation 
illustrated above but have also been used to structure statistical inference in terms of 
observational and modeling error and prior information on the parameters.  Furthermore, 
hierarchical models are not restricted to three levels; more may be appropriate.  That 
judgment is somewhat left to the decision maker. 
 
Section 10.6: Exchangeability and Other Forms of Probability 

Models 
 
One of the most fundamental concepts inlaid within subjective probability modeling is 
the concept of exchangeability introduced by De Finetti’s.  Conditional independence, 
Bayesian networks, and hierarchical models give the decision analysts the tools for 
exploring and constructing the form of the joint distribution through a decomposition into 
its marginal and conditional components; However, the independence conditions to do 
not suggest the parametric form of any of the conditional or marginal distributions 
whereas exchangeability can (French and Insua, 2000).   
 
De Finetti’s “twist of hypothetical permutation suggests that rather than “judging” the 
resemblance between two groups, the decision maker should “imagine” a hypothetical 
exchange of two groups and then decide whether the observed data under the swap would 
be distinguishable from the actual data (Pearl, 1999).  Let A and B denote two groups, 
treated and untreated, and let )(1 yPA and )(0 yPA denote the distribution of group A under 
two hypothetical conditions, treatment and no treatment.  Pearl explains that if the 
interest lies in some parameter µ of the response distribution then 1Aµ and 0Aµ denote the 
values of the parameters in the corresponding distribution )(1 yPA and )(0 yPA , (with 1Bµ  
and 0Bµ defined similarly for group B.  Thus, in measuring the pair ),( 01 BA µµ , the 
hypothetical swap then suggests measuring ),( 01 AB µµ . 
 
Pearl (1999) defines two groups to be exchangeable relative to parameter µ if the two 
pairs are in indistinguishable, that is if  
 

),(),( 0101 ABBA µµµµ = . 
 

French and Insua (2000) extend this concept and state the following proposition: 
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A collection of random variables is exchangeable if and only if any n-tuple, with n less 
than or equal to the sixe of the collection, has the same distribution as any other n-tuple. 
 
Thus, “exchangeability develops the parametric form of a distribution from relatively 
weak ideas and of symmetry between future observables rather than from modeling ideas 
derived from scientific understanding” (French and Insua, 2000).  Literature also 
contends that these sets of symmetry conditions are not easily identifiable, and thus, 
sometimes the parametric structure of the distribution is based more on intuition. 
 
The methods illustrated in Section 10 provide a framework for the structuring of the 
functional form of the decision maker’s probability distributions.  In practice, many of 
the methods are mixed and matched to accomplish the ultimate goal.  Hence, a decision 
maker may choose to build a Bayesian network and then focus on some nodes and 
borrow conditions of exchangeability and modify the structure.  Either way, there are 
many choices in the structuring of decision problems; and this section introduces some of 
these concepts. 
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Section 11: Probabilistic Graphical Models with  
Markovian Properties 

 
The framework for constructing probabilistic graphical models as DAGS is an initial step 
in modeling complex decision problems; however, the formalism of hidden components 
or sequential decision making processes has been ignored, thus far.  This section does not 
survey sequential decision making but does strive to present some of the extensions of the 
graphical models presented earlier.  It focuses primarily on sequential problems which 
can be formulated in Markovian ways.  Such applications stem from the body of theory 
presented in PART III.  Thus, we begin with exact inference when countering hidden 
nodes and then briefly introduce dynamic linear modeling which underpins many 
Bayesian forecasting techniques.  This extends both probability modeling and the 
representation of probabilistic graphical models described in the previous section.  The 
development of models such as Bayesian networks (belief nets) or hierarchical models 
are extended to the development of neural networks, hidden Markov models, and 
dynamic linear models.  
 
Section 11.1: Inference in Probabilistic Graphical Models 
 
The modeling of probabilistic graphs was introduced in section 10.  This section extends 
such structures to discuss probabilistic inference in graphical models which hold hidden 
components or nodes.  The problem in such inference making resides in the computation 
of the conditional probability distribution over the unobserved or hidden nodes given the 
observed information.   
 
Let H denote the set of hidden nodes and E denote the set of “evidence” or observed 
nodes.  Thus the goal is to calculate the  
 

)(
),()|(

EP
EHPEHP = . 

 
Further, another aim is to calculate the marginal probabilities in graphical models, in 
particular the )(EP .  Notably this is the likelihood function which of course has a direct 
relationship with the conditional probability )|( EHP .  Thus, these distributions are 
intertwined and hence, any inference or algorithmic approaches to computing such 
probabilities coincide. 
 
As shown in section 10, when belief updating in Bayesian networks, the joint probability 
distribution ),|( h

s SUP θ is sufficient for the calculations required above.  However 
because the joint probability and corresponding calculations (based on its decomposition) 
increase exponentially with the number of variables or nodes, more efficient methods are 
desired (Jensen, 2001).  Jordan (1999) presents an array of such methods encompassing 
both exact and approximation algorithms.  The junction tree algorithm, an exact approach 
is introduced through the concepts of “moralization” and “triangulation”.   
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The focus in this part of the report has been on graphical models – more specifically on 
DAGs.  To recap, DAGs (directed acyclic graphs) can be numerically assessed 
determining the local conditional probabilities associated with each mode.  That is these 
conditional probabilities give the ))(|( ii XparXP .  To determine the joint probability 
distribution of all of the N nodes, the product is taken over all possible nodes: 
 

∏=
i

ii XparXPUP ))(|()( . 

 
Thus, the probability inference in DAGs involves the computation of conditional 
probabilities under this joint distribution. 
 
This report has neglected undirected graphical models, thus far, as the introduction to this 
subject area was directed by Bayesian networks in a very systematic approach.  However, 
we introduce them here.  First off, such models are also referred to as Markov random 
fields.  They are numerically assessed by “associating potentials with the cliques of the 
graph” (Jordan, 1999).  A potential is defined as a function on the set of configurations of 
a clique that associates a positive number with each configuration.  And a clique is a 
subset of nodes which are fully connected and maximal.  To compute the joint probability 
distribution for all of the nodes, the product is taken over all the clique potentials: 
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where M is the total number of cliques and the normalization factor (the denominator) 
sums the numerator over all configurations.  Figure 11-1 is an example of an undirected 
graph adapted from Jordan (1999). 
 
Figure 11-1: 

The   cliques   are  },,{ 3211 XXXC , 
},,{ 5432 XXXC and },,{ 6543 XXXC . 
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The junction tree algorithm is commonly applied as a means of making exact inferences 
and compiles directed graphical models into undirected graphical models.  Jensen (2001) 
provides a complete description and sequential steps involved in this graph theoretic 
representation of this approach.  Recall, that it was stated that this approach required to 
main steps, “moralization” and “triangulation”.  These are described next. 
 
The first stage, moralization, translates the directed graph into an undirected graph.  Both 
graphs use the produce of the local functions to obtain the joint probability distributions 
of the nodes.  The directed form, ))(|( ii XparXP , does hold the property of being a real-
valued function over the configuration; however, these nodes are not always situated 
together within a clique.  Thus, the objective is to “marry” the parents of all of the 
undirected edges in the graph.  This is done by simply dropping the arcs on the other 
edges in the graph (Jordan, 1999).  The resulting graph is called a moral graph and can be 
used to represent the probability distribution on the original directed graph within the 
undirected structure.   
 
The second stage of the algorithm is referred to as triangulation.  This processes the 
moral graph (taking it as input) and produces an undirected graph (perhaps with 
additional edges).  This graph holds a property which allows recursive calculations of 
probabilities (Jordan, 1999).  In a triangulated graph, joint probabilities can be built up 
sequentially through the graph.  Figure 11-2 illustrates two graphs – (a) represents a non-
triangulated graph whereas (b) demonstrates its triangulated form.  Thus, if there are 4 
cycles which do not have an edge, it is considered not triangulated but can be simply 
formulated to be by simply adding a chord as seen below. 
 
Figure 11-2(a):   Figure 11-2(b):  
 

 
 
Once a graph has been triangulated, the cliques of the graph can be arranged into a data 
structure known as a junction tree.  The aforementioned algorithmic structure is made 
possible for trees and not networks because of the independent properties.  That is, if X is 
instantiated then all its neighbors are independent (Jensen, 2001).  To summarize, 
through graph theoretic methods, the independence properties in a network are converted 
and organized into a set of sets of variables (cliques) and to construct a tree over the 
cliques, resulting in a junction tree. 

(a (b
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Section 11.2: Neural Networks 
 
Neural Networks are Layered graphs endowed with a nonlinear “activation” function at 
each node (Jordan, 1999).  A neural network is characterized by its: (1) architecture – its 
pattern of connections between the nodes; (2) learning algorithm – its method of 
determining the weights on the connections (probability distributions); and (3) activation 
function – which determines the output (Ripley, 1996).  Figure 11-3 below illustrates the 
layered graphical structure of a neural network. 
 
Figure 11-3: 
 

 
 
Typically, a neural network consists of a large number of processing elements (nodes), or 
neurons (when speaking of artificial neural networks).  Each node has an internal state, 
referred to as its activity level or activation which is a function of the inputs it has 
received.  Thus, a node sends its activation as a signal to several other nodes; however, it 
can only send one “message” at a time. 
 
Let’s first consider a typical example of a simple neural network.  Actually, for 
simplicity, let’s consider a single output node Y which receives input (activation) from n 
nodes nXX ,...,1 .  From each input node to the output node Y, there is an associated 
weight ijθ .  Then to determine the output of the node Y, simply sum the inputs with their 
respective weights (consider multiple regression with ijθ  as the regression coefficients): 
 

njnjjjjjiij xxxy θθθθ ++++= ...22110  
 

The 0iθ is the “bias” parameter which allows one to change (or bias) the output 
independently of the inputs.  The next step is to apply an activation function, of which a 
number of them could be used.  However, a common activation function is the logistic 
sigmoid function (an S-shape curve).   
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Let’s consider an activation function that is bounded between 0 and 1, such as that 
obtained through the logistic function: 
 

)1/(1)( yeyf −+= . 
 

Thus, a binary variable iX is associated with each node in a graphical model; and the 
interpretation of the activation of the node is the probability that the associated binary 
variable takes one of its two values.  Thus, the corresponding logistic function is: 
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Thus, the ijθ  are the parameters associated with the edges between the parent nodes j and 
node i, and 0iθ is the bias parameter associated with node i.  This is the sigmoid belief 
network introduced by Radford Neal (1992).  Such treatments of neural networks hold 
many advantages including the ability to perform diagnostic calculations and to handle 
missing data (Jordan, 1999). 
 
From figure 11-3 above, it is quite clear that a node in a neural network, generally, has 
the preceding layer as all of its parent nodes.  Thus, when applying the junction tree 
algorithm, the moral graph links between all of the nodes in this layer, as illustrated 
below.  Further note that the by definition (Section 11.1) the output nodes are the 
“observed” or “evidence nodes and thus the hidden nodes are probabilistically dependent 
and so are any of its ancestors (Jordan, 1999).  Computationally this can be quite 
intensive as the clique size due to the triangulation procedure will grow exponentially. 

 
Section 11.3: Hidden Markov Models 
 
This section introduces hidden Markov models which is one of the simplest kinds of a 
dynamic Bayesian networks.  As suggested by the model’s name, hidden Markov models 
hold Markovian properties for which we refer to PART III.  Thus, instead of regurgitating 
such properties, we simply relay the directed Markovian property in graphical models. 
 
This directed Markovian property is a conditional independence property which states 
that a variable is conditionally independent of its non-descendents given its parents: 
 

)(|)( XparXNDX ⊥  
 

where )(XND denotes the non-descendents of X.  From section 10, it was mentioned that 
the conditional probability ))(|( ii XparXP did not necessarily mean that if the 

*)( π=Xpar  then the *)|()( πxPxXP == .  That is the suggestion was that any other 
information is irrelevant for this condition to hold.  In DAGs, this information refers to 
the knowledge about the node itself or any of its descendents.  So, we can summarize this 
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by saying that having information about a non-descendent does not tell us anything more 
about X, because either it cannot influence or be influenced by X either directly or 
indirectly (Cowell, 1999).  (Or if it can be influenced indirectly, then it can only be done 
though influencing the parents which are all known anyway.) 
 
Figure 11-4: 
 

 
 

A hidden Markov model (HMM) is a graphical model in the form of a chain as seen in 
the figure above.  Applying the same property, consider a sequence of multinomial 
“state” nodes iX and assume that the conditional probability of iX is independent of its 
immediate predecessor 1−iX .  This forms a matrix of transition probabilities 

)|( 1−= ii XXPA  which is time invariant.  The output nodes iY  have an associated 
“emission” probability law )|( ii XYPB = which is also time invariant. 
 
In determining probabilistic inferences in such graphical models, the output nodes are 
treated as evidence nodes and the states as hidden nodes.  The EM (expectation-
maximization) algorithm is generally applied to update the parameters π,, BA .  This two 
step iterative procedure first computes the necessary conditional probabilities and then 
updates the parameters via weighted maximum likelihood.  Thus, the moralization and 
triangulation procedures of the junction tree algorithm are innocuous or useless for such 
graphical models as hidden Markov models (in this form).  
 
Figure 11-5: 
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Now consider a variation on the aforementioned hidden Markov model with a number of 
chains.  Such a graphical model is called a factorial HMM and is shown above.  In 
general, the structure is composed of m chains.  Hence, the state node for the mth chain at 
time i is denoted )(m

iX and corresponding transition matrix for the mth chain is denoted 
)(mA .  Thus, the overall transitional probability for the full model is computed by taking 

the product across the intra-chain transition probabilities: 
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In this situation, the triangulation process will result in an exponential growth of cliques 
as there are multiple chains to be considered.  Thus, a factorial hidden Markov model 
does not hold the tractable properties held by its more general formalism. 
 
Another variation or amalgamation of two previously described models is hidden Markov 
decision trees (HMDT).  As the name suggests, this is a model which is essentially a 
decision tree endowed with Markovian properties (Jordan, 1999).  In an HMDT, the 
decisions in the decision tree are not only conditional on the current data point, but are 
also conditional on the decision at the previous moment in time.   
 
Figure 11-6: 

 

 
 
The figure above illustrates such a model where the horizontal edges represent the 
Markovian temporal dependence.  Note that the term temporal is used as it is assumed 
that the model structure does not change (Murphy, 2003).  Thus, given a sequence of 
input vectors iU and a corresponding output vectors iY , the task at hand is to compute the 
conditional probability distribution over the hidden states again.  This is much like the 
case of the FHMM and is shown to be intractable when making inferences (numerically) 
(Jordan, 1999). 
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Several other variations of the HMM exist including those of higher orders where each 
state depends on the previous k states as opposed to the single previous state or those with 
a mixture of both continuous or discrete nodes.  Either way, the number of cliques for 
such models grows exponentially.  Thus, although these models provide a graphical 
representation of complex problems, they are not easily tractable especially when 
concerned with exact inference algorithms.  However, many of these can still be assessed 
using approximation methods which will be discussed generally in section 11.5. 
 
Section 11.4: Linear Dynamic Models 
 
Another important type of dynamic Bayesian networks is the class of decision problems 
which has arisen out of the area of control of stochastic systems within the engineering 
field.  Essentially, the objective is to keep systems running over a number of stages along 
target trajectories of states (French and Insua, 2000).  They have also been developed for 
the problem without controls, known as dynamic linear models (DLM).  Their 
importance resides in their formulation as a tool for Bayesian forecasting and sequential 
procedures.   
 
Linear dynamic models have the same topology as HMMs, but all the nodes are assumed 
to have linear-Gaussian distributions.  Let’s consider the basic structure: 
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where ty  is scalar (data) and tθ is the state vector.  The model is defined by four quantities 

},,,{ tttt WVGF which are assumed to be known at time t: tF is a n vector, tG is a nn ×  
matrix, tV is a non-negative scalar, and tW is a nn × symmetric and positive (semi)- 
definite variance matrix.  A more general way of stating this model is: 
 
Observation equation: 

),0(~     , tttt
T

tt VvvFy += θ  
 

System equation: 
),0(~     ,1 tttttt WwwG += −θθ  

 
Figure 11-7: 

 
 

HMM with Gaussian 
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The best way to think of a DLM is through is graphical structure as shown above.  This 
graph has two noticeable features.  The first, is that the state vector tθ follows a Markov 
process, so that tkjkjk ≤≤≤⊥ − 1 allfor   ,| 1θθθ .  This implies that kj ww ⊥ .  The 
second is that kθ separates ky from everything else, so that kjjk yy θθ |,⊥ .  This further 
implies that kk wv ⊥ and jjk wvv ,⊥  (West et. al., 1997). 
 
Let },...,{ 1 kk yyD = represent the data where ky takes on either a numeric or missing 
value.  Then the prior beliefs about the state vector can be written as: 
 
Prior information: 

),(~| 0000 CmDθ . 
 

The DLM allows us to compute km and kC from 1−km , 1−kC , and ky .  In this way, the 
information sets kD are defined recursively and can be computed through stochastic 
dynamic programming algorithms; however, can be manageably daunting.  Nonetheless, 
these models do provide highly effective means of modeling univariate time series 
(French and Insua, 2000).     
 
Section 11.5: Variational Methods for Dynamic Bayesian Networks 
 
The junction tree algorithm and dynamic programming algorithms provide solutions for 
probabilistic inferences in graphical models.  However, as we have seen in this section, a 
need for other approaches is crucial for many forms of dynamic Bayesian networks as 
they grow in complexity.  Even in cases where exact algorithms are manageable, it is still 
important to consider approximation methods.   
A graphical model specifies a complete joint probability distribution over all the nodes.  
Given the joint probability distribution, all possible inferences queries can be determined 
by their marginal distributions.  Computing several marginal distributions at the same 
time can be done using dynamic programming which avoids the redundant computation 
required by other marginalization procedures.  However, much like the junction tree 
algorithm, this grows exponentially pending the size of its largest subset of nodes.   
 
Approximation algorithms provide an alternate solution.  Jordan (1999) provides an 
overview of some of the valuable and existing approximation methods.  Variational 
methods and sampling methods are two approximation approaches readily used.   
 
Variational methods generally provide bounds on probabilities of interests (Jordan, 
1999).  The simplest example is the mean-field approximation which exploits the law of 
large numbers to approximate large sums of random variables by their means (Murphy, 
2003).  This procedure requires the decoupling of all the nodes and updating of the 
variation parameters, formulating a lower bound on the likelihood.  The objective of such 
methods is to convert a complex problem into a simpler one.   
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Since the basic idea (stemming from above) is to simplify the joint probability 
distribution by transforming the local probability functions, an appropriate choice can 
lead to a simplified inference problem.  Transforming some of the nodes may allow for 
some of the original graphical structure to remain intact or introduce a new graphical 
structure to which exact methods may be applied.  The sequential approach makes use of 
variational transformations and aims to transform the network until the resulting structure 
is amenable to exact methods (Jordan, 1999; French and Insua, 2000).  Other similar 
approaches exist and have shown to be fruitful in accomplishing the inference task.  This 
has been touched on briefly through some of the examples in this section. 
 
Another approach to the design of approximation algorithms involves sampling (Monte 
Carlo) methods.  Markov chain Monte Carlo (MCMC) methods are a more efficient 
approach and many of these algorithms have been applied to the inference problem in 
graphical models.  Their simplicity in implementation and theoretical overtures of 
convergence make them advantageous; however, they can be slow to converge and it can 
be hard to diagnose their convergence (Jordan, 1999).   
 
The general inference problem is the computation of the conditional distribution over the 
hidden values given the observed information.  There is a lot of literature in this area and 
especially on algorithms to accomplish this task.  Some of these have been briefly 
discussed in this section.  These various approaches to inference are not mutually 
exclusive, and in many instances, an amalgamation of such methods may prove to be the 
best solution for a given graphical model.  Some of these more common methods are 
described in more detail in the PART V to illustrate analysis procedures.   
 



Part V: Analytic & Computational Methods for Decision Problems 

 122

Part V: ANALYTIC &  
COMPUTATIONAL METHODS  

FOR DECISION PROBLEMS 
 
 

The complexity of decision problems has led to the rapid development of methodological 
solutions to these problems.  The graphical structure of probabilistic models has also 
added a more intuitive approach to the problem at hand.  These developments have also 
led to the advancement of computational methods to deal with the complexities of the 
numerical assessment of these problems which arises.  The task at hand is probabilistic 
inference, whether it lies in graphical models or in expected losses.  Recall that French 
and Insua (2000) commented on the feasibility and robustness which relate to the 
practicality and implications of decision processes.  Thus, the need for computational 
methods which meet the criteria is essential to decision modeling. 
 
Earlier parts of this report introduced the framework for modeling decision problems in 
introduced the decision theoretic aspects.  PART IV of this report focused on building 
models to illustrate decision problems with an emphasis on probabilistic graphical 
models.  This part of the report concludes this paper by discussing some of the 
computational issues which arise in decision analysis.  Computational methods including 
Monte Carlo methods and dynamic programming are introduced as both feasible and 
efficient approaches for the analytic assessment of decision problems.  These analytic 
concepts are the focus of the beginning sections.  The last section is an application of the 
typical methodology used in a prototypical example.  This concludes the methodological 
issues which arise in decision problems. 
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Section 12: Decision Theoretic Computations 
 

Part I and Part IV introduced the framework for decision models and the construction of 
graphical models, respectively.  Both approaches introduced the computational issues 
which arise.  Much of these issues reside in the calculation and or minimization of 
probability distributions.  Some of the methodological approaches were introduced; 
however were never developed.  This section re-introduces the problem and begins to 
address algorithms which aim to solve some of these computational constraints.  A 
review of analytic approaches and numerical integration are presented but demonstrate 
some limitations which are resolved though Monte Carlo methods.  Although this section 
concentrates on Bayesian decision theoretic computations, other statistical decision 
theoretic approaches face the same computational problem.  Therefore, they provide 
insight into solving the computational issues which arise through the classical approach.   
 
Section 12.1: Computational Issues in Decision Problems 
 
The first half of this report focused on the construction and development of decision 
models.  Recall that the loss function ),( al θ  is one of the key attributes of decision 
theory.  Moreover, the process of calculating and minimizing expected losses is the key 
objective. This section addresses the computation issues which arise in the modeling of 
decision problems and specifically these objectives.   
 
French and Insua (2000) state that there are two objectives which need to be solved: 
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The former is simply the calculation of an expectation.  In this latter case, the probability 
model involves dependencies on a which occurs in influence diagrams and decision trees 
formulations.  Assuming the optimal action is known means that the explicit computation 
of the posterior probability is only required.  Thus the solution of these decision problems 
requires the computation of a posterior expectation.   
 
In most instances, the integrals involved are difficult to evaluate analytically; and hence 
more powerful integration methods need to be implemented.  This section reviews 
analytical and numerical approaches before introducing simulation or Monte Carlo 
methods.  The limitation of the analytic and numeric approaches draws the importance 
for more computationally efficient and plausible methods.  However, these methods are 
not without their drawbacks and are addressed.  The latter part of this section attends to 
combining the issues of optimization and integration.  Although, there is a focus on the 
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Bayesian decision theoretic computations, these issues are synonymous to other statistical 
decision theoretic issues; and hence provide insightful possibilities. 
 
Section 12.2: The Bayesian Framework 
 
In addressing the computational issues within a Bayesian framework, it deems necessary 
to describe the Bayesian perspective in order to fully understand the issues which arise is 
such methodology.  Thus, we begin with an overview of Bayesian data analysis. 
 
The essential characteristic of Bayesian methods is their explicit use of probability 
models for quantifying uncertainty in inferences based on statistical data analysis.  It can 
be conceptualized by dividing it into the following three steps: (1) setting up a full 
probability model; (2) conditioning on the observed data; and (3) evaluating the fit of the 
model and the implications of the resulting posterior distribution (Gelman et al. 1995) 
 
Setting up a full probability model entails the construction of a joint probability 
distribution for all observable and unobservable quantities in a problem.  The model 
should be consistent with knowledge about the underlying scientific problem.  The 
second step involves calculating and interpreting the appropriate posterior distribution – 
the conditional probability distribution of the unobserved quantities of ultimate interest, 
given the observed data.  Lastly, questions addressing “does the model fit the data, are the 
substantive conclusions reasonable, and how sensitive are the results to the modeling 
assumptions in the first step” (Gelman et al. 1995) should be tended to.   
 
Contextually, it is often easier (with the Bayesian approach) to build highly complex 
models when such complexity is realistic.  The central feature to Bayesian inference is 
the direct quantification of uncertainty which in principle allows models with multiple 
parameters and complex layers to be fit (Gelman et al. 1995) with a conceptually simple 
method.  The purpose of this report is not to glorify Bayesian inference over the 
frequentist approach as there is no need to choose exclusively between the two 
perspectives nor is it without its constraints.  However, it is the purpose of this section to 
introduce and outline the general concept of the Bayesian paradigm.  Before launching 
into a discussion on computational advances in Bayesian methods, a review of some 
terminology and standard notation and a formal presentation of the problem are provided. 
 

The task in decision problems has been to make probabilistic inferences.  Statistical 
inference refers to the process of drawing conclusions about a population on the basis of 
measurement or observations made on a sample of individuals from the population 
(Everitt, 2002).  From a Bayesian perspective, there is no fundamental distinction 
between observables and parameters of a statistical model as they are all considered 
random quantities.  Thus, here in lies the task – the quantification of such uncertainty. 
 

Recall that Bayesian data analysis involves (first) setting up the full (joint) probability 
model.  Let D denote the observed data, and θ denote model parameters and missing data. 
The joint distribution is comprised of two parts: a likelihood )|( θDP and a prior 



Part V: Analytic & Computational Methods for Decision Problems 

 125

distribution )(θP .  To summarize, obtaining the likelihood )|( θDP describes the process 
which gives rise to the data D in terms of the unknown parameters θ while the prior 
distribution )(θP expresses what is known about θ, prior to observing the data.  
Specifying )|( θDP and )(θP gives a full probability model, in which 
 

)()|(),( θθθ PDPDP = . 
 

The second step in Bayesian data analysis commemorates the Bayes Theorem is used to 
determine the distribution of θ conditional on D, after observing the data: 
 

.
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Applying the Bayes Theorem derives the posterior distribution of θ and is the object of 
all Bayesian inference (Gilks et al. 1996). 
 
Moments, quantiles and other features of the posterior distributions can be expressed in 
terms of posterior expectations of functions of θ.  The posterior expectation of a function 

)(θf is 
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The integration of this expression has until recently been the source of most of the 
practical difficulties in Bayesian inference.  The problem of calculating expectations in 
high-dimensional distributions adheres both to Bayesian inference and some areas of 
frequentist inference (Geyer, 1995).  To avoid an unnecessarily Bayesian “flavor” to this 
discussion, the problem is restated in more general terms.   
 
Let X be a vector of k random variables, with distribution )(⋅π .  In Bayesian applications, 
X will comprise of both model parameters and missing data; in frequentist applications, it 
may comprise of data or random effects (Gilks et al. 1996) and Draper (1997).  For 
Bayesians, )(⋅π will be a posterior distribution (as described above) while for frequentists 
it will refer to a likelihood.  However, either way, the task is to evaluate the expectation 
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for some function of interest )(⋅f . 
 
A common situation arises in such that the normalizing constant (the denominator of the 
above equation) is unknown.  In Bayesian practice, )|()()|( θθθ DPPDP ∝ ; however the 
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normalizing constant ∫ )()|()( θθθ dDPP is not easily evaluated and is the focus of the 
next section.  Here, it has been assumed that X takes values in k-dimensional space, i.e. it 
is comprised of k vectors of continuous random variables.  Although, this problem has 
been described generally, X could consist of discrete random variables (in which case the 
integral would be replaced by a summation) or by a mixture of both continuous and 
discrete random variables. 
 
Section 12.3: Integration Methods 
 
As discussed in the previous section, the difficulty and the interest in Bayesian inference 
is in evaluating expectations ∫ dxxxf )()( π  for various functions )(xf .  Integration is 
usually simple in conjugate models – priors and posteriors are members of the same 
parametric family of distributions and thus posteriors are easily determined (French and 
Insua, 2002).  Even for conjugate models, there may be cases (moments or probabilities) 
for which the solution may not be computed explicitly.   
 
In the last decade alone, there have been a number of advances in numerical (Tierney and 
Kadane, 1986) and analytic (Smith et al. 1987) approximations for such calculations, 
largely in part due to increased computing power.  Some of these alternatives such as 
numerical evaluation are difficult and inaccurate in k > 20 dimensions; analytic 
approximations such as the Laplace approximation which is sometimes appropriate 
(Gilks et al. 1996).  Numerical quadrature methods for approximating integrals such as 
the common trapezoid and Simpson’s rules (CSC260H, 2001) are commonly applied.  
Better rules are obtained when the form of the integrand is taken into account such as 
Gaussian quadrature methods which approximates well when the density function is a 
normal kernel (French and Insua, 2002).  Such procedures also extend into k dimensions.  
Asymptotic methods based on asymptotic normality arguments also exist.  However, 
integration strategies based on these arguments are only valid if samples sizes are large 
and other necessary conditions apply.  These methods are efficient in problems with 
specific structure and/or low dimensionality.   
 
In more complex problems, simulation or Monte Carlo integration is required.  Monte 
Carlo methods are often the method of choice involving high-dimensional problems, but 
it is important to note that many of these computational methods complement each other 
rather than compete (Tierney and Mira, 1999). 
 
Monte Carlo Integration 
 
The basic objective of the Monte Carlo approach is to draw an approximate i.i.d. sample 
from )(⋅π which can then be used to compute sample averages as approximations to 
population averages (STA4276H, 2003).  Although this is an oversimplification of the 
approach it introduces the concept concisely.  More formally, Monte Carlo integration 
evaluates )]([ XfE  by drawing samples },...,1,{ ntX t = from )(⋅π and then approximating 
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So, the population mean of )(Xf is estimated by a sample mean; the average value has 
some basic properties which are very important.  When the samples }{ tX  are 
independent, the Law of Large Numbers ensures that the approximation can be made as 
accurate as desired by increasing the sample size n (Gilks et al. 1996).  Thus, n is under 
the control of the analyst; it is not the size of a fixed data sample.   
 
The problem at hand is to simulate observations from a posterior distribution, obtained 
via Bayes’ Rule as 
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In general, drawing samples }{ tX from )|()( XP θπ =⋅ is not feasible, since )(⋅π can be 
quite complex and non-standard.  However the samples }{ tX need not be independent; it 
can be generated by any process which (loosely) draws samples throughout the support 
of )(⋅π in the correct proportions (Gilks et al. 1996).  One way this is accomplished is 
through a Markov chain having )(⋅π as its stationary distribution.   
 
Let ,...,...,, 21 tXXX be a sequence of random variables which have outcomes from some 
set S.  Also, assume that the conditional distribution of tX  given all previous 
observations ,..., 21 −− tt XX only depends on the last observation.  That is, if the current 
value is known then the prediction of the next value does not require the previous values 
(CHL5223H, 2003).  This property is known as the Markovian property and such a 
sequence of random variables is known as a Markov chain.  More formally this is stated 
as suppose a sequence of random variables },...,1,{ ntX t = are generated such that at each 
time 1≥t , the next state 1+tX is sampled from a distribution )|( 1 tt XXP + which depends 
only on the current state of the chain, tX .  Thus, to summarize, given tX , the next state 

1+tX does not depend further on the history of the chain }.,...,,{ 121 −tXXX  
 
An important issue in basic Markov chain properties is the affect of the starting value of 
the chain or state 1X  affect tX .  The trait of the distribution of 1| XX t , denoted 

)|( 1
)( XXP t

t , without the intervening variables },...,,{ 132 −tXXX  suggests that tX  
depends directly on 1X .  Subject to some conditions, the chain will gradually ‘forget’ its 
initial state and )|( 1

)( XP t ⋅ will eventually converge to a unique limiting distribution 
(Gilks et al, 1996).  That is, tX  settles down to a limiting distribution no matter what the 
value of the starting value of 1X is.   
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There are some basic properties of Markov chains which should be stated for 
completeness.  The first is that if the set of states, S, is finite then the Markov chain holds 
two properties: aperiodicity and irreducibility; if the set of states is infinite then an 
additional property of an invariant distribution exists (CHL5223H, 2003).  Thus, for a 
finite Markov chain, the limiting distribution exists of it is aperiodic (the chain is not 
cyclic) and irreducible (possible to move from one state to another) while infinite Markov 
chains hold the additional property of having an existing invariant or stationary 
distribution.  The stationarity of a distribution simply refers to the limit as ∞→n is )(⋅π . 
Thus, as discussed earlier, as t increases, the sample points }{ tX look increasingly like 
dependent samples from the stationary distribution denoted as )(⋅φ based on a long burn-in 
of m iterations, where nmt ,...,1+= .  The output from the Markov chain is used to 
estimate the expectation )]([ XfE , where X has distribution )(⋅φ .  The important by-
product is the “path averages” to the expected value under the limiting distribution where 
burn-in samples are usually discarded for the calculation of the estimator: 
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The convergence to the expectation is confirmed by the ergodic theorem whereby the 
above estimator is referred to as the ergodic average (Gilks et al. 1996).  Therefore these 
path averages can be used to estimates expected values of the limiting distribution. 
 
(See Part III for a discussion on Markov chains and their properties.)  
 
Section 12.4: Markov Chain Monte Carlo Methods 
 
Recall that is was stated that the basic objective of the Monte Carlo approach was to draw 
an approximate i.i.d. sample from )(⋅π which could then be used to compute sample 
averages as approximations to population averages.  Since direct i.i.d. sampling is rarely 
possible, a sample from a similar distribution is obtained and a Markov chain as its 
unique invariant distribution is constructed (Tierney and Mira, 1999).  These are the 
concepts which formulate the Markov chain Monte Carlo (MCMC) method.   
 
As explained the Monte Carlo techniques generate random variables having certain 
discrete distributions.  However, once it becomes too complex, Markov chains can be 
used.  If a Markov chain with a stationary distribution is the same as the desired 
probability distribution )(⋅π (the target distribution), then the Markov chain can be run for 
a long time, say m iterations.  The probability that the chain is in state i will be 
approximately the same as the probability that the discrete random variable equals i.  The 
idea behind the method is simple.  Simply, a Markov chain with invariant 
distribution )(⋅π is run and sample path averages are used to approximate expectations 
under )(⋅π .  If the chain is irreducible and the expectations exist, then the sample path 
averages converge to the expectations.  The problem of finding the Markov chain with 
the desired stationary distribution still exists. 
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The ergodic average shows how a Markov chain can be used to estimate )]([ XfE , where 
the expectation is taken over its stationary distribution )(⋅φ .  This would seem to provide 
the solution to the initial problem; however, first the construction of a Markov chain such 
that its stationary distribution )(⋅φ is precisely the distribution of interest )(⋅π  needs to be 
established.  There are two widely established ideas which are presented in the next two 
subsections – dimension reduction by conditioning (Gibbs sampling approach) and 
acceptance and rejection (Metropolis-Hastings algorithm). 
 
The practical appeal of simulation methods, including MCMC, is that, given a set of 
random draws from the posterior distribution, one can estimate all summary statistics 
from the posterior distribution directly from the simulations.  MCMC methods have been 
widely successful because they allow one to draw simulations from a wide range of 
distributions, including many that arise in statistical work, for which simulation methods 
were previously much more difficult to implement.  To apply the MCMC method in a 
particular problem a sampler has to be constructed.  There are two central ideas for 
building samplers and are guided by the two most common methods – the Gibbs sampler 
and the Metropolis-Hastings algorithm which are described in sections § 4.2 and § 4.3.  
These algorithms are not in competition with each other and in fact complement each 
other.  The Metropolis within Gibbs algorithm is identified as a conceptual blend in 
which one parameter is updated at a time; this was the initial proposed algorithm which 
can be automated (Gilks et al. 1996). 
 
Gibbs Sampling 
 
The Gibbs sampling algorithm holds the central idea of “dimension reduction by 
conditioning” (Tierney and Mira, 1999) and is best described mathematically by its 
transition kernel (Gilks et al. 1996).  Suppose )(⋅π is the joint distribution of  

},...,1,{ ntX t = where t ≥ 1, a Markov chain.  Update each component based on the value 
of each other component 
 

),...,,,...,|()|( 1111 nttttt XXXXXXX +−− = ππ  
 

These distributions are called full conditionals.  The transition kernel describes the 
density of going from one point X to another point Y (Gilks et al. 1996, Brooks et al. 
1998): 
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This is a product of the conditional densities of the individual steps required to produce 
an iteration of a d-dimensional Gibbs sampler.  A thorough theoretical discussion is 
omitted for brevity sake.   
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The Gibbs sampling algorithm is quite simpler in concept and thus, a simple example is 
featured below.  Let θ be 3-dimensional and the parameters of a Bayesian model.  The 
algorithm follows: 
 

1. Start with a set of initial values: )0(θ . 
 
2. Given the m-th update, get the (m+1)th sample by: 
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3. The joint posterior is invariant, therefore: 
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It should be noted that when this sampling was developed by Geman and Geman (1984) 
its purpose was to sample from a Gibbs distribution, which is a distribution over a lattice; 
however since its inception it has expanded over many distributions and thus, being 
called a Gibbs sampling algorithm is a bit of a misnomer.  The Gibbs sampler is a special 
case of the Metropolis-Hastings algorithm which is explained next. 
   
Metropolis-Hastings Algorithm 
 
The notion that if the chain is irreducible and the expectations exist, then the sample path 
averages converge to the expectations is the basic idea proposed by Metropolis et al. 
(1953) and was extended by Hastings (1970).  The central idea to the Metropolis-
Hastings algorithm is acceptance (or proposals) and rejection (Tierney and Mira, 1999).  
This algorithm proposes a new point on the Markov chain which is either accepted or 
rejected.  If the point is accepted, the Markov chain moves to a new point.  If it is 
rejected, the Markov chain remains in the same state.  By choosing the acceptance 
probability correctly, a Markov chain which has )(⋅π as a stationary distribution is created. 
 
Let S be a state space with probability distribution )(⋅π on S.  Then choose a proposal 
distribution },,:{ Sjiqij ∈ with .each for  1 and 0 Siqq

Sj
ijij ∈=≥ ∑

∈

  Given that 

1, += nn XiX is computed as the M-H algorithm follows: 
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As desired, this will create a chain with stationary distribution )(⋅π .  The Metropolis-
Hastings algorithm can also be used for continuous random variable by using densities 
and continuous proposal distributions, but is not explored further here.  It is also possible 
to extend the concept to a multidimensional case.  The “Gibbs sampler”, is a special case 
of the multivariate Metropolis-Hastings algorithm where the proposals q are the full 
conditionals and the acceptance probability is always 1 as explained above. 
 
Convergence Issues 
 
A properly derived and implemented MCMC method will produce draws from the joint 
posterior density once it has converged to stationarity )(⋅φ .  As a result, a primary concern 
in applying such methodology is determining that it has in fact essentially converged; that 
is, that after an initial burn-in period (designed to remove dependence of the simulated 
chain on its starting location), all further samples may be safely though of as coming 
from the stationary distribution.  This is complicated by two factors.  First, since what is 
produced at convergence is not a single value but a random sample of values, somehow 
the natural variability in the converged chain and the typically greater variability in the 
pre-convergence samples must be distinguishable.  Second, since the sampled results 
come from a Markov chain, they will typically be serially correlated.   
 
Although MCMC methods have effectively revolutionized the field of Bayesian statistics 
over the past decade, any inference based upon MCMC output relies critically upon the 
assumption that the Markov chain being simulated has achieved a steady state or 
“converged”.  Many techniques have been developed for trying to determine whether or 
not a particular Markov chain has converged, and the paper by Brooks and Roberts 
(1998) reviews some of these methods with an emphasis on the mathematics 
underpinning these techniques in an “attempt to summarize the current ‘state-of-play’ for 
convergence assessment”.  These are not elaborated here for brevity purposes.   
 
A round table discussion held at the Joint Statistical meetings in August of 1996 with a 
panel of experts in the field published parts of the discussion in which they discuss more 
practical applications and procedures they follow.  As various diagnostics are available, 
these experts mentioned that use of autocorrelation plots and trace plots are amongst the 
most useful and practical.  The former is simply a plot demonstrating the path of the 
parameter; while the latter is simply the internal correlations. These diagnostics are often 
used to estimate the degree of mixing in a simulation which is the extent to which a 
simulated chain traverses the entire parameter space (Kass et al. 1998). 
 
Section 12.5: Integrating Integration & Optimization Methods 
 
To summarize, some of the aspects addressed in the introductory section on Bayesian 
framework (§ 12.2) such as awkward posterior distributions and further distributional 
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complexity introduced by model parameters would (otherwise) require subtle and 
sophisticated or analytic approximation; however dimensionality problems typically put 
out of reach the implementation of other sophisticated approximation techniques as those 
introduced in § 12.3.   Markov chain Monte Carlo methods put to ease much of these 
constraints which have otherwise limited Bayesian data analysis with the included 
aspects of providing general functions of models parameters and alleviating much 
awkward predictive inference.  Thus, the problem of computing expectations or making 
probabilistic inferences – in this instance is remedied. 
 
In problems with optimization requirements such as general loss functions, such 
computational effort is not sufficient.  That is, combining problems of optimization and 
integration are required for decision theoretic computations.  For general loss functions, 
the objective is to determine the alternative a* which minimizes the expected loss.  There 
are two operations: (1) compute the expected loss; and (2) minimize the expected loss.   
 
French and Insua (2000) review several optimization methods which are useful within 
statistical decision theory.  It is also important to note that some of the integration or 
sampling methods previously described also have an optimization step to compute 
maximum likelihood estimators, for instance.  Thus, it only seems plausible to have 
Monte Carlo optimization methods to solve such problems.  Adaptive methods which try 
to accomplish such a task have been developed; however, they are not without their 
limitations.   
 
An alternative approach was introduced by Shao (1989) in the statistical decision theory 
literature; and is referred to as sample path optimization.  The strategy follows: 
 

1. Select a sample )|(~,...,1 xpm θθθ θ . 
 
2. Solve the optimization problem 
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yielding )(θma . 

 
By the law of large numbers, it holds that )(θma converges to a minimum expected loss 
alternative a*.  This approach can be extended to any form of the loss function and thus 
presents some alternatives to the computational problem.   
 
This section has introduced some of the main computational tools used in statistical 
decision theory.  These problems require both powerful integration and optimization 
methods as well as algorithms that achieve both simultaneously.   
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Section 13: Analytic Approaches to Solving Decision Problems 
 

Part I, Part II and Part IV introduced the framework for decision models and the 
construction of graphical models, respectively.  The previous section emphasized some of 
the computational issues which arise in decision problems.  However, this was removed 
from within the sequential framework described in Part III and which is eminent in 
decision tree structures.  This section develops upon the concepts introduced in earlier 
sections and relates them to more analytic approaches to solving the problems.  The 
emphasis is placed on dynamic programming and progresses into its important as a 
computational tool for decision problems.  Sensitivity analysis is addressed last yet is 
important as means of checking the sensitivity of the output, and the implications of the 
findings and possible inconsistencies.   
 
Section 13.1: Dynamic Programming 
 
The computational methods presented in section 12 neglected decision problems which 
involved a sequential approach or which had been transformed such that they could be 
assessed sequentially.  Sequential problems lend themselves to another extension of 
optimization methods.  Dynamic programming is a mathematical technique which allows 
for a sequence of interrelated decisions to be made.  And further, it provides a systematic 
procedure for determining optimal combinations of decisions.   
 
Hillier and Lierberman (2001) present the basic features that characterize dynamic 
programming problems.  These include: 
 

1. The problem can be divided into stages, with a decision required at each stage. 
2. Each stage has a number of states associated with the beginning of that stage. 
3. The consequence of the decision at each stage is to transform the current state to a 

state associated with the beginning of the next stage. 
4. The solution procedure is designed to find an optimal choice for the overall 

problem. 
5. Bellman’s principle (Bather, 2000): Given the current state, an optimal policy for 

the remaining stages is independent of the decisions adopted in previous stages. 
6. The solution begins by finding an optimal choice for the last stage. 

 
Dynamic programming is defined by a recursive relationship.  The general notation used 
to describe a dynamic programming problem is summarized below: 
 
 N = number of stages 
 n = index for current stage 

nθ = current state for stage n 

nx = decision variable for stage n 
*
nx = optimal value of nx | nθ  

),( nnn xf θ = contribution of stages Nnn ,...,1, + to objective function 
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The recursive relationship will lead to two possible forms, depending on the problem: 
 

)},({max)(*
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or 
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This recursive procedure induces a backward form of mathematical induction in order to 
achieve the required task.  This approach (as dynamic programming) was first outlined by 
Bellman, and was coined such to describe the techniques which he had brought together 
to study a class of optimization problems involving sequential decisions (Bather, 2000).   
 
Sequential problems and subsequently dynamic programming problems can be classified 
into two groups: deterministic and stochastic.  The former approach suggests that the 
state at the next stage is completely determined by the state and decision at the current 
stage.  The latter approach (which is probabilistic) implies that a probability distribution 
will dictate what the next state will be.  This probabilistic approach is more conducive to 
our needs and is associated with solving decision tree diagrams.   
 
Consider the diagram above illustrating the general structure of a stochastic dynamic 
programming problem.  Let S denotes the number of possible states at stage n + 1.  The 
system goes to state i with probability ip for Si ,...,2,1= , given state nθ and decision nx at 
stage n.  At state i, the cumulative information of stage n to the objective function is 
represented by iC .  This figure can be extended in such a manner for all possible stages; 
and diagrammatically has the form of a decision tree. 
 
With the inclusion of a probability distribution dictating the consequence of the next 
state, means that the precise form of the objective function will differ slightly from the 
one given above.  It can now be written as: 
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where the minimization is taken over all feasible values of 1+nx . 
 
In statistical decision theory1, it might be said that the transition from one stage to another 
is controlled by a sequence of actions, given the state nθ at stage n, the choice of action na  
determines the probability distribution of the next state.  Essentially because, we are 

                                                 
1 Bather provides a concise introduction to both deterministic and probabilistic dynamic programming and 
its application to utility theory. 
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dealing with a Markov system, only the current state is important.  The state and action 
variables may be discrete or continuous and the range of possible choices of an action 
may vary state to state.  The essential characteristic of such modeling (in summary) is 
that given nθ at stage n, the choice of action or decision nx determines both the probability 
distribution of the next state 1+nθ and the expected cost2 of the transition 1+→ nn θθ . 
 
Section 13.2: Bellman’s Principle and the Bayesian Perspective 
 
Recall that one of the fundamental elements of decision problems is the loss function and 
in dynamic programming it is this objective function we tend to want to minimize.  Now 
consider an additive function which by definition is monotonic and separable.  (See Part 
II on Utility Theory.)  That is if the first few terms are fixed then minimizing its whole 
sum is equivalent to minimizing its individual terms - a property which holds when 
taking expectations.  This expounds the aforementioned Bellman Principle of Optimality: 
 

The optimal sequential decision policy for the problem which begins with 
)(⋅θP as the decision maker’s prior forθ and has R stages to run must have the 

property that is, at any stage n < N, the observations nn xXxX == ,...,11 have 
been made, then the continuation of the optimal policy must be the optimal 
sequential policy for the problem beginning with ),...,|( 1 nxxP ⋅θ as the prior 
and having N – n stages to run.  (French and Insua, 2000) 

 
French and Insua make it a point to emphasize the importance of the decision maker’s 
prior in Bellman’s principle.  Since the prior describes the state of knowledge, it also 
describes the state of the decision making process.   
 
For simplicity of notation, let )(⋅= θπ P and )(πnr be the Bayes risk of the optimal policy 
with at most n stages left to run with knowledgeπ .  Then the situation in which the 
decision maker has no option to make an observation and must choose an action can be 
expressed as: 
 

)],([min)(0 θπ θ alEr
Aa∈

=  

 
where the expectation overθ is taken with respect toπ .  Next consider that the decision 
maker is given the chance to make an observation.  The decision maker has two options: 

1. Take an action Aa ∈  without making an observation at an expected loss of )(0 πr . 
2. Make a single observation X at costγ and choose an action Aa ∈ in light of her 

current knowledge )(Xπ at an expected loss of ))](([ 0 XrEX π . 
 
Bellman’s Principle assumes that after the observation(s), the optimal Bayes action is 
taken (French and Insua, 2000).  Accordingly, this can be extended to n observations 

                                                 
2 This refers to the expected loss function. 
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which then give her option (1) stated above or an extension of option (2) which would 
result in observations made for the remaining n -1 stages with an expected loss of 

 
))](([ 1 XrE nX π− . 

 
Thus, for Nn ,...,2,1=  

))]}(([),(min{)( 10 XrErr nXn πγππ −+= . 
 

Note the form of this recursion formula.  This defines the dynamic programming or 
backward induction form introduced in the previous subsection.  Thus, dynamic 
programming allows for both the calculation of )(πnr and the characterization of the 
optimal policy.  This following section now extends the basic principles demonstrated in 
these earlier subsections to illustrate the analytic approach to solving decision problems 
as applied to utility theory – or more precisely in the maximization of utilities.   
 
Section 13.3: Analysis in Extensive Form 
 
There are two basic modes of analysis which can be utilized to determine which course of 
action will maximize the decision maker’s utility: the extensive form of analysis and the 
normal form.  The two forms are mathematically equivalent and lead to identical results; 
each has something to contribute to the insight into the decision problem and have 
separate technical advantages in certain situations.  This section focuses on the extensive 
form which equates the use of decision trees more readily. 
 
Backwards Induction 
 
Consider a simple decision tree whereby an initial decision results in a chance and a 
subsequent action results in a final state.  The extensive form of analysis proceeds by 
working backwards from the end of the decision tree (the right side of the tree) to the 
initial starting point: instead of starting by asking which experiment e the decision maker 
should choose, the procedure starts by asking which terminal act he should choose if he 
had already performed a particular experiment e and observed a particular outcome x.  
Even at this point, with a known history (e, x), the utilities of the various possible 
terminal acts are uncertain because θ which will be chosen by chance at the end is still 
unknown; but this difficulty is easily resolved by treating the utility of any a for given (e, 
x) as a random variable u(e, x, a, θ~ )3 and applying the operator xE |θ′′ which takes the 

expected value of u(e, x, a, θ~ ) with respect to the conditional measure xP |θ′′ .  
Symbolically, we can compute for any given history (e, x) and any terminal act a 
 

)~,,,(),,(* | θθ axeuEaxeu x′′≡ ; 
 

                                                 
3 Recall notation introduced in Section 1 for clarification.  Notation for unknown quantity is described as a 
random variable in this case. 
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this is the utility of being at the juncture ),,( axe looking forward, before chance has made 
a choice of θ (Raiffa and Schlaifer, 2000). 
 
Since the decision maker’s objective is to maximize his expected utility, he will, if faced 
with a given history (e, x), wish to choose the a (or one of the as if more than one exist) 
for which ),,(* axeu is greatest; and the utility of being at the terminal with history (e, x) 
and the choice of a still to make is 
 

),,(*max),(* axeuxeu
a

≡ . 

 
After ),(* xeu has been computed in this way for all possible histories (e, x), the problem 
of the initial choice of an experiment can be addressed.  At this point, the initial move, 
the utilities of the various possible experiments are uncertain only because x which will 
be chosen by chance is still unknown, and this difficulty is resolved in exactly the same 
way that the difficulty in choosing a given (e, x) was resolved: by putting a probability 
measure over the chance‘s moves and taking expected values.  In other words, )~,(* xeu is 
a random variable at the initial decision point because x~ is a random variable, and 
therefore it can be defined for any e  
 

)~,(*)(* | xeuEeu ex≡  
 

where exE | expects with respect to the marginal measure exP | . 
 
Again, the decision maker will wish to choose the e for which )(* eu is greatest; and 
therefore may suggest that the utility of being at the initial decision node with the choice 
of e still to make is 
 

).~,,~,(maxmax)(*max* || θθ axeuEEeuu xaexee
′′=≡  

 
This procedure of working back from the outermost branches of the decision tree to the 
base of the trunk is often called “backward induction”.  More descriptively it could be 
called a process of “averaging out and folding back”. 
 
Section 13.4: Analysis in Normal Form 
 
The final product of the extensive form of analysis presented in the previous section can 
be thought of as a description of the optimal strategy consisting of two parts: 
 

1. A prescription of the experiment e which should be performed, 
2. A decision rule prescribing the optimal terminal act a for every possible 

outcome x of the chosen e. 
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The whole decision rule for the optimal e can be simply determined from the part of the 
analysis which determined the optimal a for every x in X; and incidentally these same 
results also enable the optimal decision rule to accompany any other e in E, even though 
the e in question is not itself optimal. 
 
The normal form of analysis, also has as its end product the description of an optimal 
strategy, and arrives at the same optimal strategy as the extensive form but via a different 
route.  Instead of first determining the optimal action a for every possible outcome x, and 
thus implicitly defining the optimal decision rule for any e, the normal form of analysis 
starts by explicitly considering every possible decision rule for a given e and then 
choosing the optimal rule for that e.  This can be done for Ee ∈∀ such that an optimal e 
can be found as in the extensive form of analysis. 
 
Recall the decision rules as presented in Sections 2 and 3.  Mathematically, a decision 
rule δ for a given experiment e is a mapping which carries x in X into )(xδ in A.  Given a 
particular strategy ),( δe and a particular pair of values ),( θx , the decision maker’s act as 
prescribed by the rule will be )(xa δ= and his utility will be )),(,,( θδ xxeu ; but before 
the experiment has been conducted and its outcome observed, )~),(,~,( θδ xxeu is a random 
variable because x~ and θ~ are random variables. 
 
The decision maker’s objective is therefore to choose the strategy ),( δe which maximizes 
his expected utility 
 

)~),~(,~,(),(* |, θδδ θ xxeuEeu ex≡ . 
 

This double expectation will actually be accomplished by iterated expectation and the 
iterated expectation can be carried out in either order: we can first expect over θ~  holding 
x~ fixed and then over x~ , using the same measures θ,|exP  and θP′ .   
 
If e and δ are given and θ~ is held fixed, then by taking the expectation of 

]),~(,~,[ θxdxeu with respect to θ,|exP we obtain 
 

]),~(,~,[),,(* ,| θθδ θ xdxeuEeu ex≡ , 
 

which will be called the conditional utility of ),( δe for a given state θ.  Next taking the 
expected value overθ~ with respect to the unconditional measure θP′ , we obtain 
 

)~,,(*),(* θδδ θ euEeu ′= , 
 

which can be referred to as the unconditional utility of ),( δe . 
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For any particular experiment e, the decision maker is free to choose the decision rule δ 
whose expected utility is greatest; and therefore it may be said that the utility of any 
experiment is  
 

),(*max)(* δeueu
d

≡ . 

 
After computing the utility of every Ee ∈ , the decision maker is free to choose the 
experiment wit the greatest utility such that  
 

].~),~(,~,[maxmax)(*max* ,| θδθθ xxeuEEeuu exdee
′=≡  

 
Section 13.5: Equivalence of the Extensive and Normal Form4 
 
The extensive and normal forms of analysis will equivalent if and only if they assign the 
same utility to every potential e in E, i.e. if the formula 
 

]~),~(,~,[max)(* ,| θδθθ xxeuEEeu exdn ′=  

 
derived as ),(*max)(* δeueu

d
≡ by the normal form of analysis agrees for all e with the 

formula  
)~,,~,(max)(* || θθ axeuEEeu xaexe ′′=  

 
derived as )~,(*)(* | xeuEeu ex≡ by the extensive for.  The operation θθ ,|ezEE ′ is equivalent 
to the expectation over the entire possibility space X×Θ and is therefore equivalent 
to xez EE || θ′′ .  It follows that the formal result as presented above can be written as  
 

]~),~(,~,[max)(* || θδθ xxeuEEeu xexd
′′′= , 

 
and it is then obvious that the best δ will be the one which for every x maximizes  
 

].~),(,,[| θδθ xxeuE x′′  
 

This, however, is exactly the same thing as selecting for every x an ax which satisfies 
 

)~,,,(max)~,,,( || θθ θθ axeuEaxeuE xaxx ′′=′′  

 

                                                 
4 See Raiffa and Schlaiffer (2000) for further details on extensive and normal form of analysis.  This has 
been adapted from the author’s book on analysis of statistical decision problems. 
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as stated by the extensive form of analysis.  Letting )(* xδ denote the optimal decision 
rule selected by the normal form, it has just been shown that xax =)(*δ and that the 
formulas )(* eun and for )(* eue are equivalent. 
 
Thus, in order to choose the best e and must therefore evaluate )(* eu  for all e in E, the 
extensive and normal forms of analysis require exactly the same inputs of information 
and yield exactly the same results even though the intermediate steps in the analysis are 
different.  If, however, e, is fixed and one wishes merely to choose an optimal terminal 
action a, the extensive forma has the merit that one has only to choose an appropriate 
action for the particular x which actually materializes; there is no need to find the 
decision rule which selects the best action for every x which might have occurred but in 
fact did not occur. 
 
Section 13.6: Combination of Formal and Informal Analysis5 
 
The general model stated in the overview of modeling a decision problem is often 
criticized on the grounds that utilities cannot be rationally assigned to the various 
possible ),,,( θaxe combinations because the costs, profits, or in general the 
consequences of these combinations would not be certain even if θ were known.  In 
principle, such criticisms represent nothing but an incomplete definition of the state space 
Θ which can be made rich enough to include all possible pairs of value of “these” 
unknowns.  The decision maker’s uncertainties about these values can then be evaluated 
together with his other uncertainties in the probability measure which is assigned to Θ, 
and the analysis of the decision problem can the proceed as before. 
 
Consider the state θ expressed as a doublet ),( )2()1( θθ so that the state space is of the 
form )2()1( Θ×Θ=Θ .  Thus, )1(θ might be the parameter of a Bernoulli process while 

)2(θ might be the cost of the product (for example).  In terms of the original decision tree 
in figure 4, a play was a 4-tuple ),,,( θaxe and utilities were assigned directly to 
each ),,,( θaxe .  If θ is split into ),( )2()1( θθ , a play is 5-tuple ),,,,( )2()1( θθaxe ; utilities 
are assigned to each ),,,,( )2()1( θθaxe  and the utility of any ),,,( )1(θaxe is the expected 
value of the random variable )~,,,,( )2()1( θθaxe , the expectation being taken with respect 
to the conditional measure on )2(Θ given the history ),,,( )1(θaxe .  This asserts the idea 
that it is possible to further consider the split of a tree by only conducting a partial 
analysis (and partial construction of a tree) based on )1(θ while holding )2(θ constant. 
 
Besides cutting the decision tree before it is logically complete, the decision maker may 
rationally decide not to make a complete formal analysis of even a truncated tree which 
he has constructed.  Thus if E consists of two experiments 1e and 2e , )(* 1eu may be 
formally worked out by evaluating 
 
                                                 
5 Raiffa and Schlaiffer (2000), French and Insua (2000), and Hillier and Lieberman (2001). 
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)~,,~,(max)(* 1||1 1
θθ axeuEEeu xaex ′′= ; 

 
but after the formal analysis of 1e is completed, it may be concluded without any formal 
analysis at all that 2e is not as good as 1e and adopt 1e . 
 
That behavior is perfectly consistent with the principle of choice described in Sections 2 
and 3 and readdressed in Section 6.  Before making a formal analysis of 2e , the decision 
maker can think of the unknown quantity )(* 2eu as a random variable v~ .  If the number 
v, resulting from a formal analysis was known, was greater than the known 
number )(* 1eu , 2e would be adopted rather 1e and the value of the information that 

vv =~ could be measured by the difference )(* 1euv − in the decision maker’s utility which 
results from this change of choice.  If on the contrary v were less than )(* 1eu , the 
decision maker would adhere to the original choice of 1e and the information would have 
been worthless. 
 
In other words, the random variable can be defined as 
 

=− )}(*~,0max{ 1euv value of information regarding 2e , 
 

and before expounding such information at the cost of making a formal analysis of 2e the 
decision maker may prefer to compute its expected value by assigning a probability 
measure to v~ and then expecting with respect to this measure.  If the expected value is 
less that the cost, the decision maker will quite rationally decide to use 1e without 
formally evaluating )(* 2euv = .  Operationally one usually does not formally compute 
either the value or the cost of information on 2e : these are subjectively assessed.  The 
computations could be formalized, of course, but ultimately direct subjective assessments 
must be used if the decision maker is to avoid an infinite regress. 
 
Before closing this section and the subject of incomplete analysis, it should be said that 
completely formal analysis and completely intuitive analysis are not the only possible 
methods of determining a utility such as )(* 2eu .  In many instances it is possible to make 
a partial analysis in order to gain some insight but at a less prohibitive cost than a full 
analysis entails.   
 
Section 13.7: Sensitivity Analysis6 
 
Sensitivity analysis is an essential element of decision analysis.  The principle of 
sensitivity analysis is also directly applied to areas such as meta-analysis and cost-
effectiveness analysis most readily but is not confined to such approaches.  This section 

                                                 
6 See Petitti (2000), Hillier and Lieberman (2001), and Clemen (1996). 
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simply describes the overall purpose of sensitivity analysis and describes one-way and its 
expansion to n-way analysis as applied to decision analysis on a very general level.   
 
Sensitivity analysis evaluates the stability of the conclusions of an analysis to 
assumptions made in the analysis.  When a conclusion is shown to be invariant to the 
assumptions, confidence in the validity of the conclusions of the analysis is enhanced.  
Such analysis also helps identify the most critical assumptions of the analysis (Petitti, 
2000).   
 
An implicit assumption of decision analysis is that the values of the probabilities and of 
the utility measure are the correct values for these variables.  In one-way sensitivity 
analysis, the assumed values of each variable in the analysis are varied, one at a time, 
while the values of the other variables in the analysis remain fixed.  When the assumed 
value of a variable affects the conclusion of the analysis, the analysis is said to be 
“sensitive” to that variable.  When the conclusion does not change, when the sensitivity 
analysis includes the values of the variables that are within a reasonable range, the 
analysis is said to be “insensitive” to that variable. 
 
If an analysis is sensitive to the assumed value of a variable, the likelihood that the 
extreme value is the true value can be assessed qualitatively; perhaps, weighting the 
benefit of one strategy over the other under the extreme assumption.   
 
An extension of the one-way sensitivity analysis is the threshold analysis.  In such a case, 
the value of one variable is varied until the alternative decision strategies are to have 
equal outcomes, and there is no benefit of one alternative over the other in terms of 
estimated outcome.  The threshold point is also called the break-even point at the 
decision is a “too-up”.  That is, neither of the alternative decision options being compared 
is clearly favored over the other.  Threshold analysis is especially useful when the 
intervention is being considered for use in groups that can be defined a priori based on 
the values of the variable that is the subject of the threshold analysis. 
 
In two-way sensitivity analysis, the expected outcome is determined for every 
combination of estimates of two variables, while the values of all other variables in the 
analysis are held constant at baseline.  It is usual to identify the pairs of values that 
equalize the expected or expected utility of the alternatives and to present the results of 
the analysis graphically.  It is simpler to interpret the results of a two-way sensitivity 
analysis with the aid of graphs. 
 
In n-way sensitivity analysis, the expected outcome is determined for every possible 
combination of every reasonable value of every variable.  N-way sensitivity analysis is 
analogous to n-way regression and is seemingly difficult to interpret and is not discussed 
any further in this report. 
 
It is usual to do one-way sensitivity analysis for each variable in the analysis.  The 
highest and the lowest values within reasonable range of values are first substituted for 
the baseline estimate in the decision tree.  If substitution of the highest or the lowest 
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value changes the conclusions, more values within the range are substituted to determine 
the range of values.   
 
In an analysis with many probabilities, there are numerous combinations of two and three 
variables, and the computational burden of doing all possible two-way and three-way 
sensitivity analysis is large.  For this reason, it is not usually feasible to conduct two-way 
sensitivity analysis for all possible combinations let alone n-way.  The choice of variables 
for multiple way analysis requires considerable judgment, and therefore is not laid down 
by any fast and hard rules.  However, the graphical approach applied in these instances 
also lends itself to the discussion of dominance considerations.  In section 3, the notion of 
dominant alternatives was introduced and can be considered a type of sensitivity analysis. 
A graphical approach, in this instance suggests when one alternative may supercede 
another and suggests possible implications. 
 
Another area of emphasis for sensitivity analysis is the sensitivity with respect to the 
prior, when applying Bayesian methodology.  These are typically performed when there 
is little imprecision un the loss because a standard choice of inference loss such as the 
quadratic was adopted, for instance.  It is usually suggested to start with this case as (a) it 
is simplest and most thoroughly studied and (b) provide many insights for more general 
problems. It is also notably one of the most difficult elements to assess. 
 
The overview of statistical decision theory provided in this report places has tried to 
maintain a balance between the classical and the Bayesian approach.  In simple terms, the 
solution of a statistical decision problem proceeds by modeling a decision maker’s 
judgments by means of the loss function, probability model of the observation process 
and a prior,  and then uses these to identify a ‘good’ decision rule.  Thus, this presents a 
variety of reasons as to why a sensitivity analysis should be conducted – that is, checking 
the sensitivity of the decision rule (output) with respect to the model and decision 
maker’s judgments (inputs).  In other words, the objective is to check the impact of the 
loss function, the prior and the model on the Bayes decision rule or Bayes alternative, and 
their posterior expected loss.   
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Section 14: Prototype Example 
 
The conceptual ideas presented thus far have laid the foundation of statistical decision 
theory.  The purpose of the following section is to present a prototype example which 
exemplifies the key ideas and methods discussed in this report.  This example has been 
illustrated in many statistical decision theory books in various forms.  It is illustrated in 
this report and develops in much of the same way the methodological sections of this 
report have.   
 
Section 14.1: Summary of the Problem 
 
An oil company owns a tract of land that may contain oil.  A consulting geologist has 
reported to management that it is believed that there is a 1 in 4 chance of oil.  Because of 
this prospect, another oil company has offered to purchase the land for $90,000.  
However, the land-owning oil company is considering holding the land in order to drill 
for oil itself.  The cost of drilling is $100,000.  If oil is found, the resulting expected 
revenue will be $800,000, so the company’s expected profit (after deducing the cost of 
drilling) will be $700,000.  A loss of $100,000 will be incurred if the land is dry (no oil).   
 
Table 14.1: Prospective profits of oil company 

Status of Land Payoff 
Alternative Oil Dry 
Drill for oil 
Sell the land 

$700,000 
$90,000 

-$100,000 
$90,000 

Chance of status  1 in 4 
 
Table 14.1 summarizes the prospective profits for this land-owning company.  This oil 
company is operating without much capital so a loss of $100,000 would be quite serious.  
Deciding whether to drill or sell also hinges on the option to conduct a detailed seismic 
survey of the land to obtain a better estimate of the probability of finding oil.  Thus, first 
we present this prototype problem of decision without experimentation and then with 
experimentation and conclude with ways of refining the evaluation of the consequences 
of the various possible outcomes.   
 
Section 14.2: Summary of the Decision Modeling Framework 
 
The proceeding sections have explained the decision modeling framework.  Here we re-
cap the framework before proceeding with the prototype example.  Simply, statistical 
decision problems refer to those problems containing data or observations on the state of 
nature.  We first consider those cases without that information; that is problems of 
making decisions in the absence of data (or without experimentation).  This lays a 
framework for decision analysis, for the problem at hand, which is later extended to 
incorporate data or decision problems with experimentation and various other decision 
methodologies. 
 
Framework for Decision Analysis: 
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1. Decision maker needs to choose one of the alternatives: 

Aa ∈  
2. Nature would choose one of the possible states of nature: 

Θ∈θ  
3. Each combination of an action and state of nature would result in a 

payoff/decision, which is given as one of the entries in a payoff/decision table.   
Cac ∈),( θ  

4. This payoff/decision table should be used to find an optimal action for the 
decision maker according to an appropriate criterion. 

 
An additional element needs to be incorporated into this framework – prior probabilities.  
Many decision makers would generally want to incorporate additional information to 
account for the relative likelihood of the possible states of nature.  This information is 
translated into a probability distribution where the state of nature is considered to be a 
random variable - making up the prior probability distribution. 
 
In general terms, the decision maker must choose an action from a set of possible actions.  
The set contains all the feasible alternatives under consideration for how to proceed with 
the problem of concern.  This choice of an action must be made in the face of uncertainty, 
because the outcome will be affected by random factors that are outside the control of the 
decision maker.  These random factors determine what situation is referred to as a 
possible state of nature.  For each combination of an action and a state of nature, the 
decision maker knows what the resulting payoff (or consequence) would be.  The payoff 
is a quantitative measure of the value to the decision maker of the consequences of the 
outcome.  Although in many instances the payoff is a monetary gain, there are other 
measures that can be used (as explained in utility theory).  If the consequences of the 
outcome do no become completely certain even when the state of nature is given, then the 
payoff becomes an expected value (in the statistical sense) of the measure of the 
consequences.  The payoff table can be used to determine an optimal action according to 
an appropriate criterion which suits the beliefs of the decision maker. 
 
The decision problem faced by the oil company can now be placed within the decision 
framework just presented.  This can be summarized in the following decision7 table: 
 
Table 14.2: Formulation of the problem within the framework of decision analysis 

Status of Land State of Nature Θ 
Alternative A θ1 θ2 
a1 
a2 

c11=700 
c21=90 

c12= -100 
c22=90 

Prior Probability 0.25 0.75 
 
Section 14.3: Decision Making without Experimentation 
 
                                                 
7 Payoff table and decision table can be used interchangeably.   
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This section illustrates the decision making process without experimentation.  A 
formulation of the problem being assessed has two possible actions under consideration: 
drill for oil or sell the land.  The possible states of nature are that the land contains oil and 
that it is does not.  Since the consulting geologist has estimates that there is a 1 in 4 
chance of oil, the prior probabilities of the two states of nature are 0.25 (for oil) and 0.75 
(for no oil).  Table 14.1 has been redesigned in Table 14.2 with the payoff units in 
thousands of dollars of profit.  This payoff table will be used to determine the optimal 
action under the three main criterions discussed here. 
 

1. Minimax Criterion: 
 
The minimax criterion was described in section 2.  Its rationale is that it provides the best 
guarantee of the payoff that will be obtained.  That is, one determines, for each action a, 
the maximum loss over the various possible states of nature: 
 

),(max)( alaM θ
Θ

= , 

 
and this provides an ordering among the possible actions.  In words, for each possible 
action, find the minimum payoff over all possible states of nature.  Next find the 
maximum of these minimum payoffs.  Choose the maximum of the minimum payoff 
gives the maximum. 
 
The application of this criterion to the prototype example suggests that selling the land is 
the optimal action to take.  Regardless of what the true state of nature turns out to be for 
the problem, the payoff from selling the land cannot be less than 90, which provides the 
best available guarantee.  Thus, this criterion provides the pessimistic viewpoint that 
regardless of which action is selected, the worst state of nature for that action is likely to 
occur, so one should choose the action which provides the best payoff with its worst state 
of nature. 
 

2. Maximum Likelihood Criterion: 
 
The maximum likelihood function focuses on the most likely state of nature.  Recall a 
simple general definition of the likelihood function:  For the observed data, x, the 
function )|()( θθ xfl = , considered as a function of θ, is called the likelihood function.   
The intuitive reason for the name “maximum likelihood function” is that a θ for which 

)|( θxf is small, in that x would be more plausible occurrence if )|( θxf were large.  In 
simplicity, the steps in this approach begin by identifying the most likely state of nature 
(largest prior probability).  For this state of nature, find the action with the maximum.  
Choose this decision. 
 
The application of this criterion to the prototype example indicates that the dry state has 
the largest prior probability.  In Table 10.2, in the dry cell column, the sell alternative has 
the maximum payoff, so the choice is to sell the land.   
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The appeal of this criterion is that the most important state of nature is most likely one, so 
the action chosen is the best one for this particularly important state of nature.  Basing the 
decision on the assumption that this state of nature will occur tends to give a more, the 
criterion does not rely on questionable subjective estimates of the probabilities of the 
respective states of nature other than identifying the most likely state.  However, the 
major drawback of this criterion is that it completely ignores some relevant information.  
No state of nature besides the most likely one is considered.  Therefore, a problem with 
many possible states of nature, the probability of the most likely one may be quite small 
and or show little difference between “quite likely” states of nature.   
 

3. Bayes’ Decision Rule (Expected Monetary Value Criterion): 
 
The Bayes decision rule was introduced in Section 2.  In this instance, the probability 
weight assigned to each state of nature θ, the loss incurred for a given action incurs the 
expected value: 
 

∑=
i

ii algaB ),()()( θθ . 

 
This approach uses the best available estimates of the probabilities of the respective states 
of nature (current prior probabilities) and calculates the expected value of the payoff for 
each of the possible actions.  Choose the action with the maximum expected payoff.   
 
In this application of the criterion, it can be easily determined that the optimal action is to 
drill.  The expected payoffs can be calculated from Table 14.2 directly as follows: 
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Since 100 > 90, the alternative action to drill is selected.  Note that this choice differs 
from the other two preceding criteria. 
 
The advantage to the Bayes’ decision rule is that it incorporates all the available 
information, including payoffs and the best available estimates of the probabilities of the 
respective states of nature.  It is sometimes argued that these estimates of the probabilities 
are largely subjective and so are too shaky to be trusted.  Nevertheless, under many 
circumstances, past experience and current evidence enables one to develop reasonable 
estimates of the probabilities.  The methodology of including such information was 
described in Section 3.  Before applying this approach to the problem at hand, we will 
consider the use of sensitivity analysis to assess the effect of possible inaccuracies in the 
prior probabilities.   
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Section 13 briefly discussed the role and importance of sensitivity analysis in various 
applications to study the effect if some of the elements included in the mathematical 
model were not correct.  The decision table in Table 14.2 representing the payoffs is the 
mathematical model of concern.  The prior probabilities in this model are most 
questionable and will be the focus of the sensitivity analysis to be conducted; however, a 
similar approach could be applied to the payoffs given in the table. 
 
Basic probability theory suggests that the sum of the two prior probabilities must equal 1, 
so increasing one of these probabilities automatically decreases the other one by the same 
amount, and vice versa.  The oil company’s management team feels that the true 
“chances” of having oil on the tract of land are more likely to lie between the range from 
0.15 to 0.35.  Thus, the corresponding prior probability of the land being dry would range 
from 0.85 to 0.65, respectively. 
 
Conducting a sensitivity analysis in this situation requires the application of the Bayes’ 
decision rule twice – once when the prior probability of the oil is at the lower end (0.15) 
of this range and next when it is at the upper end (0.35).  When the prior probability is 
conjectured to be 0.15, we find  
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and when the prior probability is thought to be 0.35, the Bayes’ decision rule finds that 
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Thus, the decision is very sensitive to the prior probability of oil as the expected payoff to 
drill shifts from 20 to100 to180 when the prior probabilities are 0.15, 0.25, and 0.35, 
respectively.  Thus, if the prior probability of oil is closer to 0.15, the optimal action 
would be to sell the land rather than to drill for oil as suggested by the other prior 
probabilities.  This suggests that it would be more plausible to determine the true value of 
the probability of oil. 
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Let p = prior probability of oil.  Then the expected payoff from drilling for any p is 
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Figure 14-1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A graphical display of how the expected payoff for each alternative changes when the 
prior probability of oil changes for the oil company’s problem of whether to drill or sell is 
illustrated in figure 14-1.  The point in this figure where the two lines intersect is the 
threshold point where the decision shifts from one alternative (selling the land) to the 
other (drill for oil) as the prior probability increases.  Algebraically, this is simple to 
determine as we set  
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where c1 is the expected payoff of the action to drill and subsequently c2 is the expected 
payoff of the action to sell the land.  Thus, the conclusion should be to sell the land if p < 
0.2375 and should drill for oil if p > 0.2375.  Because, the decision for the oil company 
decides heavily on the true probability of oil, serious consideration should be given to 
conducting a seismic survey to estimate the probability more accurately.  This is 
considered in the next subsection. 
 
Section 14.4: Decision Making with Experimentation 
 
Here another element is added to the decision analysis framework – posterior 
probabilities.  This additional ‘element’ allows for testing or experimentation to be 

Expected
Payoff

0.2 0.4

Drill for oil

Sell the Land

Prior Probability
Of Oil
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conducted; thus, improving the preliminary estimates of the probabilities of the respective 
states of natures, i.e. the prior probabilities. 
 
For this problem, an available option before making a decision is to conduct a detailed 
seismic survey of the land to obtain a better estimate of the probability of oil.  The cost is 
$30,000.  A seismic survey obtains seismic soundings that indicate whether the 
geological structure if favorable to the presence of oil.  Dividing the possible findings of 
the survey into the following two categories: 
 
USS: unfavorable seismic soundings; oil is unlikely, and 
FSS: favorable seismic soundings; oil is likely to be found. 
 
Based on past experience, if there is oil, then the probability of unfavorable seismic 
soundings (USS) is  
 

6.04.01)OilState|FSS(     so,4.0)OilState|USS( =−==== PP . 
 

Similarly, if there is no oil (state of nature = Dry), then the probability of unfavorable 
seismic soundings is estimated to be 
 

.2.08.01)DryState|FSS(     so,8.0)DryState|USS( =−==== PP  
 

This data is used to find the posterior probabilities of the respective states of nature given 
the seismic readings. 
 
The main ‘criterion’ implemented here is Bayes Theorem.  Now suppose before choosing 
an action, an outcome from an experiment is observed X = x.  Therefore for each 
i=1,2,..,n, the corresponding posterior probability is 
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Proceeding in general terms, let 
 
                                      n = number of possible states of nature; 
                         P(Θ = θi) = prior probability that true state of nature is state i,  
                                             for i =1, 2, …, n; 
                                      X = finding from experimentation ( a random variable); 
                                      xj = one possible value of the finding; 
               P(Θ = θi |X = xj) = posterior probability that true state of nature is state i, given           
                                             X = xj, for j = 1, 2, …, n. 
 
Thus, the question being addressed is: Given P(Θ = θi) and P(X = xj | Θ = θi), for i =1, 2, 
…, n, what is P(Θ = θi |X = xj)?  The answer is solved by following standard formulas of 
probability theory which states that the conditional probability,  



Part V: Analytic & Computational Methods for Decision Problems 

 151

 

).()|()|(
gives

,),()(

where

,
)(

),(
)|(

1

iijji

n

k
jkj

j

ji
ji

PxXPxXP

xXPxXP

xXP
xXP

xXP

θθθ

θ

θ
θ

=Θ=Θ====Θ

==Θ==

=

==Θ
===Θ

∑
=

 

 
Therefore, for i =1, 2, …, n, the desired formula for the corresponding posterior 
probability is the Bayes theorem as stated above. 
 
Returning to the prototype example and applying this formula, one finds if the finding of 
the seismic survey is unfavorable, then the posterior probabilities are  
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Note that USS = x1 and FSS = x2.  Similarly, if the seismic survey is favorable, then 
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Probability Tree diagrams can be a useful and visually appealing way of organizing the 
outcomes and the corresponding probabilities.  Such a diagram is presented in Figure 14-
2.  Reading the probability diagram from left to right one can see all the probabilities – 
prior probabilities to conditional probabilities to joint probabilities – leading to the 
posterior probabilities.  After these computations have been completed, Bayes’ decision 
rule can be applied again just as before, with the posterior probabilities replacing the 
prior probabilities.  Again using the “payoffs” (in units of thousands of dollars) from 
Table 14.2 and subtracting the cost of experimentation, we obtain the results shown 
below. 
 
Figure 14-2: 
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The expected payoffs if finding is unfavorable seismic soundings: 
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And the expected payoffs if the finding is favorable seismic surroundings: 
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Table 14-3: Optimal Policies 

Finding from 
Seismic Survey 

Optimal 
Action 

Expected Payoff 
Excluding Cost of Survey 

Expected Payoff Including 
Cost of Survey 

USS 
FSS 

Sell 
Drill 

90 
300 

60 
270 

 
Since the objective is to maximize the expected payoff, these results yield the optimal 
policy shown in Table 14-3.  However, this analysis has not yet addressed the issue of 
whether the expense of conducting a seismic survey is truly valuable or whether one 
should choose the optimal solution without experimentation.  This issue is addressed 
next. 
 
The Value of Experimentation can be determined by using two complementary 
methods.  The first assumes (unrealistically) that the experiment will remove all 
uncertainty about what the true state of nature is, and then calculates the resulting 
“improvement” in the expected payoff (ignoring the cost of the experiment).  This 
quantity, the expected value of perfect information, provides an upper bound on the 
potential value of the experiment.  Therefore, if the upper bound is less than the cost of 
experiment, than the experiment should be forgone.  However, if this upper bound 
exceeds the cost of experiment, then second methods should be implemented.  This 
method calculates the actual “improvement” in the expected payoff (ignoring the cost of 
experiment) that would result from performing the experiment.  Comparing the 
improvement with the cost indicates whether the experiment should be performed. 
 
1. Expected Value of Perfect Information 
 
Suppose that the experiment could definitely identify the true state of nature thereby 
providing “perfect” information.  Whichever state of nature is identified, you naturally 
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choose the action with the maximum payoff for the state.  Since we do not know in 
advance the state of nature which will be identified, a calculation of the expected payoff 
or consequence with perfect information (ignoring the cost of the experiment), requiring 
the weighting of the maximum payoff for each state of nature by the prior probability of 
that state of nature is needed. 
 
 Expected payoff with perfect information = 0.25(700) + 0.75(90) = 242.5. 
 
Thus, if the oil company could learn more before choosing its action whether the land 
contains oil, the expected payoff as of now (before acquiring this information) would be 
$242,500 (excluding the cost of the experiment generation the information.) 
 
To evaluate whether the experiment should be conducted, we calculate the expected 
value of perfect information (EPVI)8: 
 

EPVI = E[payoff with perfect information] – E[payoff without experimentation] 
 
Thus, since experimentation usually cannot provide perfect information, EVPI can 
provide an upper bound on the expected value of experimentation.  For this prototype 
example, EVPI = 242.5 – 100 = 142.5, where the expected payoff without 
experimentation was determined earlier to be 100 under Bayes’ decision rule.  Since 
142.5 far exceeds 30, the cost of experimentation (a seismic survey) is shown to be 
worthwhile.  Thus, we carry on and implement the second method of evaluating the 
potential benefit of experimentation. 
 
2. Expected Value of Experimentation 
 
Now we want to determine expected increase directly which is referred to as the expected 
value of experimentation.  Calculating this quantity requires first computing the expected 
payoff with experimentation (excluding the cost of experimentation).  Obtaining this 
latter quantity requires the previously determined posterior probabilities, the optimal 
policy with experimentation, and the corresponding expected payoff (excluding the cost 
of experimentation) for each possible finding from the experiment.  Then each of these 
expected payoff needs to be weighted by the probability of the corresponding finding, 
that is, 
 Expected payoff with experimentation = ∑ ==

j
jj xXcExXP ]|[)( , 

where the summation is taken over all possible j and c denotes the payoff or consequence.  
For the prototype example much of the work has been done for the right side of the 
equation.  The values of )( jxXP = for each of the two possible findings from the seismic 
survey – unfavorable or favorable – were calculated at the bottom of the probability tree 
diagram in Figure 14.2 to be 7.0)( 1 =xP and 3.0)( 2 =xP .  For the optimal policy with 

                                                 
8 The value of perfect information is a random variable equal to the payoff with perfect information minus 
the payoff without experimentation. Thus the expected value of perfect information is the expected value of 
this random variable. 
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experimentation, the corresponding expected payoff for each finding can be obtained 
from Table 14.3 as  
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Then the expected payoff with experimentation is determined to be 0.7(90) + 0.3(300) = 
153.  Similar to before the expected value of experimentation (EVE) can be calculated as  
 

EVE = 153 = 100 = 53 
 

and identifies the potential value of the experimentation.  Since this value exceeds 30, the 
cost of conducting a detailed seismic survey shows valuable. 
 
Section 14.5: Decision Trees 
 
Decision trees are useful in providing a visual display of the sequential decision 
processes and subsequent consequences.  It can help in organizing the computational 
work that has been described thus far.   
 
This prototype problem involves a sequence of two decisions which each result in 
possible consequences and in turn resulting in further decisions and consequences.  It 
involves a sequence of two decisions: 
 

1. Should a seismic survey be conducted before an action is chosen? 
2. Which action (drill for oil or sell the land) should be chosen? 

 
The corresponding decision tree (with partially added numbers and performing 
computations) is displayed in Figure 14.3.  Note that this is the final decision tree and 
was done to save space and time.  Recall from Section 9, the interpretation of the specific 
types of nodes.  The nodes of the decision tree are referred to as forks, and the arcs are 
called branches.  A decision fork, represented by a square, indicates that decision needs 
to be made at that point in the process.  A chance fork, represented by a circle, indicates 
that a random event occurs at that point. 
 
In this example, the first decision is represented by a decision fork a.  Fork b is a chance 
fork representing the random event of the outcome of the seismic survey.  The two 
branches emanating from fork b represent the two possible outcomes of the survey.  The 
decisions c and d follow the possible outcomes and result in the consequences from the 
random events of f and g.   Similarly, decision fork e leads to a chance fork h, where 
again the two branches correspond to the two possible states of nature. 
 
Since the decision tree is filled in with the available information, thus far – some 
interpretation can be deduced before the actual analysis proceeds.  The numbers under or 
over the branches that are not in parentheses are the cash flows that occur at those 
branches.  The resulting in end payoff is recorded in boldface at the end of the terminal 
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branch.  At each chance fork, the probabilities of random events are recorded in 
parentheses.  From chance fork h, the probabilities are the prior probabilities as no 
seismic survey was conducted.  The probabilities emanating from chance fork b are the 
probabilities of these findings while the probabilities emanating from chance fork f and g 
are the posterior probabilities of the states of nature, given the finding from the seismic 
survey. 
 
Performing the Analysis 
 
The backward induction procedure was introduced in Section 10 and is implemented here 
for the prototype example.  The steps involved can be summarized as follows: 
 

1. Start at the right side of the decision tree and move left one column at a time.  
For each column, perform either step 2 or 3 depending on whether the forks in 
that column are chance forks or decision forks. 

2. For each chance fork, calculate the expected payoff by multiplying the 
expected payoff of each branch (shown in boldface to the right of the branch) 
by the probability of that branch and then summing these products.  Record 
this expected payoff for each decision fork in boldface next to the fork, and 
designate this quantity as also being the expected payoff for the branch 
leading to the fork. 

3. For each decision fork, compare the expected payoffs of its branches and 
choose the alternative whose branch has the largest expected payoff.  In each 
case, record the choice on the decision tree by inserting a double dash as a 
barrier through each rejected branch. 

 
To begin the procedure, consider the rightmost column of forks, namely, chance forks f, 
g, and h.  Applying step 2, their expected payoffs are calculated as 
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Note that ][ kcE denotes the expected payoff or consequence of the kth chance fork.  These 
expected payoffs are placed above these forks as displayed in Figure 14.3.  Next, moving 
one column to the left, are the decision forks c, d, and e.  The expected payoff for a 
branch that leads to a chance fork now is recorded in boldface over that chance fork.  
Therefore, step 3 can be applied as follows. 
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Next, move one column to the left again and apply step to the chance fork b.  Here we 
find that .123)270(3.0)60(7.0][ =+=bcE   In the final step, we consider the last decision 
fork a and apply step 3 as before: 
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Note a01 denotes the action to do a seismic survey where a02 denotes the action to not 
conduct a seismic survey.  Now the decision tree is complete where the payoffs are given 
on the far right side.   
 
Figure 14-3: 
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The double dashes have blocked off the undesirable paths.  According to Bayes’ decision 
rule, follow the open paths from left to right.  Thus, the optimal policy is: 
 

• Do the seismic survey. 
• If the result is unfavorable, sell the land. 
• If the result is favorable, drill for oil. 
• The expected payoff (including the cost of the seismic survey) is $123,000. 

 
This was the same unique optimal solution obtained in the earlier section without the 
decision tree which was shown in Table 14.3.  The optimal policy via the backward 
induction process leads to the same policy or policies via the more formal process. 
 
Section 14.6: Utility Theory 
 
This section will focus on various models of individual rationality which can be 
categorized into an individual’s traits.  Thus far, when applying the Bayes’ decision rule, 
we have assumed that the expected payoff or consequence in monetary terms is the 
appropriate measure of the consequences of taking an action.  However, in many 
situations this assumption is inappropriate.  Fortunately, there is a way of transforming 
monetary values to an appropriate scale that reflects the decision maker’s preferences.  
This scale is referred to as the utility function for money. 
 
A utility function for money illustrates an individual’s behavior pertaining to money.  A 
person who is risk-averse will exhibit a decreasing marginal utility function.  However, 
individuals who are risk seekers demonstrate an increasing marginal utility for money.  
The intermediate case is that of a risk-neutral individual, who prizes money at its face 
value.  Such an individual’s utility for money is simply proportional to the amount of 
money involved.  It is possible to exhibit a mixture of these kinds of behavior.  For 
example, an individual might be essentially risk-neutral with small amounts of money, 
then become a risk seeker with moderate amounts, and then turn risk-averse with large 
amounts.  Moreover, one’s attitude toward risk can change over time and circumstances. 
 
The fact that different people have different utility functions for money has an important 
implication for decision making in the face of uncertainty.  When a utility function for 
money is incorporated into a decision analysis approach to a problem, this utility function 
must be constructed to fit the preferences and values of the decision maker involved.  The 
key to constructing the utility function for money to fit the decision maker is based on the 
fundamental properties explained in Section 6.  The following fundamental property 
summarizes in words the central notion that under the assumptions of utility theory, the 
decision maker’s utility for money has the property that the decision maker is in different 
between two alternative courses of action if the two alternatives have the same expected 
utility. 
 
The scale of the utility function is irrelevant.  It is only the relative values of the utilities 
that matter.  All the utilities can be multiplied by any positive constant without affecting 
which alternative course of action will have the largest expected utility.  To summarize 
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the basic role of utility function in decision analysis is to simply state that when the 
decision maker’s utility function for money is used to measure the relative worth of the 
various possible monetary outcomes, Bayes’ decision rules replaces monetary payoffs by 
the corresponding utilities.  Therefore, the optimal action (or sequence of actions) is the 
one which maximizes the expected utility.  Although only utility functions for money are 
discussed in this section, they can be constructed for consequences of the alternatives of 
action that are not monetary. 
 
Returning to the prototype example, recall in the summary of the problem it was stated 
that the oil company was operating without much capital, so a loss of $100,000 would be 
steep.  The worst case scenario is to conduct a seismic survey and then drill for $100,000 
and drill when there is no oil.  On the other hand, striking oil is an exciting prospect of 
earning $700,000.  To apply the decision maker’s utility function for money to the 
problem as described earlier, it is necessary to identify the utilities for all possible 
monetary payoffs.  These payoffs and their corresponding utilities are presented in Table 
14-4 and can be obtained by the following methodology. 
 
Table14-4: Utilities for oil company 
Monetary Payoff Utility 
-130 
-100 
60 
90 
670 
700 

-150 
-105 
60 
90 
580 
600 

 
As a starting point in constructing the utility function, it is natural to let the utility of zero 
money be zero, so 0)0( =u .  An appropriate next step is to consider the worst scenario 
and best scenario and then to address the question of what value of p would make the 
decision maker indifferent between two alternatives.  Suppose the decision maker’s 

choice is
5
1

=p .  If )(Mu denotes the utility of a monetary payoff of M, this choice of p 

implies that 

1).  ealternativ of(utility    0)700(
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1)130(
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=+− uu  

 
The value of either )130(−u or )700(u can be set arbitrarily to establish the scale of the 
utility function.  By choosing 150)130( −=−u , this equation yields .600)700( =u  To 
identify u(-100), a choice of p is made that makes the decision maker indifferent between 
a payoff of -130 with probability p or definitely incurring a payoff of -100.  The choice is 
p = 0.7, so  
 

.105)150(7.0)130( )100( −=−=−=− upu  
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To obtain )90(u , a value of p is selected that makes the decision maker in different 
between a payoff of 700 with probability p or definitely obtaining a payoff of 90.  The 
value chosen is p = 0.15, so 
 

.90)600(15.0)700( )90( === upu  
 

To obtain the decision maker’s utility function for money, a smooth curve was drawn 
through )700( and ),90(),100(),130( uuuu −− as shown in Figure 10-4.  The values on this 
curve at M = 60 and M = 670 provide the corresponding utilities, 60)60( =u and 

580)670( =u , which completes the list of utilities displayed in Table 10.4.  For contrast, 
the dashed line drawn at a 45° shows the monetary value of the payoffs used exclusively 
in the preceding sections.  Note how )(Mu essentially equals M for small values of M, 
and then how )(Mu gradually falls off M for larger values of M.  This is a typical of a 
moderately risk-averse individual. 
 
There are other approaches of estimating )(Mu ; however, they are not necessarily 
appropriate in this instance.  Decision trees can also be used in an identical fashion to the 
analysis in the preceding section except for substitution utilities for monetary payoffs.  
For this analysis of a drilling decision we add an extra element, for variety purposes.  We 
also give a more general analysis perspective to end this section. 
 
14.7: Combination of Formal and Informal Analysis 
 
Continuing with the same problem, the desirability of drilling depends on the amount of 
oil which will be found – oil or no oil.  Before making this decision, the oil company 
wishes to obtain more geological and geophysical evidence by means of a seismographic 
recording which is quite expensive.  It is also assumed that these recordings, if made, will 
give completely reliable information that one of the tree conditions prevails; (1) there is 
no subsurface structure, (2) there is an open subsurface structure, or (3) there is a closed 
subsurface structure.  The descriptions of the four spaces, A, Θ, E, X, are summarized in 
Table 14-5 and the possible sequence of choices are displayed in the decision tree in 
Figure 14-5. 
 
Table 14.5: Possible Choices 
Space Elements Interpretations 
A a1 

a2 
Drill, do not sell location 
Do not drill, sell location 

Θ θ1 
θ2 

Oil 
No oil 

E e1 
e2 

Do not take seismic readings 
Take seismic readings 

X x0 
x1 
x2 
x3 

Dummy outcome of e0 
e1 reveals no structure 
e2 reveals open structure 
e3 reveals closed structure 
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Assignment of Utilities 
 
The psychological stimulus associated in this problem with a ),,,( θaxe 4-tuple is highly 
complicated.  Different wells entertain different drilling costs, and different strike 
produce different quantities and qualities of oil which can be recovered over different 
periods of time and sold at different prices.  Furthermore, each potential consequence of 
the present drilling venture may interact with future potential drilling ventures such as 
geological information gained.   
 
There are uncertainties surrounding any particular ),,,( θaxe complex which must be 
compared formally or informally.  Assume, nevertheless, that the decision maker can 
assign to utility numbers to reflect his preferences.  This presents the idea of cutting the 
decision tree presented in Section 4 and 9. 
 
Assignment of Probabilities 
 
The assignment of a probability measure to the probability space X×Θ bears more 
importance on the conditional (or “posterior”) measure xP |θ′′ and the marginal measure 

exP | than on the complementary measures θ,|exP and θP′ .  Previous experience with the 
amounts of oil found in the three possible types of geological structure (x1 = no structure, 
x2 = open structure, x3 = closed structure) may make it possible to assign a nearly 
“objective” measure xP |θ′′ to the amount of oil which will be found given any particular 
experiment result, whereas it would be much less clear what measure θP′ should be 
assigned to the amount of oil in the absence of knowledge of the structure.  At the same 
time it will in general be much more meaningful to a geologist to assign a marginal 
measure exP | to the various structures and thus to the sample space X than it would be to 
assign conditional measures θ,|exP to X depending on the amount of oil which will be 
found.  The hypothetical measures xP |θ′′ and exP | are shown on those branches of the decision 
tree in Figure 6.11 which emanate from e1;  the prior probabilities }{ 1θθP′ =0.2 and 

}{ 2θθP′ =0.8 shown on the branches emanating from e0 were computed from them by use 
if the formula 
 

).|()|()|()|()|()|()( 133122111 exPxPexPxPexPxPP xixixii θθθθ θθθθ ′′+′′+′′=′  
 
Analysis 
 
Since all the data required for analysis appears in the decision tree in Figure 14-5, it can 
be easily verified that the optimal decision is to pay for seismographic recordings (e1) and 
then drill (a1) if and only if the recordings reveal open (x2) or closed (x3) structures.  It is 
worthwhile to pay for the recordings because the expected utility of this decision is 15.25 
whereas the expected utility of the optimal act without seismic information is 0. 
 



References 

 161

References 
 
Bather, J.  (2000).  Decision Theory.  Chichester: John Wiley & Sons, Inc. 
 
Berger, J.O.  (1985).  Statistical Decision Theory and Bayesian Analysis.  (2nd ed.).  New  

York: Springer-Verlag New York Inc. 
 
Brooks, S.P. and Roberts, G.O. (1998).  Convergence Assessment Techniques for  

Markov Chain Monte Carlo.  Statistics and Computing, 8:319-335. 
 
Buchanan, J.T. (1982).  Discrete and Dynamic Decision Analysis.  Chichester: John  

Wiley & Sons, Inc. 
 
Chib, S. and Greenberg, E.  (1995).  Understanding the Metropolis-Hastings Algorithm.   

The American Statistician.  49(4). 
 
Clemen, R.T.  (1996).  Making Hard Decisions: An Introduction to Decision Analysis.  

(2nd ed.).  Pacific Grove, CA: Brooks/Cole Publishing Company. 
 
Draper D. and Madigan, D. (1997).  The Scientific Value of Bayesian Statistical Methods  

and Outlook. 
 
Everitt, B.S.  (2002).  The Cambridge Dictionary of Statistics (2nd ed.).  Cambridge,  

Cambridge University Press. 
 
French, S., & Insua, D.R.  (2000).  Statistical Decision Theory.  London: Arnold. 
 
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (1995).  Bayesian Data Analysis.  

London, Chapman and Hall. 
 
Gilboa, I. & Schmeidler, D.  (2001).  Theory of Case-based Decisions.  UK: Cambridge  
 University Press. 
 
Gilks, W.R., Richardson, S. and Spielgelhalter, D.J. (1996).  Markov Chain Monte Carlo 

in Practice.  London, Chapman and Hall. 
 
Goldstein, H. (2002).  Multilevel Statistical Models (3rd ed.).  London, Arnold Publishers. 
 
Grimmett, G.R.  Stirzaker, D.R. (1982).  Probability and Random Processes.  New York:  

Oxford University Press. 
 
Hastings, N.A.J. & Mello, J.M.C.  (1978)  Decision Networks.  UK: John Wiley & Sons, 
 Inc. 
 
Hillier, F.S., & Lieberman, G.J.  (2001).  Introduction to Operations Theory.  (7th ed.).   

New York: McGraw-Hill. 



References 

 162

Jensen, F.V.  (2001).  Bayesian Networks and Decision Graphs. New York: Springer- 
Verlag New York, Inc. 

 
Jordan, M.I. (editor) (1999).  Learning in Graphical Models.  The Netherlends: Kluwer  

Academic Publishers. 
 
Kass, R.E., Carlin, B.P., Gelman, A., Neal, R.M. (1998).  Statistical Practice: Markov  

Chain Monte Carlo in Practice: A Roundtable Discussion.  The American  
Statistician. 52(2). 

 
Lindgren, B.W.  (1971).  Elements of Decision Theory.  New York: The Macmillan  

Company. 
 
Luce, R. D. (2000).  Utility of Gains and Losses.  New Jersey: Lawrence Erlbaum  

Associates, Publishers. 
 
MacDonald, I.L. & Zuchchini, W.  (1997).  Hidden Markov and Other Models for  

Discrete-value Time Series.  Boca Raton: Chapman & Hall, Inc. 
 
Marshall, K.T. & Oliver, R.M.  (1995).  Decision Making and Forecasting.  New York:  

McGraw-Hill, Inc. 
 
Muphy, K.  (1998).  http://www.ai.mit.edu/~murphyk/Bayes/bayes.html 
 
Nau, R.  (2002).  Ph.D. Seminar on Choice Theory.  Duke University: The FUQUA  

School of Buisness. 
 
Neal, R.  (1996).  Bayesian Learning for Neural Networks.  New York: Springer-Verlag  

New York, Inc. 
 
Pearl, J. (1988).  Probabilistic Reasoning in Intelligent Systems.  California: Morgan  

Kaufmann. 
 
Pearl, J.  (1999).  Causality.  http://bayes.cs.ucla.edu/jp_home.html 
 
Petitti, D.B.  (2000).  Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis: 

Methods for Quantitative Synthesis in Medicine. (2nd ed.).  New York: Oxford  
University Press, Inc. 

 
Raiffa, H., Schlaifer, R.  (2000).  Applied Statistical Decision Theory.  New York: John  

Wiley & Sons, Inc. 
 
Ripley, B.  (1987).  Stochastic Simulation.  Chichester: John Wiley & Sons, Inc. 
 
Ripley, B.  (1997).  Pattern Recognition and Neural Networks.  Chichester: John Wiley  

& Sons, Inc. 



References 

 163

 
Rivett, P. (1980)  Model Building for Decision Analysis.  Chichester: John Wiley & Sons, 

Inc. 
 
Tierney, L. and Mira, A. (1999).  Some Adapative Monte Carlo Methods for Bayesian  

Inference.  Statistics in Medicine, 18:2507-2515. 
 
Weirich, P.  (2001).  Decision Space.  Cambridge: Cambridge University Press. 
 
West, D.B. (2001).  Introduction to Graph Theory.  New Jersey: Prentice Hall. 
 
White, D.L. (1976).  Fundamentals of Decision Theory.  New York: American Elsevier  

Publishing Company, Inc. 
 
Courses and Professors: 
 
STA4276H (2003): MCMC algorithms by Professor Jeffrey Rosenthal. 
CHL5223H (2002/3): Applied Bayesian Methods by Professor Michael Escobar  

(meetings). 
 


