Poisson Change-point Application Aofei Liu

1) Fixed Change-point $K=3$

Density of Height with Running Length (N) $=300$

Density of Height with Running Length (N) $=1000$

Density of Height with Running Length (N) $=10000$

Density of Height with Running Length (N) $=15000$

Comparsion of density of height

Running Length=300

Running Length $=1000$

Running Length=10000

Running Length=15000

Series height_4_1

Series height_4_2

Series height_4_3

Result:
For $N<10000$, the modes are not very clear. Thus, running length is too short if it is less than 10000. Besides, the modes tends to be clearer as running length reachs and beyonds 10000.

Density of Position with Running Length(N) $=300$

Density of Height with Running Length (N) $=1000$

Density of Height with Running Length (N) $=10000$

Density of Height with Running Length (N) $=15000$

ACF of S2

ACF of S3

Result:

1) The density of s_{2} and s_{3} overlapp around 1900 , which makes it be an important changepoint. The plot showes that h_{2} and h_{3} also jumps to h_{1} at same running length. Thus, the jump of position may caused by the change of height.
2) The distance between the mode of s_{1} and s_{2} dataset gets farther as running time increases. Besides, one mode finally "wins" with the highest probability for the choice of both s_{1} and s_{2}. Thus, the choice of s_{1} and s_{2} converges to the "true" value with the increase of running length.
3) Varied K

Histogram of K with Running Length $=\mathbf{3 0 0}$

Histogram of K with Running Length $=1000$

Histogram of K with Running Length $=10000$

Histogram of K with Running Length = 15000

Histogram of K with Running Length = 20000

Result:

The range of k values tends to be wider as running length increases Besides, the propotion of extreme values tends to be smaller as running length increases and $k=3, k=4$ are always the most frequent choice of k value.

Density of Height with $K=3$ and Running length $=15000$

h1

h2

Desnity of Height

Running Length=15000

Series H3[, 1]

Series H3[, 2]

Series H3[, 3]

Density of Position

Running Length=15000

ACF of S2

ACF of S2

Result:
Compared with fixed $k=3$ case, s_{2} jumps close to s_{1} more frequently as well as h_{3}, h_{2} and h_{1}, although the density of height are similar.

