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Abstract. As a simple model for browsing the World Wide Web, we consider
Markov chains with the option of moving “back” to the previous state. We de-
velop an algorithm which uses back buttons to achieve essentially any limiting
distribution on the state space. This corresponds to spending the desired total
fraction of time at each web page. On finite state spaces, our algorithm always
succeeds. On infinite state spaces the situation is more complicated, and is
related to both the tail behaviour of the distributions, and the properties of
convolution equations.

1. Introduction.

We consider Markov chains with “back” buttons, where the chain sometimes retreats

to its previous state instead of moving to the next state. This modified chain (or “backoff

process”) is intended to model a user browsing the World Wide Web, where the web pages

are the states of the chain, and where the user sometimes presses the “back button”.

Fagin et al. (2001) show that in this context, if the probability of going back is less than

1/2 and is independent of the walk’s history, then the limiting distribution of the backoff

process is the same as that of the original walk. However, if the probability of going back

depends on the walk’s history (e.g. through the current state), then the situation is more

complicated. Fagin et al. (2001, Lemma 4.39) do indicate how to compute the limiting

distribution in certain simple cases, however the resulting expressions are very complicated

(requiring solving cubic equations with coefficients like 3936 and 3180, even for a very simple

example on a state space of size 2).

In this paper, we take a different approach, and ask the following question. Suppose we

are given fixed Markov chain transition probabilities, on a state space X . Suppose we are

also given a probability measure π(·) on X , which represents our desired distribution of what
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fraction of our time should be spent where. At each step, we may choose to (i) do nothing,

(ii) go “back” one step, or (iii) go forward one step of the Markov chain. [Note that in (iii),

the resulting jump is chosen randomly according to the underlying Markov chain, and we

have no control over precisely where it jumps.] The question is, can we choose which of (i),

(ii), and (iii) to perform at each step, in such a way that our long-term limiting distribution

is precisely π(·)?
From the point of view of browsing the Web, this question may be interpreted as follows.

Suppose π(j) represents your (objective or subjective) opinion of what fraction of your time

you would like to spend at the Web site j. Then what back button scheme can you use

when browsing the Web, so that the fraction of time you ultimately spend at web page j

will indeed be equal to π(j)?

To address this, we shall introduce the BACKMET algorithm, which accomplishes our

goal provided a certain non-negativity condition holds. Our algorithm is related to the

Metropolis-Hastings algorithm, as we shall explain. However, unlike the Metropolis-Hastings

algorithm, the BACKMET algorithm does not reject proposed moves until after the proposed

state is visited (to more accurately model the web browsing context), and this difference is

the essential difference between the BACKMET algorithm and previous MCMC algorithms.

We shall prove (Theorem 1) that the BACKMET algorithm suffices to achieve any lim-

iting distribution, provided only that a certain condition (C1) is satisfied. We shall further

prove (Theorem 6) that on a finite state space, this condition can always be satisfied.

On an infinite state space the situation is more complicated, depending on the tail be-

haviour of π(·) and of the transition probabilities P (x, ·). However, in the case where the

Markov chain is a random walk (corresponding to convolution of densities), we shall prove

(Theorem 11) that BACKMET essentially always succeeds provided the target density is

bounded away from zero on compact sets, and the target density tails are at least as heavy

as the tails of the Markov chain jumps themselves. On the other hand, we shall also provide

(Theorems 7 through 10) quite a number of necessary conditions which show that, for a

fixed choice of parameters, the BACKMET algorithm on infinite state spaces will not always

succeed.
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troducing us to this topic, and for helpful advice. We thank M. Kanter for referring us to
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2. The Metropolis-Hastings Algorithm.

To understand the BACKMET algorithm, we recall the Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970). This algorithm requires a fixed “target” den-

sity f , with respect to some reference measure ν(·). It then proceeds for n = 0, 1, 2, . . .

as follows. Given Xn, it chooses a proposal state Yn+1 according to some given proposal

kernel q(Xn, y)ν(dy). It then accepts this proposal and sets Xn+1 = Yn+1 with probability

min
[
1, f(Xn) q(Xn,Xn−1)

f(Xn−1) q(Xn−1,Xn)

]
. Otherwise, it rejects this proposal and simply sets Xn+1 = Xn.

It is well known (and straightforward to see) that the Metropolis-Hastings algorithm is

reversible with respect to the distribution f(x) ν(dx), i.e. that∫
A

P (Xn+1 ∈ B |Xn = x) f(x) ν(dx) =
∫

B
P (Xn+1 ∈ A |Xn = x) f(x) ν(dx) , A, B ⊆ X .

It then follows from the general theory of Markov chains (e.g. Meyn and Tweedie, 1993;

Tierney, 1994) that, assuming irreducibility, we will have

lim
n→∞

1

n

n∑
i=1

P (Xi ∈ A) =
∫

A
f(x) ν(dx) , A ⊆ X .

That is, the limiting distribution of the Xi will be given by f(x) ν(dx). We remark that the

Metropolis algorithm is considered to be one of the top ten computer algorithms of all time

(Dongarra and Sullivan, 2000). It is one of a family of Markov chain Monte Carlo (MCMC)

algorithms designed to achieve specified limiting distributions; see e.g. Tierney, 1994.

Since the Metropolis-Hastings algorithm achieves the desired limiting distribution π(dx) =

f(x) ν(dx), by only moving forward one step (option (iii)) or doing nothing (option (i)), it

appears that this algorithm solves our problem elegantly. However, this algorithm requires

the ability to reject a proposed new state Yn+1, without ever visiting it or counting it as a

visited state. By contrast, when browsing the web, typically one needs to visit a site before

one can choose to reject it by using the back button. Thus, we take the point of view that

we seek an algorithm whose choices depend as little as possible on unobserved information,

such as which state we are considering visiting next or what properties the future state may

have. Nor do we wish our algorithm to require strong information about the underlying

Markov chain, such as its own stationary distribution or limiting probabilities (if they even

exist).
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3. Formal Definitions.

We assume there are fixed underlying Markov chain transition probabilities P (x, dy) on

a state space X . We also assume that there is a fixed probability distribution π(·) on X ,

which represents the desired limiting distribution.

To avoid analytic technicalities, we assume that there is a reference probability measure

ν(·) on X , such that the Markov chain transition probabilities P (x, dy) and target distri-

bution π(dy) are absolutely continuous with respect to ν(·), with P (x, dy) = p(x, y)ν(dy),

and π(dy) = f(y)ν(dy) for some function f : X → (0,∞). (If X is discrete (i.e. finite or

countable), then we can simply let ν be counting measure, with ν({x}) = 1 for all x ∈ X .

Similarly, if X is an open subset of R or Rd, then ν(·) can be Lebesgue measure, with p(x, ·)
and f(·) ordinary densities.)

To avoid the problem of certain states being unobtainable, we also assume that the

Markov chain is φ-irreducible, meaning that there is a non-zero measure φ(·) on X , such

that for any x ∈ X and any A ⊆ X with φ(A) > 0, there is positive probability that the

chain will eventually reach A when started at x. (If X is discrete, then it suffices that the

chain be “irreducible” in the standard discrete sense.)

Our formal definitions are as follows. The backoff process keeps track of an entire history

stack Hn = 〈sn,1, sn,2, . . . , sn,`(Hn)〉, of length `(Hn), at each time n. Here Xn ≡ sn,`(Hn)

represents the current state of the chain, while sn,1, sn,2, . . . , sn,`(Hn)−1 represent previously-

visited states that the process can go “back” to.

Initially, H0 = 〈X0〉 and `(H0) = 1, where X0 is some arbitrary initial state. Then, at

times n = 0, 1, 2, . . ., given the current history stack Hn, the user may choose one of three

options for selecting the next history stack Hn+1:

(i) Do nothing. That is, Hn+1 = Hn, and `(Hn+1) = `(Hn).

(ii) Go “back” one step in the history stack. That is, if Hn = 〈s1, s2, . . . , s`−1, s`〉, then

Hn+1 = 〈s1, s2, . . . , s`−1〉, and `(Hn+1) = `(Hn)− 1. [If `(Hn) = 1, then this option is

not permitted.]

(iii) Go forward one step of the Markov chain. That is, if Hn = 〈s1, s2, . . . , s`〉, then

Hn+1 = 〈s1, s2, . . . , s`, Z〉, and `(Hn+1) = `(Hn) + 1, where Z is chosen randomly,

independent of all previous random variables, such that P(Z ∈ A) = P (s`, A), i.e.

with Z having the probability distribution P (s`, ·) given by the underlying Markov

chain transition probabilities.

The question we ask is, by a judicious choice of which of (i), (ii), or (iii) to perform at
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each step, can the user ensure that

lim
n→∞

1

n

n∑
i=1

P (Xi ∈ A) = π(A) , A ⊆ X ,

i.e. that the limiting distribution is given by π(·). (Recall that here Xi = si,`(Hi) is the top

of the history stack at time i, i.e. is the position of the chain itself at time i.) As discussed

above, we want the choice of which of (i), (ii), or (iii) to perform not to depend unduly

on unobserved information, such as which state we are considering visiting next or what

properties the future state may have.

Remark. In the back option (ii) above, it is tempting to instead let Hn+1 = 〈s1, s2, . . . , s`−1, s`, s`−1〉.
However, in this case, if the user used option (ii) twice in a row, they would then obtain

Xn+2 = s` instead of Xn+2 = s`−2, which is not appropriate. (On the other hand, the

BACKMET algorithm as we shall define it never uses option (ii) twice in a row, so in fact it

would not be affected by this change.)

4. The BACKMET Algorithm.

Let p(x, y) and f(y) be the transition and target densities as above, let k ≥ 2 be an

integer (to be a parameter in our algorithm), and let tk be some density on X (so tk(x) ≥ 0

for x ∈ X , with
∫
X tk(x) ν(dx) = 1), to be determined later (see Section 5). In terms of these

quantities, we define

αk(x, y) = min

[
1,

tk(y) p(y, x)

tk(x) p(x, y)

]
, (1)

with the convention that αk(x, y) = 1 if tk(x) p(x, y) = 0.

We now define the BACKMET algorithm. Given the history Hn at time n, it proceeds

as follows, for n = 0, 1, 2, . . ..

(a) If n ≡ 0 (mod k) (i.e. n is an integer multiple of k), then do a forward step of the

Markov chain as in (iii) above.

(b) If n ≡ 1 (mod k), then with probability αk(Xn, Xn−1) do nothing as in (i) above,

otherwise with probability 1− αk(Xn, Xn−1) go back as in (ii) above.

(c) If n 6≡ 0 (mod k) and n 6≡ 1 (mod k), then do nothing as in (i) above.

In words, the BACKMET algorithm proceeds in blocks of k steps, as follows. For the

first step it does one forward step of the Markov chain; for the second step it either does

nothing or goes back one step; and for the following k − 2 steps it does nothing. It then
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repeats this pattern during the next k steps. We shall justify this unusual pattern in the

following sections.

It remains to specify the function tk. Given any function h : X → R, we define

(Qh)(y) =
∫

h(x) p(x, y) ν(dx) . (2)

(Thus (Q2h)(z) =
∫ ∫

h(x) p(x, y) p(y, z) ν(dx) ν(dy) , etc.) In terms of this, we define the

function tk : X → [0,∞) by

tk =
k

k − 1

(
f − 1

k − 1
Qf +

1

(k − 1)2
Q2f − 1

(k − 1)3
Q3f + . . .

)
. (3)

Thus
∫
x∈X tk(x) ν(dx) = 1. We shall require the following condition:

(C1) The series (3) converges for all x ∈ X , with tk(x) ≥ 0 for all x ∈ X .

Of course, if k ≥ 3 and f is bounded from above, then the convergence part of (C1) is

automatic.

We can now state our main result (proved in Section 6), as follows.

Theorem 1. Consider the BACKMET algorithm. Assume that (C1) holds for some k,

and define tk by (3). Then for π-a.e. starting point X0,

lim
n→∞

1

n

n∑
i=1

P (Xi ∈ A) = π(A) ,

i.e. the correct limiting distribution is achieved. Furthermore, if X is finite and ν(·) is

counting measure, then (C1) always holds for all sufficiently large k.

Remarks.

1. Note that 1
n

∑n
i=1 P (Xi ∈ A) is the expected fraction of the time that the chain spends

in the subset A up to time n. Thus, Theorem 1 says that in the limit, the fraction of time

spent in A is equal to π(A), as desired.

2. If we assume the BACKMET algorithm is aperiodic, then we also have the slightly

stronger conclusion that limn→∞ P (Xn ∈ A) =
∫
A tk(x)ν(dx).

3. It is indeed possible, though rare, that the BACKMET algorithm will be periodic.

This is true, for example, if P corresponds to simple symmetric random walk on the state

space X consisting of M points arranged in a circle, and if π(·) is the uniform distribution

on X (so that the Metropolis-Hastings algorithm will never reject).
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4. Whether the BACKMET algorithm is periodic or not, a slight modification suffices

to ensure that limn→∞ P (Xn ∈ A) = π(A). Indeed, if the induced chain {Xnk} has period

r, then it suffices to choose Z uniformly from the set {0, 1, 2, . . . , rk − 1}, and modify the

algorithm by doing nothing for the first Z steps before running BACKMET as usual.

5. If we assume that the chain is “Harris recurrent”, then the conclusion holds for all

starting points X0, not just for π-a.e. X0. This is always the case if X is countable.

6. We stated earlier that we wanted an algorithm which did not use unobserved informa-

tion. Now, the probability (1) of using the back button only depends on the two previously

visited states x and y, which are both previously observed states. However, the BACK-

MET algorithm also requires the function tk from (3), and the computation of this function

requires global information. We view this as a limitation of our algorithm. However, in

contrast to the Metropolis-Hastings algorithm, BACKMET only requires this single global

function, computed just once at the beginning, and otherwise uses only observed information

and evaluates tk only at visited sites. Furthermore, even without computing tk, the algo-

rithm proves that there exists a natural way to browse the web achieving desired limiting

probabilities, even though without knowing tk explicitly the correct back probabilities (1)

cannot be computed precisely.

7. Because of this need to visit states before rejecting them, the BACKMET algorithm is

inherently less efficient than the Metropolis-Hastings algorithm, by a factor of approximately

k. However, we will see in the next section that typically the value of k is quite moderate. In

any case, the BACKMET algorithm still runs extremely quickly and converges quite rapidly.

In particular, since k − 2 of every k steps involve doing nothing, they add very little in

the way of computational burden. Thus, the BACKMET algorithm is certainly practical

from a computational standpoint. (Of course, when a real person is browsing the web, they

typically make their browsing choices much more slowly than a computer does – but that is

a limitation of the human, not the algorithm.)

5. A Numerical Example.

To illustrate the use of the BACKMET algorithm, we construct an example as follows.

We let the state space be X = {1, 2, . . . , 1000}, consisting of 1000 states arranged in a

circle (so that state 1 is adjacent to states 2 and 1000). We put an edge between every

adjacent pair of states (to ensure connectivity), for a total of 1000 edges. We then add

an additional 6000 edges uniformly at random, to create a messy, complicated underlying
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Markov chain. (In particular, we do allow for multiple edges between the same pairs, or even

self-loops.)

From the point of view of the World Wide Web, we may consider this to be creating an

artificial web of 1000 pages with a very complicated link structure.

The underlying Markov chain then does a random walk on the graph X . That is, from

a state x ∈ X , it chooses uniformly among all edges emanating from x, and moves to the

other end of that edge. From the point of view of the Web, this involves choosing uniformly

at random one of the out-links from the current web page.

For definiteness, we choose the target distribution π(·) so that state x has weight pro-

portional to 10 + x; thus, f(x) = (x + 10)/
∑1000

i=1 (i + 10) (and ν(·) is counting measure). In

particular, state 1000 is nearly 100 times more desired than is state 1. Furthermore, we let

X0 = 1, corresponding to the “worst case” of starting at the lowest-ranked state.

We repeatedly ran the BACKMET algorithm on random such configurations. In each

case, we found the minimal value of k which satisfied (C1), and then ran BACKMET with

that value of k. We found that the values of k were typically around 50. It required less

than a second on a modern PC to do a complete (linear) search for the minimal k, including

computing the entire function tk each time (and, of course, such computation only needs

to be done once for each configuration). It then performed over 107 individual BACKMET

iterations per second. Thus, computational speed was certainly no problem.

To investigate convergence of the probabilities to the target distribution, we obtained

estimates of the total variation distance to stationarity of the probabilities in the jth block

of k BACKMET steps, i.e.

TV (j) =
∥∥∥1

k

jk+k∑
t=jk+1

P(Xt ∈ ·)− π(·)
∥∥∥

T.V.

= sup
A⊆X

∣∣∣1
k

jk+k∑
t=jk+1

P(Xt ∈ A)− π(A)
∣∣∣

=
1

2

∑
x∈X

∣∣∣1
k

jk+k∑
t=jk+1

P(Xt = x)− f(x)
∣∣∣ . (4)

Specifically, the value of TV (j) was estimated by performing 108 multiple runs of the BACK-

MET algorithm on the same configuration, and counting the fraction of times that Xt = x,

to accurately estimate P(Xt = x), and hence estimate TV (j) via (4). [The C program used

is available at http://probability.ca/jeff/comp/backmet.c.]
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The results of runs on the first six different configurations tried are presented here.

Configuration k TV (1) TV (5) TV (10) TV (15) TV (20)

1. 58 0.988678 0.200154 0.032524 0.006556 0.001969
2. 59 0.982682 0.181410 0.038307 0.009954 0.003005
3. 64 0.981638 0.152516 0.022251 0.004447 0.001612
4. 51 0.983976 0.160724 0.027432 0.006117 0.002005
5. 42 0.992572 0.212237 0.035738 0.007781 0.002284
6. 78 0.978688 0.190675 0.036436 0.010157 0.003752

We see from these results that, even for these complicated graphs of size 1000, the required

values of k are quite moderate. In addition, we see that the convergence to stationarity is

quite rapid, with the total variation distance being far less than 1% after just 15–20 blocks

of k iterations, or about 1000 total iterations of the BACKMET algorithm. (Furthermore,

some of the remaining total variation distance is due to Monte Carlo error in the estimates

of P (Xt = x) as above.) Recalling that (k − 2)/k of the BACKMET steps involve doing

nothing, and that over 107 individual BACKMET iterations can be performed per second,

we see that the computational burden is quite minimal.

We conclude that for this example, the BACKMET algorithm runs extremely quickly,

and converges in distribution quite rapidly, so that it is computationally very easy to run. Of

course, a more complete investigation of BACKMET’s performance would require running

BACKMET on a large number of very different examples, to get a broader idea of its running

and convergence properties. However, the above example suggests that usually BACKMET,

like the Metropolis-Hastings algorithm, will run quickly and efficiently.

6. Theoretical Analysis.

The connection of the BACKMET algorithm to the Metropolis-Hastings algorithm is

given by the following.

Proposition 2. Consider the BACKMET algorithm, with αk(x, y) as in (1). Let Wn = Xkn

(so that the process {Wn} samples the process {Xi} once every kth step). Then {Wn}
follows a Metropolis-Hastings algorithm with target density function tk. Hence, we have

limn→∞
1
n

∑n
i=1 P (Wi ∈ A) =

∫
A tk(x)ν(dx).

Proof. By construction of the BACKMET algorithm, we will have Wn+1 = Xkn+1 with

probability αk(Xkn+1, Wn), while Wn+1 = Wn with probability 1 − αk(Xkn+1, Wn). It then
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follows from (1) that the chain {Wn} does indeed follow a Metropolis-Hastings algorithm

with target density tk. The convergence results then follow, using φ-irreducibility, from gen-

eral Markov chain theory (e.g. Meyn and Tweedie, 1993; Tierney, 1994).

Now, under the BACKMET algorithm, we see that Xkn+i = Wn+1 as above for i =

2, 3, . . . , k, i.e. for k − 1 out of every k steps. Furthermore, Xkn+k+1 is constructed by going

forward from Wn by one step of the Markov chain. Hence, from the above Proposition, we

immediately obtain the following.

Proposition 3. The BACKMET algorithm satisfies that

lim
n→∞

1

n

n∑
i=1

P (Xi ∈ A) =
k − 1

k

∫
x∈A

tk(x)ν(dx) +
1

k

∫
y∈X

tk(y)P (y, A)ν(dy)

≡ k − 1

k
Tk(A) +

1

k
(TkP )(A) , A ⊆ X ,

where Tk(A) =
∫
A tk(x) ν(dx), and (TkP )(A) =

∫
y∈X tk(y)P (y, A)ν(dy). That is, the limiting

fraction of time that the backoff process spends in a subset A is given by a weighted average

of Tk(A) and (TkP )(A).

This Proposition tells us that, if we could choose the density tk so that k−1
k

Tk(A) +
1
k
(TkP )(A) = π(A) for all A ⊆ X , then BACKMET would indeed converge to π(·). The

question then becomes, how should the density tk be chosen. We consider that next.

The following Lemma says that, if h is the density of µ, then Qh is the density of µP .

Lemma 4. Let h = dµ
dν

be a density function for a probability measure µ(·) on X with

respect to ν(·). Then Qh is the density function for the probability measure µP , given by

(µP )(A) =
∫
x∈X P (x, A)µ(dx).

Proof. We compute that∫
y∈A

(Qh)(y) ν(dy) =
∫

y∈A

∫
x∈X

h(x) p(x, y) ν(dx) ν(dy)

=
∫

y∈A

∫
x∈X

p(x, y) µ(dx) ν(dy)

=
∫

x∈X
p(x, A) µ(dx) = (µP )(A) ,

as claimed.

We then have
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Lemma 5. Assume (C1), define tk by (3), and define the probability measure Tk by

Tk(A) =
∫
A tk(x) ν(dx), so that dTk

dν
= tk. Then k−1

k
Tk + 1

k
TkP = π.

Proof. From the previous lemma, the density with respect to ν(·) of k−1
k

Tk + 1
k
TkP is given

by
k − 1

k
tk +

1

k
Qtk

= (
k − 1

k
)

k

k − 1

(
f − 1

k − 1
Qf +

1

(k − 1)2
Q2f − 1

(k − 1)3
Q3f + . . .

)

+(
1

k
Q)

k

k − 1

(
f − 1

k − 1
Qf +

1

(k − 1)2
Q2f − 1

(k − 1)3
Q3f + . . .

)
=

(
f − 1

k − 1
Qf +

1

(k − 1)2
Q2f − 1

(k − 1)3
Q3f + . . .

)
+

( 1

k − 1
Qf − 1

(k − 1)2
Q2f +

1

(k − 1)3
Q3f − . . .

)
= f .

Since f is the density with respect to ν(·) of π(·), the result follows.

Proof of Theorem 1.

We know from Proposition 3 that

lim
n→∞

1

n

n∑
i=1

P (Xi ∈ A) =
k − 1

k
Tk(A) +

1

k
(TkP )(A) .

But the previous lemma says that

π(A) =
k − 1

k
Tk(A) +

1

k
(TkP )(A) .

The main result follows. The statement about finite X follows from Theorem 6 below.

We conclude from Theorem 1 that, assuming (C1), the BACKMET algorithm always

achieves the correct limiting distribution π(·). Hence, the one remaining question is, under

what circumstances will (C1) hold? We consider that in the following sections.

11



7. The Existence of Solutions.

The above result leads to the following question. Given a probability distribution π(·)
and a Markov chain P (x, ·) on X , under what circumstances can we write π = k−1

k
Tk +

1
k
(TkP ) for some distribution Tk? Alternatively, for which π(·) and P can we be sure that

condition (C1) holds, so that Theorem 1 applies and the BACKMET algorithm guarantees

that limn→∞
1
n

∑n
i=1 P (Xi ∈ A) = π(A) for all A?

Obviously this answer depends on π(·), P and X . In the case where X is finite, the

answer is particularly simple.

Theorem 6. Suppose the state space X is finite, and ν(·) is counting measure. Then

there exists k large enough that (C1) holds.

Proof. Recall that for k > 2,
∑∞

j=1(k − 1)−j = 1 / (k − 2). Furthermore, since ν(·) is

counting measure, we see from Lemma 4 that |(Qjf)(x)| ≤ 1 for all j and x. Hence, if we

choose k large enough that minx∈X f(x) > 1 / (k − 2), then we see by inspection of (3) and

the triangle inequality, that the series for tk will converge and will be non-negative.

Theorem 6 shows that on a finite state space, provided one is willing to spend some

positive limiting fraction of time in each state, one can always achieve any desired limiting

distribution by use of a BACKMET algorithm for sufficiently large k. Recalling that the

BACKMET algorithm does nothing for k − 2 of every k steps, this says that by adding in

enough “do nothing” steps, we can always achieve the limiting distribution π(·).

Remark. Another interpretation in the finite-state-space case is as follows. Using matrix

notation, we wish to solve for tM = π, where t and π are row vectors, and M is the matrix

having entries Mij = k−1
k

δij + 1
k
P (i, j). Hence, assuming M is invertible (which it often

will be), a solution is t = πM−1. The question then becomes whether or not πM−1 has all

non-negative entries (which it often won’t, but by Theorem 6 will for large enough k).

If X is infinite, even countably infinite, then the situation is more complicated. This is

because even if π({x}) > 0 for all x ∈ X , we will still have infx∈X π({x}) = 0, so that the

non-negativity of tk as defined in (3) is not guaranteed.

Numerical experiments suggest that, indeed, for moderate values of k and distributions

π(·) chosen at random, typically tk will not be non-negative, so that BACKMET will not

always work.
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To make further progress, we shall assume for the remainder of this paper that the

Markov chain P corresponds to an actual random walk. That is, we shall assume that

the state space has a group structure (e.g. is the real numbers, or the integers, or the

integers mod n for some n, or a continuous circle), and that P represents a convolution (i.e.

(ρP )(A) = (µ ∗ ρ)(A) ≡
∫
x∈X µ(A− x) ρ(dx) for all ρ for some fixed probability measure µ,

where A− x = {y ∈ X ; y = a− x for some a ∈ A).

In this random walk case, we see that k−1
k

T + 1
k
(TP ) = p ∗ T where p = k−1

k
δ0 + 1

k
µ. So

the question becomes, given the probability measures µ and π, does there exist a probability

measure T such that p ∗ T = π, where p = k−1
k

δ0 + 1
k
µ?

This is a type of deconvolution question (though “deconvolution” often implies a more

statistical context). Much is known about such convolution and deconvolution questions,

and we pursue them here. We begin with some background about convolution on different

spaces.

8. Background about Convolution.

The class of all distributions on R, denoted here by P , form an abelian (i.e. commuta-

tive) semigroup under convolution; the unit element is the distribution whose value is 0 with

probability 1. Clearly no distribution in P has an inverse except for the trivial distributions,

i.e. those distributions which are constant with probability 1. By a prime (or indecompos-

able) distribution is meant one that cannot be written as a convolution of two nontrivial

distributions. The prime distributions on R are “quite abundant”; in particular, they are

dense in P in the topology of weak convergence.

Convolution of distributions in P corresponds, of course, to multiplication of their Fourier

transforms, i.e., of their characteristic functions. For further background, see for example

Cuppens (1975), Feldman (1993), Lukacs (1970), Linnik and Ostrovskii (1977), and Os-

trovskii (1977, 1987). For distributions on abelian groups other than R, the situation is

summed up in Feldman (1993). Sherstnev (1999) discusses all factorizations of the uniform

distribution for the finite abelian groups.

In addition to convolution on R, there are three other contexts which interest us here:

the circle group consisting of the real numbers modulo 2π, the group of all integers, and the

cyclic groups consisting of the integers modulo n. These are discussed further below.
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8.1. The Continuous Case.

Consider probability densities p(x), q(x), and r(x) on R which are related as p ∗ q = r,

with p and r being given, and q being sought. (Here (p ∗ q)(x) =
∫
y∈R p(x − y) q(y)dy for

x ∈ R.) Define the characteristic function

p̂(t) =
∫ ∞

−∞
p(x)eitx dx

and likewise for q̂(t) and r̂(t). Then the relation p ∗ q = r is equivalent to p̂(t)q̂(t) = r̂(t)

for all t ∈ R. Hence q̂(t) = r̂(t)/p̂(t) (provided that p̂(t) 6= 0), and therefore by Fourier

inversion,

q(x) =
1

2π

∫ ∞

−∞

r̂(t)

p̂(t)
e−itx dt . (5)

Thus, given densities p and r, to determine whether or not there exists a density q(x) such

that p∗q = r, we just perform the computation (5) and then check to see if the resulting q(x)

is nonnegative. (Note that the resulting q(x) will necessarily be real valued and integrate

to one.) Of course, it is a necessary condition that the modulus of r̂(t)/p̂(t) should not

exceed one. In the event that p̂(t) has an isolated zero, then for it to be possible for a

solution to exist, r̂(t) must also be zero there, and it is also necessary that r̂(t)/p̂(t) can be

defined by continuity there. If p̂(t) = 0 in an interval then we must also have r̂(t) = 0 there,

and if a solution exists it need no longer be unique. Finding solutions in such cases is not

straightforward. Note that the computation shown in (5) assumes that r̂(t)/p̂(t) is in L1(R).

If it is not then a standard limiting variant of this equation must be used; see the general

inversion formulas in many probability texts.

The approach described in the last paragraph uses Fourier transformation in an explicit

way. Strassen (1963, Theorem 10) provides alternative conditions on p and r – not involving

Fourier transforms – for the existence of a probability density q which solves p ∗ q = r.

Strassen’s conditions are that for every bounded and continuous real function h(x),∫
h(x)r(x) dx ≤ sup

y

∫
h(x + y)p(x) dx .

Unfortunately these conditions are not straightforward to verify, although they may some-

times be used in a simple way to show the nonexistence of solutions.

Now consider probability densities on the circle group C of real numbers modulo T , for

some T > 0. A probability density is a nonnegative function p(t) on [0, T ] which integrates

to one on this interval. Convolution is defined circularly, similarly to before. Here the role

of characteristic function is played by the sequence of Fourier coefficients

p̂(j) =
1

T

∫ T

0
p(t)e−2πijt/T dt , j = 0,±1,±2 · · · ,

14



while the inverse is

p(t) =
∞∑

j=−∞
p̂(j)e2πijt/T .

This assumes that p̂(j) is in `1. The convolution p ∗ q = r corresponds to p̂(k)q̂(k) = r̂(k),

k = 0,±1,±2, . . .. The considerations in this case are similar to those above and are omitted.

8.2. The Discrete Case.

We now consider the case of probability distributions on the integers modulo n. Such

a distribution p is specified by nonnegative probabilities p(j), j = 0, 1, · · · , n − 1. Given

two such probability distributions p(j) and q(j), their convolution r = p ∗ q on the integers

modulo n is defined as r(j) where r(j) =
∑n−1

`=0 p(j− `)q(`) (here j− ` is interpreted modulo

n to lie between 0 and n − 1); this corresponds to summation (modulo n) of independent

random variables on this group. The characteristic function corresponding to a distribution

p on this group may be taken to be the discrete Fourier transform p̂(k), k = 0, 1, · · · , n− 1

where

p̂(k) =
n−1∑
j=0

p(j) exp

{
−2πijk

n

}
.

The inverse DFT is given by

p(j) =
1

n

n−1∑
k=0

p̂(k) exp

{
2πijk

n

}

for j = 0, 1, · · · , n − 1. The modulo n convolution equation p ∗ q = r is then equivalent to

p̂(k)q̂(k) = r̂(k), k = 0, 1, · · · , n− 1. For given p and r, one may determine if there exists a

distribution q satisfying p ∗ q = r by just computing

q(j) =
1

n

n−1∑
k=0

r̂(k)

p̂(k)
exp

{
2πijk

n

}

and checking if it is nonnegative. (As before, this function necessarily is real valued and sums

to one.) If p̂(k) has zeros, then r̂(k) must also have zeros there, and determining solutions

to p ∗ q = r must then be carried out otherwise. Strassen’s Theorem applied to this case

gives the condition ∑
h(k)r(k) ≤ sup

`

∑
h(k + `)p(k)

for all real finite sequences h(k).

We now consider the case of probability distributions on the set of all integers. Such a

distribution p is specified by nonnegative probabilities p(j), j ∈ Z, which sum to 1. Given
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two such probability distributions p(j) and q(j), their convolution r = p∗q on the integers is

defined as r(j) where r(j) = (p∗q)(j) =
∑

`∈Z p(j− `)q(`). The characteristic function corre-

sponding to a distribution p on this group may be taken as p̂(t) =
∑

j∈Z p(j) exp {−ijt} , t ∈
[−π, π], with inverse transform p(j) = 1

2π

∫ π
−π p̂(t) exp {−ijt} dt, j ∈ Z. The considerations

in this case are similar to those above and are omitted.

9. Necessary Conditions for Convolution Solutions.

In this section, we present a number of necessary conditions (some also sufficient) for the

existence of non-negative solutions to convolution questions. From the point of view of the

BACKMET algorithm, these conditions provide us with circumstances in which BACKMET

cannot be applied.

We will be dealing, in each case, with probability densities p, q, and r defined on an

abelian group, and with the convolution equation

p ∗ q = r . (6)

In each case, the probability densities themselves (under convolution) are an abelian semi-

group with unit element. Also in each case, p and r will be given, and we are interested in

whether or not there exists a probability q such that (6) holds.

From the point of view of the BACKMET algorithm, here p corresponds to the action of

the random walk, q corresponds to the target density tk as in the Metropolis-Hastings algo-

rithm, and r corresponds to the density of the target distribution π(·). Further connections

to BACKMET will be given in the next section.

Due to essential differences in the results for noncompact, compact, countable, and finite

state spaces, it is necessary to provide separate statements of the results for each of the

groups R, Z, C, and Z(mod n).

We begin with the state space R; analogous results apply to Rd.

Theorem 7. For given probability densities r and p defined on R, the existence of a

probability density q on R which is a solution of (6) is equivalent to either of the following

two conditions:

(a) There exists a density q on R such that p̂(t)q̂(t) = r̂(t) for all t ∈ R, where ‘hat’ refers

to Fourier transformation on R, or equivalently, r̂(t)/p̂(t) can be interpolated continuously

(wherever undefined) to a function which is nonnegative definite on R.
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(b) For every bounded and continuous real function h∫
R

h(x) r(x) dx ≤ sup
y

∫
R

h(x + y) p(x) dx ;

here we may restrict to functions such that 0 ≤ inf h ≤ sup h ≤ 1.

In particular, equation (6) cannot be solved for a probability q on R if any of the following

conditions holds:

(i) If |r̂(t)| exceeds |p̂(t)| for some t ∈ R; If p̂(t) has a zero at some t where r̂(t) does not; If

p is smoother than r – more precisely, if p̂(t) tends to zero, as |t| → ∞, at a rate faster than

r̂(t). [Note that the degree of differentiability of a density function is related to the rate of

decay of its characteristic function.]

(ii) If the density r has an essential zero (i.e. does not have full support) while the density

p does not; If p and r are regarded as Lebesgue densities and sup r(x) essentially exceeds

sup p(x); If the measure of the support of p exceeds that of r;

(iii) If the tails of r descend to zero more quickly than the tails of p;

(iv) If the variance (or scaling) of p exceeds that of r; If any absolute moment of order at

least one about the mean of p exceeds the corresponding moment of r; If the entropy of p

exceeds that of r (the entropy of a density f is defined by −
∫

f log f);

(v) If r is a normal, Cauchy, Holtsmark, Levy-Smirnov or other stable law, and p is not a

stable law with the same index and skewness parameters; If r is known to be a prime (i.e.

indivisible) density on R, and p is any other nontrivial density; If all factors of r are known,

and p is not among them.

Proof of Theorem 7. Assertion (a) is the standard Fourier result for convolutions. As-

sertion (b) is due to Strassen (1963, Theorem 10); permissibility of the restriction on h is

elementary. The assertions in part (i) all follow from the fact the moduli of the Fourier

transforms are bounded by 1. The middle assertion in part (ii) is proved via Strassen’s

inequality by allowing h to ‘concentrate’ near the essential supremum of r. The remaining

two assertions of (ii) may be proved using the method of Loeve, Ch. V, Ex. 11. Part (iii) is

established by straightforward analysis showing that the tails of a convolution are at least

as heavy as those of its factors (and may also be established via Loeve, Ch. V, Ex. 11). Part

(iv) is standard; see also Loeve, Ch. V, Ex. 3. The entropy result follows from the entropy

power inequality, see e.g. Theorem 4 of Dembo and Cover (1991). Part (v) follows from basic

results in Lukacs (1970, Chapters 5 and 6).

We next consider the integers, Z; analogous results apply to Zd.

17



Theorem 8. For given probability sequences r and p defined on Z, the existence of a

probability sequence q on Z which is a solution of (6) is equivalent to either of the following

two conditions:

(a) There exists a probability sequence q on Z such that p̂(t)q̂(t) = r̂(t) for all t ∈ R mod 2π,

where ‘hat’ refers to Fourier transformation on Z, or equivalently, r̂(t)/p̂(t) can be ex-

tended by continuous interpolation, wherever undefined, to a nonnegative definite function

on R mod 2π.

(b) For every bounded sequence h(k)

∑
h(k)r(k) ≤ sup

`

∑
h(k + `)p(k) ;

here we may restrict to sequences such that 0 ≤ inf h ≤ sup h ≤ 1.

In particular, equation (6) cannot have a solution for a probability sequence q on Z if

any of the following conditions holds:

(i) If |r̂(t)| exceeds |p̂(t)| for some t ∈ T ; If p̂(t) has a zero for some t ∈ T where r̂(t) does

not;

(ii) If r has a zero (i.e. a point of nonsupport) and p does not; If p contains a sequence of

consecutive nonzero values longer than any such sequence for r; If sup r(k) exceeds sup p(k);

If any ‘averaged’ value of r(k), based on uniformly bounded weights, exceeds the largest

similarly weighted average among the arbitrarily translated versions of p(x);

(iii) If the tails of r descend to zero more quickly than the tails of p;

(iv) If the variance (or scaling) of p exceeds that of r; If any absolute moment of order at

least one about the mean of p exceeds the corresponding moment of r; If the entropy of p

exceeds that of r.

(v) If r is a Poisson distribution, and p is not; If r is known to be a prime (i.e. indivisible)

distribution on Z, and p is nontrivial; If all factors of r are known, and p is not among them.

Proof. Note that the last assertion of (ii) is just Strassen’s condition. The proof is other-

wise similar to that of Theorem 7 and is omitted.

We next consider the circle group, C; analogous results apply to other continuous compact

abelian groups.

Theorem 9. For given probability densities r and p defined on C, the existence of a

probability density q on C which is a solution of (6) is equivalent to either of the following

two conditions:
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(a) There exists a density q on C such that p̂(k)q̂(k) = r̂(k) for all k ∈ Z, where ‘hat’ refers

to Fourier transformation on C, or equivalently, r̂(k)/p̂(k) can be extended, where undefined,

to a nonnegative definite function on Z.

(b) For every bounded function h(t) on C∫
C
h(t)r(t) dt ≤ sup

u

∫
C
h(t + u)p(t) dt ;

here we may restrict to functions such that 0 ≤ inf h ≤ sup h ≤ 1.

In particular, equation (6) cannot have a solution for a probability q on C if any of the

following conditions holds:

(i) If |r̂(k)| exceeds |p̂(k)| for some k ∈ Z; If p̂(k) is zero for some k ∈ Z where r̂(k) is not;

If p is smoother than r – more precisely, if p̂(k) tends to zero, as |k| → ∞, at a rate faster

than r̂(k).

(ii) If the density r has an essential zero and p does not; If the measure of any subset of the

support of p exceeds that of every subset of the support of r; If sup r(t) exceeds sup p(t), or

inf p(t) exceeds inf r(t);

(iii) If r is known to be a prime (i.e. indivisible) density on C, and p is nontrivial; If all

factors of r are known, and p is not among them.

Proof. The proof is as before except using results for circular convolution. The supremum

and infimum conditions in (ii) follow from the Strassen inequalities.

Finally, we consider the integers modulo n for some fixed n; analogous results apply to

any finite abelian group.

Theorem 10. For given finite probability sequences r and p defined on Z mod n, the

existence of a probability sequence q on Z mod n which is a solution of (6) is equivalent to

either of the following two conditions:

(a) There exists a distribution q on Z mod n such that p̂(k)q̂(k) = r̂(k) for k ∈ Z mod n,

where ‘hat’ refers to discrete Fourier transformation, or equivalently, r̂(k)/p̂(k) can be ex-

tended, where undefined, to a nonnegative definite function on Z mod n.

(b) For every finite sequence h(k) on Z mod n

∑
h(k)r(k) ≤ sup

`

∑
h(k + `)p(k) ;

we may restrict to sequences such that 0 ≤ min h ≤ max h ≤ 1.

In particular, equation (6) cannot have a solution for a probability q on Z mod n if any

of the following conditions hold:
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(i) If |r̂(k)| exceeds |p̂(k)| for some k ∈ Z mod n; If p̂(k) has a zero at some k ∈ Z mod n

where r̂(k) does not;

(ii) If r has a zero and p does not; If the length of a consecutive sequence of nonzero values

of p exceeds any such of r; If sup r(k) exceeds sup p(k) or inf p(k) exceeds inf r(k); If any

‘averaged’ value of r(k) exceeds the largest similarly weighted average among arbitrarily

rotated versions of p(x);

(iii) If r is known to be a prime (i.e. indivisible) distribution on Z mod n, and p is nontrivial;

If all factors of r are known, and p is not among them.

Proof of Theorem 10. The last condition in (ii) is just Strassen’s inequality. The remain-

der of the proof is similar to the above and is omitted.

Remarks on Theorem 10:

(1) A complete solution is available for the uniform case when the r(k) are all equal; see

Sherstnev (1999) for all factorizations of r for this case.

(2) The problem of decomposition into prime factors for ‘equally spaced’ discrete distri-

butions having equal probabilities is discussed in Lukacs (1970, Sect. 6.3).

10. Convolution with Perturbations of the Identity.

We now consider the effects in the BACKMET algorithm of allowing k to be large.

Specifically, we consider the problem p ∗ q = r in the case when p = αµ+(1−α)δ0, where δ0

is the identity (i.e. the distribution assigning unit mass to zero), so that p∗q = αµ∗q+(1−α)q.

We shall allow α > 0 to be as small as required. That is, given µ and r, we seek solutions q

to the equation αµ ∗ q + (1− α)q = r, for α > 0 sufficiently small.

We now present our main result for this problem. It says, essentially, that on the compact

groups Z mod n or the circle group C, a solution exists provided the target density r is

bounded away from 0. On the unbounded groups Z or R, a solution exists provided r is

bounded away from 0 on compact sets, and furthermore a tail condition (7) is satisfied,

which says essentially that the tails of r must be at least as heavy as those of µ. A formal

statement is as follows.

Theorem 11. Suppose p = αµ + (1 − α)δ0, that r and µ are given, and that we seek

solutions q of p ∗ q = r for α > 0 sufficiently small. Then

(a) On the finite state space Z mod n, if r > 0 then a solution for q is always possible

provided α is small enough. (The positivity condition on r can be relaxed under associated

conditions on µ.)
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(b) On the compact state space C, if a < r < b for some 0 < a ≤ b < ∞ then a solution for

q is always possible provided α is small enough. (The strict positivity of r can be somewhat

relaxed via related conditions on µ.)

(c) On the state space R, if r is bounded away from 0 on all compact sets, and further, if

the tails of r are at least as heavy as the tails of µ in the sense that there exists an ε > 0

such that

r − ε · r ∗ µ ≥ 0 , (7)

then a solution for q is always possible provided α is small enough. The condition (7) is met,

for example, if additionally r is bounded above, and if for |x| sufficiently large the densities

r and µ have tails of the type c1 ·f(|x|) ≤ r(x) ≤ c2 ·f(|x|) and d1 ·g(|x|) ≤ µ(x) ≤ d2 ·g(|x|)
for some constants 0 < c1 ≤ c2 < ∞ and 0 < d1 ≤ d2 < ∞, and for some functions f, g

which are monotone decreasing on R+ and satisfy lim supx→∞ g(x)/f(x) < ∞.

(d) On the countable state space Z, if r > 0 everywhere and the tail condition (7) holds,

then a solution for q is always possible provided α is small enough. The tail condition (7) is

satisfied under tail conditions on r and µ analogous to those given in part (c).

Proof of Theorem 11. Proceeding formally at first, write (αµ + (1− α)δ0) ∗ q = r as

q =
1

1− α

(
δ0 +

α

1− α
µ

)−1

∗ r ;

and (regarding δ0 as an identity) expand the inverse term appearing in this expression as

δ0 −
(

α

1− α

)
µ +

(
α

1− α

)2

µ ∗ µ−
(

α

1− α

)3

µ ∗ µ ∗ µ + · · ·

to obtain

q =
1

1− α

{
r −

(
α

1− α

)
r ∗ µ +

(
α

1− α

)2

r ∗ µ ∗ µ−
(

α

1− α

)3

r ∗ µ ∗ µ ∗ µ + · · ·
}

. (8)

This solution is, of course, analogous to the series (3) used earlier, with α = 1/k.

Next, observe that (8) is, in fact, a solution of (αµ + (1−α)δ0) ∗ q = r; thus it is enough

only to establish that it is nonnegative. Note that the terms in (8) can be collected pair-

wise so that (8) consists of r − {α/(1 − α)} r ∗ µ plus a sum of further terms which, being

convolutions of this first term, are each nonnegative whenever the first term is nonnegative.

On the compact state spaces Z (mod n) and C, the term r − {α/(1 − α)} r ∗ µ is clearly

nonnegative, under the stated conditions, when α is sufficiently small. For state spaces R

and Z the same also holds in view of the assumed condition (7); the example stated in terms

of the tail functions f and g involves only routine analysis after noting that boundedness of
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r implies boundedness of r ∗ µ.

Remarks on Theorem 11:

(1) While the emphasis in Theorem 11 is on stating positive results — i.e. cases under

which solutions are possible — we remark that the results of Theorems 7 through 10 provide

a substantive basis for constructing many examples for which there are no solutions to the

problem addressed in Theorem 11.

(2) The conditions indicated in the cases (c) and (d) of the Theorem are satisfied, for

example, if c1 · |x|−β ≤ r(x) ≤ c2 · |x|−β as |x| → ∞ with a similar condition for µ, provided

the index β corresponding to r is not less than that for µ. Similar conditions can also be

stated for tails of exponential type, various combination or mixed tails, and for differing

upper and lower tail types.

(3) Note that when condition (7) fails then the power series (8) will always violate non-

negativity for α sufficiently small. Hence the sufficient (7) is also close to being necessary.

(4) For the continuous state spaces R and C, since for any α > 0 the tails of the Fourier

transform p̂ will be bounded away from zero, the rate of descent of r̂ must necessarily be the

same as that of the transform of the solution, q̂.

(5) A problem similar to that of Theorem 11 was mentioned (though not analysed) as

far back as 1938; see Problem 174 of Mauldin (1981).

Applying Theorem 11 to the BACKMET algorithm, we immediately conclude the fol-

lowing positive results. They generalise Theorem 6 to infinite state spaces, at least in the

convolution case. Once again, we state the results specifically for the four abelian groups

studied above, but analogous results apply to other situations.

Theorem 12. Suppose the state space X is one of Z mod n, Z, R, or C, and the

underlying Markov chain P corresponds to a random walk (i.e. convolution). Assume the

chain is φ-irreducible. Assume that π(·) has a density (with respect to counting measure

for Z or Z mod n; or Lebesgue measure for R or C) which is bounded away from 0, and

is also bounded above (for C) or satisfies the tail condition (7) (for Z or R). Then there

exists k large enough, and tk as given by (3), such that the BACKMET algorithm succeeds

in ensuring that limn→∞
1
n

∑n
i=1 P (Xi ∈ A) = π(A) for all A. [See also the remarks following

Theorem 1.]

22



11. Summary.

We summarise our results as follows.

Our goal was to find an algorithm which uses the “back” button to achieve a prescribed

limiting distribution π(·), when given Markov chain transition probabilities P (x, ·), while

using as little unobserved information as possible.

To accomplish this, we introduced the BACKMET algorithm. It requires a single global

function tk, but then only evaluates this function at previously observed states. We proved

(Theorem 1) that this algorithm achieves the limiting distribution π(·) whenever the non-

negativity condition (C1) holds.

We proved (Theorem 6) that condition (C1) always holds for finite state spaces, provided

only that the target distribution π(·) is everywhere-positive.

We then considered the case where the Markov chain is a random walk (corresponding

to convolution of densities), and proved (Theorem 11(b); Theorem 12) that more generally,

condition (C1) always holds for random walks on compact spaces such as the circle group C,

provided only that the target distribution π(·) has density which is bounded away from 0

and also bounded above.

We also proved (Theorem 11(c),(d); Theorem 12) that condition (C1) always holds for

random walks on unbounded spaces such as R and Z, provided the target density is bounded

away from 0 on all compact sets, and also the tail condition (7) is satisfied (so that, roughly,

the target density tails must be at least as heavy as the tails of the random walk jumps).

On the other hand, we have also provided (Theorems 7 through 10) quite a number of

conditions which are necessary for the convolution equation to be solvable. This shows that,

in general, for a given k and π(·) and p, the convolution equation will often not be solvable.

We feel that our results, taken together, give a fairly complete picture of when the BACK-

MET algorithm will or will not work. However, a number of questions remain, including

what happens if the target density is not bounded away from 0 (even on compact sets), or

if the state space is infinite and the Markov chain is not a random walk. It is possible that

other algorithms, besides BACKMET, could be used in such cases. Similarly, the BACK-

MET algorithm is somewhat inefficient in that it often does not move, and one can ask

whether it can be made more efficient, and if so, then how.
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