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Abstract

Convergence diagnostics are widely used to determine how many initial “burn-in” iterations
should be discarded from the output of a Markov chain Monte Carlo (MCMC) sampler
in the hope that the remaining samples are representative of the target distribution of
interest. This paper demonstrates that some ways of applying convergence diagnostics
may actually introduce bias into estimation based on the sampler output. To avoid this
possibility, we recommend choosing the number of burn-in iterations r by applying con-
vergence diagnostics to one or more pilot chains, and then basing estimation and inference
on a separate long chain from which the first r iterations have been discarded.

1. Introduction.

Markov chain Monte Carlo (MCMC) methods (Metropolis et al., 1953; Hastings,

1970; Geman and Geman, 1984; Tanner and Wong, 1987; Gelfand and Smith, 1990; Smith

and Roberts, 1993; Neal, 1993) are very commonly used to estimate the expected value

µ = E(g) of a functional g with respect to a complicated probability measure π(·). The

procedure involves setting up a Markov chain P (·, ·) having stationary distribution π(·),

running this chain on a computer to obtain output X0, X1, . . . , Xn, and then using this

sample to estimate µ. The estimator used is typically of the form µ̂ = 1
n−r

n∑
i=r+1

g(Xi),

corresponding to throwing away the first r runs and then averaging the functional over the

remaining n− r runs.

* Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA
52242-1419, U.S.A. Internet: kcowles@stat.uiowa.edu.
** Department of Mathematics and Statistics, Fylde College, Lancaster University, Lan-

caster, LA1 4YF, England. Internet: g.o.roberts@lancaster.ac.uk.
*** Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Internet: jeff@utstat.toronto.edu. Partially supported by NSERC of Canada.

1



However, it is not at all clear how to choose the burn-in time “r”. Theoretical analysis

has sometimes succeeded in providing useful values of r (Meyn and Tweedie, 1994; Rosen-

thal, 1995b, 1996; Cowles and Rosenthal, 1996), but only in certain restricted cases. More

often, convergence diagnostics (Roberts, 1992, 1994; Raftery and Lewis, 1992; Geweke,

1992; Gelman and Rubin, 1992; Geyer, 1992; Cowles and Carlin, 1996; Brooks and Roberts,

1995) are used. That is, the value of r is itself random (i.e. output dependent), and is ob-

tained by a statistical analysis of the initial sample values of the chain. Very roughly,

convergence diagnostics instruct the user to wait until the values of one or several runs of

the Markov chain have “settled down” in some sense.

It is well known (see e.g. Cowles and Carlin, 1996 for a review) that for certain target

distributions (e.g. the “witch’s hat” example, cf. Matthews, 1993), convergence diagnostics

will prematurely claim convergence, i.e. will provide a value of r which is too small and

therefore leads to severely biased estimators µ̂. However, another possible problem with

convergence diagnostics is less well studied. Specifically, the dependence of r on the actual

sample values can lead to further biasing of µ̂. Most dramatically, even if the chain was in

fact started in the stationary distribution π(·), so that for any non-random (i.e. independent

of the output) choice of r the estimator µ̂ would be perfectly unbiased, it is still possible

that µ̂ may have bias for natural choices of r which depend on the actual sample values.

Such “diagnostic biases” are the subject of the present paper.

This paper is organised as follows. In Section 2, we present an over-simplified version of

a convergence diagnostic, and study analytically its performance on certain simple Markov

chains. We restrict ourselves primarily to chains which in fact produce i.i.d. samples from

π(·), i.e. which mix extremely rapidly. For such chains, any non-random choice of r would

result in a perfectly unbiased estimator; however, the convergence diagnostic introduces

biases of its own, which we are able to compute explicitly.

In Section 3, we present numerical simulations of variants of the Geweke (1992) diag-

nostic to two simple Bayesian inference problems. We demonstrate that in certain cases,

significant biases can be caused by the naive use of these diagnostics. Diagnostic bias is

thus an important practical issue.

In Section 4, we investigate the option of choosing r to be non-random, i.e. completely
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independent of the sample values. This avoids the biases of dependent r; however it raises

the question of what r to choose. We concentrate on a simple two-state Markov chain in

which we can explicitly compute the standard error of the estimator µ̂. We show that the

optimal choice of r depends very strongly on the relative sizes of the transition probabilities:

it is sometimes very small, but can be a substantial fraction of n.

Finally, in Section 5, we discuss the practical implications of our results. we argue

that Our results suggest that an effective approach combines diagnostics with non-random

choices of r, by first analysing some initial runs to determine a reasonable choice of r, and

then creating an estimator based on a fresh new run of the Markov chain, which has r

fixed in advance. Such an approach avoids the effects of bias due to the use of convergence

diagnostics, although the increased computational expense of such a procedure needs to

be taken into account when choosing an implementation strategy.

2. Analytic study of biases from simple diagnostics.

In this section, we consider an over-simplified convergence diagnostic, applied to i.i.d.

chains. For this simple case, we are able to analytically compute the biases involved.

Specifically, suppose that X0, X1, X2, . . . are the output of a Markov chain, and that

in fact the Xn are independent and each distributed according to π(·) (so that the true

burn-in time for the chain is 0).

Suppose the convergence is diagnosed by way of batch means. Specifically, suppose

we choose a fixed positive integer m and a fixed ε > 0. We then compute the quantities

Am,i = 1
m

m(i+1)∑
t=mi+1

Xt, for i = 0, 1, 2, . . ., and let i∗ be the smallest value of i such that

|Am,i∗ − Am,i∗−1| < ε. We then take our estimator to be µ̂ = 1
m

m(i∗+1)∑
t=mi∗+1

g(Xt). In words,

we assess “convergence” as the first time that two consecutive batches (each of length m)

give the same mean to within a tolerance of ε; we then use the most recent m sample

values to estimate µ.

We show that even in this simple case, biases are introduced through the use of this

sampler. Indeed, suppose the law of 1
m

m∑
t=1

Xt has density f with respect to Lebesgue

measure. Assume that f is piecewise continuous. Then, as ε ↘ 0, it is easily seen that the
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law of µ̂ will converge weakly to the distribution having density proportional to f2. That

is, for small ε > 0, the probability of having two independent batch means both very close

to a particular value is approximately proportional to the square of having just one batch

mean close to that value.

This result can be demonstrated formally by making the following argument rigorous.

Given that the Markov chain is currently at state x, by piece-wise continuity of f , for

almost all x, f is approximatly constant on a small enough interval (x − ε, x + ε), so that

the probability of obtaining a value less than ε from x is approximately 2εf(x). Therefore,

given that the probability of being at x in the first place is proportional to f(x), the

probability of stopping at x is approximately proportional to 2εf2.

So, the very act of demanding that two (independent) consecutive batch means be very

close to each other, in fact replaces their probability density by (approximately) its square.

Is this change significant? Well, as m →∞ the distribution of the batch mean will (by the

weak law of large numbers) be close to a point mass at the true mean µ, so squaring the

density will have little impact, at least on the mean of the distribution sampled. However,

for finite values of m this squaring will have a noticeable effect. Moreover, if the bias

is calculated in other ways (for instance total variation distance between the true target

density and the density actually simulated) it is possible as we shall see that the bias does

not decrease at all with sample size

We consider some examples here.

Example 1. Suppose that each Xi has the standard normal distribution N(0, 1). Then

the law of 1
m

m∑
t=1

Xt is the normal distribution N(0, 1/m), so f is the density function for

N(0, 1/m). But then it is easily seen that f2 is proportional to the density function for

N(0, 1/2m). That is, in this case, demanding that two consecutive batch means be very

close to each other in fact means the sampled batch mean will have distribution N(0, 1/2m)

instead of N(0, 1/m). Of course, by symmetry the mean of each of these distributions is 0,

so there is no bias in the mean. However, the variance is off by 1/m. Moreover the error

in total variation distance is constant as a function of m; it does not go to 0 as m →∞.

Example 2. Suppose that each Xi has the gamma distribution Gamma(a, b), with
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density proportional to xa−1e−bx. Then the law of 1
m

m∑
t=1

Xt is the gamma distribution

Gamma(ma,mb). Now, the square of the density of this distribution is proportional to

the density of Gamma(2ma − 1, 2mb). Hence, in this case the diagnostic replaces the

Gamma(ma,mb) distribution by the Gamma(2ma − 1, 2mb) distribution. Among other

things, this leads to a bias in the mean: It replaces the mean ma
mb by the mean 2ma−1

2mb ,

giving a bias of − 1
2mb .

Example 3. Suppose that each Xi has the standard Cauchy distribution, with den-

sity 1
π(1+x2) . Then 1

m

m∑
t=1

Xt again has the standard Cauchy distribution. Hence, in

this case the diagnostic replaces the standard Cauchy distribution by a distribution hav-

ing density 2
π(1+x2)2 , regardless of the choice of m. (Note that here the mean µ is

not defined, so the weak law of large numbers does not apply.) Furthermore, we com-

pute the total variation distance (between the target and the sampled densities) to be
1
2

∞∫
−∞

∣∣∣ 1
π(1+x2) −

2
π(1+x2)2

∣∣∣ dx = 1/π
.= 0.318, again regardless of the choice of m.

We thus see that, in all three of these examples, demanding that two consecutive

batch means be very similar significantly affects the distribution that is actually sampled.

In cases where µ is finite (i.e. the first two examples above), the errors for the mean and

variance decrease to 0 as m →∞, i.e. as the batch size gets large.

We close this section with a number of remarks.

Remarks.

1. We have stated our diagnostic in terms of requiring two consecutive batch means (of

the same Markov chain run) to be similar. However, our results are clearly identical

if we instead imagine running two independent copies of the chain, and taking the

smallest i such that the ith batch mean of the first chain is similar to the ith batch

mean of the second chain. This version is closer in spirit to the multiple independent

chain approach to convergence diagnostics (e.g. Gelman and Rubin, 1992).

2. More generally, we might require that k (instead of just 2) consecutive batch means are

similar. In this case, the density f would be approximately replaced by its kth power,

fk. This makes the resulting errors even worse. For example, for the Gamma(a, b)

example above, this “k equal” diagnostic would replace the Gamma(ma,mb) distri-
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bution by the Gamma(kma− (k− 1), kmb) distribution. Hence, the bias in the mean

would be kma−(k−1)
kmb − ma

mb = − k−1
kmb , which is increasing as a function of k (but is never

more than twice the bias of the k = 2 case).

3. Of course, if the Markov chain is really providing i.i.d. samples, then we can avoid all

diagnostic-related problems by simply using the following batch mean for our estima-

tor, rather than using one of the batch means we actually used to diagnose conver-

gence. However, in a more realistic situation in which the Markov chain only slowly

changes values, this “solution” would not be a solution at all, and the diagnostic

biasing problems would be virtually unchanged.

4. There may be times when we actually want to sample from the distribution with

density proportional to f2 (or to fk), but it is easier (for some reason) to construct

and run a Markov chain having stationary distribution with density f . In that case,

our analysis above suggests that one way to proceed is to use our simple diagnostic

rule to convert a sampler for f into one for f2 (or fk as in Remark 2 above). However,

this is likely not a practical approach in general, since as ε ↘ 0 the waiting time until

“convergence” goes to infinity.

5. For a Markov chain which does not converge immediately to the stationary distri-

bution, there will be some interplay between diagnostic bias as discussed here, and

more traditional convergence bias (i.e. because the chain hasn’t converged yet). It is

even possible in rare cases that these biases will cancel each other out. For example,

consider the Markov chain on the two-point space {1, 2}, with initial probabilities

( 1
2 , 1

2 ), with transition probabilities p12 = 2δ and p21 = δ, and hence with stationary

distribution (1
3 , 2

3 ). For very small values of δ, and with a small batch size m, our

diagnostic would likely claim convergence immediately, and hence the sampled distri-

bution would be ( 1
2 , 1

2 ). (Note that for the multiple-chain diagnostic as in Remark 1

above, the situation is slightly more complicated.) On the other hand, if δ = α/k for

the k equal rule (as in Remark 2 above), then the probability that our sampled point

will be 1 is

e−α 2− e−α

2(1 + e−α − e−2α)
;

hence, for an appropriate choice of α this can be made equal to 2
3 , as desired. Thus,
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in this example, it is indeed possible for the two types of bias (diagnostic and conver-

gence) to cancel each other out.

6. On the other hand, it is not possible in general for the diagnostic bias to cancel out

from every choice of initial state. To see this, consider the following simple example

together with the “two equal” stopping rule. Let K(·, ·) be the transition probabilities

for a discrete state space Markov chain. Suppose that K is irreducible and aperiodic

with stationary distribution f . Also let p(x, y) denote the probability that starting at

x our terminal value (ie the first repeated value) is y. Suppose we assume that X0 has

the stationary distribution f (so as to eliminate the effect of the convergence bias).

Now if we want the bias to be non-existent, we will also require that the probability

of terminating in the state y should be f(y). Therefore f solves

f(x) =
∑

y

f(y)p(y, x)

also. That is, p becomes a transition matrix with stationary distribution f . However

because of the particular construction of the stopping time, for y 6= x,

p(y, x) =
∑

K(y, z)p(z, x)−K(y, y)p(y, x)

whereas

p(x, x) =
∑

K(y, z)p(z, x) + (1− p(x, x))K(x, x) .

Summing these two equations over y gives

∑
y

f(y)K(y, y)P (y, x) = f(x)K(x, x)

so that by uniqueness of the invariant measure f for p (p is irreducible and strongly

aperiodic by inspection) f(y)K(y, y) must be a constant multiple of f and so K(y, y)

is necessarily constant. To summarise, it is impossible for the bias to be completely

removed unless K(y, y) is constant, and it is easy to check that under this condition,

the “k equal” stopping rule introduces no bias.

7. If the bias is measured in terms of the χ2 distance, it has a natural interpretation in

terms of the coefficient of variation of the random variable f(X). Specifically, recall
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the χ2 distance with respect to the density f of two densities g and h:

‖g − h‖ = Ef

[(
g(X)
f(X)

− h(X)
f(X)

)2
]

.

Then a simple calculation yields that

‖f − Cf2‖ = (cvf (f(X)))2 ,

where C is chosen so that Cf2 is a density, and where cv(Y ) is the coefficient of

variation of a non-negative random variable: cv(Y ) = Var(Y )1/2/E(Y ).

3. Simulation study of biases from realistic diagnostics.

To investigate whether bias may be introduced by convergence diagnostics that are

used in common practice, we performed a simulation study of two variants of the conver-

gence diagnostic proposed by Geweke (1992). One of these variants is built into the BUGS

(“Bayesian inference Using Gibbs Sampling”) software package (Spiegelhalter, Thomas,

Best and Gilks, 1995), and another is included in CODA (Best, Cowles, and Vines, 1995),

a suite of Splus routines distributed with BUGS that performs convergence diagnosis and

output analysis on Gibbs sampler output.

To apply Geweke’s diagnostic, for each individual parameter of interest, one computes

the sample mean x̄early of a sequence of iterates from the beginning of the MCMC chain (he

suggests the first 10%) and the sample mean x̄late from a longer sequence at the end of the

chain (he suggests the last 50% of the chain). If many iterations separate the “early” and

“late” segments of the chain, then x̄early and x̄late should be approximately independent,

and

Z =
x̄early − x̄late√

Var(x̄early) + Var(x̄late)

should have approximately a standard normal distribution. Geweke suggests that if |Z| >

1.96, iterates from the “early” segment were not yet drawn from the target distribution

and should be discarded. He recommends using time-series methods based on spectral

densities to compute Var(x̄early) and Var(x̄late).

Geweke’s diagnostic with this method of variance estimation is included in CODA,

with user-modifiable default values of .1 for the proportion of iterates in the “early” segment
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and .5 for the proportion “late.” The “diag” command in BUGS invokes a variant of the

Geweke diagnostic that uses the less computationally-intensive “batch means” method of

variance estimation. The “diag” command assigns the first 25% of iterates to the “early”

segment and the last 50% to the “late” segment. The |Z| statistic is then computed as

above.

For our simulation study, we used two simple two-parameter models for which com-

puting the true posterior joint and marginal distributions is straightforward; thus estimates

from MCMC runs could be compared to the “truth.” The first is the normal mean model

with likelihood f(x) = N(µ, σ2) and noninformative prior π(µ, σ2) ∝ 1
σ2 , which we fit to

the data on observed breaking strength of 20 samples of yarn given in Box and Tiao (1973),

Table 2.2.1.

We ran 300 parallel Gibbs samplers, all started in stationarity (i.e. initial values were

random draws from the true joint posterior distribution) and run for 1000 iterations. We

then applied the Geweke diagnostic with both variance-estimation methods (designated

“Batch” and “Spectral” in the tables) and two choices of proportion of iterates in the

“early” segment (.1 and .25) to the output from each sampler for each parameter in the

following sequential manner. [This type of procedure is often used in applied practice,

especially when samplers are run in one software package (e.g. BUGS) and convergence is

assessed in another (e.g. CODA), so that it is easy to remove burn-in iterations but less

convenient to extend the length of the chain.]

If the value of the |Z| statistic was greater than 1.96 for either parameter, the first

100 (or 250 when the second definition of “early” was being used) iterates were discarded

for all parameters and the diagnostic was reapplied to the remaining portion of the chain.

This process was continued until either the |Z| statistic was ≤ 1.96 for both parameters

or the next discarding would have resulted in fewer than 250 iterates being retained (in

which case the sampler run was deemed to have failed to converge and no statistics were

stored).

For each parameter, the first section of Table 1 presents the analytically computed

posterior mean and width of the 95% HPD region. The next section shows the mean

across all 300 chains of the sample mean, the mean squared error, and the width of the
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interval between the .025 and .975 quantiles for each parameter. The “t” statistics are

for univariate tests of the difference between the true value and the corresponding value

estimated from the samplers.

Because the samplers were started in stationarity and mixing is rapid for this model

(i.e., autocorrelations within the sampler output for each parameter, as well as cross-

correlations between the parameters, are negligible), no burn-in iterations should have

been discarded. However, application of the four versions of the diagnostic resulted in

discarding initial iterations from 41 to 49 of the 300 chains. The section of Table 1 for

each version of the diagnostic presents the means, MSEs, interval widths, and number of

iterations retained averaged over only those chains for which some initial iterations were

discarded. There is no evidence of systematic upward or downward bias in the estimates

of the means for either parameter. However, when diagnostics result in discarding iterates,

the estimation of µ is affected in two ways: the mean squared errors are inflated by 33% –

125%, and the widths of the 95% HPD region are slightly (by about 1.2%), but statistically

significantly, underestimated. Even for the “Batch” diagnostic with “proportion early =

.25,” the estimated interval width for µ is smaller than for the full run with no diagnostics;

the t-statistic is less extreme only because of the small number of chains on which it is

based.

To investigate the effect of these diagnostics when Gibbs samplers mix slowly due to

high correlations, we next tried a bivariate normal model with both marginal distributions

N(0,1) and known correlation coefficient ρ = .95. We ran 200 parallel chains, each started

in stationarity and run for 1500 iterations. The four versions of the diagnostic were applied

in the same manner as for the first model. The results are presented in Table 2. Here the

interval widths for both parameters are significantly though slightly underestimated (by

1%) even in the complete chains; for a slow-mixing model like this, many more than

1500 iterations are needed, or a different MCMC algorithm should be used. Discarding

iterations in order to obtain a more homogeneous chain makes the problem worse. When

diagnostics result in discarding iterations, interval widths are underestimated by up to

3.5% and mean squared errors are two to four times as large as when the full run is

used. The “batch” means method appears to introduce less bias in interval widths than
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the “spectral” method, which suggests that the former may be providing more accurate

estimates of Var(x̄early) and Var(x̄late). For each method of variance estimation, the

magnitudes of the mean squared errors and of the bias in estimated interval widths are

greater when the proportion early is .25 than .10.

4. Choosing r = cn, with c non-random.

One way to avoid the bias problems of the previous sections is to consider simply

setting r = cn, where c is some fixed constant, independent of the sample run. In this

case, if the Markov chain is started in stationarity, then the resulting estimator will clearly

be unbiased. Indeed, if starting in stationarity, then it is optimal to take c = 0, i.e. to have

no burn-in period at all. However, if the chain is not started in stationarity, then it may

be desirable to choose some c > 0. We investigate this question here. For concreteness, we

consider the very simple case of a two-state Markov chain. This will allow us to compute

the standard error of µ̂ explicitly.

Consider the two-state Markov chain with X = {0, 1}, and with

P =
(

1− p p
q 1− q

)
.

Furthermore let g be the identity function, i.e. suppose that we are interested in estimating

the mean of the stationary distribution π(·). To fix ideas, imagine that the chain is in fact

started at the point mass δ0(·).

We are interested in the estimator µ̂ = e/(n− r), where e =
n∑

i=r+1

Xi. Specifically, we

shall consider the squared-error loss function

E
(
(µ̂− µ)2

)
=

1
(n− r)2

E
(
(e− π(e))2

)
=

1
(n− r)2

(
E(e2)− 2π(e)E(e) + π(e)2

)
.

We set a = p
q+p , a′ = q

q+p = 1− a, and λ = 1− p− q. We recall (cf. Hoel, Port, and

Stone, 1972, Section 1.2; Rosenthal, 1995c) that

P i =
(

a′ + aλi a− aλi

a′ − a′λi a + a′λi

)
,

and that furthermore π(0) = a′ and π(1) = a. We then have that

π(e) = (n− r)a ,
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that

E(e) =
n∑

i=r+1

P i(0, 1) =
n∑

i=r+1

(a− aλi) = a

[
(n− r)−

(
λr+1 − λn+1

1− λ

)]
,

and

E
[
(µ̂− µ)2

]
=

(
[1− 2π(e)]E(e) + 2s + [π(e)]2

)
/(n− r)2 ,

with

s =
n−1∑

i=r+1

n−i∑
k=1

[a− aλi][a + a′λk] .

Now, the explicit evaluation of this double sum is possible but messy. In particular, if p, q,

and p/q are all O(1), then most of the terms are negligible, and we get the approximation

E
[
(e− π(e))2

]
≈ an(1− c)

[
1 + 2a′

λ

1− λ

]
+ o(n) ,

valid as n → ∞, with r = cn and with c, p, and q fixed. (Note that the O(n2) terms

cancel, as expected.) It then follows that

E
[
(µ− µ̂)2

]
≈ an−1(1− c)−1

[
1 + 2a′

λ

1− λ

]
.

Hence, this squared error is minimised when (1−c) is maximised, i.e. when c is minimised.

Hence, as expected, we should simply take c = 0, i.e. r = 0, i.e. no burn-in period, in this

case.

However, if p and q are both very small (say, O(n−1)), which corresponds more closely

to a typical diagnostic situation on a more complicated state space, then the question gets

more interesting. In this case, terms like λn cannot necessarily be neglected.

We have investigated this question for different values of n, p, and q, using the Math-

ematica computation system (Wolfram, 1988). If p and q are at all large (i.e., if the chain

is mixing quickly), or if q ≥ p (i.e., if the stationary distribution is not so far from the

starting distribution), then the expected squared error is minimised when c is very small,

i.e. it is optimal to let µ̂ average over nearly all of the available sample values. However,

if p and q are very small and q � p (i.e., if the chain is mixing slowly and our starting

distribution is far from the stationary distribution), then this is not necessarily the case.
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For a specific example, suppose that n = 1000, with p = 0.01 and q = 0.001 (so that

the stationary distribution puts mass 1/11 at 0, and mass 10/11 at 1). Then the squared

error, as a function of the burn-in fraction c, is near 0.0257 for c close to 0; dips down

to 0.0186 for c near 0.2; then climbs up steadily to 0.0693 when c = 0.95. Hence, in this

example it is optimal to choose c close to 0.2, i.e. to discard the first 20% of the sample

values.

Keeping n = 1000 fixed, we can vary the values of p and q to see how the optimal

c value changes. If p = 0.1 and q = 0.01 (or, if q = 0.001), then the optimal c value

is very close to 0; convergence is so quick (due to the large value of p) that hardly any

sample values should be discarded. On the other hand, if p = 0.01 and q = 0.0001, then

the optimal c value is near 0.45, i.e. in this case it is optimal to discard the first 45% of

the sample values. For p = 0.001 and q = 0.0001, the optimal c value is very close to 1;

convergence is so slow that later sample values are much more helpful than earlier ones.

To summarise: in the case of slow convergence when starting far from stationary (i.e.

p, q ≤ O(1/n) and q � p), the optimal choice of burn-in fraction c is not close to 0; indeed,

it increases towards 1 as p, q, and q/p all go to 0.

5. Discussion and conclusion.

In this paper, we have considered biases that may result from the stochastic depen-

dence of convergence diagnostics on the actual sample values used for estimating. We have

argued that such dependence can significantly affect the distribution of the sample values

used.

The results of Section 2 indicate that, if the diagnostic makes use of batch means of size

m, then diagnostic biases may indeed occur (and, in simple cases, they can be computed

explicitly). As m →∞ the biasing errors for the mean and variance go to 0, at least when

the diagnostic random variable has finite mean. (However, the total variation distance

errors may not decrease with m.) This suggests that, for our over-simplified diagnostic at

least, it is better to choose a sufficiently large batch size.

The results of Section 3 show that, when certain standard diagnostics are applied

to the output of MCMC samplers, the diagnostic biases can sometimes be significant.
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Geweke’s diagnostic was selected for illustration because of its similarity to the batch

means approach explored analytically in Section 2. Similar results might be expected from

other standard convergence diagnostics that seek to detect an initial transient.

The results of Section 4 suggest one way of avoiding this type of bias, albeit at the

expense of a more computationally expensive implementation strategy. By choosing our

burn-in time non-randomly, the optimal choice of burn-in time turns out to depend heavily

on the nature of the Markov chain and of the starting distribution. In particular, the

farther we start from the stationary distribution, and the more slowly the Markov chain

is mixing, the larger a burn-in time we require. Furthermore, the optimal choice cannot

even be computed without detailed knowledge of the target density which will typically

not be available. Thus, as a result of the investigations of Section 4, the proposed strategy

cannot be strongly endorsed.

There is a way to combine random and non-random burn-in times, which avoids the

biases of diagnostics but also avoids the uncertainty of fixed burn-in times. Specifically,

it is possible to first apply a diagnostic procedure to one or more initial runs of the chain

to estimate a burn-in time r. This diagnostic procedure should include inspection of

the sample paths of quantities of interest and assessment of autocorrelations and cross-

correlations, as well as use of a convergence diagnostic. The choice of r from the initial

run(s) is then fixed and used for a fresh final run on which all estimation and inference

are based. Starting values for the final run must be generated from the same distribution

as was used to start the initial runs. In fact, the same starting values may be used as

long as the random number seed is different for the final run so that the sample paths are

different.

This combined approach achieves the best of both of these alternative approaches,

is simple to implement, and appears to be a sensible procedure in the absence of any

theoretical knowledge about convergence rate of the Markov chain being used.
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Table 1: Normal Means Model

Diagnostics applied to all parameters
300 parallel chains, 1000 iterations each

mu tau
True posterior values
mean 50 0.0546
width 4.0059 0.0688

Full run, no diagnostics applied
mean 50.0001 0.0547
t 0.0282 1.7071
MSE 0.0012 0
width 3.9944 0.0688
t −1.444 −0.436

Batch, proportion early = .1
mean 50.0034 0.0546
t 0.5991 0.2458
MSE 0.0016 0
width 3.9582 0.0682
t −2.8612 −1.5381
Chains with initial iterations discarded: 49
Mean iterations retained: 873
Failures to converge: 0

Batch, proportion early = .25
mean 49.9889 0.0546
t −1.6156 0.3522
MSE 0.0021 0
width 3.9893 0.0685
t −0.7665 −0.7971
Chains with initial iterations discarded: 42
Mean iterations retained: 720
Failures to converge: 0
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Spectral, proportion early = .1
mean 50.0011 0.0546
t 0.1756 −0.1669
MSE 0.0018 0
width 3.9631 0.0683
t −2.3912 −1.3365
Chains with initial iterations discarded: 48
Mean iterations retained: 873
Failures to converge: 0

Spectral, proportion early = .25
mean 49.9993 0.0546
t −0.0884 0.0235
MSE 0.0027 0
width 3.9559 0.0689
t −2.0845 0.2221
Chains with initial iterations discarded: 41
Mean iterations retained: 701
Failures to converge: 1

Table 2: Bivariate Normal, rho = 0.95

Diagnostics applied to all parameters
200 parallel chains, 1500 iterations each

mu1 mu2
True posterior values
mean 0 0
width 3.9199 3.9199

Full run, no diagnostics applied
mean 0.0036 0.0034
t 0.4379 0.4148
MSE 0.0134 0.0135
width 3.8801 3.8761
t −2.528 −2.799

Batch, proportion early = .1
mean 0.0337 0.0321
t 1.2661 1.2014
MSE 0.0259 0.0261
width 3.8903 3.892
t −0.767 −0.6757
Chains with initial iterations discarded: 36
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Mean iterations retained: 1267
Failures to converge: 0

Batch, proportion early = .25
mean 0.0273 0.028
t 0.446 0.4576
MSE 0.0495 0.0494
width 3.828 3.8124
t −1.6536 −1.6729
Chains with initial iterations discarded: 14
Mean iterations retained: 1018
Failures to converge: 0

Spectral, proportion early = .1
mean 0.0106 0.0101
t 0.6462 0.6128
MSE 0.0227 0.0228
width 3.8369 3.8416
t −2.9355 −2.7723
Chains with initial iterations discarded: 85
Mean iterations retained: 1196
Failures to converge: 0

Spectral, proportion early = .25
mean 0.0568 0.0555
t 2.0729 2.0048
MSE 0.0483 0.0491
width 3.7822 3.7849
t −2.8077 −2.6567
Chains with initial iterations discarded: 61
Mean iterations retained: 928
Failures to converge: 5
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