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1. Introduction.

This short paper describes a surprising connection between two previously unrelated

topics: the probability of winning certain gambling games, and the invariance of certain

measures under pointwise multiplication on the circle. The former has been well-studied by

probabilists, notably in the book of Dubins and Savage (1965). The latter is the subject

of an important and well-studied conjecture of H. Furstenberg. But to the best of our

knowledge, the connection between them is new.

We shall show that associated with the gambling games are certain measures (whose

cumulative distribution function values F (x) are equal to the probability of winning the

gambling game when starting with initial fortune x and using the strategy of “Bold Play”).

We shall then show that these measures have interesting properties related to multiplication

invariance; in particular, they give rise to a collection of measures which are invariant

under multiplication by 2, and which have a weak limit which is also invariant under

multiplication by 3. These measures provide some candidates for possible counterexamples

to Furstenberg’s conjecture.

Necessary background about gambling is presented in Section 2. Necessary back-

ground about multiplication-invariant measures is presented in Section 3. The connection

between the two is discussed in Section 4. Some further observations are in Section 5.

* Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Internet: jeff@utstat.toronto.edu. Supported in part by NSERC of Canada.
** Department of Mathematics, Ohio State University, Columbus, OH 43210, U.S.A.

Internet: schwartz@math.ohio-state.edu.

1



2. Gambling Games and Bold Play.

We shall consider gambling games which involve modifying our “fortune” by repeat-

edly making “bets”. The goal of the game is to reach a fortune of 1 (in which case we

win), before we reach a fortune of 0 (in which case we lose).

The rules of the gambling game are as follows. We begin with some initial fortune

between 0 and 1. We also have a biased coin that comes up heads with probability p and

tails with probability 1− p (for some 0 < p < 1). We are further told some fixed positive

number r (which represents the “payoff ratio”).

We then repeatedly make bets as follows. If at some time we have a fortune x, then

we may choose any value y ≤ min{x, (1− x)/r} as our next value to bet. (The choice of

y may depend on the outcomes of previous bets, but not on the outcomes of future bets.)

Given the bet value y, we flip the biased coin. If it comes up heads, we win and add ry to

our fortune; if it comes up tails, we lose and subtract y from our fortune.

The game ends when we either reach a fortune of 1 (in which case we win), or reach

a fortune of 0 (in which case we lose).

It is clear from this description that the probability of winning this game depends

upon the strategy we employ, i.e. on how much we choose to bet for each turn. It was

shown by Dubins and Savage (1965, pp. 90, 101; see also Billingsley, 1995, Theorem 7.3)

that in the subfair case (i.e., when rp < 1 − p), the probability of winning is maximized

when the strategy employed is Bold Play. By Bold Play, we mean the strategy that, given

fortune x ∈ [0, 1], chooses a bet value of min{x, (1 − x)/r} (i.e., that bets the largest

possible amount at each turn).

In the sequel, we shall write F (x) = Fr,p(x) for the probability of winning the gambling

game under the bold strategy, given parameters r and p and initial fortune x.

Remarks.

1. Clearly, in the superfair case (i.e., when rp > 1− p), Bold Play instead minimizes the

probability of winning; this can be seen immediately by considering the game from

the opponent’s point of view. (In the fair case rp = 1 − p, our strategy is irrelevant;

all strategies give us probability x of winning, assuming only that with probability 1
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the game eventually terminates.)

2. To see intuitively why Bold Play is the best strategy in the subfair case, note the

following. If Xn is our fortune at time n, and Bn is the total amount bet up to time

n, then Xn − (pr − (1 − p))Bn is a semi-bounded Martingale. Thus, letting n → ∞,

we see that for strategies which terminate with probability 1,

Px(win) = x + (pr − (1− p))Ex(total amount bet) .

In particular, for subfair games, maximizing the probability of winning is equivalent

to minimizing the expected total bet.

3. Multiplication-Invariant Measures and Furstenberg’s Conjecture.

We let τn : [0, 1] → [0, 1] denote the function τn(x) = nx mod 1; and for a Borel

measure µ on [0,1), we let µ ◦ τn be defined by µ ◦ τn(a, b] =
∫

1(a,b](τn(x))dµ(x).

These functions are related to a conjecture of H. Furstenberg. Say that µ is “×n

invariant” if µ ◦ τn = µ, i.e. if the measure is unchanged upon multiplying the circle by

a factor of n. Furstenberg conjectured that any probability measure on [0, 1) which is

simultaneously both ×2 and ×3 invariant must be a convex combination of Lebesgue mea-

sure and a purely atomic measure. This conjecture has received a great deal of attention

(Furstenberg, 1967; Lyons, 1988; Rudolph, 1990; Feldman and Smordinsky, 1992; Feldman,

1993). It particular, it has been shown that under additional hypotheses the conjecture is

true. However the original conjecture remains unsolved.

In what follows, we shall use the gambling games to construct a measure which is simul-

taneously both ×2 and ×3 invariant, but which is not obviously a combination of Lebesgue

and atomic measures. If it could be shown definitely to not be a convex combination of

Lebesgue measure and an atomic measure, then that would provide a counterexample to

Furstenberg’s conjecture. (Unfortunately we are unable to show this.)
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4. Gambling Measures and ×2× 3 Invariance.

We recall that F (x) = Fr,p(x) stands for the probability of winning the gambling

game under the bold strategy, with parameters r and p and initial fortune x. We note

that F (0) = 0, that F (1) = 1, and that F is non-decreasing on [0, 1]. Furthermore, it is

straightforward to show that F is a continuous function. Thus, we can define probability

measures µ = µr,p by the formula µ(a, b] = F (b)− F (a). It is these “gambling measures”

which will provide the connection to Furstenberg’s conjecture. A key computation is

Proposition 1. For the case where r = n is a positive integer, we have that

µn,p ◦ τn+1 = p µn,p + (1− p)(µn,p ◦ τn) .

In words, composing the measure µn,p with the function τn+1 results in a convex combi-

nation of the measure itself, and the measure composed with τn.

Proof. Set F (x) = µn,p[0, x]. Elementary arguments show that the proposition is

equivalent to the following equation involving F :

n∑
j=0

(
F (

x + j

n + 1
)− F (

j

n + 1
)
)

= pF (x) + (1− p)
n−1∑
j=0

(
F (

x + j

n
)− F (

j

n
)
)

(†)

Now, given a current fortune x there are two possibilities arising from the alternatives in

Bold Play. We see by inspection that if x < 1
n+1 , then F (x) = pF ((n + 1)x). Similarly, if

x > 1
n+1 , then F (x) = p + (1− p)F (x− 1−x

n ) = p + (1− p)F ( (n+1)x−1
n ).

These observations imply that for any x ∈ [0, 1], we have F ( x
n+1 ) = pF (x) and

F ( x+j
n+1 ) − F ( j

n+1 ) = (1 − p)(F (x+j−1
n ) − F ( j−1

n )) for j = 1, 2, ...n. Summing these equa-

tions over j establishes (†), and hence also establishes the proposition.

In particular, applying this proposition with n = 1, we see that µ1,p ◦ τ2 = µ1,p, i.e.

µ1,p is ×2 invariant (for any 0 < p < 1). Unfortunately the measures µ1,p are not also ×3

invariant (unless p = 1/2, in which case we obtain Lebesgue measure).

Applying the proposition with n = 2, we see that µ2,p ◦ τ3 = pµ2,p + (1− p)(µ2,p ◦ τ2).

It follows that if µ2,p were ×2 invariant, then it would also be ×3 invariant (and hence
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a candidate for a counterexample to Furstenberg’s conjecture). Unfortunately this is not

the case; for example it is straightforward to show that µ2,1/2[0, 1
6 ] 6= (µ2,1/2 ◦ τ2)[0, 1

6 ].

However, note that since (ν ◦ τm) ◦ τn = (ν ◦ τn) ◦ τm, we have that ν ◦ τ3 = p ν +

(1 − p) (ν ◦ τ2), whenever ν = µ2,p ◦ τk for any positive integer k. It follows immediately

that this equation also holds when ν is any weak* limit of any convex combination of these

measures. This suggests that we try to find such a measure which is also ×2 invariant.

For concreteness we shall focus on the case p = 1/2.

Lemma 2. We have that µ2, 1
2
◦ τ3m = 1

2m

∑m
j=0

(
m
j

)
(µ2, 1

2
◦ τ2j )

Proof. The previous proposition proves the case where m = 1. As an inductive hy-

pothesis assume the formula is established for all m ≤ M . For convenience denote by µ

the measure µ2, 1
2
. Using the inductive hypothesis and applying the case m = 1 to the

measures µ ◦ τ2j ◦ τ3 = µ ◦ τ3 ◦ τ2j , we compute as follows:

µ ◦ τ3M+1 =
1

2M

M∑
j=0

(
M

j

)
1
2

((µ ◦ τ2k) + (µ ◦ τ2k+1))

=
1

2M+1

µ + (µ ◦ τ2M+1) +
M∑

j=1

[(
M

j

)
+

(
M

j − 1

)]
(µ ◦ τ2j )


=

1
2M+1

M+1∑
j=0

(
M + 1

j

)
(µ ◦ τ2j ),

since
(
M
j

)
+

(
M

j−1

)
=

(
M+1

j

)
. Thus the formula holds for m = M + 1 and the lemma is

proved.

Proposition 3. Fix r = 2 and p = 1
2 . Then limm→∞ ‖µ2,1/2 ◦ τ3m − µ2,1/2 ◦ τ2·3m‖ = 0,

where ‖ . . . ‖ denotes total variation distance. (That is, the measures µ2,1/2 ◦ τ3m are

asymptotically ×2 invariant, as m →∞.)
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Proof. Using the previous lemma, noting that µ2,1/2 ◦ τ2·3m = (µ2,1/2 ◦ τ3m) ◦ τ2, and

recalling that ‖ . . . ‖ is a metric, we see that

‖µ2,1/2 ◦ τ3m − µ2,1/2 ◦ τ2·3m‖ ≤ 1
2m

m∑
j=0

(
m

j

)
‖µ2,1/2 ◦ τ2j − µ2,1/2 ◦ τ2j+1‖

≤ 2
2m

+
1

2m

m∑
j=1

∣∣∣∣∣
(

m

j

)
−

(
m

j − 1

)∣∣∣∣∣
=

2
2m

+
1

2m

m∑
j=1

1
m + 1

(
m + 1

j

)
|m + 1− 2j|

=
1

2m

m+1∑
j=0

(
m + 1

j

) ∣∣∣∣1− 2j

m + 1

∣∣∣∣ .

Now, this expression is simply twice the expected value of |1− 2X
m+1 |, where X is a random

variable having distribution Binomial(m + 1, 1/2). But then E(X) = 1
2 (m + 1), whence

E
(
1− 2X

m+1

)
= 0. Furthermore 1 − 2X

m+1 is bounded, and may be represented as the

average of m + 1 different mean-0 i.i.d. terms, viz.

1− 2X

m + 1
=

1
m + 1

m+1∑
k=1

(1− 2Xk) ,

with {Xk} i.i.d. ∼ Bernoulli(1/2). Hence, by the strong law of large numbers (see e.g.

Billingsley, 1995, Theorem 22.1) we have 1 − 2X
m+1 → 0 as m → ∞. Then by the

bounded convergence theorem (see e.g. Billingsley, 1995, Theorem 16.5), we have that

E
∣∣∣1− 2X

m+1

∣∣∣ → 0 as m → ∞. Thus our upper bound converges to 0, and the proposition

is shown.

Now, the set of all probability measures are compact under the weak* topology. Hence,

there exists at least one weak* limit point of the measures {µ2,1/2 ◦ τ3m}. If ν is such a

measure, then we necessarily have that ν ◦ τ3 = p ν + (1− p) (ν ◦ τ2). Furthermore, by the

above proposition, we also have that ν ◦ τ2 = ν, i.e. that ν is ×2 invariant. We thus obtain
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Theorem 4. The exists at least one weak* limit point of the set of measures {µ2,1/2 ◦

τ3m}∞m=1; and all such limits are simultaneously both ×2 and ×3 invariant. Furthermore,

if one such limit is not a convex combination of Lebesgue measure and a purely atomic

measure, then this measure provides a counterexample to Furstenberg’s conjecture.

Unfortunately, we are unable to establish the existence of such a counterexample. We

believe that any such weak* limit would be non-atomic; however it is quite possible that

all such weak* limits are simply Lebesgue measure on [0, 1].

5. Further Properties of the Measures µr,p.

The measures µr,p are interesting in their own right. We make a few further observa-

tions about them here.

We shall have occasion to consider Bold Play on the interval [a, b] (where 0 ≤ a < b ≤

1). By this we mean the betting strategy that, given fortune x ∈ [a, b], chooses a bet value

of min{x− a, b−x
r }; and then repeats this process until either the fortune a or the fortune

b is achieved. For x ∈ [a, b], let F[a,b](x) denote the probability of increasing our fortune

from x to b, under Bold Play on the interval [a, b].

We observe that if x−a
b−a = x′−a′

b′−a′ , then clearly F[a′,b′](x′) = F[a,b](x). We shall use this

in our calculations below.

We next observe that if x ∈ [0, 1
r+1 ], then ordinary Bold Play (i.e., on [0, 1]) is equiva-

lent (in the sense of giving the same overall probability of winning the gambling game) to

Bold Play on [0, 1
r+1 ] followed by Bold Play on [0, 1]. This fact is well known (cf. Dubins

and Savage, 1965), and in any case follows from the observation that for 0 ≤ x ≤ 1
r+1 , we

have F[0,1](x) = pF[0,1]((r + 1)x) = pF[0, 1
r+1 ](x). Similarly, if x ∈ [ 1

r+1 , 1] then ordinary

Bold Play is equivalent to Bold Play on [ 1
r+1 , 1] followed by Bold Play on [0, 1]; this follows

simply by considering the game from the opponent’s point of view.

We can inductively apply this observation, as follows. Let S0 and S1 be two operators

which act on intervals, by keeping the first 1
r or the last r

r+1 of the interval, respectively.

That is,

S0[a, b) = [a, a +
b− a

r + 1
) ; S1[a, b) = [a +

b− a

r + 1
, b) .

By induction, we have the following.
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Proposition 5. Let I be an interval of the form

I = Sa1Sa2 . . . San [0, 1) ,

for some n ∈ N and some a1, a2, . . . , an ∈ {0, 1}. Let x ∈ I. Then the strategy of using

Bold Play on I, followed by Bold Play on [0, 1], is equivalent to the strategy of ordinary

Bold Play on [0, 1].

Remark. By applying the lemma repeatedly, we see that it is also equivalent to (say)

apply Bold Play first on I, then on Sa1Sa2Sa3 [0, 1), then on Sa1 [0, 1), and then on [0, 1].

Indeed, any nested sequence of intervals of the form Sa1 . . . Sak
[0, 1) may be used.

The above lemma suggests writing numbers x ∈ [0, 1) in terms of their r-ary expansion,

by which we mean the (unique) sequence {ai}∞i=1, with ai ∈ {0, 1} for each i, such that

x ∈ Sa1Sa2 . . . San
[0, 1) for all n ∈ N. (For x = 1, we instead assign the special r-ary

expansion a1 = a2 = . . . = 1.) Equivalently, this means that

x =
∞∑

i=1

1
r + 1

ai

i−1∏
j=1

(
1

r + 1
+

r − 1
r + 1

aj

)

(where we take
0∏

j=1

(. . .) = 1 if it occurs).

Such expansions are related to betting using Bold Play. Specifically, we have the

following proposition (whose proof we omit).

Proposition 6. Let x ∈ [0, 1] have r-ary expansion {ai}∞i=1, as defined above. Let

Fr,p(x) denote the probability of winning the gambling game with parameters r and p,

with initial fortune x. Then

Fr,p(x) =
∞∑

i=1

p ai

i−1∏
j=1

(p + (1− 2p)aj) .

That is, we can compute Fr,p(x) by writing x in its r-ary expansion, and then evaluating

the resulting sequence as a
(

1−p
p

)
-ary expansion.
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Remark. We note that 1−p
p = r precisely for fair games, in which case Fr,p(x) = x (as

it must).

This proposition is related to (and, indeed, is implied by) another way of constructing

the measures µr,p. Define an operator Tr,p, acting on measures λ on [0, 1], by

(Tr,pλ)[0, x] =


p λ[0, (r + 1)x] , x <

1
r + 1

;

p + (1− p)λ[0, x− 1− x

r
] , x ≥ 1

r + 1
.

Then we have the following (we again omit the proof).

Proposition 7. The measure µr,p is invariant under Tr,p, i.e. Tr,p µr,p = µr,p. Further-

more, as n → ∞, we have for any non-atomic measure λ that Tn
r,pλ → µr,p, in the sense

that

lim
n→∞

sup
0≤a<b≤1

∣∣Tn
r,pλ(a, b] − µr,p(a, b]

∣∣ = 0 ,

i.e. the corresponding cumulative distribution functions converge uniformly. (This is

stronger than weak* convergence, but weaker than convergence in total variation distance.)

In light of this proposition, the measures µr,p may be seen as special cases of measures

whose Fourier transforms satisfy curious functional equations. These measures are obtained

by partitioning the interval into finitely many pieces according to some fixed procedure

while performing some fixed action on each piece (like our transformation Tr,p above); and

then continuing inductively on each piece. It is easily seen that by this method, for any

{αi} and {ni} with αi ≥ 0 and ni ∈ N, satisfying
∑

αi = 1 and
∑

ni ≤ n, one can

construct measures µ whose Fourier transforms µ̂ satisfy

∑
i

αiµ̂(ni) = µ̂(n) .

Some related matters are considered by de Rham (1956–57).
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