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We thank the two discussants for their interesting and thought-provoking comments.

Here, we present a brief reply, organised by topic.

1. Dirichlet process priors.

Ishwaran has presented an analysis of a model (the Rasch model) using MCMC with

Dirichlet process priors, following the approach of Escobar (1994) and MacEachern (1994).

The analysis is a good example of how applied statisticians should approach such problems.

Ishwaran is well informed about available theoretical results, and makes use of them where

possible. At the same time, he is aware of the current limitations of such results, and is

not afraid to use ad-hoc techniques and intuitive reasoning where necessary. We wish that

more applied users would strike this same balance.

Ishwaran concludes his analysis by discussing how to monitor the convergence of his

MCMC algorithm. We certainly agree with him when he says “The ideal solution would

have been to derive quantitative rates of convergence”. Coincidentally, we have recently

begun working (Petrone, Roberts, and Rosenthal, 1997) on convergence results for models

similar to that which he considers. However, this work has encountered many obstacles,

and currently available results are not good enough to be of practical value. This highlights

the need for a pragmatic approach to implementation, as both discussants have argued.

Because of these difficulties, it is perfectly reasonable that Ishwaran instead uses conver-

gence diagnostics, following Gelman and Rubin (1992), a popular approach (see Brooks
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and Roberts (1996) for a detailed discussion of this method, and Brooks and Gelman

(1996) for a useful multivariate extension). While such diagnostics are always fraught with

risks, we feel that Ishwaran has done a good job of implementing them.

2. Central limit theorems.

Madras discusses the relation between geometric ergodicity and central limit theorems.

It is indeed true, as he says, that while geometric ergodicity implies the existence of central

limit theorems, the converse is not true, and “It is possible to have chains which are not

geometrically ergodic but in which the central limit theorem does hold.” Such matters are

considered in some detail in Roberts (1996). Note however that in our example in Section

4, practical problems are caused not only by the fact that the limit of the scaled variances

is finite. The heavily skewed nature of the distribution of the sample path mean makes

detection of poor convergence particularly difficult, since most sample paths give adequate

looking autocorrelation plots (see our Figure 2).

As we say in the paper, we still feel that proving geometric ergodicity is by far the

easiest and most common method of establishing central limit theorems. Furthermore

geometric ergodicity is an important property in its own right. It is indeed possible, as

Madras notes, that non-geometric chains could still be “pretty efficient” (in some sense) for

some situations. However, we do not know of many cases where this has been established.

3. Periodicity.

We completely agree with Madras’s observation that periodicity (or near-periodicity)

is not a major concern in practice, since a user will typically average a number of ob-

servations so that periodic behaviour will cancel out. Moreover, certain algorithms are

provably spectrally positive, such as the random scan Gibbs sampler, ruling out any kind

of periodicity. However, from the point of view of theoretical analysis of convergence rates,

periodicity has been a major inconvenience. A number of authors (e.g. Meyn and Tweedie,

1994; Diaconis and Stroock, 1993) have developed complicated analyses to control periodic

behaviour, while others (e.g. Jerrum and Sinclair, 1989; Rosenthal, 1996b) have used tricks

such as insisting that the chain have fixed positive probability of not moving at each step.
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Essentially, the difficulty with direct theoretical analysis was that to prove the chain was

converging to stationarity, it was necessary to couple the chain with a second, stationary

chain, which happens to be at the same place at the same time.

This difficulty was removed by applying the notion of shift-coupling in Roberts and

Rosenthal (1994). This allowed the two chains to be at the same place at different times, a

much easier requirement. This led to substantially improved bounds, when considering the

average distribution 1
n

∑n
i=1 L(Xi). We felt that with this analysis we were, in some sense,

getting to the heart of the matter by avoiding concerns about near-periodic behaviour, in

exchange for averaging over many different observations.

4. Convergence diagnostics.

Both Ishwaran and Madras place great emphasis on the use of empirical convergence

diagnostics to assess convergence of MCMC algorithms. They both argue (and we agree)

that rigorous quantitative bounds are too difficult to be used routinely, so that diagnostics

may be all that are left. Nevertheless, they both recognise the risks inherent in such an

approach, and in particular the risk of prematurely diagnosing convergence of the chain.

Madras urges caution in this regard, and provides some helpful tips (don’t cut corners,

estimate autocorrelations, try different starting points, etc.) to avoid making unfortunate

mistakes. However, we do note that such procedures are not sufficient to avoid premature

diagnosis of convergence in all cases. For example, the “witch’s hat example” discussed in

our paper, simple though it may be, can fool most convergence diagnostics.

On the other hand, Madras also urges us to “Understand your simulation, and try to

guess where it might have problems”. Perhaps this is the most important advice to give:

Don’t rely on any routine diagnostics, rather try somehow (through theoretical analysis,

through empirical observation, or through intuitive reasoning) to figure out exactly what

your algorithm is doing and how it might fail to converge quickly.
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5. Communication.

Both Madras and Ishwaran urge greater communication – between statisticians and

physicists, and between theoretical and applied users of MCMC algorithms. We completely

support this goal. The more we can learn from each other, the more progress we can make,

and the less time we will waste re-discovering what is already known. In this regard, we

commend Madras in particular for his excellent work at moving between these disparate

groups.

We further urge all researchers to make efforts to learn about others’ ideas, and to

present their own ideas in such a way that others can easily understand them. This

is particularly important since one of the major communication problems between the

physics and statistics literatures is one of language. For instance, it is unfortunate that the

phrase “Gibbs sampler” has caught on in the statistics literature when the term “Glauber

dynamics” was already firmly established in physics. Such anomalies only exacerbate

attempts to bridge these two groups.

We also commend the editors of the Canadian Journal of Statistics for inviting this

discussed paper – the first of many we hope – to help improve communication among

different research communities.
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