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Abstract

The main contribution of this paper is the development of a new decision tree algorithm.

The proposed approach allows users to guide the algorithm through the data partitioning

process. We believe this feature has many applications but in this paper we demonstrate

how to utilize this algorithm to analyse data sets containing missing values. We tested our

algorithm against simulated data sets with various missing data structures and a real data

set. The results demonstrate that this new classification procedure efficiently handles miss-

ing values and produces results that are slightly more accurate and more interpretable than

most common procedures without any imputations or pre-processing.
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1 Introduction

Machine learning algorithms are used in many exciting real data applications, but may have

problems handling predictors with missing values. Imputation techniques were designed to

handle data with missing value under the missing completely at random (MCAR) assumption.

Since this is a restrictive assumption we propose a solution to missing values that uses the

tree structure of Classification and Regression Trees (CART) to deal in an intuitive manner with

observations that are missing in patterns which are not completely at random.

Our proposed new tree construction procedure was inspired by a data set where the missing

pattern of one subset of predictors could be perfectly explained by another subset (see Section

4.1). A typical decision tree is an algorithm that partitions the predictor space based upon a

predictor value, splitting it into two subspaces and repeats this process recursively.

Our proposed algorithm is different as it allows the researcher to impose a structure on

the variables available for the partitioning process. By doing so, we construct Branch-Exclusive

Splits Trees (BEST). When a predictor Xj contains missing values, we can use other predictors to

identify the region where the predictor Xj contains no missing value. Therefore we can use the

proposed algorithm to consider splitting on a predictor only when it contains no missing value

based on previous partitioning. BEST can be easily adapted to any splitting rule and any forest

forming procedure [3, 4, 10]. BEST also has other applications; it can be used by researchers that

would like to utilize some knowledge they have on the data generating distribution in order to

guide the algorithm in selecting a more accurate and more interpretable classifier.

In this article we will briefly discuss the classification problem and its notation and we will

explain how classification trees solve that problem. Afterwards, we will introduce the proposed

algorithm and some motivating examples before explaining in detail how the algorithm func-

tions. We will then do a quick review of the literature to position our algorithm within the

current literature. Finally, some tests will be performed on simulated data sets and on the real

data that inspired this new algorithm.
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2 The classification problem

In a typical supervised statistical learning problem we are interested in understanding the re-

lationship between a response variable Y and an associated m-dimensional predictor vector

X = (X1, ...,Xm). When the response variable is categorical and takes k different possible val-

ues, this problem is defined as a k -class classification problem. In that set up, an interesting

challenge is to use a data set S = {(yi , xi ,1, ..., xi ,m); i = 1, ..., n} in order to construct a clas-
sifier h. Most of the time, it is assumed that the observations within our data set were drawn

independently from the same unknown and true distribution D , i.e. X × Y ∼ D . A classifier

is built to emit a class prediction for any new data point X that belongs in the predictor space

X = X1 × ... × Xm . Therefore a classifier divides the predictor space X into k disjoint regions

R1, ...Rk , one per class, such that ∪k
q=1Rq = X, i.e. h(x) = ∑k

q=1 q1{x ∈ Rq }.

2.1 Classification and Regression Trees

A classification tree [5] is an algorithm that forms regions in the predictor space by recursively

dividing it, more precisely, this procedure performs recursive binary partitioning. Beginning with

the entire predictor space, the algorithm selects the variable to split upon and the location of

the split that minimize some impurity measure. Then the resulting two regions are each split

into two more regions until some stopping rule is applied. The classifier will label each region

with one of the k possible classes.

The traditional labelling process goes as follows; let pr q = 1
nr

∑
xi ∈R r

1{yi = q }, the pro-
portion of the class q in the region r where nr is the number of observations contained in

region r . Then, the label of the region r is the majority class in that region, i.e. if x ∈ R r ,

hS (x) = argmaxq (pr q ). For regression trees, the output mean within a leaf region is used

as prediction for observations that belong in that region. The impurity measure function for

region r is defined as Qr and can take many forms such as the Gini index, the deviance or

the misclassification error. For regression trees, the mean squared error is one possible region

impurity measure.

When splitting a region Rp into two new regions R r and R t the algorithm will compute the

total impurity of the new regions ; nrQr + n tQ t and will pick the split variable Xj and split
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location s that minimizes that total impurity. If the predictor Xj is continuous, the possible

splits are of the form Xj ≤ s and Xj > s which usually results in np − 1 possible splits. For a

categorical predictor having c possible values, we usually consider all of the 2c−1 − 1 possible

partitions.

The partitioning continues until a stopping rule is applied. In some cases, the algorithm

stops whenever every terminal node of the tree contains less than β observations, in other

cases it stops when all observations within a region belong to the same class. To prevent over-

fitting, a deep tree is built and then the tree can be pruned. Tree-pruning is a cost-complexity

procedure that relies on considering that each leaf, region, is associated with a cost α . The

procedure begins by collapsing leaves that produce the smallest increase in total impurity and

this technique will collapse leaves as long as the increase in impurity is less than the cost α of

the additional leaf. The α parameter can be determined by cross-validation or with the use of

a validation set.

3 Missing values

Let us now introduce the definition of missing data we are using in this article. As described

in the previous section, a standard assumption in data analysis is that all observations are

distributed according to the true data generation distribution D . We could think of the miss-

ingness itself as a random variable M also of dimension m that is distributed according to

some missingness generating distribution which is a part of D , i.e. X × M × Y ∼ D . Formally,

if M represents the missingness of the vector of predictors X it means that M j = 1 if Xj is

observed and M j = 0 if Xj is missing.

Three different relationships between M and X were defined by Rubin [20] and by Little

and Rubin [16]. Seaman [22] later untangled the many definition inconsistencies of these re-

lationships. In this article, we will rely on simple definitions for an easy understanding of the

structure we will consider. First, missing completely at random (MCAR) is the simplest structure

we consider: M ⊥ X. Here, we consider the data is MCAR if the set of missing patterns M is

independent of the set of predictors.

Missing at random (MAR) is much more complicated; it essentially means that the missing-

ness M is independent of missing observations but can still depend on observed predictors.
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More rigorously, we define Xo = {xi j ∈ S |xi j is observed} as the set of all observed predictors
value, and Xna = {xi j ∈ S |xi j is missing} as the set of missing predictors value. We say that
data is MAR if the distribution of the missingness is conditionally independent of missing val-

ues given observed values : M ⊥ Xna |Xo . As pointed by Seaman [22], MAR has not always been
used consistently and the definition above is the one we settled on for this project. Note that

MCAR implies MAR.

Finally, if the missing data is neither MCAR nor MAR, we say that the data is missing not at

random (MNAR). We will see that the relationship between M and X has a considerable effect

on the efficiency of the missing values techniques that exist. In the sections to come we will

test our algorithms under these various missing data structures.

4 Branch-Exclusive Splits Trees (BEST)

We now introduce the proposed algorithm, BEST. The purpose of BEST is to utilize the tree struc-

ture itself in order to manage some missing data or some special structure among predictors.

4.1 Motivating Example

To begin we will explain which data structure BEST is suitable for by introducing the motivating

data set. It contains information regarding the academic performances of students. The data

set was provided to us by the Univeristy of Toronto and was first introduced and analysed by

Bailey et al. [1]. It was later analysed by Beaulac and Rosenthal [2] where the goal was to

predict whether or not a student would complete its program. The predictors represent the

number of credits and grades obtained in all the departments during the first two semesters.

Understanding the importance of these predictors was also a question raised by the authors.

Table 1 contains a preview of the data with a reduced number of departments.

Student ID Credits Math Grade Math Credits Econ Grade Econ Credits Hist Grade Hist

101 2 72 3 88 0 NA

208 0 NA 0 NA 5 78

Table 1: An example of the motivating data set for 2 students and 3 departments
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A student has no grade in many departments as they can only register to a limited number

of courses within a year. In this situation, many grade variables are missing for every student.

BEST handles that problem by considering the averaged grade obtained in a department only

for students who took courses in that department. For example, BEST will force the classification

tree algorithm to split upon the Number of credits predictor to begin. Then, suppose Number of

credits in Statistics is selected and 2 is the split point for the partitioning, BEST will then allow

splits on the Grade in Statistics predictor for the group of students in the region defined by

Number of credits in Statistics > 2. Therefore, the Number of credits variables are used to define

the region where the respective Grade variables are available for the partitioning process and

thus we say that the Number of credits are gating variables for the Grade variables. The many

Grade variables are gated by their respective Number of credits variables. Figure 1 illustrates

how a BEST decision tree uses Number of credits as a gating variable for Grade.

Grade not available

Grade not available

Grade not available Grade available

Grade available

Credit < 2

Credit = 0 Credit > 0

Credit ≥ 2

Figure 1: An example of BEST decision tree partitioning upon the Credit variable and the avail-

ability of the Grade variable within each of the produced regions

Other real data sets with similar problems are surveys. Many surveys have questions that

are only relevant based on previous answers. Suppose question #1 is yes/no and is followed

by : If you answered no, please go to question #3. This is quite typical and in that situation,

BEST can use the yes/no question as a gating variable for the question #2.
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4.2 Intuition

As we explained in section 2.1, a classification tree aims at partitioning the predictor space and

labelling the resulting regions. CART does so by looking through all the possible splits and

selecting the one that minimizes some pre-specified error measure. When using BEST some

predictors are available to split upon only within some regions of the predictor space, such as

the Grade variables in the motivating data set. These regions are defined according to other

predictors, such as the Number of credits variables in the motivating data set. More generally,

predictor Xl could be only available for the partitioning process in the region defined by Xj < t .

We say that Xj is a gating variable for Xl or that Xl is gated by Xj . The variable Xl will not be

available for the partitioning process until the gating variable allows it. Table 2 illustrates when

BEST can partition the data using Xl based on a previous partitioning where BEST selects Xj

as the splitting variable and s as the splitting value.

s < t s > t

Region Xj < s Region Xj ≥ s Region Xj < s Region Xj ≥ s

Xl is available Yes No No No

Table 2: Availability of Xl if Xj is previously selected as splitting variable and s as splitting

value

Doing so, predictors with missing values can be handled easily as BEST will partition the

data according to that predictor only in regions where it does not contain missing value. If a

data set contains missing values on predictor Xj but no predictor can help define the region

with no missing value, we can add a new predictor Xm+1 to the model as our gating variable.

This new predictor is a dummy variable such that Xi ,m+1 = 0 if Xi ,j is missing and 1 if not.

Doing so, we effectively add M j as defined in section 3, as a predictor in the model and thus

will be defined as follows in the rest of the text. Then, BEST will only consider splitting on Xj in

the subspace defined byM j = 1 as illustrated in figure 2. Multiple dummy variables are added

to the model if multiple predictors contain missing values. Doing so also allows us to analyse

the individual importance of the missing patterns M .
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Xj not available

Xj not available Xj available

M j = 0 M j = 1

Figure 2: An example of BEST decision tree partitioning upon the dummy variable M j that

defines the availability of Xj

Finally, some insight on the data structure can be used to force some variable to be parti-

tioned upon before others which is another application of BEST not described in this article.

The result is a tree-structured classification model where some split variables are branch-

exclusives. Even though we do not further mention it, the construction described below could

be used for regression trees as well.

4.3 Algorithm implementation

Let us now explain how the algorithm functions. BEST takes as input the full data set S , the

tuning parameter β and a list containing the predictor availability structureV . First S is set as

the root node, the first set of observations to go through the following steps. The algorithm

verifies a set of conditions before proceeding with the partitioning process. The first condition

(C1) is that the region contains more than β observations, this is the main stopping rule. Then,

the next condition (C2) is that the observations in the region have different labels; this condition

makes sure that the algorithm has a reason to partition the data. Finally, the last condition (C3)

is that at least one of the available predictors takes different values among the observations

in the region; this is to guarantee that the algorithm can actually partition the data.

If at least one condition is false, then the region is defined as a leaf, a label is assigned to

that leaf for prediction purposes and the partitioning process is stopped. Usually the class that

represents the majority in a leaf is selected as the label for that region, but one could define

different label assignment rules.

If all conditions (C1, C2 and C3) are respected then the partitioning process begins. The

algorithmwill go through all available predictors. For a predictor j , the algorithmwill go through
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all possible partitions s of the region with respect to the predictor j and will compute the total

impurity of the resulting two regions nr1Qr1 + nr2Qr2 . Any region impurity measure Q can be

used. BEST then selects the predictor j and the split s that minimize the total impurity and

creates two children regions by splitting the data according to s .

The last step is to update the list of available predictors for the children regions. There

exist multiple possible structures that can contain this information but within the R-language

[18] we have settled on a listV since lists are very flexible, but other structure could have been

used. To begin V [1] represents the set of predictors available for the partitioning process in

the root node. More specificallyV [1] is a vector of size m whereV [1][j ] = 1 if the j th predictor

is available to be split upon in the root node and V [1][j ] = 0 otherwise. For instance, for the

data set introduced in section 4.1, the vectorV [1] equal 0 for the Grade variables since they are

not available for the partitioning process initially.

In the meanwhile, further elements of the list such as V [j + 1] are defined for j ∈ 1, ...m

and they contain the necessary information to update the predictors available for further par-

titioning. If j is a gating variable, thenV [j +1] should reflect that and contain the information

needed to update the variable available following a partitioning based on j . For instance, if

j is a continuous predictor, V [j + 1] contains a threshold value and a list this of variables

made available from the appropriate partitioning. For instance, in the example introduced in

section 4.1, each Number of credits is associated with the threshold value 0. When a partition

on a Number of credits variable happens, the partition containing the observations where the

Number of credits is strictly greater than 0 gain access to the corresponding Grade variable as

illustrated in figure 1.

Here is a pseudo-code of the proposed algorithm :
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Algorithm : BEST(S ,β ,V )

0. Start with the entire data set S and the set of available predictorsV [1].

1. Check conditions (C1, C2 and C3).

2. if (any condition is false) :
Assign a label to the node and exit.

else :
for (j in all available predictors):

for (s in all possible splits) :
Compute total impurity measure.

Select the variable j and the split s with minimum impurity measure.

Split the node into two child nodes.

Update the available predictors for both children nodes usingV [j + 1].

Repeat steps 1 & 2 on the two children nodes.

In addition, the resulting tree can be pruned, and constructed with any splitting rule, any

stopping rule and any label assignment rule. Since one of the goals of this new algorithm is

to produce accurate but also interpretable models we did not discuss forests so far, but the

proposed tree construction procedure can be used to build any type of forest as well. Our

implementation is publicly available on CRAN under the package named BESTree or on the first

author’s website. Anyone can download and install the package, read the vignette and use our

proposed algorithm for their own research.

4.4 Theoretical justification

Formally, the loss of a classifier h is defined as :

LD(h) = PD [h(xi ) , yi ], (1)

which is the probability under the true data generating distribution D that the classifier h

misclassifies an observation xi . Since the data generating distribution D is unknown, then the

empirical loss computed with the data set S is typically used as an estimator of the true loss :

LS (h) =
|{i ∈ [n] : h(xi ) , yi }|

n
, (2)
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which is the proportion of misclassified observations in the training set S . Usually a set of

classifiers H is selected in advance and most learning algorithms are trying to identify the

classifier h ∈ H that minimizes the empirical loss LS (h). The setH was named the hypothesis

class by Shai & Shai [23]. The true loss can be decomposed in a manner to observe a bias-

complexity tradeoff. Suppose hS = argmin
h∈H

LS (h), then :

LD (hS ) = min
h∈H

LD(h) + (LD (hS ) −min
h∈H

LD(h)).

= eapp(H) + eest(hS ).

(3)

The approximation error, min
h∈H

LD(h) = eapp, is the minimum achievable loss within the

hypothesis class. The second term , (LD (hS ) − min
h∈H

LD(h)) = eest, is the estimation error

and is caused by the use of the empirical loss instead of the true loss when selecting the

best classifier h. Since the goal is to minimize the total loss a natural tradeoff emerges from

equation 3. A vast, large and complex hypothesis class H leads to a wider choice of functions

and therefore reduces eapp, but the classifier is more prone to overfitting, which increases eest.

Inversely, a small hypothesis class H reduces eest but increases eapp.

Our proposed algorithm aims at obtaining a better classifier by restricting the hypothesis

class to a smaller one without increasing the approximation error. Suppose HT is defined as

the set of all tree-structured classifiers. Then, BEST is a new algorithm that aims to find the

best classifier in a new hypothesis class HB that contains all the tree-structured classifiers

that respect a set of conditions regarding the order that variables can be partitioned upon.

Therefore, we haveHB ⊂ HT . Since the complexity ofHB is smaller than the complexity ofHT

the estimation error of BEST will be smaller.

Next, let us take a look at the approximation error : min
h∈HB

LD(h). When using BEST, we make

multiple assumptions on how the partitioning should be processed. For example, we assume it

is better to partition the data using the missing indicatorM j before partitioning the data using

Xj . Doing so, we assume that the best tree-structured classifier among all classification tree

HT is contained within the set of tree-structured classifiers that respect the partition ordering

that defines HB . In other words, we assume argmin
h∈HT

LD (h) ∈ HB . Suppose S is a data set,

hS (HT ) is the classifier that minimizes the empirical loss on HT and hS (HB ) is the classifier

that minimizes the empirical loss on HB , then :
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LD (hS (HT )) = min
h∈HT

LD(h) + eest(hS (HT )).

= min
h∈HB

LD(h) + eest(hS (HT )).

≥ min
h∈HB

LD(h) + eest(hS (HB )).

= LD (hS (HB )),

(4)

which implies that the under the assumption we have made we would not only naturally man-

age missing values but also reduce the loss. If our assumption argmin
h∈HT

LD (h) ∈ HB is false,

we might increase the loss, and the assumption itself is impossible to verify. Therefore, the

behaviour of the algorithm under multiple scenarios will be tested in section 6 with simulated

data.

5 Related work

Decision trees are well-established and a wide variety of solutions has already been proposed

to handle missing values. In this section, we will position our contribution within the current

literature. We will briefly introduce the current missing value techniques that are paired with

decision trees and we will establish the main differences between these techniques and the

proposed algorithm introduced in section 4. To do so, we will use recent surveys [21, 28, 6, 9]

that defined and compared these techniques using various simulated and real data sets.

Predictive value imputation (PVI) methods are popular approaches to deal with missing

values. They estimate and impute the missing values within both the training and the test set.

The simplest imputation consists of replacing the missing values with the mean for numerical

predictors or the mode for categorical predictors. More advanced prediction models have also

been proposed, such as linear model, k-nearest neighbours or expectation-maximization (EM).

Since these methods use known predictors to impute values for the missing ones, if the pre-

dictors are uncorrelated these approaches will have no predictive power. This will lead to poor

imputation and it is a major drawback noted by Saar-Tsechansky and Provost [21] and Gavankar

[9]. Nonetheless, Twala [28] demonstrated using simulated data sets the great performances
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of expectation-maximization multiple imputations (EMMI) [15]. This imputation technique pro-

duces multiple different imputations based on expectation-maximization and then aggregates

the results.

Our proposed algorithm differs from imputation methods as it only uses known informa-

tion to build the classifier instead of using potentially unreliable prediction to replace missing

values.

The surrogate variable (SV) approach [5] is a special case of predictive value imputation. As

explained by Hastie et al. [11], during the training process, when considering a predictor for a

split, only the observations for which that predictor is not missing are used. After the primary

predictor and split point have been selected, a list of surrogate predictors and split points

is constructed. The first surrogate split is the predictor and split point pair that best mimic

the split of the training data achieved by the primary split. Then the second surrogate split is

determined among the leftovers predictors and so on. When splitting the training set during

the tree-building procedure or when sending and observation down the tree during prediction,

the surrogate splits are used in order if the primary splitting predictor value is missing.

Many articles [7, 21, 28, 6] showed that the results are not satisfactory in many cases and

Kim and Loh [13] noted the variable selection biased caused by this approach. Our proposed

approach is muchmore computationally efficient and utilizes the missing pattern as a predictor

instead of ignoring it.

Reduced-feature models are suggested by Saar [21] when missing values appear only in the

prediction process. When we need to classify a new observation, a tree is built using only the

known predictors of the new observation. If multiple observations contain different missing

pattern then multiple trees are built to classify the various observations. It shares a great

deal of similarities with lazy decision trees [8] as both models tailor a classifier to a specific

observation and uses only known predictors to do so.

A major drawback of this technique is that it only manages missing values during prediction

while our proposed technique can handle missing value for both training and prediction. BEST

also differs from reduced-feature models as it not only uses the known values but also utilizes

the fact that we know some predictors are missing instead of discarding this information.
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The popular C4.5 implementation [17] has its own way to manage missing data, defined as

a distribution-based imputation (DBI). When selecting the predictor to split upon, only the ob-

servations with known values are considered. After choosing the best predictor to split upon,

observations with known values are split as usual. Observations with unknown values are dis-

tributed among the two child nodes proportionately to the split on observed values. Similarly,

for prediction, a new test observation with missing value is split intro branches according to

the portions of training example falling into those branches. The prediction is then based upon

a weighted predictions among possible leaves.

This technique is computationally slow and offers poor performances in terms of prediction

accuracy according to some of the surveys we mentioned [21, 29]. Our technique should be

faster, more accurate and more interpretable.

As described by Ding and Simonoff [6], the Separate Class (SC) method replaces the missing

value with a new value or a new class for all missing observations. For categorical predictors

we can simply definemissing value as a category on its own and for continuous predictors any

value out of the interval of observed value can be used.

This technique has the best performances according to Ding and Simonoff [6] when there

are missing values in both the training and the test set and when observations are missing not

at random (MNAR). Twala et al. [29] also came up with similar results with a generalization of

the separate class method coined Missing Incorporated in Attribute (MIA). These techniques are

by far the closest in spirit to BEST. As BEST, MIA and SC allow for similar data partitioning we do

not expect BEST to offer a drastic improvement in terms of accuracy. On the other hand, BEST

identifies the missing pattern using other predictors rather than including the missingness

information within the predictor containing missing values. Doing so, our approach should

offer highly interpretable results and a more accurate variable importance analysis.

Finally, there exist many other articles discussing decision trees in the context of missing

values. Some introduce ways to use decision trees and random forests as missing values im-

putation techniques such as Rahman and Islam [19] and others to identify the missingness

structure such as Tierney et al. [27]. Our approach is different since we are not using decision

trees to pre-process data with missing value or to identify the missingness structure but to

perform a decision tree analysis of a data set that contains missing values.
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6 Experiments : Simulated data sets

Now we are going to asses the abilities of our algorithm on simulated data sets. All of our

experiments are done using the R-language [18]. In the following set of simulations, we will

compare 6 methods; (1) BEST, our proposed approach, (2) the Distribution Based Imputation

(DBI) proposed by Quinlan [17] implemented in the C5.0 package [14], (3) a simple single vari-

able imputation (SVI), either the mode for a categorical predictor or the mean for a numerical

one, (4) a refined predictive value imputation (PVI) using known predictors; EM for numerical

predictors and multinomial logistic regression for categorical ones [30], (5) the separate class

(SC) approach and finally (6) the surrogate variable technique introduced by Breiman et al. [5]

implemented in the rpart package [26]. Since the Reduced-Feature Model was the least accu-

rate in every single experiment we have done, we decided not to include it in the following

plots to improve readability.

We will generate data sets containing 4 predictors; X1 and X2 are binary predictors and

X3 and X4 are continuous predictors on (0, 1). The response is categorical and can take up

to 8 different values. The binary predictors are generated according to a Bernoulli distribution

and the continuous predictors are generated according to a Uniform distribution. The response

labels are assigned according to the tree in figure 3 but a proportion of the responses labels

are randomly assigned.

Let us describe the experimental procedure. We begin by generating a data set as we de-

scribed in the previous paragraph. We will apply a missing pattern to the data set; details are

included in the respective subsections. Then we will fit a pruned decision tree using each of the

six methods mentioned earlier in the section. We will adjust various parameters such as the

number of training observations, the variable containing missing values and the type of missing

patterns. We will compare the technique performances using the prediction accuracy on the

test set where we define the accuracy as the proportion of correctly classified observations.

6.1 MAR : Missingness depends on observed predictors

This first experimental set up is meant to test the missing pattern structure BEST was designed

for. In this set up, the missing pattern of a predictor is fully explained by another, fully observed,

predictor. The binary predictor X1 was designated as gating variable for a randomly sampled
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1 2 3 4 5 6 7 8

X1 = 0

X2 = 0 X2 = 1

X1 = 1

X4 ≤ 0.3 X4 > 0.3

X4 < 0.7 X4 ≥ 0.7 X3 < 0.6 X3 ≥ 0.6 X2 = 0 X2 = 1 X3 ≤ 0.2 X3 > 0.2

Figure 3: The decision tree used to generate our simulation data sets

predictor, either X2, X3 or X4. In our first experiment we randomly sample either 0 or 1 and

the gated variable is missing if X1 equals the randomly sampled value. This procedure will be

repeated 200 times for this experiment.

We will present our results using Sina Plots [24, 31]. This will allow to better visualize the dis-

tribution of the performances of the different techniques for different predictors with missing

values.
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Figure 4: Accuracy by techniques when the missing pattern depends on other predictors with

200 training observations

The figure 4 contains the results of our simulation when we the techniques used 200 training

observations to build the classifiers. Figure 5 contains the results of our simulation obtained

when we used 1000 training observations.
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Figure 5: Accuracy by techniques when the missing pattern depends on other predictors with

1000 training observations

Both of the plots convey similar information. When the missing pattern depends on other

predictors, the performance of BEST is similar to many competitors but BEST still leads to more

interpretable decision trees and does not require any imputation. There is no notable dif-

ferences between the results obtained with 200 observations and 1000 observations in that

precise experiment. Going forward we will keep the number of training observations fixed to

200 but we will vary other parameters.

In the next experiment we will once again designate X1 as the gating variable and will again

sample one of the other predictors as the gated predictor. Once again, we randomly sample

either 0 or 1 but this time, we will generate as less extreme missing pattern. The gated variable
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will be missing with a probability of 50% when X1 equals the randomly sampled value.
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Figure 6: Accuracy by techniques with 50% of the gated variable missing when the condition of

the gating variable is respected

We can observe in figure 6 that a less extrememissing pattern does not affect one technique

more than others.

Overall, BEST performances when the data is missing at random given other predictors is

as good as other tested techniques.
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6.2 MAR : Missingness depends on the response

According to Ding et al. [6], the relationship between the missing pattern and the response

variable has a great effect on the results obtained from different missing value treatments.

In this simulation, one of the predictors is randomly selected, let us say Xj , every iteration

and the censoring process is then applied. The censoring process goes as follows; one of the

eight response labels is randomly selected, and Xj is missing for all observations with that

selected label. In this experiment we have used a dummy variable as the gating variable for

the BEST algorithm. This procedure will be repeated 100 times for this experiment.
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Figure 7: Accuracy by techniques when the missing pattern depends on the response.

In this experiment, the missing pattern is actually a variable with predictive power and
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therefore, models like BEST and SC shine as they utilize the fact that there is missing values

instead of trying to impute them. BEST and SC approaches have similar results and their per-

formances is higher than any other techniques.

It is interesting to notice the high performances of the simple single value imputation in

some cases. Our experiments revealed that when the predictor containing missing value is

continuous, replacing missing values with the mean is equivalent to creating a separate class

because only the missing values will exactly take the value of the mean. If the predictor with

missing value is categorical, replacing missing values with the mode will make the observation

with missing value undistinguishable from observations that truly belong to that class which

leads to the poor results.

Next, we want to understand the impact of the indicator gating variable on the success of

BEST. To do so, we added the indicator variable to the data set and we applied the various

missing value techniques as well.
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Figure 8: Accuracy by techniques when the missing pattern depends on the response

In figure 8 we can see that the indicator variable is important if the missingness depends

on the response variable. In the figure above, the plus sign represents the result obtained by

the technique with a data set that also includes the indicator variable. For example, for SVI+, we

both imputed the missing values using SVI and we included the indicator variable in the data

set. Adding this variable to the data set lead to improved performances for all of the tested

techniques. BEST offers great results considering it does not need to impute the missing values.

If the missing indicator variable is to be added to the data set, it is counter-intuitive to also

impute missing values. We argue in sections 7.3 and 6.4 that BEST also produces trees that are

more interpretable and that BEST leads to a more reliable variable importance analysis than

other algorithms. Thus, we believe BEST is the best approach when the pattern is missing at

random given the response.
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6.3 MNAR : Missingness depends on missing values

Let us now proceed with an experiment when the predictors are missing not at random. If a

continuous predictor, let us say Xj , is randomly selected, then a random value t which serves

as threshold within the domain of Xj is also drawn at random. Finally, a Bernoulli variable b is

drawn and if b = 0, then if Xj < t Xj is set missing, otherwise if b = 1 then Xj is missing if its

value is greater than t .

If one of the binary predictors is selected, then a Bernoulli variable is drawn and Xj is

missing if Xj equals the Bernoulli variable. Since the missingness of Xj depends on the value

of Xj itself, then this is MNAR. The procedure was repeated 100 times.
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Figure 9: Accuracy by techniques when the missing pattern depends on missing values
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In figure 9 we observe that BEST outperforms DBI and multiple imputations. The perfor-

mances of BEST are comparable to those of SVI but are slightly under those of the SC approach.

6.4 Random forests and variable importance

Let us now build a small example where random forests are used to analyse the variable im-

portance. Random forests are popular in exploratory analysis [25] as the variable importance

tools that were developed for this model became popular.

As we have seen in the previous experiments, when BEST performs well, so does the SC ap-

proach usually as both of these techniques produce similar trees. Here we will quickly discuss

how BEST produces more accurate variable importance computations than the SC approach.

We have created an example where the missing pattern depends on the response, used either

the SC approach or BEST to handle missing values and we have built a forest of those trees.

When the values for a predictor are conditionally missing at random given the response, the

missing pattern is itself a good predictor. We believe it is important that a variable importance

analysis distinguishes between the importance of the predictor with missing value, say Xj ,

from the importance of its missing pattern M j . A random forest of trees built under the SC

approach would fail to distinguish between the effect of the observed value for that predictor

and the effect of the missing pattern. Since BEST actually uses a variable to define the region

with missing values, either with another predictor or a user-created dummy variable, then this

gating variable importance will better represent the predictive power of the missing pattern.

Data X1 X2 X3 X4 M2

Complete 112.37705 26.76542 158.55069 102.91328 -

BEST 94.53228 10.80073 155.39201 78.14924 156.27593
SC 103.62706 171.70715 147.89474 80.51999 -

SC+. 94.36789 81.83499 128.78712 55.14764 84.45193

Table 3: Variable Importance table computed using the GINI decrease importance

We have built a random forest using the complete data set and computed the GINI decrease
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importance. Then we have randomly selected one of the eight labels, and the predictor X2, a

predictor of low importance according to the GINI decreases under the complete data set, is

rendered missing depending on the value of the response. Since the SC approach uses the

predictor containing missing value to identify observations containing missing value then it

identifies X2 as the most important predictor. Even when we include the missing pattern M2

to the data set the SC approach uses, the variable importance for X2 is still inflated.

Using BEST, we can easily observe that the missing pattern, M2 is the important predictor

and that X2 is actually of low importance when observed as it should be according to the

complete data variable importance. We believe the variable importance analysis produce by

BEST reflects better the true predictive power of the predictors and that this is a great benefit

from using BEST over the SC approach.

6.5 Simulations: takeaways and limitations

Throughout various simulation experiments we have been able to highlight the success of BEST

under various scenarios. Regarding the SC approach, since it does not impute the missing

values then it can create the same partitioning that BEST creates but the SC approach does not

need to first isolate the missing value in order to partition upon the variable containing missing

values which can sometimes be valuable.

Our simulation revealed that BEST suffers from a weakness when the gating variable is of

low importance. This can happen if only a small proportion of data is missing, if the missing

pattern is simply non-informative or in some cases when data is MCAR. In that case, BEST will

never partition upon the gating variable and thus will never partition upon the branch-exclusive

variable which will almost surely reduce the accuracy of the resulting tree. This weakness is

intrinsic to the algorithm as it is caused by the greedy nature of decision trees which are usually

fitted by growing large trees and pruning them later. During the partitioning process, a classic

decision tree approach only sees the reduction in impurity gained with a single partition and

thus cannot perceive the accuracy gained by the combination of two successive partitioning.

When facing this problem, using a random forest of BEST trees is a possible solution. When

we build trees in a forest, predictors are randomly selected and thus the algorithm will partition

on the gating variable of low important from time to time which will reveal the important gated
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variable. One way to entirely negate this limitation would be to consider pairs of consecutive

splits but this would come at a great cost, it would drastically increase the run time of the

algorithm.

A limitation of our simulated experiments is the absence of the MIA algorithm [29] who

shares a lot of similarities with BEST. No implementation or package of MIA was available at the

time we ran this experiment and thus an advantage of BEST is that a R package is available for

researcher looking for an algorithm ready to use off-the-shelf. Regarding prediction accuracy,

we do not expect BEST to outperformMIA as they can produce similar partitioning but we expect

BEST to be slightly faster as MIA greatly increases the number of operations when building the

tree. Finally, as discuss earlier we do believe BEST produces more interpretable trees than

the SC approach, the same argument holds when comparing BEST to MIA. The interpretability

argument is expanded in section 7.3.

Finally, another limitation of our experiment is that we did not test the run times of the

algorithms in an extensive manner. We think there was no way to build a fair comparison

among the various techniques. As it stands our package BESTree is entirely coded in R and

thus currently runs more slowly than than popular decision tree packages such as the C5.0

package [14], the rpart package [26] or the party package [12].

We believe that the speed difference is caused by our suboptimal coding and the language

used but not by the structure of our proposed algorithm. Our BESTree package contains a

regular decision tree function which shares most of its architecture with the BEST function but

without the new functionalities introduced by BEST. We tested the run speed of our proposed

algorithm BEST against the regular decision algorithm included in our package.
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Figure 10: Run time of BEST compared to a decision tree.

We generated 200 samples of 5000 observations and compared the run speed in seconds of

BEST with a regular decision tree algorithm. As observed in figure 10, our intuition was right; it

seems like the added functionality of BEST does not increase the run time significantly. In order

to improve the run time of all functions in our package, we will code some key components in

a faster language such as C++ in a future release.

7 Experiments : grades data set

7.1 Predicting program completion

The data set mentioned in section 4.1 was analysed using BEST. Once again, the accuracy of

the proposed algorithm is compared to other techniques that handle missing values. To begin,

we predict if a student completes its program using its first year of courses and results. The

data set contains 38842 observations. Our set of predictors consists of the number of credits

attempted in all the departments and the average grade obtained in those respective depart-

ments. The number of credits is a numerical variable that serves as the gating variable for

the respective grade. If the number of credits attempted in a department is greater than 0
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for every observation in a region then BEST acquires access to the grade variable. We have

randomly sampled training sets of different sizes and used all the remaining observations to

assess the accuracy. This process was repeated 15 times and we have averaged the results.

We did not include the single value imputation because we expect this technique to produce

the same result as the SC approach since all predictors are numerical. We did not include the

imputation produced by the mice package [30] as the package was incapable of handling the

data set. Finally, we have used tables to show our results because with only 15 trials the Sina

plots were not informative.

# of obs 5000 10000 15000 20000

Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DBI 0.7223 0.0035 0.7336 0.0038 0.7385 0.0092 0.7402 0.0095

SC 0.7307 0.0066 0.7387 0.0044 0.7427 0.0036 0.7462 0.0033

Surrogate 0.7291 0.0053 0.7301 0.0046 0.7311 0.0034 0.7300 0.0032

BEST 0.7333 0.0062 0.7424 0.0045 0.7457 0.0037 0.7479 0.0033

Table 4: Mean accuracy and standard deviation when predicting program completion

In table 4, we observe that BEST produces the most accurate decision trees for that data

set for all training data sizes. This improvement is important as it is essential for universities

to predict if a student is at risk of not completing its program. This information is valuable

since most universities want to help their students move forward by adjusting their policies or

providing them the resources needed. We have done most of our experiments with trees, but

using a random forest of BEST trees the prediction accuracy reaches 79.89%, which is higher

than anything previously obtained with competing techniques [2].

Another reason why we might prefer using BEST in this analysis is its ability to rightfully

identify the variable importance. As we discussed in section 4.1, the researchers were interested

in the importance of the predictors. Therefore BEST is an improvement as it truly identifies the

importance of the gating variables, the number of credits, as we have shown in section 6.4. In

this case we were able to distinguish the importance of the number of credits in a department

of the importance of the grade obtained in that department which was impossible before the

implementation of BEST. In the variable importance plot below, the variable representing the
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number of credits in a department is identified by the department code, i.e. the number of

credits in Chemistry is identified by CHM. The variable representing the averaged grade in a

department is identified by the department code followed by the letter G, i.e CHM G represents

the averaged grade in Chemistry.
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Figure 11: Variable importance for the prediction of program completion.

Figure 11 illustrates the results obtained when we evaluated the variable importance using

the averaged GINI decrease based on a forest of 200 BEST trees. The number of credits at-

tempted in the first year seminar courses (ASSEM) is the most important predictor. In this case,

taking a first-year seminar course was positively correlated with succeeding an undergraduate

program. These seminars were brand new at the University at the time the data was collected

and this analysis provides evidence of themerit of these courses to establish a student’s profile.

7.2 Predicting the major

In the second analysis, we will look at the 26488 students who completed their program. Using

the same set of explanatory variables, we will try to predict the department they majored in.

Prediction the major that will be completed by students can help Universities plan ahead the
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resources needed by each departments. According the results in table 5 BEST can be helpful

to produce such predictions:

# of obs 5000 10000 15000 20000

Methods Mean S.D. Mean S.D. Mean S.D. Mean S.D.

DBI 0.3581 0.0055 0.376 0.0043 0.3871 0.0039 0.3936 0.0057

SC 0.3992 0.0079 0.4172 0.0069 0.4262 0.0047 0.4332 0.0044

Surrogate 0.3639 0.0121 0.3661 0.011 0.3723 0.012 0.3742 0.012

BEST 0.3952 0.0074 0.4164 0.0051 0.4265 0.0043 0.4319 0.0043

Table 5: Mean accuracy and standard deviation when predicting the major

In table 5 we observe closer results from the two best-performing algorithms. BEST and

SC have almost indistinguishable performances and are the top performers. A random forest

of BEST trees reached an accuracy of 47.57% which is slightly higher than previously obtained

[2]. Even though the results are a lot closer between BEST and SC, our proposed algorithm still

produces trees that are more interpretable and can be used to produce a non-biased variable

importance analysis as argued in section 6.4.
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Figure 12: Variable importance for the prediction of the major completed.

Figure 12 contains the variable importance we obtained. In this particular case the results

were not significantly different from those previously obtained [2]. The number of credits in the

Finance department (COMPG) and the number of credits in the English department (ENG) have

relatively high importance compared to all the other predictors. We observed that the students

who obtained a major in either of those were very likely to register to many courses in these

respective departments starting in the first year. The number of credits in the Mathematics

department (MAT) and the number of credits in the Computer Science department (CSC) are

also of noticeably high importance. We have noticed that these variables are quite useful to

predict if a student picks a major in a scientific field.

7.3 Improved interpretability

We have mentioned throughout this article that we believe BEST leads to more interpretable

decision trees than the SC approach. The experiments performed above provides a good ex-

ample for that as they lead to interpretable trees.

For the SC approach we have replaced missing grades by a value outside of the domain,

101. Frequently in this experiment, the tree constructed under the SC approach partitions upon
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the grade in departments before the number of credits. For example, if Grades in Mathematics

is the first split variable selected and 60 is selected as the split point, then the SC approach

produces the partitioning illustrated in figure 13.

All students

Students with grade below

60 in Math

Students with grade above

60 in Math and students

that took no Math course.

Grade in Math < 60 Grade in Math ≥ 60

Figure 13: An example of a decision tree partitioning produced by the SC approach and the

associated regions

It is definitely hard to extract interpretable information out of this tree. Does this partition

imply students with no experience in Mathematics behave similarly to students with good re-

sults in Mathematics ? BEST achieves similar or higher accuracy while keeping the partitions

logical and interpretable. BEST will begin by partitioning students who attempted at least 1

credit in Mathematics from those who did not. Then, among students who attempted at least 1

credit in Mathematics, BEST will partition them according to their grades, which leads to a more

interpretable sequence of partitions as illustrated in figure 14.

If interpretability is considered a strength of decision trees, then BEST is better than the SC

approach at preserving this strength.

7.4 Real-world data set experiment takeaways

Even though we have performed experiments on a single real-world data, the results are ex-

tremely positive. BEST has higher or similar performance than the other tested algorithms.

BEST produces more accurate variable importance analysis and more interpretable trees than

the SC approach, BEST’s closest competitor. Finally, to use BEST we did not need to do any

imputations which is another reason why we prefer BEST.
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Figure 14: An illustration of a decision tree partitioning produced by BEST and the associated

regions

8 Conclusion

We have constructed a modified tree-building algorithm that lets the users decide the regions

of the predictor space where variables are available for the data partitioning process. We have

focused on using this feature to manage missing values. BEST has the elegant property of

analysing a variable only when values are known without assuming any missingness structure.

It produces highly interpretable trees and achieves comparable accuracy to most missing value

handling techniques in cases we have identified using simulated data sets. Even though BEST

shares similarities with the separate class technique, BEST leads to a more accurate variable

importance analysis and produces more interpretable and intuitive trees.

BEST suffers from a weakness when the gating variable has no predictive power. In those

cases, the algorithm will never choose to split upon the gating variable and thus will never be

allowed to use the branch-exclusive variable. This problem can lead to a decrease in accuracy in

some simple cases where the data is MCAR. Fortunately, as we have previously discussed, there

already exist multiple techniques to handle data MCAR and we can count on cross-validation in

order to help us select the best missing data handling technique. Nonetheless, in the simulated

experiments we have performed, results were mostly positive as BEST outperforms some other

techniques when data is MAR and MNAR.
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The results produced by BEST were also satisfactory when the algorithm was used on the

real motivating grades data set. We were able to achieve higher accuracy than with most other

techniques while obtaining a more interpretable classifier. Since variable importance was a

concern in the grades data set analysis, BEST was an improvement as it answers that research

question by providing a more reliable variable importance analysis than the separate class

approach previously used [2].
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