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Abstract

We present counter-examples to demonstrate that when g is unbounded the con-

ditions of Simultaneous Uniform Ergodicity and Diminishing Adaptation are not

enough to guarantee that the the weak law of large numbers (WLLN) holds, al-

though from the results of Roberts and Rosenthal [4] we know that WLLN holds

under these conditions when g is bounded. Then we show various theoretical results

of the WLLN for the adaptive MCMC and unbounded measurable function g. Fi-

nally we apply our results to the Adaptive Metropolis algorithm proposed by Haario

et al. [7] (2001).

1 Introduction

Markov chain Monte Carlo (MCMC) is a popular method to simulate any distribution

π(·) on the state space through the use of Markov chains. In practice, we can choose the

transition probabiliy P from the family where {Pγ}γ∈Y is a collection of Markov chain

kernels with stationary distribution π(·) on χ. Then the question is how to optimize the

choice of the Markov chain’s kernel. The initial idea is to choose a “best” Pγ , but it has

been proved by Gilks et al [5] (1996) that the optimal choice depends on the property

of the target distribution π. Therefore another solution so-called adaptive MCMC has

been proposed recently. The main idea of this method is to tune the parameter at every

step using the information from the “history” so that the choice of the parameter is

more reasonable than the fixed one. See Gilks et al [6] (1998), Haario et al. [7] (2001),

Andrieu and Robert [3] (2001), Andrieu and Moulines [2] (2005), Roberts and Rosenthal
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[4] (2005), Atchade and Rosenthal [8] (2005) , and Andieu and Achade [1] (2005) for

example. Actually we can formalize the method as below (see Roberts and Rosenthal

(2005) [4]):

Let {Xn} be a discrete time series on a state space χ with σ−algebra F , {Pγ}γ∈Y be

a collection of Markov chain kernels with stationary distribution π(·) on χ, and Γn be

Y−valued random variables which are updated according to specified rules. Thus we

can define:

P [Xn+1 ∈ A|Xn = x,Γn = γ,Gn] = Pγ(x,A) (1.1)

where Gn = σ(X0, · · ·, Xn,Γ0, · · ·, Γn). Then we call {Xn} an adaptive MCMC with

adaptive scheme Γn. Let

A(n)((x, γ), B) = P [Xn ∈ B|X0 = x,Γ0 = γ], B ∈ F

and

T ((x, γ), n) = ‖A(n)((x, γ), ·) − π(·)‖

In Roberts and Rosenthal [4] (2005), they proved the following theorems:

Theorem 1.1. Consider an adaptive MCMC algorithm on a state space χ, with adap-

tation index Y and the adaptive scheme is Γn. π(·) is stationary for each kernel Pγ for

γ ∈ Y. Suppose also that:

(a)[Simultaneous Uniform Ergodicity] For all ε, there is N = N(ε) ∈ N such that

‖PN
γ (x, ·) − π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y; and

(b)[Diminishing Adaption] limn→∞Dn = 0 in probability, where Dn = supx∈X ‖PΓn+1 −

PΓn‖ is a Gn+1-measurable random variable.

Then limn→∞T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

Theorem 1.2. Consider an adaptive MCMC algorithm. Suppose that conditions (a)

and (b) hold. Let g : X → R be a bounded measurable function. Then for any starting

values x ∈ X and γ ∈ Γ, conditional on X0 = x and Γ0 = γ we have:

Σn
i=1g(Xi)

n
→ π(g)

in probability as n → ∞.
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This leads to the following questions:

Question 1. We know that condition (a) is equivalent to the following statement: There

exist M > 0 and 1 > ρ > 0 such that for any x ∈ X and γ ∈ Y, ‖Pn
γ (x, ·) − π(·)‖ <

Mρn. In particular, supγ∈Y, x∈X
∑∞

n=1 ‖Pn
γ (x, ·) − π(·)‖ < ∞. Then do we still have∑∞

n=1 T (x, γ, n) < ∞ for the Adaptive MCMC satisfying conditions (a) and (b)?

Question 2. Does the WLLN hold for all unbounded g ∈ L(π) under the same condi-

tions?

We will answer both of these questions in negative in section 2, prove the WLLN of

adaptive MCMC under stronger conditions in section 3.

2 A Counterexample

Consider X = (0, 1], Y = (0, 1] × N, π(·) is the Lebesgue measure on X , and

g(x) = x− 1
2

therefore π(g) = 2. Furthermore, for (γ, k) ∈ Y define the kernel P(γ,k) by:

P(γ,k)(x,A) =


2
3π(A) + 1

3δx(A) if x 6= γ

2
3π(A) + 1

3δ 1

4k
(A) if x = γ

and construct the adaptive scheme as below:

First we define {In}∞n=1 to be an independent random variable sequence such that:

In =


1 with probability 1

n

0 with probabilityn−1
n

Secondly we let Γn+1 = Γn × (1 − In) + (Xn+1, n + 1) × In.

2.1 The Answer To Question 2

Theorem 2.1. The above adaptive MCMC algorithm satisfies conditions (a) and (b)

and π(|g|) < ∞ , but the WLLN does NOT hold.
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Lemma 2.1. The above adaptive MCMC algorithm satisfies conditions (a) and (b)

Proof. Obviously each P(γ,k) is stationary with respect to π, and ‖P(γ,k)(x, ·)−π(·)‖var ≤
1
3 for any (γ, k), so such a family of kernels satisfy the condition (a) following the Propo-

sition 7 in Roberts and Rosenthal [9] (2004);

And following the definition of Γn, we have:

Dn = sup
x∈X

‖PΓn+1(x, ·) − PΓn(x, ·)‖

≤ P (Γn+1 6= Γn)

= P (In = 1)

=
1
n

Therefore we have the conditions (a) and (b) holds.

To prove the theorem 2.1, we show the following lemmas first:

Lemma 2.2. For any ε > 0 and any sequence {xi}∞i=0, if n and k are two positive

integers such that n < k < 2n−(1+ε)n−1
1+ε and we also have g(xn) = 2n then:∑k

i=1 g(xi)
k

− 2 > ε (2.2)

Proof. Since k+2n−1
k strictly decreases with respect to k and g(x) ≥ 1, we have:∑k

i=1 g(xi)
k

− 2 − ε ≥ k − 1 + 2n

k
− 2 − ε

≥
2n−(1+ε)n−1

1+ε − 1 + 2n

2n−(1+ε)n−1
1+ε

− 2 − ε

≥ 1 +
2n − 1

2n−(1+ε)n−1
1+ε

− 2 − ε

≥ 1 +
2n − 1

2n − (1 + ε)n − 1
× [1 + ε] − 2 − ε

> 1 + 1 + ε − 2 − ε

= 0

Lemma 2.3. For any ε > 0, there exists Mε such that for any m > Mε we have:

2m+1 − (m + 1)(1 + ε) − 1
1 + ε

> m2
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Proof. Denote hm = 2m+1−(m+1)(1+ε)−1
1+ε −m2, then we have limm→∞ hm = ∞. Therefore

there exists Mε such that for any m > Mε we have hm > 0, i.e. 2m+1−(m+1)(1+ε)−1
1+ε >

m2.

For any 0 < ε < 1
6 , we define Nε = max{Mε,

1
1−6ε}, then we can prove that:

Lemma 2.4. For any X0 = x, Γ0 = γ and 0 < ε < 1
6 , then we have:

P (|
∑n

i=1 g(Xi)
n

− π(g)| > ε|X0 = x,Γ0 = γ) > 2ε for any n > N2
ε

Proof. For any n > N2
ε , we have:

P (Im = 0, for any m satisfiesb
√

nc + 1 ≤ m ≤ n)

=
n∏

i=b
√

nc+1

i

i + 1

=
b
√

nc
n

≤ 1√
n

≤ 1
Nε

then:

P (∃m, b
√

nc + 1 < m < n, Im = 1) ≥ Nε − 1
Nε

(2.3)

Whenever Γn+1 = (Xn+1, n + 1), we have g(Xn+1) = 2n+1 w.p. 1
3 . Since Nε > 1

1−6ε , we

have Nε−1
3Nε

> 2ε. Therefore:

P (∃m, b
√

nc + 1 < m < n, g(Xm) = 2m)) >
Nε − 1
3Nε

> 2ε (2.4)

Also since m > Nε, lemma 2.3 indicates that for any b
√

nc + 1 < m < n we have:

2m − (1 + ε)m − 1
1 + ε

> m2 + 1 > (b
√

nc + 1)2 + 1 > n + 1

Following lemma 2.2 and m < n < 2m−(1+ε)m−1
1+ε , we know that∑n

i=1 g(xi)
n

− 2 ≥ ε
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Therefore:

P (|
∑n

i=1 g(Xi)
n

− 2| > ε)

≥ P (
∑n

i=1 g(Xi)
n

− 2 ≥ ε)

≥ P (∃m, b
√

nc < m < n, g(Xm) = 2m))

> 2ε following (2.4)

Now we can prove the theorem:

Proof. Consider the above example, following all the lemmas above we know that for

any ε > 0, we have:

lim sup
n→∞

P (|
∑n

i=1 g(Xi)
n

− π(g)| > ε) > 2ε

In other words, we do NOT have:

lim
n→∞

P (|
∑n

i=1 g(Xi)
n

− π(g)| > ε) = 0

So the WLLN does NOT hold in this example.

2.2 The Answer To Question 1

Theorem 2.2. For the above adaptive MCMC which satisfies conditions (a) and (b),

for any x ∈ X , there exits a measurable set B such that
∑∞

n=1 A(n)(x,B) = ∞.

Proof. Consider the set B = { 1
4k |k = 1, 2, · · ·, }, suppose for any start valuve X0 = x

and Γ0 = γ, we have:

∞∑
i=1

Ai((x, γ), B) < ∞

then for any 0 < ε < 1, there exists Nx,γ > 0 such that

∞∑
i=N+1

Ai((x, γ), B) ≤ ε

Because

P (Xn+1 =
1
4n

|Γn = (Xn, n)) ≥ 1
3
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and

P (Γn = (Xn, n)) ≥ P (In = 1)

we can get

P (Xn+1 =
1
4n

) ≥ P (Xn+1 =
1
4n

, Γn = (Xn, n))

≥ 1
3
P (Γn = (Xn, n))

≥ 1
3
P (In = 1)

=
1
3n

then following the Borel-Cantelli lemma see Jeffrey S. Rosenthal [11] (2000), we have:

1 = P (∃ m > Nx,γ s.t. Im = 1)

≤
∞∑

i=N+1

P i((Xi =
1
4i
|X0 = x,Γ0 = γ)

≤
∞∑

i=N+1

Ai((x, γ), B)

≤ ε

Contradiction!! So we have
∑∞

i=1 Ai((x, γ), B) = ∞. Since π(B) = 0, we can get:

∞∑
i=1

T i((x, γ), B) < ∞

Therefore Ai((x, γ), ·) is neither uniformly nor geometrically ergodic.

3 Summable Adaptive Conditions

From the above counter-example, we know that conditions (a) and (b) are not sufficient

conditions to the WLLN of unbounded functions, so we need to strengthen them. Intu-

itively if n is large enough, for any k, l > n, Γk and Γl are “almost” the same, then the

WLLN may hold for any g ∈ L(π). Let us consider the following condition:

(b
′
)[Summable Adaption]

∑∞
i=1 supx∈X ‖PΓi+1(x, ·) − PΓi(x, ·)‖ < ∞ Actually we can

prove the following theorem:
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Theorem 3.1. Consider an adaptive MCMC algorithm. Suppose that conditions (a)

and (b
′
) hold. Let g : X → R be a measurable function such that π(|g|) < ∞. Then for

any starting values x ∈ X and γ ∈ Γ, conditional on X0 = x and Γ0 = γ we have:∑n
i=1 g(Xi)

n
→ π(g)

in probability as n → ∞.

Proof. Denote

Sn =
∞∑

i=n

supx∈X ‖PΓi+1(x, ·) − PΓi(x, ·)‖

for any ε > 0, following condition (b
′
), there exists N1 such that:

P (SN1 > ε) <
ε

4

We can denote E = {SN1 < ε}. Since |g| < ∞, there exists N2, such that for any n > N2

P (|
∑N1

i=1 g(Xi)
n

| >
ε

2
) <

ε

4

Define N = max{N1, N2}, and we can construct a second chain {X ′
n}∞n=N on E such

that X
′
N = XN and X

′
n ∼ PΓN

(X
′
n−1, ·) for n > N , and such that:

∞∑
n=N

P (Xn 6= X
′
n, E) <

ε

4

Define the events: Bn(ε) = {|
∑n

i=N+1 g(X
′
i )

n | > ε
2 , given XN ,ΓN}, then we can get:

lim
n→∞

P (Bn(ε)) = 0

That is when n is large enough we have P (Bn(ε)) < ε
4 . Then we have

P (|
∑n

i=1 g(Xi)
n

| > ε)

≤ P (|
∑N

i=1 g(Xi)
n

| >
ε

2
) + P (|

∑n
i=N+1 g(Xi)

n
| >

ε

2
)

≤ P (|
∑N

i=1 g(Xi)
n

| >
ε

2
) + P (|

∑n
i=N+1 g(Xi)

n
| >

ε

2
, E) + P (|

∑n
i=N+1 g(Xi)

n
| >

ε

2
, Ec)

≤ P (|
∑N

i=1 g(Xi)
n

| >
ε

2
) + P (|

∑n
i=N+1 g(Xi)

n
| >

ε

2
, Ec)

+ P (|
∑n

i=N+1 g(X
′
i)

n
| >

ε

2
, E) +

n∑
i=N+1

P (Xi 6= X
′
i , E)

≤ ε
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Remark:According to the conditions in the above proposition, we know that when

N is large enough, the sequence {Xn}∞n=N is almost equal to {X ′
n}∞n=N which is a Markov

chain with transition kernel PΓn . At the first sight, adaptive algorithms that satisfy the

conditions (a) and (b
′
) cannot show the adaptive MCMC’s advantages sufficiently. But

following Roberts and Rosenthal [10] (2005), we know that in lots of cases, the adaptive

MCMC will tune the parameter to an “optimal” one after “learning” the information

from the historical samples. So we can adjust the convergence speed of Sn such that the

adaptive chain can learn enough to find the optimal parameter, that is we can make N

very large, such that ΓN is almost a “good” parameter.

4 The WLLN For Adaptive Metropolis-Hastings Algorithm

Usually we construct the transition kernel using Metropolis-Hastings algorithms. Sup-

pose that π(·) has a density π, and Q(x, ·) is the proposal distribution with a density

q(x, y), i.e. Q(x, dy) = q(x, y)dy; then the Metropolis-Hasting algorithm proceeds as

below:

First we need to choose the starting value X0. Then given Xn, generate a proposal

Yn+1 from Q(Xn, ·). Also flip an independent coin, whose probability of heads equals to

α(Xn, Yn+1), where

α(x, y) = min
[
1,

π(y)q(y, x)
π(x)q(x, y)

]
Then if the coin is heads, “accept” the proposal by setting Xn+1 = Yn+1; otherwise set

Xn+1 = Xn. Replace n by n+1 and repeat. We can observe that the Metropolis-Hastings

algorithms do not have densities with respect to some finite measure. However, if the

proposal kernels have uniformly bounded densities, Roberts and Rosenthal [4] (2005)

have proved the following ergodic property:

Corollary 4.1. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adap-

tation property, and also that each Pγ is ergordic for π(·). Suppose further that for each

γ ∈ Y, Pγ represents a Metropolis-Hastings algorithm with proposal kernel Qγ(x, dy) =
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fγ(x, y)λ(dy) having a density fγ(x, y) with respect to some finite reference measure

λ(·) on X , with corresponding density w for π(·) so that π(dy) = w(y)λ(dy). Finally,

suppose fγ(x, y) are uniformly bounded, and that for each fixed y ∈ X , the mapping

(x, γ) 7→ fγ(x, y) is continuous with respect to some product metric space topology, with

respect to which X ×Y is compact. Then limn→∞ T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

Then we can prove the following WLLN for unbounded measurable function g.

Theorem 4.1. Consider an adaptive MCMC that satisfies the conditions in corrollary

4.1. Then for any measurable function g such that λ(|g|) < ∞ and π(|g|) < ∞ we have:∑n
i=1 g(Xi)

n
→ π(g)

in probability as n → ∞, conditional on X0 = x∗ and Γ0 = γ∗.

Remark: If there exist M > m > 0 such that m < w(x) < M , where π(dy) =

w(y)λ(dy), then we know that λ(|g|) < ∞ if and only if π(|g|) < ∞. A typical case is

that the state space X is compact set in Rd, w(y) is continuous function on X and λ is

Lebesgue measure. Then we have M > w(x) > m > 0, and the WLLN of the adaptive

MCMC satisfying the conditions in corollary 4.1 will hold for any measurable function

g such that π(|g|) < ∞.

We will prove the theorem following the steps below:

Step 1: For all M > 0, denote EM = {x ∈ X ||g(x)| ≤ M} and for all ε define:

Mε = inf{M > 0|λ(EM ) ≥ 1 − ε,

∫
EM

|g(x)|λ(dx) ≥ s − ε}

= inf{M > 0|λ(Ec
M ) ≤ ε,

∫
Ec

M

|g(x)|λ(dx) ≤ ε}

If λ(|g|) < ∞, we will prove that ε · Mε → 0 as ε → 0;

Step 2: Suppose Pγ(x, A) =
∫
A f̃γ(x, y)λ(dx) + rγ(x)δx(A) then Under the conditions

of the theorem 4.1 we have 0 < rγ(x) < η;

Step 3: Suppose An
γ(x,A) = P (Xn ∈ A|X0 = 0,Γ0 = γ), then there exist L > 0 and

0 < η < 1, then under the conditions of the theorem, we have

An
γ(x,B) =

∫
B

h(n)
γ (x, y)λ(dy) + w(n)

γ (x)δx(B)



11

such that h
(n)
γ (x, y) < L and w

(n)
γ (x) < ηn;

Step 4: Prove the WLLN using coupling methods.

4.1 Some Technical Results

Suppose the probability of accepting a proposal y generated from x according to Qγ is

given by αγ(x, y) = min{1,
g(y)fγ(y,x)
g(x)fγ(x,y)}, so we have:

Pγ(x,B) =
∫

B
fγ(x, y)αγ(x, y)λ(dy) + (1 −

∫
X

αγ(x, y)λ(dy))δx(B)

We can denote f̃γ(x, y) = fγ(x, y)αγ(x, y), rγ(x) = (1 −
∫
X αγ(x, y)λ(dy)) and suppose

fγ(x, y) < F . Obviously we have f̃γ(x, y) < F since αγ(x, y) ≤ 1. We also need to prove

the following lemmas before we prove the theorem.

Lemma 4.2. Suppose (χ,F, λ) is a probability space, and g : χ → R is a measurable

function such that λ(|g|) = s < ∞. Then for ∀ε > 0, there exists M > 0, such that:

λ(EM ) ≥ 1 − ε and
∫
EM

|g(x)|λ(dx) ≥ s − ε

Proof. Suppose there exits ε0 > 0, for each M , we have

λ(Ec
M ) ≥ ε0 (4.5)

or ∫
EM

|g(x)|λ(dx) ≤ s − ε0 (4.6)

If (4.5) holds, we have
∫
Ec

M
|g(x)|π(dx) ≥ Mε0 for all M , contradiction!

If (4.6) holds, we have
∫
χ |g(x)|1En(x)π(dx) ≤ s − ε0 for all n ∈ N, suppose

Yn = |g(X)|1En(x)

obviously Yn ↑ |g(X)|, then by the monotone convergence theorem

Eλ(|g(x)|) = limn→∞E(Yn) ≤ s − ε0

which is contradicting with Eλ(|g(x)|) = s.
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Lemma 4.3. Suppose g : χ → R is a measurable function such that λ(|g|) = s <

∞. Then for each sequence {εn} → 0, there exists a subsequence εnk
↘ 0 such that

εnk
Mεnk

→ 0 as n → 0.

Proof. Following lemma 3.2 we know that 0 ≤
λ(Ec

Mεn
)

εn
≤ 1, there is a subsequence

εnk
↘ 0 such that {

λ(Ec
Mεnk

)

εnk
} is convergent to some a. Then we can think about the

problem in the following two cases:

(1) 0 < a ≤ 1; then there exists N > 0 such that for each k > N , |
λ(Ec

Mεnk
)

εnk
− a| < a

2 , i.e.

λ(Ec
Mεnk

) > a
2εnk

, so

0 = limk→∞

∫
EMc

εnk

|g(x)|π(dx)

≥ limk→∞λ(Ec
Mεn

)Mεnk

≥ limk→∞
a

2
εnk

Mεnk

≥ 0

So limk→∞εnk
Mεnk

= 0

(2) a = 0; then there exists N , k > N , such that

λ(Ec
Mεnk

) <
1
2
εnk

(4.7)

And following (4.5) for each δ > 0,

λ(|g(x)| ≥ Mεnk
− δ) > εnk

(4.8)

Following (4.7) and (4.8), let δ → 0, we can get:

λ(|g(x)| = Mεnk
) ≥ εnk

− 1
2
εnk

=
1
2
εnk
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Since εnk+1
< εnk

, Mεnk
≤ Mεnk+1

,

0 = limk→∞

∫
Ec

Mεnk

|g(x)|λ(dx)

≥ limk→∞

∫
{|g(x)|=Mεn+1}

|g(x)|λ(dx)

= limk→∞Mεnk+1
· λ(|g(x)| = Mεnk+1

)

≥ limk→∞
1
2
Mεkn+1

· εnk+1

≥ 0

So limk→∞Mεnk+1
· εnk+1

= 0

Lemma 4.4. Suppose g : χ → R is a measurable function such that λ(|g|) = s < ∞.

Then ε · Mε → 0 as ε → 0.

Proof. Suppose there exists c > 0 such that for each n ∈ N , there exists εn < 1
n and

εn ·Mεn ≥ c for all n, then every subsequence {εnk
} of {εn} satisfies that εnk

·Mεnk
≥ c,

which is contradicting with the lemma 4.3. So ε · Mε → 0 as ε → 0.

Lemma 4.5. Under the conditions of corollary 4.1, we have that condition (a) holds.

Proof. Following the proof of Corollary 12 in Roberts and Rosenthal [4](2005), we can

get the lemma directly.

Lemma 4.6. Condition (a) is equivalent to: There exist M > 0 and 0 < ρ < 1 such

that for any x, γ we have:

‖Pn
γ (x, ·) − π(·)‖ ≤ Mρn

Proof. Suppose tγ(n) = 2 supx∈X ‖Pn
γ (x, ·) − π(·)‖, following Roberts and Rosenthal [9]

(2004) Proposition 3(c), we know that tγ(m + n) ≤ tγ(m)tγ(n). Under condition (a),

there exists n which is independent of γ such that tγ(n) ≡ β < 1, so for all j ∈ N,

tγ(jn) ≤ (tγ(n))j = βj . Therefore, we have:

‖Pm
γ (x, ·) − π(·)‖ ≤ ‖P bm/ncn

γ (x, ·) − π(·)‖ ≤ 1
2
tγ(bm/ncn) ≤ βbm/nc ≤ β−1(β1/n)m

so all the kernels are uniformly ergodic with M = β−1 and ρ = β1/n.
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Lemma 4.7. Suppose Pγ(x,A) =
∫
A f̃γ(x, y)λ(dx) + rγ(x)δx(A), then there exist mea-

surable functions f̃
(n)
γ (x, y) on χ2 such that Pn

γ (x,A) =
∫
A f̃

(n)
γ (x, y)λ(dx) + rn

γ (x)δx(A)

Proof. We will prove it by induction, and obviously the conclusion holds when n = 1.

We suppose it also holds when n = k, then let’s consider the case when n = k + 1:

P k+1
γ (x,A) =

∫
χ

P k
γ (y,A)Pγ(x, dy)

=
∫

χ
[
∫

A
f̃ (k)

γ (y, z)λ(dz) + rk
γ(y)δy(A)][f̃γ(x, y)π(dy) + rγ(x)δx(dy)]

=
∫

χ

∫
A

f̃ (k)
γ (y, z)π(dz)fγ(x, y)λ(dy) + f̃ (k)

γ (y, z)π(dz)rγ(x)δx(dy)

+ rk
γ(y)δy(A)f̃γ(x, y)λ(dy) + rk

γ(y)δy(A)rγ(x)δx(dy)

=
∫

A
[
∫

χ
f̃ (k)

γ (y, z)fγ(x, y)λ(dy)]π(dz) +
∫

A
rγ(x)f̃k

γ (x, z)π(dz)

+
∫

A
rk
γ(y)f̃γ(x, y)λ(dy) + rk+1

γ (x)δx(A)

=
∫

A
f̃ (k+1)

γ (x, z)λ(dz) + rk+1
γ (x)δx(A)

where

f̃ (k+1)
γ (x, z) =

∫
χ

f̃ (k)
γ (y, z)f̃γ(x, y)π(dy) + rγ(x)f̃k

γ (x, z) + rk
γ(x)f̃γ(x, z) (4.9)

Lemma 4.8. Suppose Pγ(x,A) =
∫
A f̃γ(x, y)λ(dx) + rγ(x)δx(A) where λ(·) is a finite

reference measure on X such that λ({x}) = 0 for any x, with corresponding density w

for π(·) so that π(dy) = w(y)λ(dy). Then under condition (a),we have 0 < rγ(x) < η,

where the η is the same as in lemma 4.6.

Proof. Because Pγ(x, {x}c) =
∫
χ−x f̃γ(x, y)π(dx), Pγ(x, x) = rγ(x) and π(x) = 0, and

following (4.9), we know that |Pn
γ (x, {x}) − π({x})| = rn

γ (x) for each x ∈ χ. Then

following condition (a), we know for ∀ε > 0, there exists N such that rN
γ (x) < ε, that is

rγ(x) < ε
1
N for each γ and x. Then we take ε < 1, and we can get η = ε

1
N < 1

Lemma 4.9. Suppose An
γ(x,A) = P (Xn ∈ A|X0 = 0, Γ0 = γ), then under the conditions

of corollary 4.1, there exist L > 0 and 0 < η < 1

An
γ(x,B) =

∫
B

h(n)
γ (x, y)λ(dy) + w(n)

γ (x)δx(B)
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such that h
(n)
γ (x, y) < L and w

(n)
γ (x) < ηn

Proof. Suppose the joint distribution of (X1, X2, · · ·, Xn, Γ1, Γ2, · · ·, Γn−1) given X0 = x

and Γ0 = γ is µ
(n)
(x,γ), obviously the marginal distribution of Xn is A(n)((x, γ), ·). Since

γn is a measurable function of (x1, x2, · · ·, xn, γ1, γ2, · · ·, γn−1), we have:

A(n+1)((x, γ), B) =
∫
Xn×Yn−1

PΓn(xn, B)µ(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

=
∫
Xn×Yn−1

[
∫

B
f̃γn(xn, y)λ(dy) + rγn(xn)(δxn(B))]µ(n)

(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

=
∫

B

∫
Xn×Yn−1

f̃γn(xn, y)µ(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)λ(dy)

+
∫
Xn×Yn−1

rγn(xn)δxn(B)µ(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

We can observe that the second term:∫
Xn×Yn−1

rγn(xn)δxn(B)µ(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

=
∫
Xn−1×Yn−1

∫
X

rγn(xn)δxn(B)Pγn−1(xn−1, dxn)µ(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−1)

=
∫
Xn−1×Yn−1

∫
B

rγn(xn)Pγn−1(xn−1, dxn)µ(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

=
∫
Xn−1×Yn−1

∫
B

rγn(xn)f̃γn−1(xn−1, xn)λ(dxn)µ(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

+
∫
Xn−1×Yn−1

∫
B

rγn(xn)rγn−1(xn−1)δxn−1(dxn)µ(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

If γn = γn(x, x1, · · ·, xn, γ, γ1, · · ·, γn−1), then we can define:

γi
n = γn(x, x1, · · ·, xn−i−1, xn−i, xn−i, · · ·, xn−i, γ, γ1, · · ·, γ1

n−i+1, · · ·, γi−1
n−1)

Similarly we can compute the second term of the above inequality:∫
Xn−1×Yn−1

∫
B

rγn(xn)rγn−1(xn−1)δxn−1(dxn)µ(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

=
∫
Xn−2×Yn−1

∫
B

rγ1
n
(xn−1)rγn−1(xn−1)Pγn−2(xn−2, dxn−1)µ

(n−2)
(x,γ) (dx1 · · · dxn−2dγ1 · · · dγn−3)

=
∫
Xn−2×Yn−1

∫
B

rγ1
n
(xn−1)rγn−1(xn−1)f̃γn−2(xn−2, xn−1)λ(dxn−1)µ

(n−2)
(x,γ) (dx1 · · · dxn−2dγ1 · · · dγn−3)

+
∫
Xn−2×Yn−1

∫
B

rγ1
n
(xn−1)rγn−1(xn−1)rγn−2(xn−2)δxn−2(dxn−1)µ

(n−2)
(x,γ) (dx1 · · · dxn−2dγ1 · · · dγn−3)
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Inductively we have:

h(n+1)
γ (x, y) =

∫
Xn×Yn−1

f̃γn(xn, y)µ(n)
(x,γ)(dx1 · · · dxndγ1 · · · dγn−1)

+
∫
Xn−1×Yn−2

rγn(xn)f̃γn−1(xn−1, xn)µ(n−1)
(x,γ) (dx1 · · · dxn−1dγ1 · · · dγn−2)

+
∫
Xn−2×Yn−3

∫
B

1∏
i=0

rγi
n−i

(xn−i)f̃γn−2(xn−2, xn−1)µ
(n−2)
(x,γ) (dx · ·dxn−2dγ1 · ·dγn−3)

+ · · ·

+
∫

B

n−1∏
i=0

rγi
n−i

(x1)f̃γ(x, x1)µ1
(x,γ)(dx1)

≤ F
n−1∑
i=0

ηi

≤ F

1 − η

and

w(n+1)
γ (x) =

n−1∏
i=0

rγn−i
n−i

(x)

≤ ηn

4.2 The proof of Theorem 4.1

Now we state the proof using the above lemmas as below:

Proof. suppose π(g) = 0,λ(|g|) = s,Dn = supx∈χ‖PΓn+1(x, ·) − PΓn‖ and fγ(x, y) < F .

Lemma 4.2 implies that given ε > 0, there exits η1 > 0 such that Mη1η1 < ε; denote

η2 = ε
F , then we have: ∫

Ec
Mη2

|g(x)|λ(dx) ≤ ε

Following lemma 4.4, we can find η < min{η1, η2} such that Mηη < ε and∫
Ec

Mη

|g(x)|λ(dx) ≤ ε

Then we define gk(x) = g(x)δEk
(x), Since gMη(x) is a bounded measurable function,

then we can find an integer N such that:

Eγ,x[|
∑N

i=1 gMη(Xi)
N

|] < ε, x ∈ X γ ∈ Y
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Denote Hn = {Dn ≥ η
N2 }, then Diminishing Adaptive condition implies that we can find

N1 ∈ N such that for each n > N1, P (Hn) ≤ η
N and |g(x∗)|ηN1

N(1−η) < ε. Define the event

E =
⋂n+N

i=n+1 Hc
i . Then when n > N1, we have P (Ec) < η.For all n ≥ N1, following the

triangle inequality and induction, on event E we have:

supx∈χ‖PΓn+k
(x, ·) − PΓn(x, ·)‖ ≤ η/N, k ≤ N

In particular, for all x ∈ χ and k − N ≤ m ≤ k

‖PΓk−N
(x, ·) − PΓm(x, ·)‖ ≤ η, on E

so ‖PN
Γk−N

(x, ·) − P (Xk ∈ ·|Xk−N = x,Gk−N )‖ ≤ η on E for all x ∈ χ. Then we can

construct a second chain {X ′
n}k

n=k−N such that X
′
k−N = Xk−N and X

′
n ∼ PΓk−N

(X
′
n−1, ·)

for k − N + 1 ≤ n ≤ k such that P (X
′
k 6= Xk) ≤ η. So for any n > N1, we have the

following inequality (*):

E(
1
N

|
n+N∑

i=n+1

g(Xi)|X0 = x∗, Γ0 = γ∗)

≤ E(E(|
∑n+N

i=n+1 gMη(Xi)
N

||Gn)|X0 = x,Γ0 = γ) + E(
|
∑n+N

i=n+1(g − gMη)(Xi)
N

||X0, Γ0)

≤ E(EΓn,Xn(|
∑N

i=1 gMη(Xi)
N

|)|X0, Γ0) + Mηη + MηP (Ec) +
∑n+N

i=n+1 E(|(g − gη)(Xi)||X0, Γ0)
N

≤ ε + ε + Mηη +

∑n+N
i=n+1

∫
Ec

Mη

|g|(y)||A(i)((x∗, γ∗), dy)

N

≤ ε + ε + ε +

∑n+N
i=n+1

∫
Ec

Mη

|g|(y)|h(i)
γ∗ (x∗, y)λ(dy) + w

(i)
γ∗ (x∗)|g(x∗)|

N

≤ 3ε +

∑n+N
i=n+1 L

∫
Ec

Mη

|g|(y)|λ(dy) + ηi|g(x∗)|

N

≤ (3 + L)ε +
|g(x∗)|ηn+1

N(1 − η)

≤ (4 + L)ε (∗)

Now consider any integer T sufficiently large such that:

max[
N1Fs + |g(x∗)|

1−η

T
,
NFs + |g(x∗)|

1−η

T
] ≤ ε (4.10)
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Then we have

E(|
∑T

i=1 g(Xi)
T

||X0 = x∗, Γ0 = γ∗)

≤ E(|
∑N1

i=1 g(Xi)
T

||X0 = x∗, Γ0 = γ∗)

+ E(
1

bT−N1
N c

bT−N1
N

c∑
j=1

1
N

N∑
k=1

g(XN1+(j−1)N+k|X0 = x∗, Γ0 = γ∗))

+ E(|

∑T

N1+bT−N1
N

cN+1
g(Xi)

T
||X0 = x∗, Γ0 = γ∗)

For the first term we have:

E(|
∑N1

i=1 g(Xi)
T

||X0 = x∗, Γ0 = γ∗)

≤
∑N1

i=1 E(|g(Xi)||X0 = x∗,Γ0 = γ∗)
T

≤
∑N1

i=1

∫
X |g(y)|A(n)((x∗, γ∗), dy)

T

≤
∑N1

i=1

∫
X |g(y)|h(n)

γ (x∗, y)λ(dy) + |g(x∗)|ηi

T

≤
N1Fs + |g(x∗)|

1−η

T

≤ ε

and for the third one we know that:

E(|

∑T
N1+bT−N∗

N
cN+1

g(Xi)

T
|)

≤

∑T
N∗+bT−N∗

N
cN+1

E(|g(Xi)|

T

≤
NFs + |g(x∗)|

1−η

T

≤ ε

Finally following the inequality (*), the second term ≤ (4 + L)ε, so we have

E(|
∑T

i=1 g(Xi)
T

|) ≤ (6 + L)ε

Markov’s inequality then gives that

P (|T−1
T∑

i=1

g(Xi)| ≥ ε
1
2 ) ≤ (6 + L)ε

1
2
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Since this holds for all sufficiently large T , and since ε > 0 is arbitrary, the result

follows.

Remark: Here we actually get the conclusion: for any ε > 0, x ∈ X and γ ∈ Y,

there exists N such that for any n > N we have:

P (|
∑n

i=1 g(Xi)
n

| > ε) < ε

But here the “N” is dependent on the choice of the starting value x, but independent

of the starting value γ. In fact, this kind of dependence of the starting value is reasonable

when g is unbounded. Let us consider the following example which is a general Markov

chain with the kernel being uniformly ergodic:

Consider X = (0, 1], and

P (x,A) =
2
3
µ(A) +

1
3
δx(A)

where µ is Lebesgue measure on (0, 1]. Since∫
X

P (x,A)µ(dx) =
∫
X

[
2
3
µ(A) +

1
3
δx(A)]µ(dx)

=
2
3
µ(A) +

1
3
µ(A)

= µ(A)

π is stationary with respect to P (x, ·). And following that:

‖P (x, ·) − π(·)‖var = ‖ − 1
3
µ(A) +

1
3
δx(A)‖var ≤ 1

3

Therefore, P is uniformly ergodic with respect to µ. Now suppose g(x) = x− 1
2 , then

µ(g) = 2, and then P (X1 ∈ (0, 1
m2 ]|X0 = 1

m2 ) = 2
3m2 + 1

3 for each m ∈ N. Suppose for

some 0 < ε < 1
3 , there exists N such that P (|

∑N
i=1 g(Xi)

N | > ε|X0 = x0) < ε for all x0 ∈ X .

If we take x0 = (3N)−2, since g(Xi) > 0, we have:

P (|
∑N

i=1 g(Xi)
N

− π(g)| > ε|X0 =
1

(3N)2
) ≥ P (

g(X1)
N

− 2 > ε|X0 =
1

(3N)2
)

≥ P (g(X1) ≥ 3N |X0 =
1

(3N)2
)

≥ P (X1 ≤ 1
(3N)2

|X0 =
1

(3N)2
)

>
1
3

Contradiction!
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4.3 A Corollary

In Roberts and Rosenthal [4] (2005), they also studied the adaptive MCMC with bounded

densities and proved the following corollary:

Corollary 4.10. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adap-

tation property, and also that each Pγ is ergordic for π(·). Suppose further that for

each γ ∈ Y, Pγ(x, dy) = fγ(x, y)λ(dy) has a density fγ(x, y) with respect to some fi-

nite reference measure λ(·) on X . Finally, suppose fγ(x, y) are uniformly bounded, and

that for each fixed y ∈ X , the mapping (x, γ) 7→ fγ(x, y) is continuous with respect

to some product metric space topology, with respect to which X × Y is compact. Then

limn→∞ T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

We also have the WLLN for the unbounded measurable function g under the same

conditions in the corollary 4.10. Actually Pγ(x,A) =
∫
A fγ(x, y)λ(dy) is a special case

of Pγ(x,A) =
∫
A fγ(x, y)λ(dy) + rγ(x)δx(A) when rγ(x) ≡ 0. We just plug in η = 0 to

the proof of theorem 4.1, then we can prove the following corollary:

Corollary 4.11. Consider an adaptive MCMC that satisfies the conditions in Corollary

4.10, then for any measurable function g such that λ(|g|) < ∞ and π(g) < ∞ we have:∑n
i=1 g(Xi)

n
→ π(g)

in probability as n → ∞, conditional on X0 = x and Γ0 = γ.

Remark:The corollary 4.11 indicates that: for any ε > 0, x ∈ X and γ ∈ Y, there

exists N such that for any n > N we have:

P (|
∑n

i=1 g(Xi)
n

| > ε) < ε

However it is not hard to find that such an “N” is independent of the choice of the

initial values x and γ.

4.4 Applications

As an application of theorem 4.1, we will think about the Adaptive Metropolis algorithm

of Haario et al. [7] (2001) , in which the target distribution π is supported on the subset
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S ⊆ Rd and it has the density π with a slight abuse of notation with respect to the

Lebesgue measure on S.

Now let us state the adaptive algorithm, at n−step, we will use the Gaussian distribution

qn with mean at the current point Xn−1 and covariance Cn = Cn(X0, X1, · · ·, Xn−1) as

the proposal distribution, where Cn is defined as following:

Cn =


C0, n ≤ n0

sdcov(X0, · · ·, Xn−1) + sdεId, n > n0

Here sd is a parameter that depends only on dimension d , ε > 0 is a constant that we may

choose very small compared to the size of S, Id denotes the d-dimensional identity matrix

and the initial covariance C0 is an arbitrary strictly positive definite matrix according to

our best prior knowledge. Haario et al. [7] (2001) have prove the following Strong Laws

of Large Number(SLLN):

Theorem 4.2. Let π be the density of a target distribution supported on a bounded

measurable subset S ⊆ Rd, and assume that π is bounded from above. Let ε > 0 and

let µ0 be any initial distribution on S. Define the adaptive MCMC as above. Then the

AMCMC simulates properly the target distribution π: for any bounded and measurable

function f : S → R, the equality:

lim
n→∞

1
n + 1

(f(X0) + f(X1) + · · · + f(Xn)) =
∫

S
f(x)π(dx)

holds almost surely.

However following our theorem 4.1, we actually can prove that the WLLN holds for

any unbounded measurable function g with λ(|g|) < ∞ where λ is Lesbesgue measure.

Corollary 4.12. The WLLN holds for the above adaptive MCMC and any measurable

function g satisfying λ(|g|) < ∞ and π(|g|) < ∞.

Proof. In this adaptive algorithm, according to the formula (14) in Haario et al. [7]

(2001), the parameter space Y consists of all the d × d matrix γ satisfying that c1Id ≤

γ ≤ c2Id for some c1 > 0 and c2 > 0. If we consider Y as a d2 vector space and define
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the metric on it as d(γ1, γ2) =

√∑
1≤i≤j≤d

(
(γ1)ij − (γ2)ij

)2

. Obviously Y is compact

with respect this metric topology, hence X × Y is also compact. Furthermore since

the proposal distribution Qγ(x, ·) = MV N(x, γ), Pγ is ergodic for π(·) and the density

mapping (x, γ) → fγ(x, y) are continuous and bounded. Therefore following the theorem

4.1 we have the conclusion.
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