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Abstract

We will discuss the recurrence on the state space of the adaptive MCMC algo-

rithm using some examples. We present the ergodicity properties of adaptive MCMC

algorithms under the minimal recurrent assumptions, and show the Weak Law of

Large Numbers under the same conditions. We will analyze the relationship between

the recurrence on the product space of state space and parameter space and the er-

godicity, give a counter-example to open problem 21 in Roberts and Rosenthal’s

paper, and try to give the positive results under some stronger conditions.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used to generate samples from

any probability distribution π on the state space X . However it is generally acknowl-

edged that the choice of an effective transition kernel is essential to obtain reasonable

results by simulation in a limited amount of time. And such kernels are often very diffi-

cult to be well chosen (see Gelman et al.1996 [4]; Gilks et al 1996 [5]; Haario et al 1991

[7]; Roberts et al 1997 [11]). A possible solution so-called adaptive MCMC has been

proposed recently. The adaptive MCMC algorithm will tune the transition kernel at

each step using the past simulations and try to “learn” the best parameter values while

the chain runs. See Gilks et al (1998) [6], Haario et al. (1999)[8]; (2001) [9], Andrieu and

Moulines (2005) [2], Andrieu and Robert (2001)[3], Roberts and Rosenthal(2005) [14]

[15], Atchade and Rosenthal (2005) [17], and Andieu and Achade (2005) [1] for example.
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An important paper about the ergodicity of AMCMC was written by Roberts and Rosen-

thal [14] (2007). They present some simpler conditions, which still ensure the ergodicity

of the specified target distribution. They also mentioned some research directions. We

will continue to study the ergodicity of AMCMC along these directions, try to find some

weaker conditions to ensure the ergodicity and discuss the relationship between the re-

currence on the product space (of the state space and the parameter space) and the

ergodicity.

The paper is organized as follows. Section 2 gives some introductions to the notations

and definitions. In section 3, we will introduce our main results: the ergodic theorem of

AMCMC under the weakest drift conditions such that each kernel is positive recurrence

and the weak law of large numbers (WLLN) under the same conditions. Further we will

discuss the uniformly recurrent conditions in the same section after constructing some

simple examples to show that usually AMCMC does not have good recurrence property.

In section 4 and section 5 we will give the proof of the ergodic theorem and the WLLN.

Finally, we consider the recurrent property on the product space of the state space and

the parameter one in section 6. We will give the negative answer to the open problem 21

in Roberts and Rosenthal (2005) [14] using a counter example, and present some positive

results under stronger conditions.

2 Preliminaries

Before describing the procedure under study, it is necessary to introduce some notation

and definitions.

2.1 Adaptive MCMC

Suppose π(·) is a fixed “target” probability distribution, on a state space X with σ−
algebra F . The common MCMC algorithm is to construct Markov chain kernel P which

has π(·) as its stationary distribution such that:

‖Pn(x, ·)− π(·)‖ →n→∞ 0
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for any x ∈ X , where ‖µ(·) − ν(·)‖ = supB∈F |µ(B) − ν(B)| is the usual total variation

distance. However in an AMCMC we will try to select an “optimal” kernel at each step

using the information from the historical simulation, like what Haario et al (2001) [9] did

in their well-known AMCMC algorithm. Atchade and Rosenthal (2003) [17], Andrieu

and Moulines (2003) [2] generalize their results with proving convergence of more general

adaptive MCMC algorithms. Here we will formalize the AMCMC as what Roberts and

Roenthal [14](2007) did.

We let {Pγ}γ∈Y be a collection of Markov chain kernels on X , each of which is φ−irreducible

and aperiodic(which it usually will be) and has π(·) as a stationary distribution: (πPγ)(x, ·) =

π(·), and we call the set Y parameter space. Let Γn be Y−valued random variables which

are updated according to specific rules. Consider a discrete time series {Xn} on χ as

below:

P [Xn+1 ∈ A|Xn = x,Γn = γ,Gn] = Pγ(x,A) (2.1)

where Gn = σ(X0, · · ·, Xn,Γ0, · · ·,Γn). Then we call {Xn} an adaptive MCMC with

adaptive scheme Γn. Let

A(n)((x, γ), B) = P [Xn ∈ B|X0 = x,Γ0 = γ], B ∈ F

and

T ((x, γ), n) = ‖A(n)((x, γ), ·)− π(·)‖

According to the definition in Roberts, Rosenthal, and Schwartz [16] (1998), we say a

family {Pγ}γ∈Y of Markov chain kernels is simultaneously strongly aperiodically geomet-

rically ergodic if there is C ∈ F , V : X → [1,∞), δ > 0, λ < 1, and b < ∞, such that

supC V = v < ∞, and

(i) for each γ ∈ Y, there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δνγ(·)
for all x ∈ C; and

(ii) (PγV )(x) ≤ λV (x) + bIC(x)

In Roberts and Rosenthal [14] (2007), they proved the following ergodic theorems:

Theorem 2.1. Consider an adaptive MCMC algorithm on a state space χ, with adap-

tation index Y and the adaptive scheme is Γn. π(·) is stationary for each kernel Pγ for
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γ ∈ Y. Suppose also that {Pγ}γ∈Y is simultaneously strongly aperiodically geometrically

ergodic and the Adaptive scheme satisfies the following condition:

[Diminishing Adaption] limn→∞Dn = 0 in probability, where Dn = supx∈X ‖PΓn+1 −
PΓn‖ is a Gn+1-measurable random variable.

Then limn→∞T (x, γ, n) = 0 for all x ∈ X and γ ∈ Y.

2.2 Recurrence Properties

In this part we will recall the definition of recurrence of general Markov chain and some

related results. The recurrence property describes the behavior of the occupation time

random variable ηA =
∑∞

n=1 I{Xn ∈ A} which counts the number of visits to a set A.

Therefor we have the following definition (see Chapter 8 in Meyn and Tweedie (1993)

[11]):

The set A is called recurrent if Ex[ηA] = ∞ for all x ∈ A. If every A is recurrent, we say

that the chain is recurrent.

3 The Ergodic Property And The Weak Law Of Large

Numbers

3.1 The main results

First let us think about how to compare two elements γ1 and γ2 in the parameter space

Y. Actually what we need to describe is the difference between the respective kernels Pγ1

and Pγ2 , i.e. supx∈X ‖Pγ1(x, ·)− Pγ2(x, ·)‖. Therefore we will define the metric d(γ1, γ2)

on Y ⊂ Rq as:

d(γ1, γ2) = sup
x∈X

‖Pγ1(x, ·)− Pγ2(x, ·)‖

We suppose there exists a transition kernel Pγ corresponding to each γ ∈ Rq, and consider

the following set:

∆ = {γ ∈ Rq| PγV ≤ V − 1 + b1C}

Now we can state our main results as below:
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Theorem 3.1. (Ergodicity Theorem) Consider an adaptive MCMC algorithm with

Diminishing Adaption, such that there is C ∈ F , V : X → [1,∞) such that π(V ) < ∞,

δ > 0, and b < ∞, with supC V = ν < ∞, and:

(i) for each γ ∈ Y, there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δνγ(·)
for all x ∈ C; and

(ii)PγV ≤ V − 1 + bIC for each γ;

(iii)the set ∆ is compact with respect to the metric d.

Suppose further that the sequence {V (Xn)}∞n=0 is bounded in probability, given X0 = x∗

and Γ0 = γ∗. Then limn→∞ T (x∗, γ∗, n) = 0.

Usually we also want to estimate the integral π(g) =
∫
X g(x)π(dx) of various functions

g : X → R using the laws of large numbers for ergodic averages of the form:

1
n

n∑

i=1

g(Xi) →n→∞ π(g) in probability or almost surely

There are many references e.g Rosenthal and Tierney (1994) [18], Meyn and Tweedie

(1993) [11] which give the proof and applications of the LLN of general Markov Chains.

Regarding the LLN of AMCMC, there are also many papers e.g. Andieu and Achade

(2005) [1], Andrieu and Moulines (2005) [2], Andrieu and Robert (2001)[3], Roberts and

Rosenthal(2005) [14], Atchade and Rosenthal (2005) [15], C. Yang (2007) [19] giving the

proof under various conditions. Especially, an counterexample was constructed in C.

Yang (2007) [19] to show that the WLLN of AMCMC may NOT hold for unbounded

measurable function even if the AMCMC is ergodic with respect to the target distri-

bution. Here we will prove the WLLN of AMCMC for bounded function under the

conditions of theorem 3.1.

Theorem 3.2. (WLLN) Consider an adaptive MCMC algorithm. Suppose that the

conditions of Theorem 3.1 hold. Let g : X → R be a bounded measurable function. Then

for any starting values x ∈ X and γ ∈ Y, conditional on X0 = x and Γ0 = γ we have

∑n
i=1 g(Xi)

n
→ π(g)

in probability as n →∞.
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3.2 The Uniform Minimal Drift Condition

Intuitively, we hope the AMCMC is recurrent whenever each kernel is positive recur-

rent with respect to the target distribution π. However following the example be-

low, we get the negative conclusion. Consider the following adaptive MCMC: sup-

pose the state space X = {1, 2}, the parameter space Y = N × {1, 2} with each ker-

nel Pn,1 =




1− 1
2n

1
2n

1
2n 1− 1

2n


 and Pn,2 =




1
2n 1− 1

2n

1− 1
2n

1
2n


, and the stationary

distribution π(1) = π(2) = 1
2 . We design an adaptive algorithm as:

Γn =





(n, 1) if Xn = 1

(n, 2) if Xn = 2

Lemma 3.1. The above adaptive MCMC is NOT recurrent, although each kernel is

positive recurrent with respect to the distribution π(·). Actually we have E2[η2] < ∞,

which means that the chain will NOT come back to {2} after a long run when it starts

from {2}. Therefore limn→∞ P (Xn = 2|X0 = i) = 0 for i = 1, 2, which is not equal to

π(2).

Proof. Suppose η2 =
∑∞

n=1 I{Xn = 2}. Then according to the adaptive algorithm, we

have:

P2(η2 = n) =
∑

1≤i1<i2···<in<∞

Π∞i=1(1− 1
2i )

Πn
j=1(1− 1

2ij
)
Πn

j=1

1
2ij

≤
∑

1≤i1<i2···<in<∞
Πn

j=1

1
2ij

=
∑

1≤i1<i2···<in<∞

1

2
Pn

j=1 ij

≤
∞∑

m=
n(n+1)

2

Cn
m

1
2m

=
1
n!

∞∑

m=
n(n+1)

2

m(m− 1) · · · (m− n + 1)
1

2m

Consider the functional series Sn(x) =
∑∞

m=
n(n+1)

2

m(m − 1) · · · (m − n + 1)xm for
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0 < x < 1, then we have:

Sn(x) = xn[
∞∑

m=
n(n+1)

2

xm](n)

= xn[
x

n(n+1)
2

1− x
](n)

= xn
n∑

i=0

Ci
n

(n(n+1)
2 )!

(n(n+1)
2 − i)!

x
n(n+1)

2
−ii!(1− x)−i

≤ x
n(n+1)

2 ×
n∑

i=0

Ci
nxn−i(x− 1)−i (n(n+1)

2 )!

(n(n+1)
2 − n)!

n!

≤ x
n(n+1)

2 × (x +
1

1− x
)n(

n(n + 1)
2

)nn!

Therefore we have:

P2(η2 = n) ≤ (
1
2
)

n(n+1)
2 × (

5
2
)n × (

n(n + 1)
2

)n

=
[
(
1
2
)

(n+1)
2 × (

5
2
)× (

n(n + 1)
2

)
]n

We know that limn→∞(1
2)

(n+1)
2 × (5

2) × (n(n+1)
2 ) = 0, i.e. there exists N > 0 such that

for any n > N we have (1
2)

(n+1)
2 × (5

2)× (n(n+1)
2 ) < 1

2 . So

E2[η2] =
∞∑

n=1

P2(η2 = n)n

<

N∑

i=1

i +
∞∑

i=N+1

i× [
1
2
]i

< ∞

Therefore the set {2} is a transient set. Furthermore following that
∑∞

n=1 P2(η2 = n)n <

∞, we know that limn→∞ P (η2 = n) = 0, which is NOT equal to π(2).

In the above example, we can ascribe the transience of the AMCMC to increasing

of probability to {2} as n → ∞. Therefore we need the “uniform” recurrence property

with respect to the parameter γ. Following the theorem 11.0.1 in Meyn and Tweedie

[11], we know that an irreducible Markov chain is positive recurrent if and only if there

exists some petite set C and some extend valued, non-negative test function V , which is

finite for at least one state in the state space X , satisfying:

PV (x) ≤ V (x)− 1 + bIC(x), x ∈ X
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Therefore we will suppose all the γ ∈ Y satisfy:

PγV (x) ≤ V (x)− 1 + bIC(x), x ∈ X

4 The Proof of Ergodicity Theorem

Before we prove the theorem 3.1, let us think about the following lemma:

Lemma 4.1. Consider an adaptive MCMC algorithm with Diminishing Adaptation, with

a regular stationary measure π and an accessible atom α ∈ F such that Pγ(x,B) = νγ(B)

for any x ∈ α and B ∈ B(X ), where νγ(·) is a regular probability measure, let measurable

function W : X → [0,∞) , 0 < K < ∞
(i) Eα,γ [τα] ≤ K and Ex,γ [τα] ≤ W (x) for any x ∈ αc and γ ∈ Y.

(ii) The parameter space Y is compact with respect to the metric d of the set ∆.

Suppose further that the sequence {W (Xn)}∞n=0 is bounded in probability, given X0 = x∗

and Γ0 = γ∗. Then we have:

lim
n→∞T (x∗, y∗, n) = 0

We will prove the lemma in section 4.3 after some technical preparations.

4.1 The Splitting Chain

To prove the above lemma we need a useful technique-splitting the chain, see Chapter

5 in Meyn and Tweedie (1993) [11]. Before we construct a splitting chain, we need to

introduce the definition of atom and the Minorizaiton condition first:

Atoms:A set α ∈ B(X ) is called an atom for the Markov chain {Xn} if there exists a

measure ν on B(X ) such that:

P (x,A) = ν(A), x ∈ α.

If the chain {Xn} is ψ−irreducible and ψ(α) > 0, then α is called an accessible atom.

Minorization Condition: For some δ > 0, some C ∈ B(X ) and some probability

measure ν with ν(Cc) = 0 and ν(C) = 1, P (x,A) ≥ δIC(x)ν(A).

Consider a Markov chain with minorization condition, we can split chain. We first split
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the space X itself by writing X̌ = X ×{0, 1}, where X0 = X ×{0} and X1 = X ×{1} are

thought of as copies X equipped with copies B(X0), B(X1) of the σ− field B(X ). We also

let B(X̌ ) be the σ−field of X̌ generated by B(X0), B(X1): that is B(X̌ ) is the smallest

σ−field containing sets of the form A0 := A× {0}, A1 := A× {1}, A ∈ B(X ).

We will write xi, i = 0, 1 for elements of X̌ , with x0 denoting members of the upper level

X0 and x1 denoting members of the lower level X1.

If λ is any measure on B(X ), then the next step in the construction is to split the measure

λ into two measures on each of X0 and X1 by defining the measure λ∗ on B(X̌ ) through:

λ∗(A0) = λ(A ∩ C)[1− δ] + λ(A ∩ Cc)

λ∗(A1) = λ(A ∩ C)δ

Now we can step in the construction to the split the chain {Xn} to the form a chain

{X̌n} which lives on (X̌ ,B(X̌). Define the split kernel P̌ (xi, A) for xi ∈ X̌ and A ∈ B(X̌)

by:

P̌ (x0, ·) = P (x, ·)∗, x0 ∈ X0 − C0;

P̌ (x0, ·) = [1− δ]−1[P (x, ·)∗ − δν∗(·)], x0 ∈ C0;

P̌ (x1, ·) = ν∗(·), x1 ∈ X1

where C, δ and ν are the set, the constant and the measure in the Minorization Condition.

We can see that outside C the chain {X̌n} behaves like {Xn}, moving on the “top” half

X0 of the split space. Each time it arrives in C, it is “split”; with probability 1 − δ it

remains in C0, with probability δ it drops to C1.

It is critical to note that the bottom level X1 is an atom with ψ∗(X1) == δψ(C) > 0

whenever the original chain is ψ−irreducible. We also have P̌n(xi,X∞ − C1) = 0 for all

n ≥ 1 and all xi ∈ X̌ , so that the atom C1 ⊆ X1 is the only part of the bottom level

which is reached with positive probability. We will use the notation α̌ := C1 when we

wish to emphasize the fact that all transitions out of C1 are identical, so that C1 is an

atom in X̌ .
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4.2 The Proof Of Lemma 4.1

For any initial value x ∈ X and measurable function |f | ≤ 1, denote: ax,γ(n) = Px,γ(τα =

n), that is the first hitting time of α is n when the kernel is Pγ and the start value is x;

similarly denote uγ(n) = (Pγ)α(Φn ∈ α) and define:

tf,γ(n) =
∫

α
Pn

γ (α, dy)f(y) = (Eγ)α[f(Φn)1{τα≥n}]

Then following the first-entrance last-exit decomposition we have:

Pn
γ (x,B) =α Pn

γ (x,B) +
n−1∑

j=1

[
j∑

k=1

αP k
γ (x, α)P j−k(α, α)]αPn−j

γ (α, B)

where αPn−j
γ (α, B) is the taboo probability given by

αPn−j
γ (α, B) = Pγ(Xn−i ∈ B, τα ≥ n− j|X0 ∈ α)

Therefore for any x ∈ X and f , we have:
∫

Pn
γ (x, dω)f(ω) =

∫
αPn

γ (x, dω)f(ω) + ax,γ ∗ uγ ∗ tf,γ(n)

then we will get:

|Ex,γ [f(Φn)]− Eπ[f(Φn)]| ≤ Ex,γ [f(Φn)I{τα≥n}]

+ |ax,γ ∗ uγ − π(α)| ∗ tf,γ(n)

+ π(α)
∞∑

j=n+1

tf,γ(j)

≤ Ex,γ [f(Φn)I{τα≥n}] +
n∑

j=1

|
j∑

i=1

ax(j)u(j − i)− π(α)|t1(n− j)

+ π(α)
∞∑

j=n+1

tf,γ(j)

≤ Ex,γ [f(Φn)I{τα≥n}] +
n∑

j=1

j∑

i=1

ax|(j)u(j − i)− π(α)|t1(n− j)

+ π(α)
∞∑

j=n+1

tf,γ(j)

≤ Ex,γ [f(Φn)I{τα≥n}] +
n∑

j=1

j∑

i=1

ax(i)|u(j − i)− π(α)|t1(n− j)

+ π(α)
n∑

j=1

∞∑

i=j+1

ax(i)t1(n− j) + π(α)
∞∑

j=n+1

t1,γ(j)
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Now we can denote the first term as I, the second as II, the third as III and the fourth

term as IV . And we have the following estimations.

4.2.1 The Estimation Of I and III

Lemma 4.2. I ≤ W (x)
n for any x ∈ X .

Proof.

I ≤ Ex,γ [1τα≥n]

= Px,γ(τα ≥ n)

≤ Ex,γ(τα)
n

≤ W (x)
n

Lemma 4.3. Let an = 1
n

∑n
i=1

1
i , then III ≤ 2anKW (x) for any x ∈ X .

Proof.

III ≤
n∑

j=1

Px(τα ≥ j)Pα(τα ≥ n− j)

≤
n∑

j=1

W (x)
j

× K

n− j

= KW (x)
2
n

n∑

i=1

1
i

= 2KanW (x)

And we know that limn→∞ an = 0.

4.2.2 The Estimation Of Term IV

Following the structure of stationary distribution π, we know that:
∞∑

j=1

Pα,γ(τα > j) =
1

π(α)
= M

so for any ε > o, there exists Nγ , such that for any nγ > Nγ :
nγ∑

j=1

Pα,γ(τα) > M − ε
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We define nε(γ) = inf{n :
∑n

j=1 Pα,γ(τα > j) > M − ε}, and prove that:

Lemma 4.4. For any fixed γ0, there exists δ > 0 such that for any d(γ, γ0) < δ, we have

nε(γ) = nε(γ0).

Proof. Denote η1 =
∑nγ0

j=1 Pα,γ0(τα > j)−(M−ε) and η2 = M−ε−∑nγ0−1
j=1 Pα,γ0(τα > j).

Set δ = 2 min{η1,η2}
nε(γ0)(nε(γ0)+1) , then consider two Markov chain {Xi} with kernel Pγ0 and {X ′

i}
with kernel Pγ1 such that d(γ0, γ1) < δ. Then

Px(Xi 6= X
′
i |Xi−1 = X

′
i−1) = E(Px(Xi 6= X

′
i |Xi−1 = X

′
i−1, Xi−1 = y))

≤ E(P (Xi 6= X
′
i |Xi−1 = X

′
i−1 = y))

= E(‖Pγ0(y, ·)− Pγ1(y, ·)‖)

≤ E(d(γ0, γ1))

< δ.

The third equation P (Xi 6= X
′
i |Xi−1 = X

′
i−1 = y) = ‖Pγ0(y, ·) − Pγ1(y, ·)‖ is following

the Proposition 3(g) in [?]. Then we have

Px(Xi 6= X
′
i , Xi−1 = X

′
i−1) = Px(Xi 6= X

′
i |Xi−1 = X

′
i−1)Px(Xi−1 = X

′
i−1) ≤ δ

With the same start value x ∈ α, then we have:

P(Xi 6= X
′
i |X0 = X

′
0 = x) = Px(Xi 6= X

′
i , Xi−1 6= X

′
i−1) + Px(Xi 6= X

′
i , Xi−1 = X

′
i−1)

≤ Px(Xi−1 6= X
′
i−1) + δ

≤ Px(Xi−1 6= X
′
i−1, Xi−2 6= X

′
i−2) + Px(Xi−1 6= X

′
i−1, Xi−2 = X

′
i−2) + δ

≤ Px(Xi−2 6= X
′
i−2) + 2δ

≤ · · ·

≤ iδ.

Therefore:

nγ0 (ε)∑

i=1

Px(Xi 6= X
′
i) ≤

nγ0 (ε)∑

i=1

iδ ≤ min{η1, η2}.

So we still have nε(γ) = nε(γ0).
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Lemma 4.5. For any ε > 0, there exits N > 0 which is independent with γ, such that

for any n > N , we have: IV < ε

Proof. Since

IV ≤ π(α)
∞∑

j=n+1

t1,γ(j)

= π(α)
∞∑

j=n+1

Eα,γ [1τα≥j ]

= π(α)
∞∑

j=n+1

Pα,γ(τα > j)

following lemma 4.4, we know that for any ε > 0, there exits N > 0 which is independent

with γ, such that for any n > N , we have:
∑∞

j=n+1 Pα,γ(τα > j) < ε
π(α) . That is IV ≤ ε

for any n > N .

4.2.3 The Estimation On Term II

Lemma 4.6. For any ε > 0, there exists N > 0 which is independent with γ such that

II ≤ εW (x).

II ≤
n∑

j=1

t1,γ(n− j)
j∑

i=1

ax,γ(i)i
|uγ(j − i)− π(α)|

i

≤
n∑

j=1

t1,γ(n− j)[
∞∑

i=1

ax,γ(i)i]
j∑

i=1

|u(j − i)− π(α)|
i

≤
n∑

j=1

t1,γ(n− j)Ex,γ(τα)
j∑

i=1

|u(j − i)− π(α)|
i

≤ W (x)
n∑

j=1

t1,γ(n− j)
j∑

i=1

|uγ(j − i)− π(α)|
i

Lemma 4.7.
∑∞

i=1 |uγ(i)− π(α)| < ∞ for each γ.

Proof. Since supČ V (x) = v and νγ is probability measure on α,
∫
X V (x)νγ(dx) < ∞

and π(V ) < ∞, following Theorem 11.3.12 of Meyn and Tweedie’s book, we know that
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νγ and π(·) are both regular measure. Then following Theorem 13.4.5 in Meyn and

Tweedie’s book, we know that:
∞∑

n=1

‖νγPn
γ − π‖ < ∞

Therefore we have
∑∞

n=1 ‖Pn
γ (α, α)− π(α)‖ < ∞

Lemma 4.8. limn→∞
∑n

j=1 t1,γ(n− j)
∑j

i=1
|uγ(j−i)−π(α)|

i = 0 for any γ ∈ Y.

Proof. Let sj(γ) =
∑j

i=1
|uγ(j−i)−π(α)|

i , following bounded convergence theorem and

lemma 4.7, we have sj(γ) →j→∞ 0. Similarly following
∑∞

j=1 t1,γ(j) = Eγ,α(τα) ≤
v < ∞, we have limn→∞

∑n
j=1 t1,γ(n− j)

∑j
i=1

|uγ(j−i)−π(α)|
i = 0

Lemma 4.9. For any ε > 0 there exists N which is independent with γ, such that for

any n > N , we have
∑n

j=1 t1,γ(n− j)
∑j

i=1
|uγ(j−i)−π(α)|

i < ε.

Proof. Suppose there exist ε > 0, and strictly increasing {ni}∞i=1 and γni ∈ Y such that
∑ni

j=1 t1,γni
(n − j)

∑j
i=1

|uγni
(j−i)−π(α)|

i > ε. Then there exists γ0 such that γni → γ0.

Therefore we have:
∞∑

j=1

t1,γ0(n− j)
j∑

i=1

|uγ0(j − i)− π(α)|
i

> ε

Contradiction!!

From all above we have the following lemma:

Lemma 4.10. For any ε > 0, there exists N > 0 which is independent with the choice

of γ, such that for any n > N , we have:

‖Pn
γ (x, ·)− π(·)‖ ≤ W (x)

n
+ εW (x) + ε

4.2.4 The Proof Of Lemma 4.1

Proof. Let Mε(x, γ) = inf{n ≥ 1 : ‖Pn
γ (x, ·)−π(·)‖ ≤ ε}. Then following the theorem 13

in Roberts and Rosenthal’s paper [14] (2007), it suffices to prove that {Mε(Xn,Γn)}∞n=0

is bounded in probability given X0 = x∗ and Γ0 = γ∗, i.e. for all δ > 0, there is N ∈ N
such that:

P [Mε(Xn,Γn) ≤ N |X0 = x∗,Γ0 = γ∗] ≥ 1− δ
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Since for any ε > 0, there exists N > 0 which is independent with the choice of γ, such

that for any n > N , we have:

‖Pn
γ (x, ·)− π(·)‖ ≤ εW (x) + ε

and W (Xn) is bounded in probability, we have the conclusion hold.

4.3 The Proof Of Theorem 3.1

Proof. Consider the splitting chain {X̌γ
n}, we know that the subset α = C1 ∈ X̌ is an

accessible atom of any chain {Xγ
n}. Before we prove the above inequalities, let us recall

what the splitting chain is. Actually outside C the chain {X̌γ
n} behaves just like {Xγ

n},
moving on the “top” half X0 of the split space. Each time it arrives in C, it is “split”;

with probability 1− δ it remain in C0, with probability δ it drops to C1. We can prove

the Theorem as following steps:

Step 1: Prove that there exists K > 0 such that

Eα,γ(τα) ≤ K;

Step 2: Prove that there exists a measurable function W : X̌ → [0,∞) such that:

Ex,γ(τα) ≤ W (x);

Step 3: Check the regularity of νγ and π.

Suppose τ̌
(m)
A,γ (B) is the m−th hitting time of B from A and with the kernel P̌γ . Consider

the random variable τ̌α,γ(α), then τ̌α,γ(α) = τ̌α,γ(Č) + τ̌
(k−1)

Č,γ
(Č)with probability (1 −

δ)k−1δ. If we denote the random variable T = the number of {n ≤ τ̌α,γ(α)|X̌n ∈ Č},
where Č = C0 ∪ C1, we have:

Eα,γ(τα) = E[E(τ̌α,γ(α)|T )]

=
∞∑

k=1

(
E(τ̌α,γ(Č)) + (k − 1)EČ,γ(τČ)

)
(1− δ)k−1δ

= E(τ̌α,γ(Č)) +
1− δ

δ
EČ,γ(τČ)

and we also know that for any x ∈ Č,γ ∈ Y E[τ̌x,γ(Č)] = Ex,γ(τC) ≤ V (x)+b ≤ v+b = K.

Therefore Eα,γ(τα) ≤ K + 1−δ
δ K = K

δ .
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Similarly for any x /∈ α, we know that τ̌x,γ(α) = τ̌x(Č) + τ̌
(k−1)

Č,γ
(Č)with probability (1−

δ)k−1δ. Therefore we have:

Ex,γ(τα) = E[E(τ̌x,γ(α)|T )]

=
∞∑

k=1

(
E(τ̌x,γ(Č)) + (k − 1)EČ,γ(τČ)

)
(1− δ)k−1δ

= E(τ̌x,γ(Č)) +
1− δ

δ
EČ,γ(τČ)

and we also have for any x,γ ∈ Y, E[τ̌x,γ(Č)] = Ex,γ(τC) ≤ V (x) + b = W (x). Since

V (Xn) is bounded in probability, W (Xn) is also bounded in probability.

Finally since
∫
X V (y)νγ(dy) < v and π(V ) < ∞,the probability measures νγ and π are

both regular. Then we can prove the theorem 3.1 following the lemma 4.1

5 The Proof Of The WLLN

Similar to the proof of theorem 3.1, it suffices to prove the following lemma before we

prove the theorem 3.2:

Lemma 5.1. Under the conditions of lemma 4.1. Let g : X → R be a bounded measur-

able function. Then for any starting values x ∈ X and γ ∈ Y, conditional on X0 = x

and Γ0 = γ we have
∑n

i=1 g(Xi)
n

→ π(g)

in probability as n →∞.

5.1 Some Technical Results

Following the usual laws of large numbers for Markov chain (see e.g. Meyn and Tweedie)

imply that for each fixed x ∈ X and γ ∈ Y, limn→∞ 1
n

∑n
i=1 g(Xγ

i ) → π(g) in probability,

where {Xγ
n} is the usual Markow chain with kernel Pγ . Actually we will prove that

under the conditions in lemma 5.1 the above convergence is uniformly with respect to

the parameter γ. Before we start the proof, let us define some symbols, let

sγ
i (g) =

τα̌(i+1)∑

j=τα̌(i)+1

g(Xγ
j )
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and

lγn = max{i ≥ 0 : τα̌(i) ≤ n}

Lemma 5.2. Under the conditions of lemma 5.1, for any ε > 0 and fixed start value x,

there exists N which is independent with the choice of γ such that for any n > N we

have:

Px(|
∑n

i=1 g(Xγ
i )

n
− π(g)| > ε) < εW (x) + ε

Proof. Without losing generalities, we suppose π(g) = 0 and |g(x)| ≤ M then

Px(|
∑n

i=1 g(Xγ
i )

n
| > 3ε)

= Px(|
∑τα̌

i=1 g(Xγ
i )

n
+

∑ln
i=0 si(g)

n
+

∑n
i=τα̌(ln)+1 g(Xγ

i )

n
| > 3ε)

≤ Px(|
∑τα̌

i=1 g(Xγ
i )

n
| > ε) + Px(|

∑ln
i=0 sγ

i (g)
n

| > ε) + Px(|
∑n

i=τα̌(ln)+1 g(Xγ
i )

n
| > ε)

Regarding the first term we have:

Px(|
∑τα̌

i=1 g(Xγ
i )

n
| > ε) ≤ Ex[|∑τα̌

i=1 g(Xγ
i )|]

nε

≤ Ex[τα̌]M
nε

≤ W (x)M
nε

Regarding the third term we have:

Px(|
∑n

i=τα̌(ln)+1 g(Xγ
i )

n
| > ε) ≤

Eα̌[|∑n
i=τα̌(ln)+1 g(Xγ

i )|]
nε

≤ Eα̌[τα̌]M
nε

≤ KM

nε

Actually the second term is independent with the choice of start value x,i.e.

Px(|
∑ln

i=0 sγ
i (g)

n
| > ε) = Pα̌(|

∑ln
i=0 sγ

i (g)
n

| > ε)

Suppose for any n ∈ N, there exists γn such that Pα̌(|
Pln

i=0 sγn
i (g)

n | > ε) > ε
2 , same as the

proof of lemma 4.4, we can find some γ0 ∈ ∆ such that:

lim
n→∞Pα̌(|

∑ln
i=0 sγn

i (g)
n

| > ε) >
ε

2
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Which is conflicting with the fact that for any γ ∈ ∆ and ε > 0, we have:

lim
n→∞Pα̌(|

∑ln
i=0 sγn

i (g)
n

| > ε) = π(g) = 0

Therefore there exists N1, such that for any n > N1 and γ, we have:

Px(|
∑ln

i=0 sγ
i (g)

n
| > ε) <

ε

2

We also can find N2 such that for any n > N2 we have M
n < ε2 and KM

n < ε2

2 . Then let

N = max{N1, N2} we can get the conclusion.

Lemma 5.3. Given ε > 0, we can find N > 0 such that when n > N we have:

Eγ,x[|
∑N

i=1 g(Xi)
N

|] ≤ εW (x) + ε

Proof. Following lemma 5.2, we know that for any ε > 0, there exists N such that:

Px(|
∑n

i=1 g(Xγ
i )

n
| > ε) <

ε

M
W (x) +

ε

2M

We also have |
Pn

i=1 g(Xγ
i )

n | ≤ M . If we denote Λ = {ω ∈ Ω||
Pn

i=1 g(Xγ
i )

n | > ε
2 given X0 = x}.

Then we have:

Eγ,x[|
∑N

i=1 g(Xi)
N

|] = Eγ,x[|
∑N

i=1 g(Xi)
N

| × Iω(Λ)] + Eγ,x[|
∑N

i=1 g(Xi)
N

| × Iω(Λc)]

≤ M [W (x)
ε

M
+

ε

2M
] +

ε

2

≤ εW (x) + ε

5.2 The Proof Of Theorem 3.2

First we can prove the Lemma 5.1:

Proof. Given starting value X0 = x, Γ0 = γ and ε > 0, W (Xn) is bounded in probability,

i.e. for any ε > 0, there exists a > 0 such that:

P (W (Xn) > a) <
ε

4M
for all n ∈ N
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Following lemma 5.3, we know that there exists N = N(ε), such that for any x and γ

we have:

Eγ,x[|
∑N

i=1 g(Xi)
N

|] ≤ εW (x)
4a

+
ε

4

Then let Dn = supx∈X ‖PΓn+1(x, ·) − PΓn(x, ·)‖ and Hn = Dn ≥ ε
4MN2 . Using the

Diminishing Adaptation condition to choose n∗ = n∗(ε) ∈ N large enough so that

P (Hn) ≤ ε

4NM
, n ≤ n∗

To continue, fix a “target time” K ≥ n∗+N . We shall construct a coupling which depends

on the target time K (cf. Roberts and Rosenthal, 2002), to prove that L(Xk) ≈ π(·).
Define the event E = ∩n+N

i=n+1H
c
i , we have P (E) ≥ 1 − ε

4M . Now, it follows from the

triangle inequality and induction that on the event E, we have:

sup
x∈X

‖PΓn+k
(x, ·)− PΓn(x, ·)‖ <

ε

4MN
, k ≤ N.

In particular, on E we have ‖PΓL−N
(x, ·)−PΓm(x, ·)‖ < ε

4MN for all x ∈ X and L−N ≤
m ≤ L, so by induction again,

‖PN
ΓL−N

(x, ·)− PΓn(Xk ∈ ·|XL−N = x,GL−N )‖ <
ε

4M
on E, for x ∈ X .

To construct the coupling, first construct the original adaptive chain {Xn} together with

its adaption sequence {Γn}, starting with X0 = x and Γ0 = γ.

We now claim that on E, we can construct a second chain {X ′
n}L

n=L−N such that X
′
L−N =

XL−N and X
′
nP̃ΓL−N

(X
′
n−1, ·) for L−N + 1 ≤ n ≤ L, and such that P (X

′
L 6= XL) < ε.

Indeed, conditional on GL−N , we have X
′
LP̃N

ΓL−N
(XL−N , ·). Then we have:

‖L(X
′
k)− L(Xk)‖ <

ε

4M

The claim then follows from e.g. Roberts and Rosenthal (2004, Proposition 3(g)).

Since |g| ≤ M , we have:

E

(
1
N
|

n+N∑

i=n+1

g(Xi)|Gn

)
≤ EΓn,Xn

(
1
N
|

N∑

i=1

g(Xi)|
)

+ M
ε

4M
+ MP (Ec)

≤ εW (Xn)
4a

+
ε

2
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and we also have:

E

(
1
N
|

n+N∑

i=n+1

g(Xi)|Gn

)
≤ M

Therefore,

E((
1
N
|

n+N∑

i=n+1

g(Xi))

= E

(
E(

1
N
|

n+N∑

i=n+1

g(Xi)|Gn)
)

= E

(
E(

1
N
|

n+N∑

i=n+1

g(Xi)|Gn,W (Xn) ≤ a)
)

+ E

(
E(

1
N
|

n+N∑

i=n+1

g(Xi)|Gn,W (Xn) > a)
)

≤ ε

2
+

ε

4
+ M

ε

4M

= ε

Now consider any integer T sufficiently large that:

max[
Mn∗

T
,
MN

T
] ≤ ε

Then we have:

E(|
∑T

i=1 g(Xi)
T

||X0 = x,Γ0 = γ)

≤ E(|
∑n∗

i=1 g(Xi)
T

||X0 = x,Γ0 = γ)

+ E(
1

bT−n∗
N c

bT−n∗
N

c∑

j=1

1
N

N∑

k=1

g(XN1+(j−1)N+k|X0 = x,Γ0 = γ))

+ E(|
∑T

n∗+bT−n∗
N

cN+1
g(Xi)

T
||X0 = x∗,Γ0 = γ)

≤ ε + ε + ε

= 3ε

Markove’s inequality then gives that:

P (|
∑T

i=1 g(Xi)
T

| ≥ ε
1
2 |X0 = x,Γ0 = γ)) ≤ 3ε

1
2

Since this holds for all sufficiently large T and since ε > 0 was arbitrary, the results

follows.
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Secondly we can prove the theorem 3.2 easily using the lemma 5.1.

Proof. Similar to proof of theorem 3.1, the splitting chain of {Xγ
n} satisfies the conditions

of lemma 5.1 for any γ ∈ Y. Therefore we have the WLLN hold.

6 Recurrence On The Product Space X × Y

The adaptive MCMC induces sample paths on the product space X ×Y. We will study

the recurrent property on the product space in this section. When each kernel Pγ has

good ergodic property and the random variable sequence (Xn,Γn) is also recurrent on

the X ×Y, we hope to get the ergodicity of AMCMC. But following the computation in

section 6.1, we get the negative answer. Fortunately Roberts and Rosenthal’s paper [14]

(2007) offered us a proper condition–“Diminishing Adaptation conditions” and showed

some positive results, however they mentioned an open problem as well. We will state

the open problem in section 6.2 and give a counter-example to the open problem 21

in Roberts and Rosenthal’s paper [14] (2007) in section 6.2.1. Finally we present some

positive results about the relationship between ergoidicity and recurrence on the space

X × Y .

6.1 Recurrence Of Running Example

Even we take finite kernels with good ergodic property(uniformly ergodic) so that we

can make the adaptive MCMC recurrent, we still can not guarantee the AMCMC is

ergodic with respect to the target distribution π. A good counter example is one-two

version running example which was presented in Roberts and Rosenthal(2005) [14] and

simulated in the related Java applet. The example was also discussed in Atchade and

Rosenthal (2005) [17]. Here we will consider the AMCMC algorithm as a general Markov

chain on the product space X ×Y. We will give the explicit form of the transition matrix

on the product space, and analysis the recurrent and ergodic property of such a Markov

chain on the product space X × Y .

Let X = {1, 2, 3, 4}, π(2) = b > 0 be very small, and π(1) = a and π(2) = π(3) =
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1−a−b
2 > 0. Let Y = {1, 2}. For γ ∈ Y, let Pγ be the kernel corresponding to a random-

walk Metropolis algorithm for π(·), with proposal distribution:

Qγ(x, ·) = Uniform{x− γ, x− γ + 1, · · ·, x− 1, x + 1, x + 2, · · ·, x + γ}

i.e.uniform on all the integers within γ of x, aside from x itself. The kernel Pγ then

proceeds, given Xn and Γn, by first choosing a proposal state Yn+1 ∼ QΓn(Xn, ·). With

probability min[1, π(Yn+1)
π(Xn) ] it then accepts this proposal by setting Xn+1 = Yn+1. Other-

wise, with probability 1−min[1, π(Yn+1)
π(Xn) ], it rejects this proposal by setting Xn+1 = Xn.

(If Yn+1 /∈ X , then the proposal is always rejected; this corresponds to setting π(y) = 0

for y /∈ X .). We define the adaptive scheme such that Γn = 2 if the previous proposal

was accepted, otherwise Γn = 1 if the previous proposal was rejected.

We can compute the kernels induced by the proposals Qi, i = 1, 2:

P1 =




2a−b
2a

b
2a 0 0

1
2 0 1

2 0

0 b
1−a−b

1
2 − b

1−a−b
1
2

0 0 1
2

1
2




P2 =




3
4 − b

4a
b
4a

1
4 0

1
4

1
4

1
4

1
4

a
2(1−a−b)

b
2(1−a−b)

3
4 − a+b

2(1−a−b)
1
4

0 b
2(1−a−b)

1
4

3
4 − b

2(1−a−b)




In the above AMCMC, we can observe that the distribution of Γn given X0 and Γ0

does NOT depend on the value of {Xi|0 ≤ i ≤ n − 1}, therefore we call this kind of

Markovian AMCMC. The n−th transition kernel Q(n) induced by Markovian adaptive

algorithm is as below:

Q(n)((x, γ), A×B) =
∫

A

∫

B
Γn(dγ1|x, y, γ)Pγ(x, dy)

Then in the one-two running example, if given the value of Xn−1 = x,Xn = y and

Γn−1 = γ, then Γn is a measurable function of x, y and γ. We have:

Γn(x, y, γ) = δ(x = y) + 2δ(x 6= y)
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So we can compute the n− th transition kernel on (X × Y):

Q((x, γ), y × γ1) =
∫

A

∫

B
Γn(dγ1|x, y, γ)Pγ(x, dy)

= Pγ(x, y)δ(x = y)δ(γ1 = 1) + Pγ(x, y)δ(x 6= y)δ(γ1 = 2)

Since the transition kernel is independent of n, the one-two version running example

presents a general Markov Chain with transition kernle Q as:

Q =




2a−b
2a 0 0 b

2a 0 0 0 0

3
4 − b

4a 0 0 b
4a 0 1

4 0 0

0 1
2 0 0 0 1

2 0 0

0 1
4

1
4 0 0 1

4 0 1
4

0 0 0 b
1−a−b

1
2 − b

1−a−b 0 0 1
2

0 a
2(1−a−b) 0 b

2(1−a−b)
3
4 − a+b

2(1−a−b) 0 0 1
4

0 0 0 0 0 1
2

1
2 0

0 0 0 b
2(1−a−b) 0 1

4
3
4 − b

2(1−a−b) 0




Now we take the value a = 0.1 and b = 0.01, then π(1) = 0.1; π(2) = 0.01; π(3) =

π(4) = 0.445.

And we have the following lemma:

Lemma 6.1. The above one-two version running example is recurrent, but for any

starting value (x∗, γ∗), and A ∈ B{X}, we have:

lim
n→∞P(x∗,γ∗)(Xn ∈ A) 6= π(A)

Proof. Let us calculate the eigenvalues of the above transition matrix, we have: λ1 =

1; λ2 = 0.95445494; λ3 = 0.12887658 + 0.4670861i; λ4 = 0.12887658 − 0.4670861i;

λ5 = −0.25615654; λ6 = 0.03778642 + 0.1057364i; λ7 = 0.03778642 − 0.1057364i; λ8 =

−0.09286036. Then compute the eigenvector of QT with respect to the eigenvalue λ0 = 1,

it is

(−0.48637045,−0.03354279,−0.00867102,−0.03468408,

−0.49208038,−0.36554543,−0.51525761,−0.34609757)
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i.e the stationary distribution π̃ is: π̃(1, 1) = 0.213110130, π̃(1, 2) = 0.014697250,

π̃(2, 1)0.003799331, π̃(2, 2) = 0.015197323, π̃(3, 1) = 0.215612017, π̃(3, 2) = 0.160168927,

π̃(4, 1) = 0.225767451, π̃(4, 2) = 0.151647571. Therefore for any start value (x∗, γ∗), we

have:

lim
n→∞P(x∗,γ∗)(Xn = 1) = lim

n→∞P(x∗,γ∗)(Xn = 1,Γn = 1) + P(x∗,γ∗)(Xn = 1,Γn = 1)

= 0.21311 + 0.014697 = 0.227807

similarly

lim
n→∞P(x∗,γ∗)(Xn = 2) = 0.003799 + 0.015197 = 0.018996

lim
n→∞P(x∗,γ∗)(Xn = 3) = 0.215612 + 0.160168 = 0.37578

lim
n→∞P(x∗,γ∗)(Xn = 4) = 0.225767 + 0.151647 = 0.377414

Therefore for any 1 ≤ i, j ≤ 4, we have:

Ei[ηj ] = ∞

because Pi(ηj = ∞) = 1. But we can observe that P(x∗,γ∗)(Xn ∈ A) →n→∞ π
′
(A) which

is the marginal distribution of π̃, however π
′
(·) 6= π(·).

6.2 The Open Problem 21 In Roberts And Rosenthal’s Paper

In the Theorem 13 of Roberts and Rosenthal [14] (2007), they present the following

results that an adaptive MCMC algorithm with Diminishing Adaptation is ergodic pro-

vided that it is recurrent in probability in some sense. Before we state the Theorem 13,

let us recall the definition ”ε convergence time function” Mε : X × Y → N ::

Mε(x, γ) = inf{n ≥ 1 : ‖Pn
γ (x, ·)− π(·)‖ ≤ ε}

Obviously if each individual Pγ is ergodic, then Mε(x, γ) < ∞.

Theorem 6.1. Consider an adaptive MCMC algorithm with Diminishing Adaption (i.e.,

limn→∞ supx∈X ‖PΓn+1(x, ·) − PΓn(x, ·)‖ = 0 in probability). Let x∗ ∈ X and γ∗ ∈ Y.
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Then limn→∞ T (x∗, γ∗, n) = 0 provided that for all ε > 0, the sequence {Mε(Xn,Γn)}∞n=0

is bounded in probability given X0 = x∗ and Γ0 = γ∗,i.e. for all δ > 0, there is N ∈ N
such that P [Mε(Xn,Γn) ≤ N |X0 = x∗,Γ0 = γ∗] ≤ 1− δ for all n ∈ N.

We can observe that in the above theorem the adaptive chain pair (Xn,Γn) has good

“fast convergence” property in probability. Therefore this leads to the following open

problem using recurrence concept.

Open Problem 21. Consider an adaptive MCMC algorithm with Diminishing Adap-

tation. Let x∗ ∈ X and γ∗ ∈ Y. Suppose that for all ε > 0, there is m ∈ N

such that P [Mε(Xn,Γn) < m i.o.|X0 = x∗,Γ0 = γ∗] = 1. Does this imply that

limn→∞ T (x∗, γ∗, n) = 0?

The problem seems reasonable, however the following example gives us the negative

answer.

6.2.1 The Counterexample To The Open Problem

Let us see the following example:

Consider X = R mod Z i.e. the state space is the real number mod the integers. Define

Y = N ∪ X , and suppose Zk,x are random variable with distribution Uniform[x −
1

2k+1 , x + 1
2k+1 ] for any (x, γ) ∈ X × Y. When k ∈ N , we define:

Pk(x,A) =
1
2k

P (Zk,x ∈ A) + (1− 1
2k

)δx(A)

When y ∈ X , suppose π(·) is the Lebesgue measure on X .

we define:

Py(x,A) =





2
3π(A) + 1

3δx(A) x 6= y

2
3Uniform[0, 3

4 ] + 1
3δ0(A) x = y

Lemma 6.2. For each k ∈ N, Pk is stationary with respect to π.

Proof. It is suffice to prove that for any interval A = [a, b] ⊂ [0, 1] we have:

∫

X
Pk(x,A)π(dx) = π(A)
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Case 1:|b− a| ≥ 1
2k

∫

X
Pk(x,A)π(dx) =

1
2k
×

∫ 1

0
P (Zx,k ∈ A)dx + (1− 1

2k
)π(A)

=
1
2k
× [2k

∫ a+ 1

2k+1

a− 1

2k+1

[x +
1

2k+1
− a]dx + 2k

∫ b+ 1

2k+1

b− 1

2k+1

[−x +
1

2k+1
+ b]dx

+ (b− a− 1
2k

)] + (1− 1
2k

)π(A)

=
1
2k
× [2k+1

∫ 1

2k

0
tdt + (b− a− 1

2k
)] + (1− 1

2k
)π(A)

= b− a

similarly we can prove Case 2:|b− a| < 1
2k .

Lemma 6.3. For each y ∈ X , Py is stationary with respect to π.

Proof.
∫

X
Py(x,A)π(dx) =

∫

x 6=y
[
2
3
π(A) +

1
3
δx(A)]π(dx)

=
2
3
π(A) +

1
3
π(A)

= π(A)

Define the independent random variable In as below:

In =





1 w.p.
√

n−1√
n

0 w.p. 1√
n

And independent random variable Yn as below: Y0 = Y1 = 1 and

Yn =





n + 1 with probability 1
n

n + 2 with probability 1
n

·

·

·

2n with probability 1
n
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Define the adaptive scheme as:

Γn =





Yn if In = 1

Xn if In = 0

Lemma 6.4. Such an adaptive scheme satisfies the diminishing condition.

Proof. Actually PYn(x,A) = 1
n

∑2n
i=n+1 Pi(x,A), so

|PΓn+1(x,A)− PΓn(x,A)|

≤ |PYn+1(x,A)− PYn(x,A)|+ P (In = 0 or In+1 = 0)

≤ | 1
n + 1

2n+2∑

i=n+2

Pi(x,A)− 1
n

2n∑

i=n+1

Pi(x,A)|+ 1√
n

+
1√

n + 1

≤ 1
n(n + 1)

2n∑

i=n+2

Pi(x,A) +
1

n(n + 1)
|Pn+2(x,A) + P2n+2(x,A)− Pn+1(x,A)|+ 1√

n
+

1√
n + 1

≤ 1
n

+
3

n(n + 1)
+

1√
n

+
1√

n + 1

→ 0 as n →∞

Lemma 6.5. Given x∗ = 0 and γ∗ = 0. Then for any ε > 0, there is m ∈ N such that:

P [(Xn,Γn) ∈ Zm,ε i.o. |X∗ = 0,Γ0 = 0] = 1

Proof. We know P0 is uniformly ergordic with respect to π(·), so for any ε > 0 there

exists m such that:

‖Pm
0 (0, ·)− π(·)‖ < ε (6.2)

If we suppose

J =





1 w.p.23

0 w.p.13

Then we can consider Px(x,A) as the following: if J = 0, the chain will move to 0,

otherwise select one point on the interval [0, 3
4 ] with uniform distribution.

And we have:

P [Xn+1 = 0,Γn+1 = 0 i.o.] ≥ P [In = 0, In+1 = 0 andJ = 0 i.o]
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since
∑∞

i=1 P (I2i = 0, I2i+1 = 0, J = 0) =
∑∞

i=1
1
3

1√
2i(2i+1)

= ∞. That is:

P [I2n = 0, I2n+1 = 0 andJ = 0 i.o] = 1

Therefore P [(Xn,Γn) = (0, 0) i.o.] = 1. Following (6.2) we know that

1 ≥ P [(Xn,Γn) ∈ Zm,ε i.o. |X∗ = 0,Γ∗ = 0] (6.3)

≥ P [(Xn,Γn) = (0, 0) i.o. |X∗ = 0,Γ∗ = 0] = 1 (6.4)

Lemma 6.6. Suppose {ai}∞i=1 is a decreasing positive sequence such that 0 < ai < 1,

and if
∑∞

i=1 ai < ∞, then

lim
N→∞

∞∏

i=N

(1− ai) = 1 (6.5)

Proof. When 0 < ai < 1, we have:

ln(1− ai) ≤ −ai

Therefore

1 ≥ lim
N→∞

∞∏

i=N

(1− ai)

≥ lim
N→∞

e
P∞

i=N (−ai)

= 1

Lemma 6.7. Given X∗ = 0 and Γ∗ = 0, we do NOT have limn→∞ T (x∗, γ∗, n) = 0

Proof. Suppose limn→∞ T (x∗, γ∗, n) = 0, that is for any ε > 0, there exists N1 such that

for any n > N and A ∈ B(X ),

|P [Xn ∈ A|X∗ = 0,Γ∗ = 0]− π(A)| < ε (6.6)

According to the above adaptive scheme, if Γn ∈ [0, 1], then Γn must be equal to Xn,

in other words the case of kernel Py(x, ·) but y 6= x will NOT happen in this adaptive
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Markov Chain. So if Xn ∈ [0, 3
4 ], there are four cases maybe happen at Xn+1

Case 1: Xn+1 = Xn

Case 2: Xn+1 = 0

Case 3: Xn+1 = Zxn,n

Case 4: Xn+1 ∼ Uniform[0, 3
4 ]

Only in the case 3, Xn+1 maybe jump out of [0, 3
4 ], so P (Xn+1 ∈ [0, 3

4 ]|Xn ∈ [0, 3
4 ]) >

1− 1
2n . Since this is a Markovian adaptive MCMC,

P (Xn+2 ∈ [0,
3
4
]|Xn ∈ [0,

3
4
])

≥ P (Xn+2 ∈ [0,
3
4
]|Xn+1 ∈ [0,

3
4
])P (Xn+1 ∈ [0,

3
4
]|Xn ∈ [0,

3
4
])

≥ (1− 1
2n

)(1− 1
2n+1

)

Similarly for any m > 0, we have:

P (Xn+m ∈ [0,
3
4
]|Xn ∈ [0,

3
4
]) ≥

n+m−1∏

i=n

(1− 1
2i

) (6.7)

Following lemma 6.6 we select N2 > 0 such that
∏∞

i=N2
(1 − 1

2i ) > 1 − ε
2 Let N =

max{N1, N2}, then following (6.4) there exist K large enough such that:

P [∃N ≤ n < NK such that (Xn,Γn) = (0, 0)] >
3
4 + 2ε

1− ε
2

(6.8)

whenever (Xn,Γn) = (0, 0), then Xn+1 must be in [0, 3
4 ], so following (6.7) we have:

P (XNK+1 ∈ [0,
3
4
])

= P (XNK+1 ∈ [0,
3
4
]|∃N < n ≤ NK s.t. Xn ∈ [0,

3
4
]) · P (∃N < n ≤ NK s.t. Xn ∈ [0,

3
4
])

≥
∞∏

i=N

(1− 1
2i

) · P [∃N < n ≤ NK s.t. (Xn−1,Γn−1) = (0, 0)]

≥ (1− ε

2
)×

3
4 + 2ε

1− ε
2

=
3
4

+ 2ε

Which is conflicting with (6.6).
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6.3 Strengthen The Diminishing Adaption Condition

Following the counterexample in the section 6.2.1, we know that the Diminishing Adap-

tion condition and the recurrence property to the “good convergence” set are not suffi-

cient to get the ergodicity of the AMCMC. Therefore we can strengthen the Diminishing

Adaption condition such that it can match with the recurrence condition, so that we can

use the coupling methods to prove the ergodicity.

For any m ∈ N and ε > 0, we can define the i−th hitting time τ
(i)
x,γ(m, ε) as below:

τ (i)
x,γ(m, ε) = min{n > τ (i−1)

x,γ (m, ε)|Mε(Xn,Γn) ≤ m given X0 = x,Γ0 = γ}

and the hitting number within n step

cm,ε
x,γ (n) = the number of {0 ≤ j ≤ n|Mε(Xj ,Γj) ≤ m given X0 = x,Γ0 = γ}

Furthermore we can define:

s(i)
x,γ(m, ε) =

τ
(i+1)
x,γ (m,ε)∑

j=τ
(i)
x,γ(m,ε)+1

Dj

Then we have the following theorem:

Theorem 6.2. Consider an adaptive MCMC algorithm , let x∗ ∈ X and γ∗ ∈ Y.

Suppose that for all ε > 0, there is m ∈ N such that P [Mε(Xn,Γn) < m i.o.|X0 =

x∗,Γ0 = γ∗] = 1 and s
(i)
x,γ(m, ε) →i→∞ 0 in probability. Then limn→∞ T (x∗, γ∗, n) = 0.

Proof. For any ε > 0, there is m ∈ N such that

P [Mε(Xn,Γn) < m i.o.|X0 = x∗,Γ0 = γ∗] = 1

and there exists N1 > 0 such that for any n > N1 we have:

P

[ n+m∑

j=n

s(i)
x,γ(m, ε) > ε

]
≤ ε

Following P [Mε(Xn,Γn) < m i.o.|X0 = x∗,Γ0 = γ∗] = 1, we know that there is N > 0

such that

P [cm,ε
x,γ (N) > N1 + m] > 1− ε (6.9)
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Consider any n > N , the above formula indicates that:

P [∃k > N1 + m such that τ (k)
x,γ (m, ε) ≤ n < τ (k+1)

x,γ (m, ε)] > 1− ε

We set l = τ
(k−m)
x,γ (m, ε). we can construct a second chain {X ′

i}n
i=l such that X

′
l = Xl

and X
′
i ∼ PΓl

(Xi−1, ·) for l ≤ i ≤ n. If we denote the event E = {∑n
i=l P (X

′
i 6= Xi) < ε},

then from (5.8) we have:

P [E] > 1− ε

On the other hand we have:

‖Pn−l
Γl

(Xl, ·)− π(·)‖ ≤ ‖P l+m
Γl

(Xl, ·)− π(·) ≤ ε

we can construct Z ∼ π(·), then

‖P (Xn ∈ ·|X0 = x,Γ0 = γ)− π(·)‖

≤ P (Xn 6= Z|X0 = x,Γ0 = γ)

≤ P (Xn 6= X
′
n, E|X0 = x,Γ0 = γ) + P (X

′
n 6= Z, E|X0 = x,Γ0 = γ) + P (Ec|X0 = x,Γ0 = γ)

≤ 3ε

i.e. T (x, γ, n) < 3ε.

Following theorem 6.2, we can get the following corollary easily.

Corollay 6.8. Consider an adaptive MCMC algorithm such that
∑∞

i=1 Di < ∞ in prob-

ability. Let x∗ ∈ X and γ∗ ∈ Y. Suppose that for all ε > 0, there is m ∈ N such that

P [Mε(Xn,Γn) < m i.o.|X0 = x∗,Γ0 = γ∗] = 1. Then limn→∞ T (x∗, γ∗, n) = 0.

Proof. Since
∑∞

i=1 Di < ∞ in probability, we know that s
(i)
x,γ(m, ε) →i→∞ 0 in probabil-

ity. Therefore following the theorem 6.2, we have the conclusion.
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