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1 Introduction

Chess is a strategy board game going back many hundreds of years [3]. In recent years,

online chess has become extremely popular, with millions of active players [16]. Meanwhile,

chess-playing computer programs or “engines”, with names like Chessmaster, Fritz, Komodo,

Houdini, Stockfish, and Chessbase, are now much better than humans and could easily be

consulted (either manually or automatically) during online matches to achieve superior play,

which is strictly prohibited [4]. The most popular online chess web site, Chess.com, actively

monitors and attempts to catch cheaters through various methods, including comparing

player performance online versus in-person [5], and sometimes even requiring that cameras

be set up to monitor players in their homes [8]. Nevertheless, concerns about cheating

continue, including at the highest levels [20].

One recent issue involves long streaks of games which were all (or almost all) won by a

specific player. In particular, former world champion V. Kramnik has raised concerns about

winning streaks of top-level player Hikaru Nakamura (player name: Hikaru), including one

recent streak of 46 games in which he won 45 and tied one [20, 15].

I was contacted by Chess.com CEO Erik Allebest (who had seen my Wired interview

[32]), and asked to perform an independent statistical analysis of such winning streaks. To

facilitate this, I was supplied [1] with data showing results of all games on Chess.com of seven

different top-level players, including Hikaru. I then conducted an independent statistical

examination of evidence of unusual or surprising streaks in Hikaru’s Chess.com game record.

I first examined the nature of chess ratings, expected scores, win and draw probabilities, and

game correlations, to establish a model for the probabilities of online chess outcomes. I then

used this model to examine the probabilities corresponding to Hikaru’s winning streaks.

When my original preliminary report [27] was publicized on Chess.com [31] and else-

where [22], Kramnik posted a response video and comments [17] with numerous criticisms.

I responded to that in an addendum [28], and some of those issues are incorporated herein.

Months later, while extensively revising this paper, I discovered that Kramnik had posted a

second video [18] in response to my Addendum, and some of the issues raised there are also

incorporated herein. I note that these same win streaks have also been examined in other
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contexts, including a blog post [2], a Chess.com response [6], and a Bayesian perspective

[19], which each reached similar conclusions to mine through different approaches.

2 Informal Discussion

Before getting into the statistical analysis, we begin with some informal discussion. Over

more than ten years, Hikaru has played 57,421 games on Chess.com – a tremendous number.

Of these, he has won 45,409 and drawn 4,943 and lost 7,069, for a total score of 47,880.5 out

of a maximum of 57,421 (83.4%). So, Hikaru has certainly had a very successful record. And,

this record does indeed include many long winning streaks. For instance, on 22 December

2018, Hikaru played a total of 139 games, and won his last 116 in a row. So, if all long

winning streaks are suspicious, then Hikaru’s record would be very suspicious indeed.

However, this raises the question of whether long winning streaks are necessarily always

suspicious. This might not be so, for two reasons. First, if Hikaru often plays against much

weaker opponents, then his chance of winning each game is very high, so long winning streaks

might be less surprising than they first appear. Second, Hikaru has played so many games

total, that over such a long period, even surprising events might occur by chance alone.

The first reason – the effect of the relative strength of the two players – involves carefully

considering chess players’ relative abilities and probabilities of winning, as we shall do herein.

For example, during the above 116 game winning streak, Hikaru’s chess rating (as discussed

herein) averaged 3017, indicating top level performance. Meanwhile, his opponents’ ratings

averaged just 1526, indicating middle amateur level. This is a difference of +1491, which

indicates that Hikaru’s opponents were often much weaker chess players than he was, which

suggests that he had a very high probability of winning individual games.

The second reason – that even surprising events might occur by chance over a long period

– can be illustrated using a simple analogy. Suppose your friend is repeatedly flipping a coin.

If they get 12 Heads in a row, that seems suspicious. Indeed, the “raw probability” of getting

12 Heads in a row, if you flip a fair coin 12 times, is just 1/4096, extremely low. However,

suppose your friend has flipped the coin a total of 10,000 times. Then they have many

more opportunities to obtain 12 Heads in a row. Although each specific opportunity has raw

probability 1/4096, the chance of getting some sequence of 12 Heads at some point has much

higher probability. This is an example of multiple testing (e.g. [25]): in all those 10,000 flips,

some sequence of 12 Heads, somewhere along the way, is much more likely.

How likely? Well, as a theoretical calculation, this is not so simple, because potential

Heads streaks are overlapping. For example, if flips number 21 through 32 were all Heads,

then it’s more likely that flips 22 through 33 will all be Heads, too. Still, since 10,000/12

= 833.3, there are 833 non-overlapping sequences of 12 flips contained within 10,000 flips.
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And these non-overlapping sequences are independent. Each of them has probability 1/4096

of being all Heads, and hence probability 1 − (1/4096) of not being all Heads. So, the

probability that none of them are all Heads is equal to 1 − [1 − (1/4096)]833
.
= 0.184. This

gives us a theoretical lower bound of 18.4% on the probability of obtaining a sequence of 12

consecutive Heads somewhere over the course of 10,000 fair coin flips.

However, the true probability of obtaining such a sequence must be significantly higher

than 18.4%, since the overlapping sequences give additional possibilities for success. Com-

puting the true probability exactly is challenging, though it is possible for short sequences

using recurrence relations (see e.g. [24]). Alternatively, we can run a Monte Carlo simulation

(see e.g. [26]), whereby we get our computer to simulate flipping 10,000 coins, over and over,

and count the percentage of those simulations which have 12 Heads in a row at some point.

Indeed, I just ran a Monte Carlo simulation of 10,000 fair coin flips, repeated one thousand

times. And, in 69.8% of those repetitions, the longest streak of Heads was at least 12. This

tells us that the true probability of obtaining a sequence of 12 consecutive Heads over the

course of 10,000 fair coin flips is approximately 69.8% – quite large, and much more than

the theoretical 18.4% lower bound.

In this paper, we will apply similar reasoning, including both probability calculations and

Monte Carlo simulations, to the more complicated case of winning streaks in online chess.

3 Chess Ratings and Expected Scores

To study the statistics of chess outcomes, we need to assess the probabilities of winning or

drawing or losing each game. One way to do this is through chess ratings. Chess.com assigns

every player on their site a chess rating for each game, based upon their past performance. We

wish to use these ratings to compute an expected score (i.e., average outcome) in each game,

where the score is 1 for a win, 1/2 for a draw, or 0 for a loss. (We note that, in addition to the

Chess.com ratings, many players also have various chess ratings from the international chess

federation FIDE. Those FIDE ratings are not public, and are not available for all players.

They are usually similar to the Chess.com ratings, but with some differences, which could

cause some changes in our results, but we do not consider that here.)

Suppose White has rating A, and Black has rating B. Then one possible formula for

White’s expected score is the well-known Elo logistic formula described in [10]:

1

1 + 10−(A−B)/400
.

It was shown in [27] that this Elo formula does fit our Chess.com data reasonably well,

but we can do better. The Elo formula is known to have various limitations (e.g. [14]) and

is not always used. In fact, Chess.com actually generates their ratings [7] using the more
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sophisticated Glicko method [12], based on the theoretical analysis in [13]. This method, in

its original version, instead gives White’s expected score as:

1

1 + 10−[1+
3
π2 (

ln 10
400

)2(RD2
A+RD2

B)]
−1/2

(A−B)/400
.

Here the factor [. . .]−1/2 in the exponent is a complicated multiplier, which in turn depends

on each player’s “ratings deviation” (RD), a measure of the uncertainty in their rating.

Chess.com was unable to provide the individual player RD values, so we cannot use Glicko

estimates directly. Furthermore, neither the above Elo nor Glicko formulae take into account

the (small) advantage of playing White, i.e. moving first (e.g. [14]), even though the average

score for White in the data is about 0.52, which is slightly higher than 0.50 indicating an

advantage which should be included in the probability model.

Thus, inspired by the above Elo and Glicko formulae, but also allowing for White’s small

advantage, we model White’s expected score as

S =
1

1 + 10−(A−B+c1)c2
.

Here c1 and c2 are unknown constants, to be estimated from the data as accurately as

possible. The value of c1 represents White’s (small) advantage from going first (taken as

c1 = 0 in the Elo and Glicko formulas), while c2 measures the scale of influence of the ratings

(taken as c2 = 1/400 in the original Elo formula, and as the above complicated function of

RD values in the Glicko formula). We wish to find the best values of c1 and c2 to fit the

data, in terms of the rating differences A−B and the average game outcomes.

4 Fitting Expected Scores to the Data

Our data consists of 293,047 chess game results played by the seven top-level players.

In finding the best values of c1 and c2, the raw game data is difficult to work with, since

each rating difference A − B is an integer which could take on several thousand different

possible values. To make it more manageable and collect enough games to give meaningful

data points, we “binned” the games together according to their rating difference A − B.

Specifically, we defined the bin ranges as . . . , (−14,−5), (−4, 5), (6, 15), (16, 25), . . .. Then,

for each bin, we computed the average score for White among all games whose rating dif-

ference falls within that bin. This provided us with a reasonable target expected score for

White for that bin difference. In this section, we make use of all games in the data, though

in later sections we will restrict to specific time controls and players.

Given these target expected scores, we wish to compute the best values of the constants

c1 and c2. We did this using the principle of least squares (e.g. [9, Chapter 22]), to find the
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values of c1 and c2 which minimise the sum of squares of residuals, i.e. make the expected

score curve fit the data points as accurately as possible with as small errors as possible.

(It might also be possible to use a weighted least squares fit, in which each bin is adjusted

according to its individual bin count, but we do not consider that here.)

Using this principle of least squares, we determined that the sum of squares is minimised

numerically when c1 = 18 and c2 = 1/381. The resulting expected score curve is thus:

S1 =
1

1 + 10−(A−B+18)/381
. (1)

Here 18 represents the small advantage to playing White (i.e. going first), and the denomi-

nator 381 is slightly smaller than the usual 400. This expected score curve fits the binned

average scores quite well, as seen in Figure 1, so we will use it in our analysis below.
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Figure 1: The average score for White in all games as a function of the binned
rating difference (blue), together with the score fit function S1 from (1) (red).

We note that our fit curves are all presented from White’s perspective. However, in every

game, Black’s score equals one minus White’s score, with rating difference the negative. So,
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presenting these graphs from Black’s perspective would simply rotate them by 180 degrees,

leading to exactly the same fit with no additional information.

5 Draw (Tie) Probabilities

The above expected scores S do not specify what fraction of the score should arise from

wins versus from draws. To evaluate the likelihood of long streaks of wins and draws, it is

necessary to consider not just the expected score S, but more specifically the probability W

of a win and probability D of a draw (tie). Since wins give a score of 1 while ties give a score

of 1
2
, we must have

S = W +
1

2
D .

In traditional chess tournaments with over-the-board games lasting many hours, draws are

quite common. However, in online blitz chess they are less so: just 9.1% of the games in

the dataset resulted in draws. Binning the data again as above, we observe that the draw

probabilities on a log scale are approximately a downward-quadratic function of the rating

difference A−B, so we model the draw probability as:

c3 e
−[(A−B+c4)c5]2

where c3 and c4 and c5 are constants to be estimated. We then again use a least-squares

analysis to find the values of these constants which minimise the sum of squares of the

residuals and thus best fit the data. We compute that this best fit occurs when c3 = 0.120,

c4 = 19, and c5 = 1/417; This leads to the exponential downward-quadratic function

D1 = (0.120) e−[(A−B+19)/417]2 (2)

for the probability of a draw (tie) game. This draw probability curve fits the binned average

scores reasonably well, as seen in Figure 2, though with more uncertainty than Figure 1 since

there are a smaller number of draws in the data.

Thus, in our analysis below, in addition to the formula S1 from (1) for expected score,

we use the formula D1 from (2) for the probability of a draw. And, since we always have

S = W + 1
2
D, it then follows that the probability of a win is given by

W1 = S1 −
1

2
D1 .

As an aside, we note that the draw probability formula D1 in (2) is largest when A −
B + 19 = 0, corresponding to the situation where Black’s rating is 19 points higher than

White’s, just enough to overcome White’s advantage from going first.
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Figure 2: The draw fraction in all games as a function of the binned rating differ-
ence (blue), together with the draw probability function D1 from (2) (red).

6 Autocorrelations of Excess Scores

To model probabilities of streaks, another issue is the extent to which different games are

independent. There is a long history of statistical debate about “hot hands” in basketball

and other sports (e.g. [11, 21]), whereby players are more likely to succeed the next time if

they succeeded the previous time. So, it is quite plausible that there would be some “hot

hand” persistence of performance in chess games as well, especially for games played on the

same day in rapid succession, perhaps even against the same opponent.

To investigate this, we examined the 57,421 games played by Hikaru on Chess.com. For

each game, we computed Hikaru’s “excess score”, defined as his actual score (i.e. 1 or 0 or
1
2
) minus his expected score S1 from (1) for that particular game. This gives a time series

list of excess score for all of his 57,421 games, in chronological order.

For such a time series, we can consider its “autocorrelation function” (ACF), common in

Monte Carlo and Time Series research (see e.g. [30, Chapter 18]). An autocorrelation is a
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measure, for each time lag, of the correlation between the excess score on games played at

that spacing. For example, at lag=1, this measures the correlation of excess score between

successive games. The autocorrelation at lag=0 is always equal to one, since games have

perfect correlation with themselves. But the autocorrelations at positive lags show the extent

to which Hikaru’s excess score in one game is correlated with his excess score in subsequent

games. The autocorrelation function for Hikaru’s excess scores are presented in Figure 3.
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Figure 3: The autocorrelation function (ACF) between the excess scores (actual
minus expected) in Hikaru’s games, showing virtually no autocorrelation.

Figure 3 indicates that, to our surprise, the autocorrelations at all positive lags are all

extremely close to zero. This indicates that there is virtually no correlation between Hikaru’s

excess scores on successive games. That is, for the excess scores in these games at least, there

is no overall evidence of a “hot hand” effect. As a result, conditional on the player ratings

and colors, the game outcomes can be reasonably treated as being conditionally independent.

We checked that this lack of autocorrelation of successive excess scores also holds for

other players in the data. And [17] and others agree with this conclusion. Nevertheless, it
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may seem surprising. Chess players are often thought to experience “tilt”, whereby they get

frustrated after one loss which makes them more likely to lose again. Plus, players sometimes

repeatedly play the same opponent, with various psychological and practical implications.

One possible explanation for the observed lack of autocorrelation could be that these

psychology-related factors are generally not as large as previously thought. And, small

correlations in certain specific games only might not significantly effect the overall value.

In addition, these excess scores are calculated by subtracting off the expected scores,

which are based on the players’ current ratings and hence updated after each game. They

thus already take into account the choice of opponent plus some effects of previous games,

and hence might counteract the correlations. That is, zero correlations do not mean that

the game outcomes are independent, just that they are conditionally independent given the

updated player ratings, which might themselves already account for various dependencies.

Indeed, Hikaru’s actual game scores (as opposed to excess scores) have autocorrelations which

are more substantial, equal to nearly 0.1 for lags 1 through 5, indicating that the updated

player ratings are a significant reason for uncorrelated excess scores.

Whatever the reason, the observed autocorrelations of excess scores are indeed extremely

small. This indicates that the excess scores are approximately conditionally independent,

conditional on the player ratings. So, we will use this property in our analysis below. As

an aside, we note that if Hikaru’s excess scores did actually have a positive correlation, then

this would make his long winning streaks more likely, not less.

7 Identifying Winning Streaks

Next, we investigate winning streaks in the Hikaru game data.

Hikaru is recorded as playing a total of 57,421 games on Chess.com over the date range

2014-01-06 to 2024-07-14. In this section, we combine all of these games together, in time

order, to determine streaks. In later sections, we will also consider separating out the games

played at specific time controls or dates.

To define a “streak”, we have to decide how to handle draws. At the “pure” extreme,

we could define streaks to consist solely of wins, so that any draw or loss ends it. This is a

reasonable definition, but it excludes such cases as the recent streak of 46 games in which he

won 45 and tied one [20, 15]. At the other extreme, we could say that wins or draws both

continue a streak, while only a loss ends it. This is a very loose definition, allowing many

draws in a row to constitute a major “streak”, which seems inappropriate.

So, as a compromise, since the most controversial of Hikaru’s streaks involved just one

draw, we shall use the “in between” definition that a streak consists of a maximal sequence

of games with no losses and at most one draw. That is, a single draw continues a streak,
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but a second draw (or any loss) ends it.

Compared to pure winning streaks, this compromise streak definition is somewhat harder

to work with. It also allows for overlapping streaks which are not independent. For example,

suppose a player had a first block of wins, then one draw, then a second block of wins, then

another draw, then a third block of wins. In this case, the first two blocks of wins plus

the one draw between them would count as a streak. And, the second and third blocks of

wins plus the one draw between them would also count as a streak. There would thus be

two overlapping streaks. Nevertheless, despite these minor challenges, we decided that this

compromise definition is best under the circumstances, so we use it in our analysis below.

We note that we did also separately look at Hikaru’s “pure” winning streaks, and confirmed

that the overall conclusions are similar in that case too.

With this compromise streak definition, Hikaru has a total of 8,069 streaks (including

some overlapping ones). Now, most of these are very short “streaks”; indeed 1,302 of them

consist of just a single game. However, quite a few of them are reasonably large. Indeed,

226 of them are at least 30 games, and the largest are of lengths 121, 114, 107, 103, and 101.

Next, we have to decide how to interpret and analyse such streaks.

8 Raw Probabilities of Winning Streaks

Even if a streak is very long, this does not necessarily mean that it is unexpected. We

also need to consider the probability of each streak. We define the “raw probability” of a

streak as follows. If the streak consisted of winning all of the games, then its raw probability

is the probability of a player winning all of those games, given the observed rating differences

and color assignments. If the streak consisted of winning all but one game and tying the

other, then its raw probability is the probability of a player either winning all of those games,

winning all but (any) one of those games and tying the other, again given the observed rating

differences and color assignments. This raw probability thus depends on the individual game

win and draw probabilities, which are computed from the rating differences in that game

using the fit formulae (1) and (2) (or their modifications in later sections), together with the

conditional independence property described in Section 6.

With this definition of raw probability, it turns out that even some very long streaks have

raw probabilities which are not particularly low. For example, Hikaru’s streak of length 121

began with his game number 20,940, and took place on 22 December 2018 (except for the

final game). Over these 121 games, Hikaru had an average rating of 3016. But his opponents

had an average rating of just 1579. This means that Hikaru had an average rating advantage

of +1437. This is a tremendous advantage, corresponding to a win probability of 99.985%,

i.e. nearly certain. When computed over the course of all 121 games, his raw probability of
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scoring at least 120.5 on those 121 games then works out to 12.8%, or about one chance in

7.8, i.e. not very low. We will discuss Hikaru’s opponents’ low ratings further below.

Since Hikaru has so many streaks which are short or have fairly high raw probability,

we need narrow down to those streaks which are striking in some sense. Here we focus on

streaks which have minimum length of 25 games – a reduction from the minimum 30 games

used in [27], as requested in [18]. Among those streaks, we focus on those with small raw

probabilities. In particular, there are 21 such streaks with raw probability less than 1/200

(including a few overlapping ones), which are presented in Table 1.

Hikaru Streaks (all games, length ≥ 25, raw prob < 1/200):

line streak date start length score expect raw prob
1 589 2016.04.06 7027 54 54 48.9 1/1093.4
2 1384 2017.05.28 13170 32 32 27.9 1/289.2
3 1717 2017.10.20 15503 91 90.5 85.9 1/251.8
4 2154 2018.07.01 18182 37 36.5 32.1 1/258.1
5 2155 2018.07.01 18184 44 43.5 38.3 1/554.3
6 2414 2018.11.12 19665 40 39.5 34.2 1/705.6
7 2415 2018.11.12 19666 57 56.5 49.6 1/5247.9
8 2527 2018.11.28 20436 25 25 20.9 1/319.0
9 3569 2019.11.15 27244 32 31.5 27.3 1/201.7
10 3734 2020.01.25 28227 30 29.5 24.1 1/907.4
11 3805 2020.02.16 28644 25 25 21.0 1/242.5
12 3917 2020.03.12 29340 41 40.5 33.6 1/6942.8
13 3918 2020.03.12 29350 32 31.5 27.2 1/210.9
14 4465 2020.05.31 32790 61 61 55.3 1/3058.4
15 4551 2020.06.30 33483 53 52.5 47.4 1/524.5
16 5029 2020.12.20 36631 26 25.5 20.8 1/505.6
17 5030 2020.12.20 36633 26 25.5 20.6 1/614.2
18 6519 2023.01.09 45881 26 25.5 19.9 1/2437.1
19 7388 2023.11.17 51857 46 45.5 40.4 1/520.9
20 7471 2023.12.15 52582 34 33.5 29.2 1/202.2
21 7770 2024.03.12 55162 35 34.5 29.7 1/396.0

Table 1: A list of all 21 of Hikaru’s streaks (winning all, or all but one and drawing
one) of at least 25 games with raw probability < 1/200, in chronological order. The
columns show the streak number, the date on which the streak ended, the streak’s
starting game and length, the score Hikaru achieved in that streak, his expected
score according to (1), and the raw probability of each streak as defined herein.

Table 1 line 19 corresponds to the most controversial streak, mentioned earlier, of length

46, ending on date 2023.11.17. As can be seen from the last column, this streak has raw

probability nearly one chance in 500, which is small but not extremely small.
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Table 1 also includes many other streaks, some of which have considerably smaller raw

probabilities. For example, the streak on line 12, consisting of 41 games ending on 2020.03.12,

has the smallest raw probability, about one chance in 6,943. Over those 41 games, Hikaru’s

opponents had a quite high average rating of 3008. But Hikaru had an average rating of

3261, and hence still an average rating advantage of +253. Now, a raw probability of one

chance in 6,943 is fairly small. So, is it surprising to see such a streak? We consider this

question theoretically in the next section, and then later through Monte Carlo simulations.

9 Theoretical Bound on Smallest Streak Probability

We have seen from Table 1 line 12 that Hikaru’s streak of 41 games ending on 2020.03.12

had the smallest raw probability, of about one chance in 6,943.

Now, out of 57,421 games total, since 57,421 / 41
.
= 1400.514, there are still 1,400 differ-

ent independent opportunities to establish a streak of length 41, even without considering

overlapping possibilities. So, as a first approximation lower bound, suppose there are 1,400

independent opportunities to establish a streak, each of independent probability 1/6,943.

Then the probability of achieving such a streak would be given by

1−
[
1− 1

6, 943

]1,400 .
= 0.1826 .

That is, under this approximation, the probability of achieving such a streak over the course

of 57,421 games is roughly 18%, even without considering overlapping opportunities. That

is not particularly surprising, and well above the usual 5% level for statistical significance.

So, even with a simple approximate theoretical lower bound, we can already see that

Hikaru’s individual streaks with small raw probabilities are not particularly surprising. How-

ever, much of the concern about Hikaru’s streaks (e.g. [18]) involves looking at multiple

streaks together. This is too difficult to analyse theoretically, but can be done by Monte

Carlo simulations, as we do next.

10 Monte Carlo Simulations of Streaks

The above calculation indicates that Hikaru’s individual least-likely streak is not partic-

ularly surprising. However, the approximate 18% probability computed above is just a lower

bound, which does not take into account the additional possibilities of long streaks in game

sequences which are overlapping and hence not independent. Furthermore, they do not look

at multiple win streaks beyond the single least-likely one, for which theoretical probabilities

are too difficult to compute.

12



To analyse this further, we instead conduct a Monte Carlo (random) simulation [26].

Specifically, using the actual player ratings and colors for each of Hikaru’s 57,421 games,

we simulated fresh game results using the probabilities of wins and ties implied by (1) and

(2). We repeated this simulation 10,000 different times. Each time, we recorded the 21

streaks with smallest raw probability, in order, and checked whether their raw probability

was smaller than the corresponding ordered raw probability from the actual data. The results

are shown in Table 2.

Hikaru Monte Carlo Percentages, all games:

line streak date startgame length score expect raw prob % less
1 3917 2020.03.12 29340 41 40.5 33.6 1/6942.8 45.0%
2 2415 2018.11.12 19666 57 56.5 49.6 1/5247.9 20.1%
3 4465 2020.05.31 32790 61 61 55.3 1/3058.4 18.3%
4 6519 2023.01.09 45881 26 25.5 19.9 1/2437.1 12.3%
5 589 2016.04.06 7027 54 54 48.9 1/1093.4 39.8%
6 3734 2020.01.25 28227 30 29.5 24.1 1/907.4 38.2%
7 2414 2018.11.12 19665 40 39.5 34.2 1/705.6 45.4%
8 5030 2020.12.20 36633 26 25.5 20.6 1/614.2 44.9%
9 2155 2018.07.01 18184 44 43.5 38.3 1/554.3 42.3%
10 4551 2020.06.30 33483 53 52.5 47.4 1/524.5 35.6%
11 7388 2023.11.17 51857 46 45.5 40.4 1/520.9 25.9%
12 5029 2020.12.20 36631 26 25.5 20.8 1/505.6 19.7%
13 7770 2024.03.12 55162 35 34.5 29.7 1/396.0 35.2%
14 2527 2018.11.28 20436 25 25 20.9 1/319.0 52.4%
15 1384 2017.05.28 13170 32 32 27.9 1/289.2 56.0%
16 2154 2018.07.01 18182 37 36.5 32.1 1/258.1 62.6%
17 1717 2017.10.20 15503 91 90.5 85.9 1/251.8 57.3%
18 3805 2020.02.16 28644 25 25 21.0 1/242.5 54.0%
19 3918 2020.03.12 29350 32 31.5 27.2 1/210.9 66.3%
20 7471 2023.12.16 52582 34 33.5 29.2 1/202.2 64.4%
21 3569 2019.11.15 27244 32 31.5 27.3 1/201.7 57.5%

Table 2: A list of the streaks from Table 1, now ordered by raw probability, plus a
final column showing what percentage of the 10,000 Monte Carlo runs using S1 and
D1 had a smaller raw probability for that corresponding streak with that ordering.

The top line of Table 2 shows the streak with smallest raw probability 1/6943 discussed

above. Its last column indicates that, over the course of 10,000 separate Monte Carlo simula-

tions, 45.0% of the simulations produced a streak with smaller (or equal) raw probability. As

expected, this is considerably larger than the 18% theoretical lower bound computed earlier.

It shows even more clearly that a streak of such small raw probability is not unexpected over

the course of Hikaru’s full record.
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The second line of Table 2 shows the streak with second-smallest raw probability 1/5248.

In this case, the Monte Carlo simulation showed that 20.1% of the simulations had second-

smallest streak raw probability less than (or equal to) 1/5248. That is, about 20.1% of the

simulations had two streaks whose raw probabilities were both less than 1/5248. This is

somewhat less than the 45.0% from line 1, indicating that Hikaru’s two smallest raw prob-

ability streaks combined are somewhat less likely than just his smallest one. Nevertheless,

they are not particularly surprising, and still well above the usual 5% level for statistical

significance.

The third and fourth lines of Table 2 give the percentage of Monte Carlo simulations

whose third or fourth smallest streak raw probability is less than (or equal to) that of

Hikaru. These percentages get somewhat smaller, down to 18.3% and 12.3%. This indicates

that, in Hikaru’s record, the single most surprising streak fact is that he had four streaks

which all had raw probability ≤ 1/2437. This would only occur about 12.3% of the time.

However, even this is well above the usual 5% threshhold.

The rest of the last column of Table 2 shows that the remaining streaks each have

Monte Carlo percentage which is higher than 12.3%, usually considerably so. The only other

percentage which is remotely small is for the 12th-smallest streak raw probability, which

had Monte Carlo percentage 19.7%, still not particularly low. Of course, even if one of the

21 streaks had Monte Carlo percentage slightly lower than 5%, this would not necessarily

indicate statistical significance due to issues of multiple testing [25]. But in fact, none of them

even come close to the 5% threshold. So, this extensive Monte Carlo simulation indicates

that none of Hikaru’s streaks, even when taken as a group, are particularly surprising or

unexpected given his and his opponents’ chess ratings.

11 Restricting to just a Single Time Control

One important aspect of any chess game is the time control, i.e. how much time each

player is allotted to play the game. While traditional chess tournaments allotted several

hours to each player, the modern online trend is towards much faster games. Indeed, the

large majority of Hikaru’s recorded games used the time control 3m+0s, meaning that each

player gets three minutes for the entire game, with no bonus increment for completed moves.

Of his 57,421 total games, there were 35,449 games (61.7%) at this time control. Second

most common was the time control 1m+0s, where each player gets just one minute for the

entire game, again with no bonus increment, corresponding to 15,569 of his games (27.1%).

Third most common was the time control 3m+1s, in which each player gets three minutes

plus a one second bonus for each completed move, at 3,310 games (5.8%).

Now, our above analysis combined all of Hikaru’s different games together, in chrono-
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logical order, regardless of time control. This may be reasonable, since any cheating etc.

might be expected to continue during different types of games. However, the response [17]

vigorously objected to this, since different time controls substantially change the nature of

the game. Indeed, Chess.com even uses different chess ratings for “blitz” games (total time

between 3 and 14 minutes each) and “bullet” games (total time less than 3 minutes each).

So, in this section, we redo the entire curve fit and Monte Carlo analysis again, restricted

solely to games with most common 3m+0s time control.

Of the 293,047 total chess games in our data, 131,445 of them (44.9%) are at the time

control 3m+0s. For White’s expected score, redoing the least squares analysis on just this

3m+0s data, we find that the sum of squares is minimised numerically when c1 = 21 and

c2 = 1/356. The resulting expected score curve is thus:

S2 =
1

1 + 10−(A−B+21)/356
, (3)

quite similar to the fit S1 in (1) but with a somewhat smaller exponent divisor, which fits

the 3m+0s data well (see Figure 4).

And, for the probability of a draw, the sum of squares is minimised when c3 = 0.138,

c4 = 13, and c5 = 1/373, leading to the draw probability curve

D2 = (0.138) e−[(A−B+13)/373]2 (4)

for the probability of a draw game, a small adjustment of D1 in (2), which fits the 3m+0s

data reasonably well (see Figure 5).

When restricting to just Hikaru’s 35,449 games at time control 3m+0s, and using the

new fits S2 and D2, we find that he has just seven streaks with raw probability less than

1/200, and a total of 16 streaks with raw probability less than 1/100, shown in Table 3.

Comparing Table 3 with Table 1, we see that several of the previous streaks remain,

including the least likely one (now line 9), and the most controversial one (now line 15),

though some other ones disappear or are modified, and the raw probabilities are all changed

due to the new fits.

To examine the significance of these streaks at just time control 3m+0s, we conducted

a fresh Monte Carlo simulation of 10,000 random simulations of just these 35,449 games,

using the new fits S2 and D2 from (3) and (4). Specifically, using the actual player ratings

and colors for each of Hikaru’s 35,449 games at 3m+0s time control, we simulated fresh

game results using the probabilities of wins and draws from (3) and (4). We repeated this

simulation 10,000 different times. Each time, we recorded the 16 streaks with smallest raw

probability, in order, and checked whether their raw probability was smaller than (or equal

to) the corresponding raw probability from the actual data. The results are shown in Table 4.
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Figure 4: The average score for White in games at time control 3m+0s only, as a
function of the binned rating difference (blue), together with the score fit function
S2 from (3) (red).

Examining the first line of Table 4, we see that 46.2% of the new Monte Carlo simu-

lations had a streak with raw probability less than (or equal to) that of Hikaru’s smallest

raw probability. This is very similar to (and slightly more than) the 45.0% Monte Carlo

probability in the first line of Table 2.

Then, examining the subsequent lines of Table 4, we see that their Monte Carlo probabil-

ities are actually larger than those in Table 2. Indeed, the smallest Monte Carlo percentage,

in line 2 of Table 4, is still nearly 40%. The others are all larger, mostly considerably so,

with many of them above 90%.

The Monte Carlo simulation of Table 4 thus indicates that, when restricted to just 3m+0s

games with appropriately adjusted curve fits, Hikaru’s streaks are still not at all unexpected

over his full history. Restricting to just 3m+0s time control games makes small changes to

the expected score and draw probability formulae, but does not show any additional evidence

of surprising win streaks.
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Figure 5: The draw fraction in all games at time control 3m+0s as a function of
binned rating difference (blue), with the draw fit function D2 from (4) (red).

12 Fitting the Curves while Omitting one Player

The response [18] argued that, in addition to restricting to just the single time control

3m+0s, the curve fits should also be done excluding games played by Hikaru, so that his

potentially irregular play does not affect the assessment of probabilities. So, we now consider

what would change if we restrict our fits solely to games with 3m+0s time control which do

not involve Hikaru.

The data includes 92,872 games at 3m+0s time control not involving Hikaru. For this

data, again using the principle of least squares, we determined that the expected score sum

of squares is minimised when c1 = 21 and c2 = 1/348, giving the expected score function

S3 =
1

1 + 10−(A−B+21)/348
. (5)

This is very similar to the fit S2 in (3), and fits this new data well (see Figure 6).

And, for the probability of a draw, the sum of squares is minimised when c3 = 0.126,
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Hikaru Streaks (3m+0s only, length ≥ 25, raw prob < 1/100):

line streak date start length score expect raw prob
1 8 2014.05.14 45 46 46 41.5 1/590.6
2 539 2017.05.28 4514 32 32 28.4 1/167.3
3 577 2017.06.26 4747 25 25 21.7 1/107.6
4 1188 2018.07.01 8755 37 36.5 32.6 1/138.0
5 1189 2018.07.01 8757 44 43.5 39.0 1/253.0
6 2274 2019.11.15 15733 32 31.5 27.8 1/119.7
7 2400 2020.01.25 16508 52 51.5 47.1 1/306.4
8 2462 2020.02.16 16906 25 25 21.5 1/152.3
9 2557 2020.03.12 17551 41 40.5 34.2 1/3380.1
10 2558 2020.03.12 17561 33 32.5 28.6 1/127.8
11 3063 2020.05.31 20723 61 61 55.9 1/1697.6
12 4275 2023.01.10 29512 29 28.5 24.4 1/183.3
13 4553 2023.07.03 31454 33 32.5 28.6 1/129.3
14 4575 2023.07.10 31607 47 46.5 42.2 1/207.8
15 4675 2023.11.17 32499 46 45.5 41.1 1/231.0
16 4721 2023.12.17 32904 36 35.5 31.6 1/125.0

Table 3: A table similar to Table 1, but now based on just Hikaru’s games at the
specific time control 3m+0s, and with raw probability < 1/100.

c4 = 15, and c5 = 1/418, leading to the draw probability curve

D3 = (0.126) e−[(A−B+15)/418]2 , (6)

an adjustment to (4) which fits the new data reasonably well (see Figure 7).

To proceed, we again used the actual player ratings and colors for each of Hikaru’s 35,449

games at 3m+0s time control. We simulated fresh game results, now using the formulae S3

and D3 from (5) and (6). We repeated this simulation 10,000 different times. Each time, we

again recorded the 15 streaks with smallest raw probability, in order, and checked whether

their raw probability was smaller than (or equal to) the corresponding raw probability from

the actual data. The results are shown in Table 5.

Comparing Table 5 with Table 4, we see that they are very similar, and in fact the Monte

Carlo percentages are slightly higher. This means that Hikaru’s streaks at time control

3m+0s are actually slightly less surprising when using the fits S3 and D3 than when using

the fits S2 and D2. In any case, the conclusion is the same: Once again, by this new measure,

Hikaru’s game record does not show evidence of surprising winning streaks.
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Hikaru Monte Carlo Percentages, 3m+0s only:

line streak date startgame length score expect raw prob % less
1 2557 2020.03.12 17551 41 40.5 34.2 1/3380.1 46.2%
2 3063 2020.05.31 20723 61 61 55.9 1/1697.6 39.9%
3 8 2014.05.14 45 46 46 41.5 1/590.6 77.2%
4 2400 2020.01.25 16508 52 51.5 47.1 1/306.4 95.4%
5 1189 2018.07.01 8757 44 43.5 39.0 1/253.0 96.0%
6 4675 2023.11.17 32499 46 45.5 41.1 1/231.0 94.5%
7 4575 2023.07.10 31607 47 46.5 42.2 1/207.8 94.0%
8 4275 2023.01.10 29512 29 28.5 24.4 1/183.3 94.5%
9 539 2017.05.28 4514 32 32 28.4 1/167.3 94.2%
10 2462 2020.02.16 16906 25 25 21.5 1/152.3 94.4%
11 1188 2018.07.01 8755 37 36.5 32.6 1/138.0 95.1%
12 4553 2023.07.03 31454 33 32.5 28.6 1/129.3 94.9%
13 2558 2020.03.12 17561 33 32.5 28.6 1/127.8 92.4%
14 4721 2023.12.17 32904 36 35.5 31.6 1/125.0 89.2%
15 2274 2019.11.15 15733 32 31.5 27.8 1/119.7 87.5%
16 577 2017.06.26 4747 25 25 21.7 1/107.6 90.8%

Table 4: A list of the streaks from Table 3, now ordered by raw probability, plus a
final column showing what percentage of the 10,000 Monte Carlo runs using S2 and
D2 had a smaller raw probability for that corresponding streak with that ordering.

13 Examination of Two Specific Days

The critique [18] mentions a number of specific recent Hikaru “pure” winning streaks, i.e.

streaks consisting of wins only with no draws, and wonders why they were not considered

particularly surprising in [27, 28]. Several of these involve Hikaru’s games on February 16–17,

2024, so we take a closer look at those two specific dates now.

Hikaru played a total of 230 games on those two days, a huge amount, in his games

numbered 54665 through 54894. Of these, 129 were at time control 3m+0s, and 101 were at

1m+0s. We consider separately the cases of grouping all 230 games together, and looking at

just the 3m+0s time control games separately as requested in [17, 18].

For the 230 games all grouped together, the longest pure winning streak (by far) consisted

of 59 games, numbered 54762 through 54820, spanning both days. For these 59 games,

Hikaru’s mean rating was 3317, while his opponents’ mean rating was 2793, giving the very

large average rating advantage of +524. Using the fit S1 and D1 from (1) and (2) to combine

all time controls, his raw probability of winning all 59 games works out to 1/158.

For the 129 of these games which are at time control 3m+0s, there are two long pure

winning streaks, each involving “skipping over” some 1m+0s games with losses or draws. The
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Figure 6: The average score for White in games at time control 3m+0s only,
excluding games involving Hikaru, as a function of the binned rating difference
(blue), together with the score fit function S3 from (5) (red).

first is the 34 games from 54685 through 54698 and from 54719 through 54738 on February

16, skipping over games 54699 through 54718 at 1m+0s. The second is the 36 games from

54762 through 54787 and from 54869 through 54878 spanning both days, skipping over games

54788 through 54868 at 1m+0s.

For the 34 game streak, Hikaru’s mean rating was 3276, while his opponents’ mean rating

was 2882, an average rating advantage of +394. And, using the fit S3 andD3 from (5) and (6)

based on just time control 3m+0s excluding Hikaru games, his raw probability of winning

all 34 of these games works out to 1/71.8.

For the 36 game streak, Hikaru’s mean rating was 3265, while his opponents’ mean rating

was 2831, an average rating advantage of +434. And, again using the fit S3 and D3 from (5)

and (6), his raw probability of winning all 36 games works out to 1/19.7.

In summary, although Hikaru’s long streaks on 16–17 February 2024 do seem striking at

first glance, in fact they were against far weaker opponents and hence have raw probabilities
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Figure 7: The draw fraction in all games at time control 3m+0s only, excluding
games involving Hikaru, as a function of the binned rating difference (blue), together
with the draw fit function D3 from (6) (red).

which are not particularly small or surprising.

14 Streaks in the Year 2024 Only

The critique [18] expressed concern with various Hikaru streaks in the year 2024, not just

the two discussed in the previous section. So, as a final test, we consider Hikaru’s games at

time control 3m+0s during just the year 2024, specifically from 1 January 2024 through 14

July 2024 (when our data ends), and look at all of his streaks within that time period.

For this data, again using the fits S3 and D3, Hikaru had 10 streaks with raw probability

< 1/10. So, using the actual player ratings and colors for each of Hikaru’s 2,312 games at

3m+0s in the year 2024, we simulated fresh game results, again using the fits S3 and D3 from

(5) and (6). We repeated this simulation 10,000 different times. Each time, we recorded the

10 streaks with smallest raw probability, in order, and checked whether their raw probability
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Hikaru Monte Carlo Percentages, 3m+0s only, using S3 and D3:

line streak date startgame length score expect raw prob % less
1 2557 2020.03.12 17551 41 40.5 34.4 1/2662.3 54.8%
2 3063 2020.05.31 20723 61 61 56 1/1410.0 48.2%
3 8 2014.05.14 45 46 46 41.7 1/519.9 82.5%
4 2400 2020.01.25 16508 52 51.5 47.2 1/258.2 97.9%
5 1189 2018.07.01 8757 44 43.5 39.2 1/209.8 98.6%
6 4675 2023.11.17 32499 46 45.5 41.3 1/192.1 98.2%
7 4575 2023.07.10 31607 47 46.5 42.4 1/173.6 98.0%
8 4275 2023.01.10 29512 29 28.5 24.5 1/153.5 98.2%
9 539 2017.05.28 4514 32 32 28.5 1/149.1 97.0%
10 2462 2020.02.16 16906 25 25 21.6 1/132.9 97.9%
11 1188 2018.07.01 8755 37 36.5 32.8 1/118.4 98.5%
12 4553 2023.07.03 31454 33 32.5 28.8 1/109.3 98.6%
13 2558 2020.03.12 17561 33 32.5 28.8 1/108.6 97.6%
14 4721 2023.12.17 32904 36 35.5 31.8 1/106.5 96.5%
15 2274 2019.11.15 15733 32 31.5 27.9 1/104.3 95.2%

Table 5: A list of the streaks from Table 3 plus Monte Carlo percentages, similar
to Table 4, but now instead using the fits S3 and D3.

was smaller than the corresponding raw probability from the actual data. The results are

shown in Table 6.

We see that Table 6 line 1 is a slight extension – due to allowing one draw instead of just

pure streaks of wins only – of the streak of length 34 on 16 February 2024 discussed in the

previous section. And Table 6 line 5 is the same pure streak of length 36 on 16–17 February

2024 discussed in the previous section.

In any case, the last column of Table 6 indicates that the Monte Carlo percentages of

smaller corresponding raw probabilities are all above 40% and hence not particularly small.

That is, although Hikaru did have a number of fairly long streaks in the year 2024, observing

streaks with those raw probabilities was not particularly surprising. So, when considering

just the year 2024, the conclusion is still the same: Hikaru’s game record again does not

show evidence of unexpected win streaks.

15 Comparing Hikaru and Carlsen Opponents

The critique [18] raised the issue of why Hikaru has so many more long winning streaks

than top player Magnus Carlsen. Indeed, we have seen that Hikaru had 21 streaks (as

defined herein) with raw probability < 1/200, but meanwhile Carlsen had just one – a huge

difference. Furthermore, Hikaru had several streaks of more than 100 games, while Carlsen’s
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Hikaru Monte Carlo Percentages, 3m+0s, 2024 only:

line streak date startgame length score expect raw prob % less
1 112 2024.02.16 1077 37 36.5 33.1 1/75.8 84.4%
2 139 2024.03.19 1318 33 32.5 29.2 1/69.4 61.8%
3 57 2024.01.20 425 49 49 46.3 1/53.3 51.9%
4 67 2024.01.26 553 37 37 34.8 1/23.5 83.2%
5 117 2024.02.17 1137 36 36 34 1/19.7 80.7%
6 188 2024.05.14 1753 31 30.5 28.1 1/19.6 67.2%
7 130 2024.03.03 1253 40 39.5 37.2 1/18.7 56.0%
8 187 2024.05.11 1746 33 32.5 30.2 1/18.3 42.9%
9 142 2024.03.27 1368 31 30.5 28.3 1/15.8 41.9%
10 49 2024.01.15 339 26 25.5 23.5 1/13.2 44.3%

Table 6: Hikaru’s streaks for 3m+0s games in the year 2024 only, ordered by raw
probability, plus a final column showing what percentage of 10,000 Monte Carlo
runs using S3 and D3 had a smaller raw probability for that corresponding streak.

longest one was just 32 games – another huge difference.

So, by any measure, Hikaru had far more win streaks than Carlsen. That raises the

question, does this provide evidence of irregularities? Or can it be explained in a way which

is consistent with statistical expectations?

A first explanation is that Hikaru has played a total of 57,421 games on Chess.com,

compared to just 5,104 for Carlsen. So, we would expect Hikaru to have more and longer

streaks just by virtue of having more games to choose from. Okay, but what else?

Further insights can be gained by looking at their opponents’ ratings. Hikaru’s rating

averaged 3130 over his entire record, while Carlsen averaged 3227, i.e. even higher. However,

Hikaru’s opponents’ mean rating was just 2730, giving him a mean rating advantage of +400.

By contrast, Carlsen’s opponents’ mean rating was 2985, giving him a mean rating advantage

of +242, much lower. Even more dramatically, as summarized in Table 7, Hikaru played a

total of 699 games (1.2% of his total) again players with ratings ≤ 1000, i.e. extremely weak

opponents, while Carlsen has played just eight (0.16%). And Hikaru has played 3286 (5.7%)

against players ≤ 2000, compared to just 30 (0.59%) for Carlsen. And 8048 (14.0%) against

players ≤ 2500, compared to just 156 (3.1%) for Carlsen. In short, Hikaru’s opponents have

generally had much lower ratings than Carlsen’s.

This can also be seen by looking at histograms of the two players’ rating advantages

over their opponents, in Figure 8. That graph shows that Hikaru’s rating advantage (in

red) spreads out from about 150 to 600, with tail extending beyond 1000, while Carlsen’s is

concentrated between about 50 and 350. So, compared to Carlsen, Hikaru has played a lot

more opponents with much lower ratings. This fact, in addition to simply playing many more
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Player NumGames avr adv # ≤ 1000 # ≤ 2000 # ≤ 2500
Hikaru Nakamura 57,421 +400 699 (1.2%) 3286 (5.7%) 8048 (14.0%)
Magnus Carlsen 5,104 +242 8 (0.16%) 30 (0.59%) 156 (3.1%)

Table 7: A comparison of the records of Hikaru Nakamura and Magnus Carlsen,
showing their total number of games played, average rating advantage over their
opponent, and number of opponents with rating ≤ 1000, and ≤ 2000, and ≤ 2500.

games, provides a sound statistical explanation for why Hikaru has so many more winning

streaks than Carlsen does.

16 Discussion

The statistical analysis presented here shows that Hikaru did indeed have many long

winning streaks in his online chess play, including his recent controversial streak of length

46 and many others. And some of them do have quite low raw probabilities. However,

Monte Carlo simulations indicate that his streaks are well within the range of what would

be expected statistically, given his rating advantages over his opponents. Hence, they are

not particularly surprising, and do not provide any statistical evidence of irregularities.

Of course, every statistical analysis requires making some choices regarding definitions,

scope, modeling, etc., all of which can affect the results. However, contrary to the claims

in [17, 18], I believe that the choices in this report are all fair and defensible, consistent

with the available data, and lead to accurate conclusions. Furthermore, various alternative

choices, such as restricting to a single time control, excluding his own games when fitting

the curves, or looking at just the most recent year, all lead to similar results. Hence, the

overall conclusion, that the streaks observed in Hikaru’s Chess.com record are fairly typical

given the player ratings over Hikaru’s long record of games, appears to be quite robust.

This conclusion is heavily influenced by Hikaru’s rating advantages over his opponents.

As discussed herein, Hikaru has played many games against opponents with far lower ratings,

much more so than other top-level players such as Carlsen. This difference may be related to

Hikaru’s apparent practice of “farming”, i.e. intentionally seeking lower-rated opponents [22,

23]. Now, it might be possible that Hikaru’s chess rating is inflated for whatever reason,

an issue which is not investigated here. However, conditional on Hikaru’s ratings and his

opponents’ ratings and his extensive play record, the evidence indicates that his long winning

streaks, though initially striking, are not unexpected from a statistical point of view.

It is important to note that the existence of unexpected streaks is distinct from the

issue of cheating. For example, one player might improve their skill over a short period of

time due to higher concentration and motivation and preparation, and thus perform much
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Figure 8: Histograms of the rating advantages of Hikaru Nakamura (red) and
Magnus Carlsen (blue), as fractions of all of their games played on Chess.com.

better than their rating would indicate. This might lead to many unexpected streaks, even

without any cheating. Conversely, another player who cheats in all games, in a consistent and

regular manner, might manage to obtain a very high chess rating. This would in turn make

their winning streaks appear to be expected, so that a study of streaks would never arouse

suspicion, despite their cheating ways. Or, even simpler, a player might decide to cheat

only in every second game, leading to an unfairly successful record, but nevertheless creating

no long win streaks since they would lose many of the intervening honest games. Hence,

the examination presented herein should be viewed as merely investigating the presence of

unexpected streaks, not the broader issue of cheating in online chess.

Finally, it was insinuated in the comments at [17, 18] that I might be biased, i.e. manip-

ulating the statistical analysis in a deliberate effort to protect Hikaru and deny the existence

of unexpected streaks. I am confident that this is not the case. As a professional academic,

I always attempt to seek the truth in an unbiased way. Furthermore, as I learned from my
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work on the high-profile lottery retailer scandal [29], finding clear evidence of cheating or

other irregularities would have led to more excitement and attention and glory for me, not

less. So, to the extent that I had any personal motivation in this analysis, I actually hoped

to find some such evidence. However, despite my best efforts, I did not find any evidence of

suspicious behavior in Hikaru’s online chess winning streaks.
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