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ABSTRACT

We investigate the probabilities of long chess winning streaks by the player Hikaru on the online site 

Chess.com, in response to recent high-level allegations of cheating. We find that, under a reasonable model of 

chess win and draw probabilities, the observed streaks are comfortably within the range of statistical 

expectation. We conclude that these streaks do not provide evidence of cheating or suspicious behavior.

Keywords: chess, rating, winning streak, hot hand, cheating

Media Summary
Former world chess champion Vladimir Kramnik has raised concerns about certain long winning streaks in 

online chess by the top-level player Hikaru Nakamura, as reported in the New York Times and elsewhere. In 

this article, we investigate the probabilities of such long winning streaks using statistical modeling. We 

conclude that these streaks are comfortably within the range of statistical expectation, and do not provide 

evidence of cheating or suspicious behavior.

1. Introduction
Chess is a strategy board game going back many hundreds of years (Cazaux & Knowlton, 2017). In recent 

years, online chess has become extremely popular, with millions of active players (Keener, 2022). Meanwhile, 

chess-playing computer programs or ‘engines,’ with names like Chessmaster, Fritz, Komodo, Houdini, 

Stockfish, and Chessbase, are now much better than humans and could easily be consulted (either manually or 

automatically) during online matches to achieve superior play, which is strictly prohibited (Chess.com, 2024a). 

The most popular online chess website, Chess.com, actively monitors and attempts to catch cheaters through 

various methods, including comparing player performance online versus in-person (Chess.com, 2024b) and 

sometimes even requiring that cameras be set up to monitor players in their homes (Chess.com, 2025). 

Nevertheless, concerns about cheating continue, including at the highest levels (McClain, 2023).

One recent issue involves long streaks of games that were all (or almost all) won by a specific player. In 

particular, former world champion V. Kramnik has raised concerns about winning streaks of top-level player 

Hikaru Nakamura (player name: Hikaru), including one recent streak of 46 games in which he won 45 and tied 

one (McClain, 2023; see also GothamChess, 2024).

I was contacted by Chess.com CEO Erik Allebest, who had seen my Wired interview (Wired, 2022), and asked 

to perform an independent statistical analysis of such winning streaks. To facilitate this, I was supplied (E. 

Allebest, personal communication, July 15, 2024) with data1 showing results of all games on Chess.com of 

seven different top-level players, including Hikaru. I then conducted an independent statistical examination of 
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evidence of unusual or surprising streaks in Hikaru’s Chess.com game record. I first examined the nature of 

chess ratings, expected scores, win and draw probabilities, and game correlations, to establish a model for the 

probabilities of online chess outcomes. I then used this model to examine the probabilities corresponding to 

Hikaru’s winning streaks.

When my original preliminary report (Rosenthal, 2024a) was publicized on Chess.com (Svensen, 2024) and 

elsewhere (Hikaru, 2024a), Kramnik posted a response video and comments (Kramnik, 2024a) with numerous 

criticisms. I responded to that in an addendum (Rosenthal, 2024b), and some of those issues are incorporated 

herein. Months later, while extensively revising this article, I discovered that Kramnik had posted a second 

video (Kramnik, 2024b) in response to my addendum, and some of the issues raised there are also incorporated 

herein. I note that these same win streaks have also been examined in other contexts, including a blog post 

(Bobyrev, 2023), a Chess.com response (Chess.com, 2023), and a Bayesian perspective (Maharaj et al., 2023), 

which each reached conclusions similar to mine through different approaches.

2. Informal Discussion
Before getting into the statistical analysis, we begin with some informal discussion. Over more than 10 years, 

Hikaru has played 57,421 games on Chess.com—a tremendous number. Of these, he has won 45,409, drawn 

4,943, and lost 7,069, for a total score of 47,880.5 out of a maximum of 57,421 (83.4%). So, Hikaru has 

certainly had a very successful record. And, this record does indeed include many long winning streaks. For 

instance, on December 22, 2018, Hikaru played a total of 139 games, and won his last 116 in a row. So, if all 

long winning streaks are suspicious, then Hikaru’s record would be very suspicious indeed.

However, this raises the question of whether long winning streaks are necessarily always suspicious. This 

might not be so, for two reasons. First, if Hikaru often plays against much weaker opponents, then his chance 

of winning each game is very high, so long winning streaks might be less surprising than they first appear. 

Second, Hikaru has played so many games total, that over such a long period, even surprising events might 

occur by chance alone.

The first reason—the effect of the relative strength of the two players—involves carefully considering chess 

players’ relative abilities and probabilities of winning, as we shall do herein. For example, during the above 

116-game winning streak, Hikaru’s chess rating (as discussed herein) averaged 3,017, indicating top-level 

performance. Meanwhile, his opponents’ ratings averaged just 1,526, indicating middle amateur level. This is a 

difference of +1,491, which indicates that Hikaru’s opponents were often much weaker chess players than he 

was, which suggests that he had a very high probability of winning individual games.

The second reason—that even surprising events might occur by chance over a long period—can be illustrated 

using a simple analogy. Suppose your friend is repeatedly flipping a coin. If they get 12 heads in a row, that 

seems suspicious. Indeed, the ‘raw probability’ of getting 12 heads in a row, if you flip a fair coin 12 times, is 

just 1/4,096, extremely low. However, suppose your friend has flipped the coin a total of 10,000 times. Then 
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they have many more opportunities to obtain 12 heads in a row. Although each specific opportunity has raw 

probability 1/4,096, the chance of getting some sequence of 12 heads at some point has much higher 

probability. This is an example of multiple testing (e.g., Ranganathan et al., 2016): in all those 10,000 flips, 

some sequence of 12 heads, somewhere along the way, is much more likely.

How likely? Well, as a theoretical calculation, this is not so simple, because potential heads streaks are 

overlapping. For example, if flips number 21 through 32 were all heads, then it is more likely that flips 22 

through 33 will all be heads, too. Still, since 10,000/12 = 833.3, there are 833 nonoverlapping sequences of 12 

flips contained within 10,000 flips. And these nonoverlapping sequences are independent. Each of them has 

probability 1/4,096 of being all heads, and hence probability 1−(1/4,096) of not being all heads. So, the 

probability that none of them are all heads is equal to 1−[1−(1/4,096)]833 ≐ 0.184. This gives us a theoretical 

lower bound of 18.4% on the probability of obtaining a sequence of 12 consecutive heads somewhere over the 

course of 10,000 fair coin flips.

However, the true probability of obtaining such a sequence must be significantly higher than 18.4%, since the 

overlapping sequences give additional possibilities for success. Computing the true probability exactly is 

challenging, though it is possible for short sequences using recurrence relations (see, e.g., Szczepanek, 2024). 

Alternatively, we can run a Monte Carlo simulation (see, e.g., Robert & Casella, 2009), whereby we get our 

computer to simulate flipping 10,000 coins, over and over, and count the percentage of those simulations that 

have 12 heads in a row at some point. Indeed, I just ran a Monte Carlo simulation of 10,000 fair coin flips, 

repeated 1,000 times. And, in 69.8% of those repetitions, the longest streak of heads was at least 12. This tells 

us that the true probability of obtaining a sequence of 12 consecutive heads over the course of 10,000 fair coin 

flips is approximately 69.8%—quite large, and much more than the theoretical 18.4% lower bound.

In this article, we will apply similar reasoning, including both probability calculations and Monte Carlo 

simulations, to the more complicated case of winning streaks in online chess.

3. Chess Ratings and Expected Scores
To study the statistics of chess outcomes, we need to assess the probabilities of winning or drawing or losing 

each game. One way to do this is through chess ratings. Chess.com assigns every player on their site a chess 

rating for each game, based upon their past performance. We wish to use these ratings to compute an expected 

score (i.e., average outcome) in each game, where the score is 1 for a win, 1/2 for a draw, or 0 for a loss. (We 

note that, in addition to the Chess.com ratings, many players also have various chess ratings from the 

international chess federation FIDE. Those FIDE ratings are not public, and are not available for all players. 

They are usually similar to the Chess.com ratings, but with some differences, which could cause some changes 

in our results, but we do not consider that here.)
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Suppose White has rating , and Black has rating . Then one possible formula for White’s expected score is 

the well-known Elo (1978) logistic formula: 

It was shown in Rosenthal (2024a) that this Elo formula does fit our Chess.com data reasonably well, but we 

can do better. The Elo formula is known to have various limitations (e.g., Glickman & Jones, 1999) and is not 

always used. In fact, Chess.com actually generates their ratings (Chess.com, 2024c) using the more 

sophisticated Glicko method (Glickman, n.d., 2022), based on the theoretical analysis in Glickman (1999). 

This method, in its original version, instead gives White’s expected score as: 

Here the factor  in the exponent is a complicated multiplier, which in turn depends on each player’s 

‘ratings deviation’ (RD), a measure of the uncertainty in their rating.

Chess.com was unable to provide the individual player RD values, so we cannot use Glicko estimates directly. 

Furthermore, neither the above Elo nor Glicko formulae take into account the (small) advantage of playing 

White, that is, moving first (e.g., Glickman & Jones, 1999), even though the average score for White in the 

data is about 0.52, which is slightly higher than 0.50 indicating an advantage that should be included in the 

probability model.

Thus, inspired by the above Elo and Glicko formulae, but also allowing for White’s small advantage, we model 

White’s expected score as 

Here  and  are unknown constants, to be estimated from the data as accurately as possible. The value of  

represents White’s (small) advantage from going first (taken as = 0 in the Elo and Glicko formulas), while 

 measures the scale of influence of the ratings (taken as  = 1/400 in the original Elo formula, and as the 

above complicated function of RD values in the Glicko formula). We wish to find the best values of  and  

to fit the data, in terms of the rating differences  and the average game outcomes.
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4. Fitting Expected Scores to the Data
Our data consists of 293,047 chess game results played by the seven top-level players. In finding the best 

values of  and , the raw game data is difficult to work with, since each rating difference  is an 

integer that could take on several thousand different possible values. To make it more manageable and collect 

enough games to give meaningful data points, we ‘binned’ the games together according to their rating 

difference . Specifically, we defined the bin ranges as 

. Then, for each bin, we computed the average score 

for White among all games whose rating difference falls within that bin. This provided us with a reasonable 

target expected score for White for that bin difference. In this section, we make use of all games in the data, 

though in later sections we will restrict to specific time controls and players.

Given these target expected scores, we wish to compute the best values of the constants  and . We did this 

using the principle of least squares (e.g., Dekking et al., 2005, Chapter 22), to find the values of  and , 

which minimize the sum of squares of residuals, that is, make the expected score curve fit the data points as 

accurately as possible with as small errors as possible. (It might also be possible to use a weighted least squares 

fit, in which each bin is adjusted according to its individual bin count, but we do not consider that here.)

Using this principle of least squares, we determined that the sum of squares is minimized numerically when  

= 18 and  = 1/381. The resulting expected score curve is thus: 

Here 18 represents the small advantage to playing White (i.e., going first), and the denominator 381 is slightly 

smaller than the usual 400. This expected score curve fits the binned average scores quite well, as shown in 

Figure 1, so we will use it in our analysis below.
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We note that our fit curves are all presented from White’s perspective. However, in every game, Black’s score 

equals one minus White’s score, with rating difference the negative. So, presenting these graphs from Black’s 

perspective would simply rotate them by 180 degrees, leading to exactly the same fit with no additional 

information.

5. Draw (Tie) Probabilities
The above expected scores  do not specify what fraction of the score should arise from wins versus from 

draws. To evaluate the likelihood of long streaks of wins and draws, it is necessary to consider not just the 

expected score , but more specifically the probability  of a win and probability  of a draw (tie). Since 

wins give a score of 1 while ties give a score of , we must have 

 

In traditional chess tournaments with over-the-board games lasting many hours, draws are quite common. 

However, in online blitz chess they are less so: just 9.1% of the games in the data set resulted in draws. 

Binning the data again as above, we observe that the draw probabilities on a log scale are approximately a 

downward-quadratic function of the rating difference , so we model the draw probability as: 

Figure 1. Average scores versus expected score, all games. The average score for White 
in all games as a function of the binned rating difference (blue), together with the score fit 

function S1 from Equation 4.1 (red).
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where  and  and  are constants to be estimated. We then again use a least-squares analysis to find the 

values of these constants, which minimize the sum of squares of the residuals and thus best fit the data. We 

compute that this best fit occurs when  = 0.120,  = 19, and  = 1/417. This leads to the exponential 

downward-quadratic function 

for the probability of a draw (tie) game. This draw probability curve fits the binned average scores reasonably 

well, as shown in Figure 2, though with more uncertainty than Figure 1 since there are a smaller number of 

draws in the data.

Thus, in our analysis below, in addition to the formula  from Equation 4.1 for expected score, we use the 

formula  from Equation 5.1 for the probability of a draw. And, since we always have , it 

then follows that the probability of a win is given by 

c e3
−[(A−B+c )c ]4 5

2

c3 c4 c5

c3 c4 c5

D   = 1 (0.120) e (5.1)−[(A−B+19)/417]2

Figure 2. Probability of a draw (tie), all games. The draw fraction in all games as a function 
of the binned rating difference (blue), together with the draw probability function D1 from 

Equation 5.1 (red).
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As an aside, we note that the draw probability formula  in Equation 5.1 is largest when 

, corresponding to the situation where Black’s rating is 19 points higher than White’s, just 

enough to overcome White’s advantage from going first.

6. Autocorrelations of Excess Scores
To model probabilities of streaks, another issue is the extent to which different games are independent. There is 

a long history of statistical debate about ‘hot hands’ in basketball and other sports (e.g., Gilovich et al., 1985; 

Miller & Sanjurjo, 2018), whereby players are more likely to succeed the next time if they succeeded the 

previous time. So, it is quite plausible that there would be some ‘hot hand’ persistence of performance in chess 

games as well, especially for games played on the same day in rapid succession, perhaps even against the same 

opponent.

To investigate this, we examined the 57,421 games played by Hikaru on Chess.com. For each game, we 

computed Hikaru’s ‘excess score,’ defined as his actual score (i.e., 1 or 0 or ) minus his expected score  

from Equation 4.1 for that particular game. This gives a time series list of excess score for all of his 57,421 

games, in chronological order.

For such a time series, we can consider its ‘autocorrelation function’ (ACF), common in Monte Carlo and time 

series research (see e.g., Ross, 2022, Chapter 18). An autocorrelation is a measure, for each time lag, of the 

correlation between the excess score on games played at that spacing. For example, at lag = 1, this measures 

the correlation of excess score between successive games. The autocorrelation at lag = 0 is always equal to one, 

since games have perfect correlation with themselves. But the autocorrelations at positive lags show the extent 

to which Hikaru’s excess score in one game is correlated with his excess score in subsequent games. The 

autocorrelation function for Hikaru’s excess scores are presented in Figure 3.

W   = 1 S −1 D .
2
1

1
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Figure 3 indicates that, to our surprise, the autocorrelations at all positive lags are all extremely close to zero. 

This indicates that there is virtually no correlation between Hikaru’s excess scores on successive games. That 

is, for the excess scores in these games at least, there is no overall evidence of a hot hand effect. As a result, 

conditional on the player ratings and colors, the game outcomes can be reasonably treated as being 

conditionally independent.

We checked that this lack of autocorrelation of successive excess scores also holds for other players in the data. 

And Kramnik (2024a) and others agree with this conclusion. Nevertheless, it may seem surprising. Chess 

players are often thought to experience ‘tilt,’ whereby they get frustrated after one loss, which makes them 

more likely to lose again. Plus, players sometimes repeatedly play the same opponent, with various 

psychological and practical implications.

One possible explanation for the observed lack of autocorrelation could be that these psychology-related 

factors are generally not as large as previously thought. And, small correlations in certain specific games only 

might not significantly affect the overall value.

In addition, these excess scores are calculated by subtracting off the expected scores, which are based on the 

players’ current ratings and hence updated after each game. They thus already take into account the choice of 

Figure 3. Autocorrelations of Hikaru excess scores. The autocorrelation function (ACF) 
between the excess scores (actual minus expected) in Hikaru’s games, showing virtually no 

autocorrelation.

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6Ijc4aHUyMG5tL0ZpZ3VyZSAzLTQxNzQ1NTE5Nzk4NDM0LnBuZyIsImVkaXRzIjp7InJlc2l6ZSI6eyJ3aWR0aCI6ODAwLCJmaXQiOiJpbnNpZGUiLCJ3aXRob3V0RW5sYXJnZW1lbnQiOnRydWV9fX0=
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opponent plus some effects of previous games, and hence might counteract the correlations. That is, zero 

correlations do not mean that the game outcomes are independent, just that they are conditionally independent 

given the updated player ratings, which might themselves already account for various dependencies. Indeed, 

Hikaru’s actual game scores (as opposed to excess scores) have autocorrelations that are more substantial, 

equal to nearly 0.1 for lags 1 through 5, indicating that the updated player ratings are a significant reason for 

uncorrelated excess scores.

Whatever the reason, the observed autocorrelations of excess scores are indeed extremely small. This indicates 

that the excess scores are approximately conditionally independent, conditional on the player ratings. So, we 

will use this property in our analysis below. As an aside, we note that if Hikaru’s excess scores did actually 

have a positive correlation, then this would make his long winning streaks more likely, not less.

7. Identifying Winning Streaks
Next, we investigate winning streaks in the Hikaru game data.

Hikaru is recorded as playing a total of 57,421 games on Chess.com over the date range January 6, 2014, to to 

July 14, 2024. In this section, we combine all of these games together, in time order, to determine streaks. In 

later sections, we will also consider separating out the games played at specific time controls or dates.

To define a ‘streak,’ we have to decide how to handle draws. At the ‘pure’ extreme, we could define streaks to 

consist solely of wins, so that any draw or loss ends it. This is a reasonable definition, but it excludes such 

cases as the recent streak of 46 games in which he won 45 and tied one (GothamChess, 2024; McClain, 2023). 

At the other extreme, we could say that wins or draws both continue a streak, while only a loss ends it. This is a 

very loose definition, allowing many draws in a row to constitute a major ‘streak,’ which seems inappropriate.

So, as a compromise, since the most controversial of Hikaru’s streaks involved just one draw, we shall use the 

‘in-between’ definition that a streak consists of a maximal sequence of games with no losses and at most one 

draw. That is, a single draw continues a streak, but a second draw (or any loss) ends it.

Compared to pure winning streaks, this compromise streak definition is somewhat harder to work with. It also 

allows for overlapping streaks, which are not independent. For example, suppose a player had a first block of 

wins, then one draw, then a second block of wins, then another draw, then a third block of wins. In this case, 

the first two blocks of wins plus the one draw between them would count as a streak. And, the second and third 

blocks of wins plus the one draw between them would also count as a streak. There would thus be two 

overlapping streaks. Nevertheless, despite these minor challenges, we decided that this compromise definition 

is best under the circumstances, so we use it in our analysis below. We note that we did also separately look at 

Hikaru’s ‘pure’ winning streaks, and confirmed that the overall conclusions are similar in that case too.
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With this compromise streak definition, Hikaru has a total of 8,069 streaks (including some overlapping ones). 

Now, most of these are very short ‘streaks’; indeed 1,302 of them consist of just a single game. However, quite 

a few of them are reasonably large. Indeed, 226 of them are at least 30 games, and the largest are of lengths 

121, 114, 107, 103, and 101. Next, we have to decide how to interpret and analyze such streaks.

8. Raw Probabilities of Winning Streaks
Even if a streak is very long, this does not necessarily mean that it is unexpected. We also need to consider the 

probability of each streak. We define the ‘raw probability’ of a streak as follows. If the streak consisted of 

winning all of the games, then its raw probability is the probability of a player winning all of those games, 

given the observed rating differences and color assignments. If the streak consisted of winning all but one 

game and tying the other, then its raw probability is the probability of a player either winning all of those 

games, winning all but (any) one of those games and tying the other, again given the observed rating 

differences and color assignments. This raw probability thus depends on the individual game win and draw 

probabilities, which are computed from the rating differences in that game using the fit formulae Equation 4.1 

and Equation 5.1 (or their modifications in later sections), together with the conditional independence property 

described in Section 6.

With this definition of raw probability, it turns out that even some very long streaks have raw probabilities that 

are not particularly low. For example, Hikaru’s streak of length 121 began with his game number 20,940, and 

took place on December 22, 2018 (except for the final game). Over these 121 games, Hikaru had an average 

rating of 3016. But his opponents had an average rating of just 1,579. This means that Hikaru had an average 

rating advantage of +1,437. This is a tremendous advantage, corresponding to a win probability of 99.985%, 

that is, nearly certain. When computed over the course of all 121 games, his raw probability of scoring at least 

120.5 on those 121 games then works out to 12.8%, or about one chance in 7.8, that is, not very low. We will 

discuss Hikaru’s opponents’ low ratings further below.

Since Hikaru has so many streaks that are short or have fairly high raw probability, we need to narrow down to 

those streaks that are striking in some sense. Here we focus on streaks that have a minimum length of 25 games

—a reduction from the minimum 30 games used in Rosenthal (2024a), as requested in Kramnik (2024b). 

Among those streaks, we focus on those with small raw probabilities. In particular, there are 21 such streaks 

with raw probability less than 1/200 (including a few overlapping ones), which are presented in Table 1.

Table 1. Hikaru Streaks (all games, length ≥25, raw prob <1/200.  A list of all 21 of Hikaru’s 
streaks (winning all, or all but one and drawing one) of at least 25 games with raw probability 
<1/200, in chronological order. The columns show the streak number, the date on which the 
streak ended, the streak’s starting game and length, the score Hikaru achieved in that streak, 
his expected score according to Equation 4.1, and the raw probability of each streak as defined 
herein.
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line streak end date start length score expect raw prob

1 589 March 6, 2016 7,027 54 54 48.9 1/1093.4

2 1,384 May 28, 2017 13,170 32 32 27.9 1/289.2

3 1,717 October 20, 

2017

15,503 91 90.5 85.9 1/251.8

4 2,154 July 1, 2018 18,182 37 36.5 32.1 1/258.1

5 2,155 July 1, 2018 18,184 44 43.5 38.3 1/554.3

6 2,414 November 12, 

2018

19,665 40 39.5 34.2 1/705.6

7 2,415 November 12, 

2018

19,666 57 56.5 49.6 1/5247.9

8 2,527 November 28, 

2018

20,436 25 25 20.9 1/319.0

9 3,569 November 15, 

2019

27,244 32 31.5 27.3 1/201.7

10 3,734 January 25, 

2020

28,227 30 29.5 24.1 1/907.4

11 3,805 February 16, 

2020

28,644 25 25 21.0 1/242.5

12 3,917 March 12, 

2020

29,340 41 40.5 33.6 1/6942.8

13 3,918 March 12, 

2020

29,350 32 31.5 27.2 1/210.9

14 4,465 May 31, 2020 32,790 61 61 55.3 1/3058.4

15 4,551 June 30, 2020 33,483 53 52.5 47.4 1/524.5

16 5,029 December 20, 

2020

36,631 26 25.5 20.8 1/505.6
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Table 1, line 19, corresponds to the most controversial streak, mentioned earlier, of length 46, ending on date 

November 17, 2023. As can be seen from the last column, this streak has raw probability nearly one chance in 

500, which is small but not extremely small.

Table 1 also includes many other streaks, some of which have considerably smaller raw probabilities. For 

example, the streak on line 12, consisting of 41 games ending on March 12, 2020, has the smallest raw 

probability, about one chance in 6,943. Over those 41 games, Hikaru’s opponents had a quite high average 

rating of 3,008. But Hikaru had an average rating of 3,261, and hence still an average rating advantage of +253. 

Now, a raw probability of one chance in 6,943 is fairly small. So, is it surprising to see such a streak? We 

consider this question theoretically in the next section, and then later through Monte Carlo simulations.

9. Theoretical Bound on Smallest Streak Probability
We have seen from Table 1 line 12 that Hikaru’s streak of 41 games ending on March 12, 2020, had the 

smallest raw probability, of about one chance in 6,943.

Now, out of 57,421 games total, since 57,421 / 41  1,400.514, there are still 1,400 different independent 

opportunities to establish a streak of length 41, even without considering overlapping possibilities. So, as a first 

approximation lower bound, suppose there are 1,400 independent opportunities to establish a streak, each of 

independent probability 1/6,943. Then the probability of achieving such a streak would be given by 

That is, under this approximation, the probability of achieving such a streak over the course of 57,421 games is 

17 5,030 December 20, 

2020

36,633 26 25.5 20.6 1/614.2

18 6,519 January 9, 

2023

45,881 26 25.5 19.9 1/2437.1

19 7,388 November 17, 

2023

51,857 46 45.5 40.4 1/520.9

20 7,471 December 15, 

2023

52,582 34 33.5 29.2 1/202.2

21 7,770 March 12, 

2024

55,162 35 34.5 29.7 1/396.0

≐

1 − [1 − ]   ≐ 
6, 943
1 1,400

0.1826 .
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roughly 18%, even without considering overlapping opportunities. That is not particularly surprising, and well 

above the usual 5% level for statistical significance.

So, even with a simple approximate theoretical lower bound, we can already see that Hikaru’s individual 

streaks with small raw probabilities are not particularly surprising. However, much of the concern about 

Hikaru’s streaks (e.g., Kramnik, 2024b) involves looking at multiple streaks together. This is too difficult to 

analyze theoretically, but can be done by Monte Carlo simulations, as we do next.

10. Monte Carlo Simulations of Streaks
The above calculation indicates that Hikaru’s individual least-likely streak is not particularly surprising. 

However, the approximate 18% probability computed above is just a lower bound, which does not take into 

account the additional possibilities of long streaks in game sequences that are overlapping and hence not 

independent. Furthermore, they do not look at multiple win streaks beyond the single least-likely one, for 

which theoretical probabilities are too difficult to compute.

To analyze this further, we instead conduct a Monte Carlo (random) simulation (e.g., Robert & Casella, 2009). 

Specifically, using the actual player ratings and colors for each of Hikaru’s 57,421 games, we simulated fresh 

game results using the probabilities of wins and ties implied by Equation 4.1 and Equation 5.1. We repeated 

this simulation 10,000 different times. Each time, we recorded the 21 streaks with smallest raw probability, in 

order, and checked whether their raw probability was smaller than the corresponding ordered raw probability 

from the actual data. The results are shown in Table 2.

Table 2. Hikaru Monte Carlo Percentages, all games. A list of the streaks from Table 1, now 
ordered by raw probability, plus a final column showing what percentage of the 10,000 Monte 
Carlo runs using  and  had a smaller raw probability for that corresponding streak with 
that ordering.

S1 D1

line streak end date startgame length score expect raw prob % less

1 3,917 March 12, 

2020

29,340 41 40.5 33.6 1/6942.8 45.0%

2 2,415 November 

12, 2018

19,666 57 56.5 49.6 1/5247.9 20.1%

3 4,465 May 31, 

2020

32,790 61 61 55.3 1/3058.4 18.3%

4 6,519 January 9, 

2023

45,881 26 25.5 19.9 1/2437.1 12.3%
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5 589 April 6, 

2016

7,027 54 54 48.9 1/1093.4 39.8%

6 3,734 January 25, 

2020

28,227 30 29.5 24.1 1/907.4 38.2%

7 2,414 November 

12, 2018

19,665 40 39.5 34.2 1/705.6 45.4%

8 5,030 December 

20, 2020

36,633 26 25.5 20.6 1/614.2 44.9%

9 2,155 July 1, 2018 18,184 44 43.5 38.3 1/554.3 42.3%

10 4,551 June 30, 

2020

33,483 53 52.5 47.4 1/524.5 35.6%

11 7,388 November 

17, 2023

51,857 46 45.5 40.4 1/520.9 25.9%

12 5,029 December 

20, 2020

36,631 36 25.5 20.8 1/505.6 19.7%

13 7,770 March 12, 

2024

55,162 35 34.5 29.7 1/396.0 35.2%

14 2,527 November 

28, 2018

20,436 25 25 20.9 1/319.0 52.4%

15 1,384 May 28, 

2017

13,170 32 32 27.9 1/289.2 56.0%

16 2,154 July 1, 2018 18,182 37 36.5 32.1 1/258.1 62.6%

17 1,717 October 20, 

2017

15,503 91 90.5 85.9 1/251.8 57.3%

18 3,805 February 16, 

2020

28,644 25 25 21.0 1/242.5 54.0%

19 3,918 March 12, 

2020

29,350 32 31.5 27.2 1/210.9 66.3%

20 7,471 December 

16, 2023

52,582 34 33.5 29.2 1/202.2 64.4%
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The top line of Table 2 shows the streak with smallest raw probability 1/6,943 discussed above. Its last column 

indicates that, over the course of 10,000 separate Monte Carlo simulations, 45.0% of the simulations produced 

a streak with smaller (or equal) raw probability. As expected, this is considerably larger than the 18% 

theoretical lower bound computed earlier. It shows even more clearly that a streak of such small raw 

probability is not unexpected over the course of Hikaru’s full record.

The second line of Table 2 shows the streak with second-smallest raw probability 1/5,248. In this case, the 

Monte Carlo simulation showed that 20.1% of the simulations had second-smallest streak raw probability less 

than (or equal to) 1/5,248. That is, about 20.1% of the simulations had two streaks whose raw probabilities 

were both less than 1/5,248. This is somewhat less than the 45.0% from line 1, indicating that Hikaru’s two 

smallest raw probability streaks combined are somewhat less likely than just his smallest one. Nevertheless, 

they are not particularly surprising, and still well above the usual 5% level for statistical significance.

The third and fourth lines of Table 2 give the percentage of Monte Carlo simulations whose third or fourth 

smallest streak raw probability is less than (or equal to) that of Hikaru. These percentages get somewhat 

smaller, down to 18.3% and 12.3%. This indicates that, in Hikaru’s record, the single most surprising streak 

fact is that he had four streaks that all had raw probability ≤1/2,437. This would only occur about 12.3% of the 

time. However, even this is well above the usual 5% threshold.

The rest of the last column of Table 2 shows that the remaining streaks each have a Monte Carlo percentage 

that is higher than 12.3%, usually considerably so. The only other percentage that is remotely small is for the 

12th-smallest streak raw probability, which had a Monte Carlo percentage 19.7%, still not particularly low. Of 

course, even if one of the 21 streaks had a Monte Carlo percentage slightly lower than 5%, this would not 

necessarily indicate statistical significance due to issues of multiple testing (Ranganathan et al., 2016). But in 

fact, none of them even come close to the 5% threshold. So, this extensive Monte Carlo simulation indicates 

that none of Hikaru’s streaks, even when taken as a group, are particularly surprising or unexpected given his 

and his opponents’ chess ratings.

11. Restricting to Just a Single Time Control
One important aspect of any chess game is the time control, that is, how much time each player is allotted to 

play the game. While traditional chess tournaments allotted several hours to each player, the modern online 

trend is toward much faster games. Indeed, the large majority of Hikaru’s recorded games used the time control 

3m+0s, meaning that each player gets 3 minutes for the entire game, with no bonus increment for completed 

moves. Of his 57,421 total games, there were 35,449 games (61.7%) at this time control. Second most common 

was the time control 1m + 0s, where each player gets just one minute for the entire game, again with no bonus 

21 3,569 November 

15, 2019

27,244 32 31.5 27.3 1/201.7 57.5%
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increment, corresponding to 15,569 of his games (27.1%). Third most common was the time control 3m+1s, in 

which each player gets 3 minutes plus a one-second bonus for each completed move, at 3,310 games (5.8%).

Now, our above analysis combined all of Hikaru’s different games together, in chronological order, regardless 

of time control. This may be reasonable, since any cheating and so on might be expected to continue during 

different types of games. However, in the response Kramnik (2024a) vigorously objected to this, since different 

time controls substantially change the nature of the game. Indeed, Chess.com even uses different chess ratings 

for ‘blitz’ games (total time between 3 and 14 minutes each) and ‘bullet’ games (total time less than 3 minutes 

each). So, in this section, we redo the entire curve fit and Monte Carlo analysis again, restricted solely to 

games with most common 3m+0s time control.

Of the 293,047 total chess games in our data, 131,445 of them (44.9%) are at the time control 3m+0s. For 

White’s expected score, redoing the least squares analysis on just this 3m+0s data, we find that the sum of 

squares is minimized numerically when  = 21 and  = 1/356. The resulting expected score curve is thus: 

quite similar to the fit  in Equation 4.1 but with a somewhat smaller exponent divisor, which fits the 3m+0s 

data well (see Figure 4).

c1 c2

S   = 2 , (11.1)
1 + 10−(A−B+21)/356

1

S1
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And, for the probability of a draw, the sum of squares is minimized when , , and 

, leading to the draw probability curve 

for the probability of a draw game, a small adjustment of  in Equation 5.1, which fits the 3m+0s data 

reasonably well (see Figure 5).

Figure 4. Average scores versus expected score, 3m+0s only. The average score for 
White in games at time control 3m+0s only, as a function of the binned rating difference 

(blue), together with the score fit function S2 from Equation 11.1 (red).

c =3 0.138 c =4 13
c =5 1/373

D   = 2 (0.138) e (11.2)−[(A−B+13)/373]2

D1

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6ImZsOXl0ZjRkL0ZpZ3VyZSA0LTMxNzQ1NTIwMDg3MDkyLnBuZyIsImVkaXRzIjp7InJlc2l6ZSI6eyJ3aWR0aCI6ODAwLCJmaXQiOiJpbnNpZGUiLCJ3aXRob3V0RW5sYXJnZW1lbnQiOnRydWV9fX0=
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When restricting to just Hikaru’s 35,449 games at time control 3m+0s, and using the new fits  and , we 

find that he has just seven streaks with raw probability less than 1/200, and a total of 16 streaks with raw 

probability less than 1/100, shown in Table 3.

Table 3. Hikaru Streaks (3m+0s only, length ≥25, raw prob <1/200).  A table similar to 
Table 1, but now based on just Hikaru’s games at the specific time control 3m+0s, and with raw 
probability .

Figure 5. The draw fraction in all games at time control 3m+0s as a function of binned rating 
difference (blue), with the draw fit function D2 from Equation 11.2 (red).

S2 D2

< 1/100

line streak end date start length score expect raw prob

1 8 May 14, 2014 45 46 46 41.5 1/590.6

2 539 May 28, 2017 4,514 32 32 28.4 1/167.3

3 577 June 26, 2017 4,747 25 25 21.7 1/107.6

4 1,188 July 1, 2018 8,755 37 36.5 32.6 1/138.0

5 1,189 July 1, 2018 8,757 44 43.5 39.0 1/253.0

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6ImJtdms1bTcxL0ZpZ3VyZSA1LTQxNzQ1NTIwMTU4NDExLnBuZyIsImVkaXRzIjp7InJlc2l6ZSI6eyJ3aWR0aCI6ODAwLCJmaXQiOiJpbnNpZGUiLCJ3aXRob3V0RW5sYXJnZW1lbnQiOnRydWV9fX0=
file:///tmp/faaf84e17f625f23eed94a64db9fc08d.html
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Comparing Table 3 with Table 1, we see that several of the previous streaks remain, including the least likely 

one (now line 9), and the most controversial one (now line 15), though some other ones disappear or are 

modified, and the raw probabilities are all changed due to the new fits.

To examine the significance of these streaks at just time control 3m+0s, we conducted a fresh Monte Carlo 

simulation of 10,000 random simulations of just these 35,449 games, using the new fits  and  

from Equation 11.1 and Equation 11.2. Specifically, using the actual player ratings and colors for each of 

Hikaru’s 35,449 games at 3m+0s time control, we simulated fresh game results using the probabilities of wins 

and draws from Equation 11.1 and Equation 11.2. We repeated this simulation 10,000 different times. Each 

time, we recorded the 16 streaks with smallest raw probability, in order, and checked whether their raw 

probability was smaller than (or equal to) the corresponding raw probability from the actual data. The results 

are shown in Table 4.

6 2,274 November 15, 

2019

15,733 32 31.5 27.8 1/119.7

7 2,400 January 25, 

2020

16,508 52 51.5 47.1 1/306.4

8 2,462 February 16, 

2020

16,906 25 25 21.5 1/152.3

9 2,557 March 12, 

2020

17,551 41 40.5 34.2 1/3380.1

10 2,558 March 12, 

2020

17,561 33 32.5 28.6 1/127.8

11 3,063 May 31, 2020 20,723 61 61 55.9 1/1697.6

12 4,275 January 10, 

2023

29,512 29 28.5 24.4 1/183.3

13 4,553 July 3, 2023 31,454 33 32.5 28.6 1/129.3

14 4,575 July 10, 2023 31,607 47 46.5 42.2 1/207.8

15 4,675 November 17, 

2023

32,499 46 45.5 41.1 1/231.0

16 4,721 December 17, 

2023

32,904 36 35.5 31.6 1/125.0

S2 D2
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Table 4. Hikaru Monte Carlo Percentages, 3m+0s only.  A list of the streaks from Table 3, 
now ordered by raw probability, plus a final column showing what percentage of the 10,000 
Monte Carlo runs using  and  had a smaller raw probability for that corresponding streak 
with that ordering. 

S2 D2

line streak end date startgame length score expect raw prob % less

1 2,557 March 12, 

2020

17,551 41 40.5 34.2 1/3380.1 46.2%

2 3,063 May 31, 

2020

20,723 61 61 55.9 1/1697.6 39.9%

3 8 May 14, 

2014

45 46 46 41.5 1/590.6 77.2%

4 2,400 January 25, 

2020

16,508 52 51.5 47.1 1/306.4 95.4%

5 1,189 July 1, 2018 8,757 44 43.5 39.0 1/253.0 96.0%

6 4,675 November 

17, 2023

32,499 46 45.5 41.1 1/231.0 94.5%

7 4,575 July 10, 

2023

31,607 47 46.5 42.2 1/207.8 94.0%

8 4,275 January 10, 

2023

29,512 29 28.5 24.4 1/183.3 94.5%

9 539 May 28, 

2017

4,514 32 32 28.4 1/167.3 94.2%

10 2,462 February 16, 

2020

16,906 25 25 21.5 1/152.3 94.4%

11 1,188 July 1, 2018 8,755 37 36.5 32.6 1/138.0 95.1%

12 4,553 July 3, 2023 31,454 33 32.5 28.6 1/129.3 94.9%

13 2,558 March 12, 

2020

1,7561 33 32.5 28.6 1/127.8 92.4%

14 4,721 December 

17, 2023

32,904 36 35.5 31.6 1/125.0 89.2%
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Examining the first line of Table  4, we see that 46.2% of the new Monte Carlo simulations had a streak with 

raw probability less than (or equal to) that of Hikaru’s smallest raw probability. This is very similar to (and 

slightly more than) the 45.0% Monte Carlo probability in the first line of Table 2.

Then, examining the subsequent lines of Table 4, we see that their Monte Carlo probabilities are actually larger 

than those in Table 2. Indeed, the smallest Monte Carlo percentage, in line 2 of Table 4, is still nearly 40%. The 

others are all larger, mostly considerably so, with many of them above 90%.

The Monte Carlo simulation of Table 4 thus indicates that, when restricted to just 3m+0s games with 

appropriately adjusted curve fits, Hikaru’s streaks are still not at all unexpected over his full history. Restricting 

to just 3m+0s time control games makes small changes to the expected score and draw probability formulae, 

but does not show any additional evidence of surprising win streaks.

12. Fitting the Curves While Omitting One Player
The response Kramnik (2024b) argued that, in addition to restricting to just the single time control 3m+0s, the 

curve fits should also be done excluding games played by Hikaru, so that his potentially irregular play does not 

affect the assessment of probabilities. So, we now consider what would change if we restrict our fits solely to 

games with 3m+0s time control that do not involve Hikaru.

The data includes 92,872 games at 3m+0s time control not involving Hikaru. For this data, again using the 

principle of least squares, we determined that the expected score sum of squares is minimized when  = 21 

and  = 1/348, giving the expected score function 

 

This is very similar to the fit  in Equation 11.1, and fits this new data well (see Figure 6).

15 2,274 November 

15, 2019

15,733 32 31.5 27.8 1/119.7 87.5%

16 577 June 26, 

2017

4,747 25 25 21.7 1/107.6 90.8%

c1

c2

S   = 3 . (12.1)
1 + 10−(A−B+21)/348

1

S2

file:///tmp/faaf84e17f625f23eed94a64db9fc08d.html
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And, for the probability of a draw, the sum of squares is minimized when  = 0.126,  = 15, and  = 1/418, 

leading to the draw probability curve 

an adjustment to Equation 11.2, which fits the new data reasonably well (see Figure 7).

Figure 6. Average scores versus expected score, 3m+0s excl. Hikaru. The average score 
for White in games at time control 3m+0s only, excluding games involving Hikaru, as a 

function of the binned rating difference (blue), together with the score fit function S3 from 

Equation 12.1 (red).

c3 c4 c5

D   = 3 (0.126) e ,    (12.2)−[(A−B+15)/418]2

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6Imdoa2V2YzhzL0ZpZ3VyZSA2LTMxNzQ1NTIwMzIxMjk5LnBuZyIsImVkaXRzIjp7InJlc2l6ZSI6eyJ3aWR0aCI6ODAwLCJmaXQiOiJpbnNpZGUiLCJ3aXRob3V0RW5sYXJnZW1lbnQiOnRydWV9fX0=
file:///tmp/faaf84e17f625f23eed94a64db9fc08d.html
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To proceed, we again used the actual player ratings and colors for each of Hikaru’s 35,449 games at 3m+0s 

time control. We simulated fresh game results, now using the formulae  and  from Equation 12.1 and 

Equation 12.2. We repeated this simulation 10,000 different times. Each time, we again recorded the 15 streaks 

with smallest raw probability, in order, and checked whether their raw probability was smaller than (or equal 

to) the corresponding raw probability from the actual data. The results are shown in Table 5.

Table 5. Hikaru Monte Carlo Percentages, 3m+0s only, using  and .  A list of the 
streaks from Table 3 plus Monte Carlo percentages, similar to Table 4, but now instead using 
the fits  and . 

Figure 7. Probability of a draw (tie), 3m+0s excl. Hikaru. The draw fraction in all games at 
time control 3m+0s only, excluding games involving Hikaru, as a function of the binned rating 

difference (blue), together with the draw fit function D3 from Equation 12.2 (red).

S3 D3

S3 D3

S3 D3

line streak end date startgame length score expect raw prob %less

1 2,557 March 12, 

2020

17,551 41 40.5 34.4 1/2662.3 54.8%

2 3,063 May 31, 

2020

20,723 61 61 56 1/1410.0 48.2%

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6InFyMTN2a21hL0ZpZ3VyZSA3LTExNzQ1NTIwNDYxOTI3LnBuZyIsImVkaXRzIjp7InJlc2l6ZSI6eyJ3aWR0aCI6ODAwLCJmaXQiOiJpbnNpZGUiLCJ3aXRob3V0RW5sYXJnZW1lbnQiOnRydWV9fX0=
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Comparing Table 5 with Table 4, we see that they are very similar, and in fact the Monte Carlo percentages are 

slightly higher. This means that Hikaru’s streaks at time control 3m+0s are actually slightly less surprising 

when using the fits  and  than when using the fits  and . In any case, the conclusion is the same: 

once again, by this new measure, Hikaru’s game record does not show evidence of surprising winning streaks.

3 8 May 14, 

2014

45 46 46 41.7 1/519.9 82.5%

4 2,400 January 25, 

2020

16,508 52 51.5 47.2 1/258.2 97.9%

5 1,189 July 1, 2018 8,757 44 43.5 39.2 1/209.8 98.6%

6 4,675 November 

17, 2023

32,499 46 45.5 41.3 1/192.1 98.2%

7 4,575 July 10, 

2023

31,607 47 46.5 42.4 1/173.6 98.0%

8 4,275 January 10, 

2023

29,512 29 28.5 24.5 1/153.5 98.2%

9 539 May 28, 

2017

4,514 32 32 28.5 1/149.1 97.0%

10 2,462 February 16, 

2020

16,906 23 25 21.6 1/132.9 97.9%

11 1,188 July 1, 2018 8,755 37 36.5 32.8 1/118.4 98.5%

12 4,553 July 3, 2023 31,454 33 32.5 28.8 1/109.3 98.6%

13 2,558 March 12, 

2020

17,561 33 32.5 28.8 1/108.6 97.6%

14 4,721 December 

17, 2023

32,904 36 35.5 31.8 1/106.5 96.5%

15 2,274 November 

15, 2019

15,733 32 31.5 27.9 1/104.3 95.2%

S3 D3 S2 D2
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13. Examination of Two Specific Days
In the critique, Kramnik (2024b) mentions a number of specific recent Hikaru ‘pure’ winning streaks, that 

is, streaks consisting of wins only with no draws, and wonders why they were not considered particularly 

surprising in Rosenthal (2024a, 2024b). Several of these involve Hikaru’s games on February 16–17, 2024, so 

we take a closer look at those two specific dates now.

Hikaru played a total of 230 games on those two days, a huge amount, in his games numbered 54665 through 

54894. Of these, 129 were at time control 3m+0s, and 101 were at 1m + 0s. We consider separately the cases of 

grouping all 230 games together, and looking at just the 3m+0s time control games separately as requested in 

Kramnik (2024a, 2024b).

For the 230 games all grouped together, the longest pure winning streak (by far) consisted of 59 games, 

numbered 54762 through 54820, spanning both days. For these 59 games, Hikaru’s mean rating was 3,317, 

while his opponents’ mean rating was 2,793, giving the very large average rating advantage of +524. Using the 

fit  and  from Equation 4.1 and Equation 5.1 to combine all time controls, his raw probability of winning 

all 59 games works out to 1/158.

For the 129 of these games that are at time control 3m+0s, there are two long pure winning streaks, each 

involving ‘skipping over’ some 1m + 0s games with losses or draws. The first is the 34 games from 54685 

through 54698 and from 54719 through 54738 on February 16, skipping over games 54699 through 54718 at 

1m + 0s. The second is the 36 games from 54762 through 54787 and from 54869 through 54878 spanning both 

days, skipping over games 54788 through 54868 at 1m + 0s.

For the 34-game streak, Hikaru’s mean rating was 3,276, while his opponents’ mean rating was 2,882, an 

average rating advantage of +394. And, using the fit  and  from Equation 12.1 and Equation 12.2 based 

on just time control 3m+0s excluding Hikaru games, his raw probability of winning all 34 of these games 

works out to 1/71.8.

For the 36-game streak, Hikaru’s mean rating was 3,265, while his opponents’ mean rating was 2,831, an 

average rating advantage of +434. And, again using the fit  and  from Equation 12.1 and Equation 12.2, 

his raw probability of winning all 36 games works out to 1/19.7.

In summary, although Hikaru’s long streaks on February 16–17, 2024, do seem striking at first glance, in fact 

they were against far weaker opponents and hence have raw probabilities that are not particularly small or 

surprising.

14. Streaks in the Year 2024 Only
The critique of Kramnik (2024b) expressed concern with various Hikaru streaks in the year 2024, not just the 

two discussed in the previous section. So, as a final test, we consider Hikaru’s games at time control 3m+0s 

S1 D1

S3 D3

S3 D3
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during just the year 2024, specifically from January 1, 2024 through July 14, 2024 (when our data ends), and 

look at all of his streaks within that time period.

For this data, again using the fits  and , Hikaru had 10 streaks with raw probability < 1/10. So, using the 

actual player ratings and colors for each of Hikaru’s 2,312 games at 3m+0s in the year 2024, we simulated 

fresh game results, again using the fits  and  from Equation 12.1 and Equation 12.2. We repeated this 

simulation 10,000 different times. Each time, we recorded the 10 streaks with smallest raw probability, in 

order, and checked whether their raw probability was smaller than the corresponding raw probability from the 

actual data. The results are shown in Table 6.

Table 6. Hikaru Monte Carlo Percentages, 3m+0s, 2024 only.  Hikaru’s streaks for 3m+0s 
games in the year 2024 only, ordered by raw probability, plus a final column showing what 
percentage of 10,000 Monte Carlo runs using  and  had a smaller raw probability for that 
corresponding streak. 

S3 D3

S3 D3

S3 D3

line streak end date startgame length score expect raw prob % less

1 112 February 16, 

2024

1077 37 36.5 33.1 1/75.8 84.4%

2 139 March 19, 

2024

1318 33 32.5 29.2 1/69.4 61.8%

3 57 January 20, 

2024

425 49 49 46.3 1/53.3 51.9%

4 67 January 26, 

2024

553 37 37 34.8 1/23.5 83.2%

5 117 February 17, 

2024

1137 36 36 34 1/19.7 80.7%

6 188 May 14, 

2024

1753 31 30.5 28.1 1/19.6 67.2%

7 130 March 3, 

2024

1253 40 39.5 37.2 1/18.7 56.0%

8 187 May 11, 

2024

1746 33 32.5 30.2 1/18.3 42.9%

9 142 March 27, 

2024

1368 31 30.5 28.3 1/15.8 41.9%
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We see that Table 6, line 1, is a slight extension—due to allowing one draw instead of just pure streaks of wins 

only—of the streak of length 34 on February 16, 2024, discussed in the previous section. And Table 6, line 5, is 

the same pure streak of length 36 on February 16–17, 2024, discussed in the previous section.

In any case, the last column of Table 6 indicates that the Monte Carlo percentages of smaller corresponding 

raw probabilities are all above 40% and hence not particularly small. That is, although Hikaru did have a 

number of fairly long streaks in the year 2024, observing streaks with those raw probabilities was not 

particularly surprising. So, when considering just the year 2024, the conclusion is still the same: Hikaru’s game 

record again does not show evidence of unexpected win streaks.

15. Comparing Hikaru and Carlsen Opponents
The critique of Kramnik (2024b) raised the issue of why Hikaru has so many more long winning streaks than 

top player Magnus Carlsen. Indeed, we have seen that Hikaru had 21 streaks (as defined herein) with raw 

probability <1/200, but meanwhile Carlsen had just one—a huge difference. Furthermore, Hikaru had several 

streaks of more than 100 games, while Carlsen’s longest one was just 32 games—another huge difference.

So, by any measure, Hikaru had far more win streaks than Carlsen. That raises the question, does this provide 

evidence of irregularities? Or can it be explained in a way that is consistent with statistical expectations?

A first explanation is that Hikaru has played a total of 57,421 games on Chess.com, compared to just 5,104 for 

Carlsen. So, we would expect Hikaru to have more and longer streaks just by virtue of having more games to 

choose from. Okay, but what else?

Further insights can be gained by looking at their opponents’ ratings. Hikaru’s rating averaged 3,130 over his 

entire record, while Carlsen averaged 3,227, that is, even higher. However, Hikaru’s opponents’ mean rating 

was just 2,730, giving him a mean rating advantage of +400. By contrast, Carlsen’s opponents’ mean rating 

was 2,985, giving him a mean rating advantage of +242, much lower. Even more dramatically, as summarized 

in Table 7, Hikaru played a total of 699 games (1.2% of his total) against players with ratings ≤1,000, that 

is, extremely weak opponents, while Carlsen has played just eight (0.16%). And Hikaru has played 3,286 

(5.7%) against players ≤2,000, compared to just 30 (0.59%) for Carlsen. And 8,048 (14.0%) against players 

≤2,500, compared to just 156 (3.1%) for Carlsen. In short, Hikaru’s opponents have generally had much lower 

ratings than Carlsen’s.

Table 7. Hikaru versus Carlsen.  A comparison of the records of Hikaru Nakamura and 
Magnus Carlsen, showing their total number of games played, average rating advantage over 
their opponent, and number of opponents with rating ≤1,000, and ≤2,000, and ≤2,500.

10 49 January 15, 

2024

339 26 25.5 23.5 1/13.2 44.3%
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This can also be seen by looking at histograms of the two players’ rating advantages over their opponents, in 

Figure 8. That graph shows that Hikaru’s rating advantage (in red) spreads out from about 150 to 600, with tail 

extending beyond 1,000, while Carlsen’s is concentrated between about 50 and 350. So, compared to Carlsen, 

Hikaru has played a lot more opponents with much lower ratings. This fact, in addition to simply playing many 

more games, provides a sound statistical explanation for why Hikaru has so many more winning streaks than 

Carlsen does.

16. Discussion
The statistical analysis presented here shows that Hikaru did indeed have many long winning streaks in his 

online chess play, including his recent controversial 46-game streak and many others. And some of them do 

have quite low raw probabilities. However, Monte Carlo simulations indicate that his streaks are well within 

Player NumGames avr adv # ≤ 1000 # ≤ 2000 # ≤ 2500

Hikaru Nakamura 57,421 +400 699 (1.2%) 3286 (5.7%) 8048 (14.0%)

Magnus Carlsen 5,104 +242 8 (0.16%) 30 (0.59%) 156 (3.1%)

Figure 8. Histogram of rating advantages. Histograms of the rating advantages of Hikaru 
Nakamura (red) and Magnus Carlsen (blue), as fractions of all of their games played on 

Chess.com. 
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the range of what would be expected statistically, given his rating advantages over his opponents. Hence, they 

are not particularly surprising, and do not provide any statistical evidence of irregularities.

Of course, every statistical analysis requires making some choices regarding definitions, scope, modeling, and 

so on, all of which can affect the results. However, contrary to the claims in Kramnik (2024a, 2024b), I believe 

that the choices in this report are all fair and defensible, consistent with the available data, and lead to accurate 

conclusions. Furthermore, various alternative choices, such as restricting to a single time control, excluding his 

own games when fitting the curves, or looking at just the most recent year, all lead to similar results. Hence, the 

overall conclusion, that the streaks observed in Hikaru’s Chess.com record are fairly typical given the player 

ratings over Hikaru’s long record of games, appears to be quite robust.

This conclusion is heavily influenced by Hikaru’s rating advantages over his opponents. As discussed herein, 

Hikaru has played many games against opponents with far lower ratings, much more so than other top-level 

players such as Carlsen. This difference may be related to Hikaru’s apparent practice of ‘farming,’ that 

is, intentionally seeking lower rated opponents (Nakamura, 2024a, 2024b). Now, it might be possible that 

Hikaru’s chess rating is inflated for whatever reason, an issue that is not investigated here. However, 

conditional on Hikaru’s ratings and his opponents’ ratings and his extensive play record, the evidence indicates 

that his long winning streaks, though initially striking, are not unexpected from a statistical point of view.

It is important to note that the existence of unexpected streaks is distinct from the issue of cheating. For 

example, one player might improve their skill over a short period of time due to higher concentration and 

motivation and preparation, and thus perform much better than their rating would indicate. This might lead to 

many unexpected streaks, even without any cheating. Conversely, another player who cheats in all games, in a 

consistent and regular manner, might manage to obtain a very high chess rating. This would in turn make their 

winning streaks appear to be expected, so that a study of streaks would never arouse suspicion, despite their 

cheating ways. Or, even simpler, a player might decide to cheat only in every second game, leading to an 

unfairly successful record, but nevertheless creating no long win streaks since they would lose many of the 

intervening honest games. Hence, the examination presented herein should be viewed as merely investigating 

the presence of unexpected streaks, not the broader issue of cheating in online chess.

Finally, it was insinuated in the comments of Kramnik (2024a, 2024b) that I might be biased, that 

is, manipulating the statistical analysis in a deliberate effort to protect Hikaru and deny the existence of 

unexpected streaks. I am confident that this is not the case. As a professional academic, I always attempt to 

seek the truth in an unbiased way. Furthermore, as I learned from my work on the high-profile lottery retailer 

scandal (Rosenthal, 2014), finding clear evidence of cheating or other irregularities would have led to more 

excitement and attention and glory for me, not less. So, to the extent that I had any personal motivation in this 

analysis, I actually hoped to find some such evidence. However, despite my best efforts, I did not find any 

evidence of suspicious behavior in Hikaru’s online chess winning streaks.
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