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Summary. We consider a large class of random walks on the discrete circle Z/(n), defined

in terms of a piecewise Lipschitz function, and motivated by the “generation gap” process

of Diaconis. For such walks, we show that the time until convergence to stationarity is

bounded independently of n. Our techniques involve Fourier analysis and a comparison of

the random walks on Z/(n) with a random walk on the continuous circle S1.
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1. Introduction.

This paper considers certain random walks on the group Z/(n) of integers mod n.

Our random walks will converge in total variation distance to the uniform distribution Un

on Z/(n). We shall be concerned with the rate of this convergence, as a function of n, the

size of the group.

It is known that for simple random walk on Z/(n), where we move left or right

one space, or remain don’t move, each with (say) probability 1
3 , it takes O(n2) steps to

approach the uniform distribution in total variation distance (see Diaconis [1], Chapter

3C, Theorem 2). Indeed, it is easily verified that for any random walk on Z/(n) in which

the size of a single step is bounded independently of n, at least O(n2) steps are required

to approach uniformity. Various faster convergence results have been obtained when the

step distribution itself is chosen randomly; see Hildebrand [4] and Dou [3].

In this paper, we shall consider random walks whose step distribution grows linearly

with n. This study was motivated by the following “generation gap” algorithm on Z/(n)

suggested by Diaconis [2]. Consider the random walk on Z/(n) which begins at the identity,

and at each step moves to another point with probability proportional to the distance (on

Z/(n)) between the two points. In other words, the further around the circle a point is, the

more likely the process is to jump there on its next turn. If we continue to jump around

on Z/(n) in this manner, how long (as a function of n) will it take until our distribution

is roughly uniform?

The generation gap algorithm is a special case of the following set-up. We let f be

a non-negative, real-valued Lipschitz function on the unit circle S1, and we embed Z/(n)

in S1 in the obvious way. Then, for each n, we consider the probability distribution Pn

on Z/(n) induced by using the restriction of f to Z/(n) to define the step distribution.

We shall allow n to get large, but keep the function f fixed. We show that under such

conditions, the total variation distance of the random walk on Z/(n) after m steps to the

uniform distribution Un can be bounded by a quantity which is independent of n, and

which goes to zero exponentially quickly as a function of m. In this sense, we shall say

that such random walks converge to uniform on Z/(n) in a constant number of steps.

This paper is organized as follows. Section 2 gives a precise statement of our main
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result. Section 3 gives two examples of the use of this result. Finally, Section 4 proves

the result, using Fourier Analysis on abelian groups. The key idea is to relate the random

walks (and their Fourier coefficients) on Z/(n) to the corresponding ones on the continuous

circle S1. The result will then follow from standard results about Fourier Analysis.

2. Definitions and Main Result.

We begin with some standard definitions. Given two probability distributions P and

Q on Z/(n), we define their variation distance by

‖P −Q‖ =
1
2

∑
j∈Z/(n)

|P (j)−Q(j)| .

We define their convolution P ∗Q by

P ∗Q(s) =
∑

j∈Z/(n)

P (j)Q(s− j) ;

P ∗ Q is thus a new probability distribution on Z/(n), which represents the distribution

after starting at the identity, and taking one step according to P , then a second step

according to Q.

Given a distribution Pn on Z/(n), it induces a random walk on Z/(n) which starts at

the identity and has step distribution given by Pn. Thus, its distribution after m steps is

given by P ∗m
n , the m-fold convolution product of Pn with itself. We let Un be the uniform

distribution on Z/(n), and consider the variation distance

‖P ∗m
n − Un‖

as a function of m and n. (This assumes we have been given a distribution Pn on Z/(n)

for each n.) The usual question is, as a function of n, how large must m be to make the

above variation distance small?

It is easily seen using Fourier analysis that if Pn has bounded support (i.e. Pn is non-

zero only on a neighbourhood of 0 ∈ Z/(n), and the size of this neighbourhood is bounded

as a function of n), then m must be of size O(n2) (for large n) to make the variation

distance small. In this paper, we consider families of distributions Pn defined differently,

and show that m need only be of size O(1) to make the variation distance small.
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To define our random walk, let f be a non-negative real-valued function on the contin-

uous circle S1, which satisfies the following “piecewise Lipschitz” and positivity conditions:

(A1) The circle S1 can be decomposed into J intervals I1, I2, . . . , IJ such that for some

positive constants L and α, and for 1 ≤ j ≤ J ,

|f(x)− f(y)| ≤ L|x− y|α for all x, y ∈ Int(Ij) .

(A2) f(x) > 0 for some x ∈ Int(Ij), for some j;

Identify S1 with the interval [0, 2π) in the obvious way. For each n, define a measure Pn

on Z/(n) by

Pn(j) =
f
(

2πj
n

)
n−1∑
s=0

f
(

2πs
n

) , j ∈ Z/(n) .

(Note that the hypotheses on f imply that
n−1∑
s=0

f
(

2πs
n

)
is positive for all but finitely many

n.) The measure Pn is thus obtained by regarding Z/(n) as sitting inside S1 and using

the values of f on Z/(n) as weights for Pn.

Let P ∗m
n be the m-fold convolution product of Pn with itself, and let Un be the uniform

distribution on Z/(n). The main result of this paper is the following.

Theorem 1. Under the above assumptions, there are positive constants A and B (de-

pending on f but not on n or m) such that the random walk on Z/(n) satisfies

‖P ∗m
n − Un‖ ≤ A e−Bm ,

for all m and for all but finitely many n.

We shall prove the above Theorem using Fourier Analysis and the Upper Bound

Lemma of Diaconis and Shashahani (see Diaconis [1]). The proof is presented in Section

4. The key idea of the proof is to relate the random walks on the discrete circles Z/(n)

to a single random walk on the continuous circle S1, induced by the same function f . For

large n, the random walk on Z/(n) will be “similar” to the random walk on S1, and thus

the rates of convergence will be related to the single rate of convergence for the random

walk on S1.
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In Section 3 below, we consider two examples of the use of Theorem 1. We conclude

this Section with a remark about the necessity of the restrictions on f .

Remark. The requirement that f satisfy a Lipschitz condition (except at a finite number

of points), or some similar condition, is indeed necessary. It is not sufficient that f be

merely, say, a bounded L1 function on S1. Indeed, let p1 < p2 < p3 < . . . be an increasing

sequence of prime numbers, and define the function f on S1 by

f(x) =

 0 if x =
2πj

pi
for some i and some integer j 6= 0,±1

1 otherwise.

Then f is a bounded L1 function which does not satisfy (A1) above. On the other

hand, on Z/(pi), the induced random walk is simple random walk (it moves distance one

to the right or left, or does not move, each with probability 1/3). Thus, for n = pi,

O(n2) steps are required to approach uniform. Hence, the conclusion of Theorem 1 is not

satisfied.

3. Examples.

In this Section we present two simple examples of the use of Theorem 1.

Example 1. The Generation Gap process. Diaconis [2] has proposed the following process

on Z/(n). At each step, move from a point x to a point y with probability proportional to

the distance from x to y around the circle Z/(n). Intuitively, each step of this algorithm

attempts to move as far as possible from the previous position (analogous to children

attempting to be as different as possible from their parents). In terms of Theorem 1, we

can formulate this process by defining a function f on [0, 2π) by

f(x) = min(x, 2π − x) .

The measures Pn induced by this function f are precisely those that generate the Gen-

eration Gap process. Thus, Theorem 1 shows that a constant number of steps suffices to

approach the uniform distribution on Z/(n). In other words, the Generation Gap process

mixes up very quickly.

5



Example 2. Random walk with large step size. Consider the random walk on Z/(n) which

at each step moves to one of the dn nearest neighbours (d ≤ 1) with equal probability. In

the context of Theorem 1, this is the random walk on Z/(n) induced from the function

f(x) =

{
1, x ≤ πd or x ≥ 2π − πd

0, πd < x < 2π − πd

Thus, again only a constant number of steps are required to approach the uniform distri-

bution on Z/(n). This is in contrast to the O(n2) steps that are required when the step

size does not grow with n. Results of Dou [3] imply that for most choices of probability

measures supported on dn points of Z/(n), a constant number of steps suffices to approach

the uniform distribution.

There are obviously many other examples of uses of Theorem 1; new examples can be

obtained simply by varying the function f .

4. Proof of Theorem 1.

In this Section we prove Theorem 1. We begin with a review of the relevant facts

from Fourier analysis. Given a probability measure Pn on Z/(n), we define its Fourier

coefficients by

(1) an,k =
n−1∑
j=0

e2πikj/nPn(j) , 0 ≤ k ≤ n− 1 .

Similarly, given a probability measure P on S1, we define its Fourier coefficients by

(2) ak =
∫
S1

eikxP (dx) , k ∈ Z .

We let U be the uniform distribution on S1, and let Un be the uniform distribution on

Z/(n). The Upper Bound Lemma of Diaconis and Shashahani (see Diaconis [1], Chapter

3C) states that for the random walk on Z/(n) with step distribution given by Pn, its

variation distance to uniform distribution Un after m steps satisfies

(3) ‖P ∗m
n − Un‖2

Z/(n)
≤ 1

4

n−1∑
k=1

|an,k|2m .
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Similarly, for the random walk on S1 with step distribution given by P , its variation

distance to the uniform distribution U on S1 satisfies

(4) ‖P ∗m − U‖2

S1
≤ 1

4

∑
−∞<k<∞

k 6=0

|ak|2m .

The task at hand is to show that for the problem under consideration, the sum in (3) can

be bounded by A e−Bm for some positive constants A and B independent of n.

To that end, we let f be a non-negative function on S1 which satisfies (A1) and (A2)

above. This implies that

M = sup
x,y∈S1

|f(x)− f(y)|

is finite. Without loss of generality, we take α ≤ 1 (which must be true if f is not piecewise

constant). For convenience, we assume that
∫
S1

f(x)dx = 1; if not, we can divide f by its

L1 norm, and modify the constants L and M appropriately.

We let P be the probability measure on S1 defined by

dP = f(x)dx ,

and (for sufficiently large n) let Pn be the probability measure on Z/(n) defined by

Pn(j) =
f
(

2πj
n

)
n−1∑
s=0

f
(

2πs
n

) .

We define the Fourier coefficients an,k and ak by (1) and (2) above. The plan will be to

show that for large n, an,k will be close to ak. This will allow us to bound the sum in (3)

independently of n.

Remark. The remainder of this section essentially amounts to obtaining various bounds

on an,k and ak and on the relationship between them. There is of course a long history of

bounds on Fourier coefficients, and we do not claim any great novelty in our methods or

results. In particular, the bounds of Lemma 2 (a) and Propostion 4 (b) follow easily from

standard techniques such as those in [5] (see Theorem 2.5.1 therein). However, for the

discrete Fourier coefficients an,k and the connection between an,k and ak, our bounds such
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as Lemma 2 (b) and Proposition 4 (c) do not appear to follow immediately from standard

results.

We proceed as follows. For each n > 0, we define the operator Tn on the set of

functions on S1 by the equation

(Tng)(x) = g

(
[xn/2π]
n/2π

)
,

where [y] denotes the greatest integer not exceeding y. Thus, (Tng) is a slight modification

of the function g, which is constant on intervals of the form
[

2πj
n , 2π(j+1)

n

]
. The benefit of

the operator Tn comes from noting that∫
S1

eikx(T|k|f)(x)dx = 0 .

Furthermore, (Tng) provides a link between the function g on S1, and the restriction of

the function g to Z/(n), as the following Lemma shows.

Lemma 2. For any function g on S1 with |g(x)| ≤ 1 and |g(x)− g(y)| ≤ |x− y| for all x

and y, if n ≥ 3,

(a) ∫
S1

|(Tn(gf))(x) − g(x)f(x)| dx ≤ 4MJπ

n
+ 2π(L + M)

(π

n

)α

.

(b) ∣∣∣∣∣∣
∫
S1

(Tn(gf))(x)dx −
n−1∑
j=0

g

(
2πj

n

)
Pn(j)

∣∣∣∣∣∣ ≤ 4MJπ

n
+ 2π(L + M)

(π

n

)α

.

Proof. For (a), we break up S1 into n intervals, each of length 2π
n , with midpoints

at 2πj
n . On J of these intervals, f will have a discontinuity, and we can only bound

|(Tn(gf))(x)−g(x)f(x)| by 2M . On the other pieces, the function gf is easily seen to satisfy

a Lipschitz condition with L replaced by L+M , so |(Tn(gf))(x)−g(x)f(x)| ≤ (L+M)
(

π
n

)α.

We conclude that ∫
S1

|(Tn(gf))(x) − g(x)f(x)| dx

≤ (2M)(J)
(π

n

)
+
∫
S1

(L + M)
(π

n

)α

dx

=
4MJπ

n
+ 2π(L + M)

(
2π

n

)α

.
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For (b), we first note that

n−1∑
j=0

g(
2πj

n
)Pn(j) =

n−1∑
j=0

g( 2πj
n )f( 2πj

n )

n−1∑
j=0

f( 2πj
n )

=

n
2π

(∫
S1

(Tn(gf))(x)dx

)
n
2π

∫
S1

(Tnf)(x)dx

=

(∫
S1

(Tn(gf))(x)dx

)
∫
S1

(Tnf)(x)dx
.

Hence, ∣∣∣∣∣∣
n−1∑
j=0

g(
2πj

n
)Pn(j) −

∫
S1

(Tn(gf))(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣1 −
∫
S1

(Tnf)(x)dx

∣∣∣∣∣∣
∣∣∣∣∣∣
n−1∑
j=0

g(
2πj

n
)Pn(j)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣1 −
∫
S1

(Tnf)(x)dx

∣∣∣∣∣∣ .

Now, ∣∣∣∣∣∣1 −
∫
S1

(Tnf)(x)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
S1

(f − (Tnf)(x)) dx

∣∣∣∣∣∣ ≤
∫
S1

|f − (Tnf)(x)| dx ,

so the result follows from part (a) by setting g(x) = 1.

The Lemma and the triangle inequality immediately imply

Corollary 3.∣∣∣∣∣∣
∫
S1

g(x)f(x)dx −
n−1∑
j=0

g

(
2πj

n

)
Pn(j)

∣∣∣∣∣∣ ≤ 8MJπ

n
+ 4π(L + M)

(π

n

)α

.
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Using the Lemma and the Corollary, we prove

Proposition 4. The Fourier coefficients an,k and ak defined by equations (1) and (2)

satisfy

(a) For all k 6= 0, |ak| < 1.

(b) For all k 6= 0,

|ak| ≤
4MJπ

|k|
+ 2π(L + M)

(
π

|k|

)α

.

(c) For any n ≥ 3 and 0 ≤ k ≤ n− 1,

|an,k − ak| ≤
8MJπ

n
+ 4π(L + M)

(π

n

)α

(d) For any n ≥ 3 and 0 < k ≤ n− 1,

|an,k| <
12MJπ

k
+ 6π(L + M)

(π

k

)α

.

(e) For each k > 0, there is a number bk, 0 < bk < 1, such that |an,k| < bk for all

sufficiently large n.

Proof. For (a), we recall that

ak =
∫
S1

eikxf(x)dx ,

and note that by the assumptions on f , it is positive on some open interval, on which eikx

does not have constant argument. Thus, the inequality in the statement

|ak| <
∫
S1

|eikxf(x)|dx =
∫
S1

f(x)dx = 1

is strict.

For (b), we recall that ∫
S1

eikx(T|k|f)(x)dx = 0 ,

so that

|ak| =

∣∣∣∣∣∣
∫
S1

eikx
(
f(x)− (T|k|f)(x)

)
dx

∣∣∣∣∣∣
≤
∫
S1

∣∣f(x)− (T|k|f)(x)
∣∣ dx ,
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and the bound now follows from Lemma 2 (a), with g(x) = 1 for all x.

For (c), recall that

|an,k − ak| =

∣∣∣∣∣∣
n−1∑
j=0

e2πikj/nPn(j) −
∫
S1

eikxP (dx)

∣∣∣∣∣∣ ,

and use Corollary 3 with g(x) = eikx.

Statement (d) is immediate from statements (b) and (c), the triangle inequality, and

the observation that k = |k| < n.

For (e), we note that (a) and (b) imply that |ak| < 1 and ak → 0. Thus, if we let

a∗ = max {|ak|, k > 0}, then a∗ < 1. Hence, if we set

bk = |ak|+
1− a∗

2
,

then 0 < bk < 1. Also, part (c) implies that |an,k| < bk provided n is chosen large enough

that
8MJπ

n
+ 4π(L + M)

(
2π

n

)α

<
1− a∗

2
.

Proposition 4 allows us to complete the proof of Theorem 1, but we first record a

corollary about the random walk on S1 itself.

Corollary 5. The random walk on S1 induced by the measure P converges to the uniform

distribution U on S1 exponentially quickly in total variation distance.

Proof. From equation (4) above, the variation distance ‖P ∗m −U‖2
S1

is bounded by the

sum
1
4

∑
k∈Z
k 6=0

|ak|2m ;

it suffices to bound this sum by an expression of the form C1e
−C2m. From part (b) of

Proposition 4, there is a constant C3 such that |ak| < C3
|k|α . Then, writing∑

k∈Z
k 6=0

|ak|2m =
∑

0 6=|k|≤(2C3)1/α

|ak|2m +
∑

|k|>(2C3)1/α

|ak|2m ,
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we see that the second sum can be easily be bounded by an integral, and shown to be less

than an exponentially decaying function of m. There are only a finite of terms in the first

sum, so the first sum decays exponentially by part (a) of Proposition 4.

We now proceed to the proof of Theorem 1. From part (d) of Proposition 4, there is

a constant C4 such that |an,k| < C4
kα for 1 < k < n. Then using equation (3) above, and

using part (e) of Proposition 4, the variation distance ‖P ∗m
n − Un‖ is bounded by

1
4

n−1∑
k=1

|an,k|2m ≤ 1
4

n−1∑
k=1

(
min(

C4

kα
, bk)

)2m

≤ 1
4

∑
0<k≤(2C4)1/α

(bk)2m +
1
4

∑
(2C4)1/α<k<∞

(
C4

kα

)2m

where in this last expression we sum over all integers k, including those greater than

n. This last expression is clearly independent of n. Furthermore, the expression can be

bounded as in the proof of Corollary 5. Indeed, the first sum in the expression consists of

a finite number of terms, and clearly decays exponentially with m. The second can easily

be bounded by an integral and shown to also decay exponentially with m. Hence the

sum decays exponentially quickly in m, uniformly in n (for n sufficiently large), proving

Theorem 1.
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