
Convergence rates of Markov chain Monte Carlo methods

by: David Clement*

1. Introduction

 The following paper deals with the convergence rates of Markov Chain Monte

Carlo (MCMC) algorithms. Section 2 provides a short review of the Metropolis-Hastings

algorithm and quantitative measures of rate of convergence. It also mentions qualitative

convergence, irreducibility, and recurrence, but those areas are not explored further.

Section 3 introduces the “frog example” (Rosenthal, 1995a) and examines different

proposal distributions and their rates of convergence to stationarity for a series of specific

target distributions. This is done with eigenvalue analysis, as well as simulations.

Section 4 deals with bounding these eigenvalues using a method from Diaconis and

Saloff-Coste (1993). Section 5 discusses two other methods of bounding variation

distance - minorisation conditions and logarithmic-Sobolev inequalities.

2.1 Markov chain Monte Carlo

 As explained in Evans and Rosenthal (2003), Monte Carlo techniques generate

random variables having certain discrete distributions. However, once it becomes too

complex, it is not obvious how to simulate the distribution anymore. This is where

Markov chains can be used. If we can find a Markov chain with a stationary distribution

that is the same as the desired probability distribution { } (the target distribution), ()iπ

* Written as part of an undergraduate NSERC award in the summer of 2003 under the supervision of
Jeffrey S. Rosenthal, Professor, Department of Statistics, University of Toronto.

 1

then we can run the Markov chain for a long time, say N iterations, and note what state

the chain is in after these N iterations. The probability that the chain is in state i will be

approximately the same as the probability that our discrete random variable equals i.

 We can get an idea of how far our approximation is from the target distribution by

taking M samples using the Markov chain, finding the proportion of samples that ended

up in state i (this is) for each i in the sample space, and then adding up the

absolute value of the difference between and for all i and multiplying by ½.

i.e. the total variation distance is

)(iNµ

)(iNµ ()iπ

∑−
i

N i)(πµµ −N i)(=
2
1π . This variation distance

will not be zero because there is Markov chain error (N is not large enough) and there is

Monte Carlo error (M is not large enough).

 We are still left with the problem of finding the Markov chain with the desired

stationary distribution. As Evans and Rosenthal (2003), and many others before them,

explain, the Metropolis-Hastings algorithm is one good way to do this.

2.2 Metropolis-Hastings algorithm

 This algorithm proposes a new point on the Markov chain which is either

accepted or rejected. If the point is accepted, the Markov chain moves to the new point.

If the point is rejected, the Markov chain remains in the same state. By choosing the

acceptance probability correctly, we create a Markov chain which has { } as a

stationary distribution.

()iπ

 2

 We begin with a state space and a probability distribution { } on . Then

we choose a proposal distribution { } with q and for each

. Given that , is computed as follows.

χ

q

()iπ

∑
∈Sj

ijq

χ

χ∈jiij ,: 0≥ij 1=

χ∈i iX n = 1+nX

 1. Choose Y according to the Markov chain { } jn =+1 ijq

 2. Set

=
ij

ji
ij qi

qj
)(
)(

min
π
π

α

 3. With probability , let (accept proposal) ijα jYX nn == ++ 11

 Otherwise, let (reject proposal) iXX nn ==+1

As desired, this will create a chain with stationary distribution { } ()iπ

Proof (Evans and Rosenthal, 2003 and Grimmett and Stirzaker, 2001)

Lemma 1 If for all i, j (known as

reversibility) then is a stationary distribution of P.

() (jXiXPiXjXP nnjnni ===== ++ || 11 ππ

π

)

Proof of Lemma 1 If satisfies the above conditions, then π

 j
i

jij
i

jij
i

iji ppp ππππ === ∑∑∑

 and so ππ = , which makes a stationary distribution. P π

If we can show that the Markov chain resulting from the Metropolis-Hastings algorithm

is reversible with respect to { }, then it follows that { } is the stationary

distribution by Lemma 1.

()iπ ()iπ

 3

Obviously holds if i = j, so we

will only consider . If , we need Y to be proposed and accepted if we

are to get . Hence,

() (jXiXPiXjXP nnjnni ===== ++ || 11 ππ

ji ≠ iX n = jn =+1

)

jX n =+1

 () ijijnn qiXjXP α===+ |1

=
iji

jij
ij q

q
q

π
π

,1min

=
i

jij
ij

q
q

π
π

,min

Multiplying both sides by , we get iπ

 () { }jijijinni qqiXjXP πππ ,min|1 ===+

Similarly, we find that

 () { }jijijinnj qqjXiXP πππ ,min|1 ===+

The left sides of the above equations must be equal, so we have shown reversibility.

 The Metropolis-Hastings algorithm can also be used for continuous random

variables by using densities and continuous proposal distributions, but we will not

explore that here. It is also possible to extend the theorem to the multidimensional case.

The “Gibbs sampler”, which we will now discuss very briefly, is a special case of the

multivariate Metropolis-Hastings algorithm.

2.3 Gibbs sampler

 Suppose ()π is the joint distribution of . Here, we update each

component based on the value of each other component

⋅ (Nxxx ,...,, 21)

 4

 () (Niiiii xxxxxxx ,...,,,...,|| 111 +−− = ππ)

These distributions are called full conditionals. The Gibbs sampler is a special case of

the Metropolis-Hastings algorithm where the proposals q are the full conditionals and the

acceptance probability is always one.

 The updating of components can be done systematically or randomly. The above

is from Gibbs (2000).

2.4 Quantitative measures of convergence

 In addition to the formula for total variation distance given in 2.1, there are two

other equivalent definitions (see Rosenthal, 1995a). All three are listed below. Here,

and are probability measures, and is the state space.

1ν

2ν χ

 i) ∑
∈

−=
χ

νν
x

xx)()(
2
1

211 −νν 2

 ii))()(sup 1 AA
A

νν
χ

−=
∈

21 νν − (supremum is taken over measurable subsets A)

 iii))()(sup
21

1)(0
:

fEfE
xf
Rf

νν
χ

−=
≤≤

→
21 νν − (where E stands for expected value)

We will deal only with the first one in this paper.

 We will also deal with

π
12L and norms, which have connections to

variation distance and eigenvalue analysis. These norms are defined as:

()π2L

2L

()∑
∈

 −
=−

χπ π
νν

νν
x

L x
x

)(
))((2

21
121 2 and () ()()∑

∈

−=−
χ

π
πνννν

x
L

xx)())((2
2121 2

In this paper, we will be using (.)()())(21 xxx k πµνν −=−

 5

2.5 Relationship between these measures of convergence

 ∑
∈

−=−
χ

πµπµ
x

kk xx)()(
2
1

var

−
π

ππµ 12,
2
1

Lk=

 ⋅−≤

ππ
ππµ 11 222

1
LLk by Cauchy-Schwarz inequality

 ∑
∈

−

χπ π
πππµ

x
Lk x

xx
)(

1)()(
2
1

12=

−=
π

πµ 122
1

Lk

Hence, the variation distance is less than or equal to ½ the

π
12L norm. Unfortunately,

no nice inequality can be obtained between variation distance and the norm, since

we end up with

()π2L

∑
∈χ πx x)(

1 instead of the square root of 1 like we did above.

2.6 Qualitative convergence

 Gibbs (2000) and Barndorff-Nielsen, Cox and Kluppelberg (2001) both give the

following two definitions which help to decide whether a chain converges quickly

enough to be useful in simulations.

 A chain is geometrically ergodic if

 tt xMxP ρπ)()(),(≤⋅−⋅ for finite M(x) and 1<ρ

 A chain is uniformly ergodic if for all x

 6

 tt MxP ρπ ≤⋅−⋅)(),(for finite M and 1<ρ

2.7 Irreducibility and recurrence

 This information can also be found in Gibbs (2000) and Barndorff-Nielsen, Cox

and Kluppelberg (2001). We did not explore it further in this work.

 Define Aτ to be the time of the first visit to A for any (is the state

space). That is (if there are no visits to A). A Markov

chain is called if there exists a non-zero probability measure on such

that for any

χ∈A χ

{ }AXt t ∈= :min

eirreducibl

Aτ

−φ

χ∈

∞=Aτ

χ

A

 for all () 0|0)(0 >=∞<⇒> xXPA Aτφ χ∈x

To state the above in words, any set with a positive measure has a positive probability

of being hit from any starting point x.

ϕ

 To have the result hold for all initial states (instead of all but a probability-zero

exceptional state), we need a slightly stronger notion called Harris recurrence. This

guarantees that for any , χ∈A

 for all () 1|0)(0 ==∞<⇒> xXPA Aτφ χ∈x

Harris recurrence is important to have for a simulation so that you do not run your chain

from the exceptional initial state.

 7

3.1 The frog example

 Consider the “frog example” (Rosenthal, 1995a) in which there are 1000 lily-pads

arranged in a circle, numbered in order from 0 to 999. Suppose that a frog makes a jump

every minute, beginning on pad 0, and also suppose that he has an equal probability of

landing on any lily-pad within m pads (nodes) of his previous location. Rosenthal

considers m = 1 and shows convergence to a uniform target distribution (the frog

having an equal probability of being at each pad) is a very slow process. In fact,

π

πµ −k

1=ijα

> 0.1 until k exceeds 122,301. Obviously, convergence will occur more quickly if m is

increased, or if shortcuts are added to allow larger jumps. In the case of the uniform

target, m = 500 will give convergence immediately. The situation is more complicated

when a non-uniform target is desired, and the Metropolis-Hastings algorithm is used. In

the uniform case, no matter what m we choose, , and so ,

, and we always accept the proposal. For non-uniform target distributions, we

would expect an optimal m whose proposals lead to a Markov chain that converges the

quickest. This m will not be 500 because that leads to too many rejections, but it will not

be too low either because the jumps will be too small in that case. This introduces the

idea of optimal scaling discussed by Roberts and Rosenthal (2001), although they deal

almost exclusively with the continuous case. Later in section 3, we will visit optimal

scaling for the family of target distributions discussed in this paper.

jiij qq =)()(ji ππ =

ji,∀

3.2 Family of target distributions used

 where d(a, b) is the shortest distance from a to b on the

circle. equal to 0.5, 1.0, 2.0, 5.0, 10, 20 were all studied. Clearly the higher is, the

) (β−+1),0(xd(xπ

β

∝)

β

 8

higher is. However, even this distribution is not peaked enough at 0 for a study of

minorisation conditions to give reasonable bounds. In that section (5.2), we will also

look at for = 2 and 5.

)0(π

π)(x

β

()β),0(xde−∝

β

β

β

3.3 Study of eigenvalues

 It is known that the second highest eigenvalue of a matrix P is related to the rate

of convergence to its stationary distribution. Using the proposal distribution and the

acceptance rate, the matrix {P(x, y)} with stationary distribution { } is created for the

different and different m’s. See Appendix #1 for the MATLAB program that does this

and finds the second largest eigenvalue of this matrix. Also, see Figure #1(a-g) below for

a table of the results with 1000 nodes.

)(xπ

 Figure #1(a) = 0.5
m 2nd highest eigenvalue

180 0.87424681286953
190 0.87166589971567
191 0.87162483521290
192 0.87161209098862
193 0.87162491319268
195 0.87171715104516
200 0.87223907689506

 Figure #1(b) = 1

m 2nd highest eigenvalue
100 0.96454525127127
110 0.96211699380438
112 0.96202225156711
113 0.96201625073779
114 0.96203448162669
115 0.96207438489506
125 0.96320546327069

 9

 Figure #1(c) = 2 β
m 2nd highest eigenvalue
50 0.98610315652020
58 0.98244791674512
59 0.98224599638054
60 0.98220726967340
61 0.98229619505990
62 0.98245773197201
65 0.98309090524785

 Figure #1(d) = 5 β

m 2nd highest eigenvalue
10 0.99819871895349
30 0.98657696383820
32 0.98494713857452
33 0.98410552801069
34 0.98443694799826
35 0.98487533604633
40 0.98674255645486

 Figure #1(e) = 10 β

m 2nd highest eigenvalue
10 0.99562710970574
20 0.98496386158779
23 0.98084123291182
24 0.97955124183204
25 0.98035315391692
27 0.98178201545008
50 0.99007931534401

 Figure #1(f) = 20 β

m 2nd highest eigenvalue
10 0.98836991948443
15 0.97682800076837
16 0.97420529009865
17 0.97149478015797
18 0.97297292140747
20 0.97560970956284
25 0.98039211945248

 10

 Figure #1(g) summary
β m 2nd highest eigenvalue rejection rate

0.5 192 0.87161209098862 0.2123
1 113 0.96201625073779 0.4997
2 60 0.98220726967340 0.9005
5 33 0.98410552801069 0.9811
10 24 0.97955124183204 0.9795
20 17 0.97149478015797 0.9714

The m column in Figure #1(g) shows the optimal m for that particular . As

expected, there is an optimal m that is not too high and not too low. We also see that

of 2 and 5 have the slowest long-run convergence rate since their second highest

eigenvalues for the optimal m are the highest.

β

β

Unfortunately, the rejection rate column (calculated by multiplying ’s and ’s)

shows no link to an optimal rejection percentage like that found in Roberts and Rosenthal

(2001). The probability of acceptance to a node other than the current one was also

looked at, but there was no pattern there either.

π α

A quantitative bound on variation distance and value of the norm can be

found using all the eigenvalues, instead of only the second highest one. See Rosenthal

(1995a) for the proofs. We find that:

()π2L

∑∑
−

=

−

=

≤−
1

0

1

1
var

)(
2
1 n

x

n

m

k
mmmk xva λπµ

∑
−

=

=−
1

1

22

)(2

n

m

k
mmLk a λπµ

π

where k is the number of iterations before taking an approximation to the stationary

distribution, n is the number of nodes, are a basis of left eigenvectors of P

corresponding to respectively and are the unique coefficients satisfying

10 ,..., −nvv

ma10 ,..., −nλλ

 11

1111000 −−+⋅⋅⋅++= nn vavavaµ

β

. The end of Appendix #1 has the code used to study these

bounds.

 Ideally, we would be able to use the above equations (even though they only

provide an upper bound to the variation distance and norm) to find the optimal m

instead of running several long simulations. We will explore this idea now.

()π2L

3.4 Connection between bounds using eigenvalues and simulation

When doing simulations using MCMC, Markov chain error and Monte carlo error

can both be problems as mentioned previously. The Markov chain error can be

controlled by constantly adding iterations (using a high constant number of runs to avoid

a high Monte Carlo error). When adding more iterations does not help reduce the

variation distance very much, a satisfactory number has been reached. The Monte Carlo

error, however, is not as easy to avoid. It should go down approximately as the square

root of the number of runs goes up, but in the frog example, it is very hard to have this

error lower than the actual difference in variation distance between two m’s. Figure

#2(b) below shows the variation distance after different numbers of runs for m = 24 and

 = 10 with 400 iterations and 1000 nodes. This almost completely gets rid of the

Markov chain error as can be seen in Figure #2(a), but even though the runs are well into

the millions, the Monte Carlo error would need more runs to become satisfactorily low.

This can use up a lot of computational time. Each entry below is completely separate; i.e.

the data for 3 million runs does not affect the data for 5 million runs.

 12

Figure #2(a)
iterations variation distance

100 2.4325e-4
120 1.59147e-4
140 1.02601e-4
160 7.5728e-5
180 6.70294e-5
200 2.85437e-5
220 2.61725e-5
240 1.53473e-5
260 1.31236e-5
280 1.62452e-5
300 1.37689e-5
320 2.93243e-5
340 3.0797e-5
360 3.9397e-5
380 4.78014e-5
400 4.95985e-5

Figure #2(b)

number of runs
(in millions)

variation distance

3 1.09555e-5
5 4.95985e-5
7 1.60423e-5
9 8.93828e-6
12 6.93959e-6
14 7.95605e-6
16 5.50603e-6
18 2.28559e-5
20 1.53241e-5
24 2.68304e-6
28 6.20349e-6
32 1.50024e-5

We can see by these figures that 32 million runs still will not be enough to avoid

drastic Monte Carlo error. Another example is shown below in Figure #3 (again 400

iterations and 1000 nodes are used).

 13

 Figure #3
number of runs m = 24 var. dist. m = 50 var. dist.

3 million 1.09555e-5 2.02942e-5
5 million 4.95985e-5 6.60949e-5

In the previous section, we saw that = 10 had the fastest convergence for m =

24 according to the eigenvalues. Obviously we expect m = 24 to converge much quicker

in our simulation than m = 50 since the second highest eigenvalue was much lower. But

in the above figure, m = 50 converged more after 3 million runs than m = 24 did after 5

million runs.

β

To actually show the connection between eigenvalue analysis and simulations,

only 20 nodes were used with 900 million runs and 40 iterations to make the Monte Carlo

error very small. The target distribution was proportional to . The

simulation C program can be seen in Appendix #2. Figure #4 below shows the

simulation results, and Figure #5 shows the eigenvalue analysis.

(21),0(−+xd)

Figure #4
m Variation

distance
()π2L

π
12L

2 8.005e-3 3.818e-3 2.571e-2
3 1.230e-3 6.347e-4 3.987e-3
4 7.031e-4 3.108e-4 1.794e-3
5 7.103e-4 4.537e-4 1.714e-3
6 1.103e-3 7.711e-4 2.410e-3
7 1.956e-3 1.364e-3 3.992e-3

 14

Figure #5
m 2nd eigenvalue

∑∑
= =

19

0

19

1

40)(
2
1

x m
mmm xva λ ∑

=

19

1

802

m
mma λ

2 0.93167 8.512e-3 4.519e-5
3 0.88472 1.369e-3 1.554e-6
4 0.84846 4.403e-4 2.025e-7
5 0.84243 4.989e-4 2.695e-7
6 0.85373 9.235e-4 9.470e-7
7 0.86722 1.755e-3 3.460e-6

The inequalities from 3.3 do not all hold since we have not completely eliminated

the Monte Carlo error. However, we have done enough runs to have m = 4 show itself as

the quickest converging m in both variation distance and norm after 40 iterations

just as the eigenvalues predicted for both. Doing more than 900 million runs only makes

this even clearer.

()π2L

4.1 Comparison of eigenvalues through Dirichlet forms

 The following theory comes from work by Diaconis and Saloff-Coste (1993).

Assume that P(x, y), is a reversible, irreducible chain (as our frog example’s chain

is) on a finite set , and let have the scalar product

)(xπ

χ)(2 χl ∑
∈

=
χ

π
x

xxgxfgf)()()(,

2

.

Also, the operator , with is self-adjoint on l (because

of reversibility) with eigenvalues

Pf→f ∑=),()()(yxPyfxPf

11 −≥−Xβ1 21 ≥⋅⋅⋅≥≥>= ββ0β . Let the Dirichlet

form be defined as ε

 ∑ −=−=
yx

yxPxyfxfffPIff
,

2),()())()((
2
1,)(),(πε

 15

Proof of the second equality above

 ∑ −=−
x

xfPIxfxffPI)))()()((()(,)(π

 ∑ ∑

−=

x y

yxPyfxfxfx),()()()()(π

 () ∑∑ −=
yxx

yxPyfxfxxfx
,

2),()()()()()(ππ

 = () ∑∑ −
yxyx

yxPyfxfxxfyxPx
,,

2),()()()()(),()(ππ

 ∑

−
+

=
yx yxPyfxfx

yfxyPyxfyxPx
,

22

),()()()(2
))()(,()())()(,()(

2
1

π
ππ

 ∑

−
+

yx yxPyfxfx
yfyxPxxfyxPx

,

22

),()()()(2
))()(,()())()(,()(

2
1

π
ππ

=

 ()()∑ +−
yx

yfyfxfxfyxPx
,

22))(()()(2))((),()(
2
1 π=

 ()∑ −
yx

yxPxyfxf
,

2),()()()(
2
1 π=

Now if is a second reversible Markov chain on X, we get),,(
~

yxP
~
π

 (*)

 −−≤ iA

a ~
11 βiβ , if , εε A≤

~
ππ a≥

~

It is important to be able to find A to come up with a bound. Let and

be reversible Markov chains on a finite set . Assume that we know the eigenvalues of

 and we are trying to bound the eigenvalues of .

~~
,πP π,P

χ

~~
,πP π,P

 16

 For each pair with , fix a predetermined sequence of steps

 with . This sequence will be called a path of

length

yx ≠ 0),(
~

>yxP

0)1 >+ixyxxxxx k == ,...,,, 210 ,(ixP xyγ

kxy =γ

),()(
~~

wzEeE =

. Fix E to be the set of “edges” for P (i.e. the x, y such that P(x, y) > 0)

and fix to be the set of paths that contain e = (z, w). Then if

= ∑
∈

),()(
),()(

1max
~

),(

~

),(~

yxPx
wzPz

A
wzE

xyEwz
πγ

π

we have . The proof of this can be seen in Diaconis and Saloff-Coste (1993). εε A≤
~

4.2 Comparison in the frog example

 Our goal is to see how tight the upper bound on eigenvalues is for a fixed and

different m’s. To save computational time, only 200 nodes are used instead of 1000. It is

hoped that results can be extrapolated to that case or even the general case.

Experimentation was done to find which m value gave the lowest second eigenvalue for

nodes = 200 and = 10. An m of 9 was found to do so. In Figure #6, m1 and m2 are

the m values for and respectively. We are bounding the second highest

eigenvalues of in terms of those of . See Appendix #3 for the C program that

finds the value of A.

β

β

P

π,

π,
~~

,πP

P
~~

,πP

 17

Figure #6
m1 m2 2nd eig. for m2 A 2nd eig. for m1 upper bound
7 9 0.94726373 4.47357 0.95831927 0.988212
8 9 0.94726373 2.87749 0.94900079 0.981673
10 9 0.94726373 1.10526 0.95228623 0.952286
11 9 0.94726373 1.21053 0.95643526 0.956435
50 9 0.94726373 5.31579 0.9900793 0.990079
9 8 0.94900079 1.11765 0.94726373 0.954369
9 10 0.95228623 2.91186 0.94726373 0.983614
9 50 0.9900793 368.415 0.94726373 0.99973

 The upper bound is perfect for values of m1 which are higher than m2 and also

have higher second eigenvalues in the corresponding matrix (see boldface in the table

above). This leads us to believe that the second highest eigenvalues for the two m’s must

be related only in terms of m1 and m2 in these cases. To see why this is, look at how A is

determined.

 When m1 is higher than m2, there is only one path that contains the edge from z to

w . This path goes directly from z to w, and hence has length of one. This

implies the following

(Ewz ∈∀),()

122
112

112
1

122
1

),(
),(

)(
)(

~~

+
+

=

+

+==
m
m

m

m
wzP
wzP

z
zA

π
π

 In this case, and are the same, so they cancel out above. This also means

 when a = 1. Hence, we have the relation

~
π π

ππ a≥
~

 −

+
+

−= 1

~

1 1
112
1221 ββ

m
m (where are the second highest eigenvalues)

~

11 ,ββ

when m1 is higher than m2 and also has a higher second eigenvalue in the corresponding

transition matrix.

 18

4.3 The value of A in the frog example

Theorem In the frog example, A is always greater than or equal to 1 when we

are comparing two chains with different m values.

Proof Assume m2 < m1. Then the path length is always one, the ’s cancel

out, and we are left with only

π

),(
),(

~

wzP
wzP which is greater than 1.

Now assume m1 < m2.

∑

∈
),()(

1
2

),()(
1max

~~

),(
),(~

yxPx
m
m

wzPz
wzE

Ewz
π

π
=A

+

+

∑

∈
),(

~

~

~

),(~ 122

1,
)(

)(min

)(
1
2

112

1,
)(
)(min

)(

1max
wzE

Ewz m
x

y

x
m
m

m
z
w

z

π

π

π

π
π

π

=

 ()

+

+ ∑

∈
),(

~~

),(~ 122

)(),(min

1
2

)(),(min
112max

wzE
Ewz m

xy

m
m

zw
m

ππ

ππ
=

 ()

+
+

∑

∈
),(

~~

),(~)(),(min

)(),(min

122
112

1
2max

wzE
Ewz zw

xy

m
m

m
m

ππ

ππ
=

 take xxw ∀≤),()(
~
ππ

 19

∑ +
+

≥

122
112

1
2

m
m

m
m

122
112

1
22

+
+

m
m

m
m

≥

122

12
1
22

+

>

m
m

m
m

122

24
+m

m
≥

 1>

Where

1
2

m
m is the lowest integer greater than or equal to m2/m1. i.e.

the path length, which is at least 2 when m2 > m1.

This completes the proof. (Note: A = 1 when m1 = m2)

Since A is always at least 1, when we want to use (*) from 4.1 to give an upper

bound to the second highest eigenvalue of one chain in terms of another, it gives a

meaningless bound when we use the higher second eigenvalue as known and try to bound

the lower second eigenvalue. The bound will be even greater than the higher second

eigenvalue.

 Although A is always at least 1 in the frog example, that is not true of every

reversible and . Take for example,
~~

,πP π,P

=

0
2
1

2
1

2
10

2
1

2
1

2
10

P and

=

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

~
P

 20

Here, both P and have stationary distributions
~
P

3
1

3
1

3
1 . For each pair , the

path from x to y can be of length 1, and for all (z, w), there is only one pair (x, y) where

 that has (z, w) as an edge. Hence,

yx ≠

yx ≠

3
2

3
1

3
1

2
1

3
1

1
=

 ⋅

⋅
=A

This actually gives perfect bounds on the eigenvalues using (*) since P has eigenvalues 1,

2
1

− ,
2
1

− and has eigenvalues 1, 0, 0.
~
P

5.1 Minorisation conditions

 The following theory comes from Rosenthal (1995b). Proofs of the lemmas and

theorems can be found there. The numbering is the same in the following to avoid

confusion. Some theorems are skipped here.

Theorem 1 Suppose that a Markov chain P(x, dy) on state space satisfies the

following (a minorisation condition)

χ

) , ∀ for all measurable subsets (),(0 AQAxP k ε≥ χ⊆∈ Rx χ⊆A

 where Q is a probability measure on ,)(⋅ χ

 is a positive integer, and 0k 0>ε

Let be two realizations of the Markov chain defined jointly from any starting

distribution and let

)()(, kk YX

 21

(){ }RRYXmt mm ×∈=)()(
1 ,:inf , and for i > 1 let

(){ }RRm ×∈)(YXktmmt m
ii +≥= −

)(
01 ,,:inf

Then set . Now for any j > 0, { ktiN ik <= :max }

)()1()()(0)()(jNPYLXL k
k
j

kk <+−≤−

ε

where [r] is the greatest integer not exceeding r

The above theorem is usually applied with and used to find the distance to

stationarity. If R can be kept small, then we can find a larger , which will clearly give a

tighter bound.

π=)()0(YL

ε

Lemma 3 Let t be the “ -delayed hitting times of ” as in the theorem above and

let (with) represent the “ k -delayed return time to ”.

Then for any ,

i

−it

0k

1

RR×

0

1−= ii tr

α

11 tr =

<kNP

thi RR×

> ()

Π≤

=

−
j

i

k Ej αα
1

ir

If we bound exponential moments ()irE α of the return times of ())()(, kk YX to , we

can get a tighter bound. The following lemma does this using an auxiliary function h

whose expectation is decreasing when

RR×

() RRYX kk ×∈)()(, . This is related to “drift

conditions”.

Lemma 4 Let and Y be two Markov chains on defined jointly just as in

Theorem 1 with and -delayed return times to as in Lemma 3.

)(kX)(k

χ

χ

∈R 0k thi RR×

 22

Suppose there is an and a function such that h is always

greater than or equal to 1 and

1>α ℜ→× χχ:h

)),(1 yxh−α x|)0(X

)0(,YX

)) XY =)0()1()1(|,≤−1 α

0(10 XhEA v
j

π×
−1(−≤

(()yYx =)0(,

)

Xh k(

)0(

1 xi+

 ((),,)0()1()1(yYxYXhE ≤== , ∀ RRy ×∈),(

 Then

 () ()())0(hEE ir ≤α and for i > 1 and any choices of r , 11 ,..., −ir

 ((()yYxXhErrE
RRyx

k
i

ri =
×∈

)0(

),(
1 ,sup,...,| 0α

Now we obtain the following,

Theorem 5 Suppose a Markov chain P(x, dy) satisfies Theorem 1 and Lemma 4, then if

 is the initial distribution and is the stationary distribution, then for

any j > 0, the variation distance to after k iterations satisfies

)()0(XLv = π

π

 ()[])0())1()(,))(0 YXL kjkk
j

k αεπ −+−

+−

 where) XYE k

RRyx
=

×∈

)0()()

),(
|,sup 00

π

A = and is distributed

according to v and Y according to .

)0(X

Choosing j to be a small multiple of k is often a good idea, and a good choice for h is

often of the form where x is a vector and is the i

coordinate. This works well when drifts exponentially quickly towards the value a.

() (22),(ayayxh i −+−=

ix

ix th

 The following lemma is good for establishing a minorisation condition

 (see Theorem 1) in practice.)(),(0 AQAxP k ε≥

 23

Lemma 6

 a) Suppose that a Markov chain transition kernel P on state space satisfies χ

 , ∀ and 12),(1 ε≥RxP k
1Rx∈

()⋅≥⋅ QxP k
2),(2 ε , ∀ for some probability measure on 2Rx∈ ()⋅Q χ

Then the minorisation condition is satisfied when with

and .

210 kkk += 1RR =

21εεε =

b) Given a positive integer and a subset , there exists a probability

measure so that

0k χ⊆R

()⋅Q

 ,) Rx∈∀(),(0 ⋅≥⋅ QxP k ε

where ()∫ ∈
=

χ

ε),(inf 0 dyxPk

Rx

Theorem 5 can also be stated in another way using a drift condition on the original chain

rather than on the coupled chain.

Theorem 12 Suppose that a Markov chain P(x, dy) on state space satisfies the drift

condition

χ

() bxVxXXVE +≤=)(|)()0()1(λ

1<λ ∞<

, for some V and some

 and b

χ∈x 0: ≥→ Rχ

and further satisfies a minorisation condition

)(),(⋅≥⋅ QxP ε , χ∈∀x

 24

with for some , some probability measure on and

some

dxV ≤)(0>ε)(⋅Q χ

λ−
>

1
2bd . Then for any 0 < r < 1, beginning in the initial distribution v,

we have

))((
1

1()()1()(0
)1()(XVEbAXL v

krrrkk +
−

++−≤− −−

λ
αεπ

where

 1
1
211 <
+
++

=−

d
db λα ,)(21 bdA ++= λ

5.2 Minorisation condition in the frog example

 Using Theorem 5, we wrote a program (see Appendix #4) that finds the bound on

the variation distance πµ −k

β)x

. With the target distribution used in the eigenvalue

analysis and simulations, the bounds were barely less than 1, so a more peaked target

distribution was used here to see if the bounds could be significantly better than 1. This

target has) . We used of 2 and 5. (π ,0()(dex −∝ β

It appears that R with just a single state is a good choice for any value of m since

R with more elements makes less than 1, which more than offsets any increase in .

R of only node 0 appears to be a good choice since

ε α

()

 ,

where , reaches its minimum over x and y with x and

y equal to zero, which makes less than 1. We have also chosen . Figure #7

gives a summary of the bounds for different m and hexp with = 5, 100 nodes and 200

iterations.

== yYxXYXhE

yxh
)0()0()1()1(,|),(

),(

10 =k

β

expexp),0(),0(1),(hh ydxdyxh += +

α

 25

Figure #7
 hexp m bound

1 2.08e-8
2 9.01e-13

15

3 4.91e-9
1 7.27e-13
2 9.01e-13

25

3 4.91e-9
1 7.64e-15
2 9.02e-13

30

3 4.92e-9
1 2.41e-18
2 2.89e-12

40

3 2.42e-8

 Once hexp gets bigger than 40, it reaches a point where the increase in h for

different x and y more than offsets the very small chance of going to a node with a greater

distance from node zero. This makes the bound quite large since < 1. For hexp lower

than 15, is lower since the decrease in h for different x and y is not large enough to

make a big difference in

α

α

()

== yYxXYXhE

yxh
)0()0()1()1(,|),(

),(.

 Figure #7 does show that for = 5, m = 1 has the lowest bound (arrived at with

hexp = 40). In fact, according to the eigenvalue analysis, m = 1 does converge the fastest.

The second eigenvalue for m = 1 is 0.6667 compared to 0.7265 for m = 2. The variation

distances after 200 iterations for these m’s are on the order of 10 and 10

respectively. So although the minorisation bound did give the ideal m in this case, the

bound was so poor, that it would not be as reliable as eigenvalue analysis in this case.

β

36− 28−

 Turning our attention to = 2, we would expect since this stationary distribution

is not as peaked at node zero that the minorisation bound would not be as good. The

eigenvalue analysis here tells us that m = 1, 2, or 3 should converge the quickest since the

β

 26

eigenvalues for m = 1, 2 and 3 respectively are 0.7380, 0.7280 and 0.7468, which put the

variation distance around the order of 10 after 200 iterations, whereas m = 4 has an

eigenvalue of 0.8030 which after 200 iterations puts the variation distance on the order of

. However, taking hexp = 2.1 and m = 4 gives a bound of 0.000167 on the variation

distance, which is lower than we get for m < 4 for any value of hexp. Not surprisingly,

since the bounds are so poor, we cannot tell which m will convergence the fastest by

looking at the minorisation condition bounds. The same thing happens when we use the

same family of target distributions as in the eigenvalue analysis and simulations.

26−

P

2010−

H t

π

5.3 Logarithmic-Sobolev inequalities

 In addition to minorisation conditions, log-Sobolev inequalities can be used to

bound the convergence of a Markov chain to its stationary distribution. These

inequalities often give tighter bounds. The following theory comes from work by

Diaconis and Saloff-Coste (1996). Proofs of statements made here can be found in that

paper.

 Let χ be a finite state space and let with . Also, let the

continuous time semigroup associated with P be . Denote its kernel

by which is the distribution at time t of the chain started at x.

0),(≥yx

H t =

1),(=∑
y

yxP

())(PIt −exp −

),()(yxy t
x H=

 We know that and we want to bound)()(yyH x
t π→

TV

x
tH π− . One way to do

this is using the l distance with respect to . i.e. 2

π

ππ
,2

1)/(2 −≤− x
tTV

x
t HH

This norm can be represented as an operator norm,

 27

∞→
−=−

2,2
1)/(max EHH t

x
tx π
π where is the operator that

associates f to its mean with respect to .

EffE →:

π

Now if we break up t into t where both and t are greater than or equal to zero,

we get

21 t+ 1t 2

2222 21 →∞→∞→

−≤− EHHEH ttt

We can bound the norm in terms of the second eigenvalue 22 →

>= 0)(:

)(
),(min fVar

fVar
ffελ

 where ∑ −=
yx

xyxPyfxf
,

2)(),()()(
2
1 πff),(ε and

 ∑ −=
yx

xyyfxff
,

2)()()()(
2
1)(ππVar

One bound using the second eigenvalue (following from taking t = 0) is 1

 tx
t eH λ

π
π 2

*

2

var

14 −≤− (eq. 1)

The above bound can be improved upon by taking positive ’s. To do this we need

bounds on the decay of

1t

22
/max πx

tx
HH =

∞→
 as a function of t. Log-Sobolev

inequalities can be used to estimate this decay.

 A log-Sobolev inequality is of the form

 (eq. 2)),()(ffCfL ε≤

 where ∑

= π2

2

2
2 log)(

f

f
ffL

Define the log-Sobolev constant of the chain by),(πP

 28

≠= 0)(:

)(
),(min fL

fL
ffεα

Then
α
1 is the smallest constant C such that eq. 2 holds for all f. always satisfies α

2
λα ≤ and is sometimes equal to

2
λ . Using this log-Sobolev inequality, we can get

t

TV

x
t eH α

π
π 2

*

2 1log2 −

≤− which is an improvement on eq. 1 roughly when

**

1loglog11log1
παπλ

≥ , which it does in our variations of the frog example. However,

log-Sobolev inequalities were not explored further than this.

 29

References

Barndorff-Nielsen, Ole E., Cox, David R. and Kluppelberg, Claudia (2001), Complex
Stochastic Systems. Chapman & Hall/CRC, New York.

Diaconis, P. and Saloff-Coste, L. (1993), Comparison theorems for reversible Markov
chains. Ann. Appl. Prob. 3, 696-730.

Diaconis, P. and Saloff-Coste, L. (1996), Logarithmic Sobolev inequalities for finite
Markov chains. Ann. Appl. Prob. 6, 695-750.

Evans, Michael J. and Rosenthal, J.S. (2003), Probability and Statistics: The Science of
Uncertainty. W.H. Freeman and Company, New York.

Gibbs, Alison L. (2000). Convergence of Markov Chain Monte Carlo algorithms with
applications to image restoration. PhD thesis. University of Toronto.

Grimmett, Geoffrey and Stirzaker, David (2001), Probability and Random Processes 3rd
ed. Oxford University Press, New York.

Roberts, Gareth O. and Rosenthal, J.S. (2001), Optimal scaling for various Metropolis-
Hastings algorithms. Statistical Science 16, 351-367.

Rosenthal, J.S. (1995a), Convergence rates of Markov chains. SIAM Review 37, 387-
405.

Rosenthal, J.S. (1995b), Minorization Conditions and Convergence Rates for Markov
Chain Monte Carlo. Journal of the American Statistical Association 90, 558-566.

 30

Appendix #1 (2nd eigenvalue)
% The following MATLAB .m program finds the value of the second highest
% eigenvalue in absolute value of the matrix P from the 'frog example'.
% A lower second highest eigenvalue generally means the matrix converges
% more quickly to stationarity.

m = 9; % P(x,y) = 1/(2m+1) for all x, y within m of each other
nodes = 200; % P is a nodes*nodes matrix
beta = 10; % target distribution is proportional to (dist(x,1)+1)^-b

 % where dist(x,1) is the number of nodes to get from x to 1

% the following two loops calculate the stationary (target) distribution
% of the matrix P
denom = 0;
for i = 1:nodes % array indices cannot be zero here, but this is allowed for by subtracting

% one everywhere
 min = i-1;
 if nodes-i+1 < min
 min = nodes-i+1; % distance from the current node to 1
 end
 denom = denom + (min + 1)^(-beta);
end
for i = 1:nodes
 min = i-1;
 if nodes-i+1 < min
 min = nodes-i+1;
 end
 pi(1, i) = (min + 1)^(-beta)/denom; % stationary distribution of P
end

for i = 1:nodes
 P(i, i) = 1/(2*m+1);
 for j = 1:nodes
 if pi(1, j) >= pi(1, i)
 alpha = 1; % alpha is the probability that we jump from the
 % current node, i, to the proposed node, j
 else
 alpha = pi(1, j)/pi(1, i);
 end

 if 0 < abs(i-j) & abs(i-j) < (m+1)
 P(i, j) = alpha/(2*m+1);
 P(i, i) = P(i, i) + (1-alpha)/(2*m+1);
 elseif abs(i-j) >= (nodes-m) % the highest nodes and the lowest
 % nodes have edges between them too
 P(i, j) = alpha/(2*m+1);

 31

 P(i, i) = P(i, i) + (1-alpha)/(2*m+1);
 elseif (m+1) <= abs(i-j) & abs(i-j) < (nodes-m)
 P(i, j) = 0;
 end
 end
end

y = eig(P); % finds a vector of the eigenvalues; the following loop
 % isolates the second highest one in absolute value
max = 0;
max2 = 0;
for k = 1:nodes
 if abs(y(k, 1)) > max
 max2 = max;
 max = abs(y(k, 1));
 elseif abs(y(k, 1))>max2 & max>= abs(y(k, 1))
 max2 = abs(y(k, 1));
 end
end
max2

% the following can be added on to the above program to find bounds
% on variation distance using all the eigenvalues; a slight modification
% can be made to see bounds on L2(pi) distance
iters = 40;
Q = P'; % we want left eigenvectors of P which will be right eigenvectors
 % of Q
sum = 0;
[evecs, evals] = eig(Q);
start = zeros(nodes, 1);
start(1,1) = 1;
am = evecs\start; % finding a sub m for all m
for i = 1:nodes
 for j = 2:nodes
 sum = sum + abs(am(j,1)*evecs(i,j)) * abs(evals(j,j))^iters;
 end
end
sum = sum/2;
sum % bound on variation distance

 32

Appendix #2 (metropolishastings)

/* The following C program studies the speed of convergence of a matrix to
 its stationary distribution using the Metropolis-Hastings algorithm.
 The 'frog example' is used again */

#define NODES 20 /* size of the state space */
#define ITERATIONS 40 /* number of jumps before we take an approximate
 sample from the stationary distribution */
#define RUNS 500000 /* number of trials that are averaged together to
 estimate the stationary distribution */
#define M 5 /* all nodes within M of each other have an edge
 between them */
#define BETA 2 /* target distribution is proportional to (1 +
 distance to node zero)^-BETA */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

void simulate();
int distance (int);

int main()
{
 srand((unsigned) time(NULL));
 simulate();
 exit(0);
}

void simulate()
{
 int edges[NODES][NODES], total[NODES], sum[NODES];
 int current, temp, partsum, proposal, c, i, j, rejects, min;
 double sdist[NODES], target[NODES];
 double rejsum=0, vardist=0, l2distpi=0, l2distpiinv=0, denom=0;
 double randomnum, randomnum2, alpha, rejperc;
 FILE *fp;
 fp = fopen("outputfile", "w");

 /* setting all values in arrays to zero so we can add them */
 for (i=0; i<NODES; i++)
 {
 for (j=0; j<NODES; j++)
 edges[i][j] = 0;

 33

 total[i] = 0;
 sum[i] = 0;
 }

 /* setting all the edges with equal weight */
 for (i=0; i<NODES; i++)
 for (j=0; j<=M; j++)
 {
 temp = (i+j) % NODES;
 edges[i][temp] = 1;
 edges[temp][i] = 1;
 }

 /* finding the number of edges from each node (actually just 2M+1 in
 this case, but written more generally to allow changes to code) */
 for (i=0; i<NODES; i++)
 for(j=0; j<NODES; j++)
 sum[i] += edges[i][j];

 /* calculating the given target distribution for NODES and BETA
 we don't actually need pi - only the ratios, but it's good to have it */
 for (i=0; i<NODES; i++)
 {
 min = distance(i);
 denom += pow(min+1, -BETA);
 }
 for (i=0; i<NODES; i++)
 {
 min = distance(i);
 target[i] = pow(min+1, -BETA)/denom;
 }

 /* the actual simulation */
 for (i=0; i<RUNS; i++)
 {
 rejects = 0; /* keeps track of rejections to find what percentage of
 proposals are rejected (this hopefully leads to a
 connection to 'optimal scaling'), resets often to
 avoid overflow */
 current = 0; /* starting the simulation at node 0 here */
 for (j=0; j<ITERATIONS; j++)
 {
 partsum = 0;
 randomnum = rand()/(RAND_MAX+1.0)*sum[current];
 /* starting the loop M spots away from the current node maximizes
 efficiency since this is where all the edges are */

 34

 c = (current + NODES - M) % NODES;
 while (partsum < randomnum)
 {
 partsum += edges[current][c];
 proposal = c;
 c = (c+1) % NODES;
 }

 randomnum2 = rand()/(RAND_MAX+1.0);
 /* sum is q's reciprocal in this case */
 alpha = target[proposal]*sum[current]/(target[current]*sum[proposal]);
 if (randomnum2 < alpha) /* accepting the proposed jump */
 current = proposal;
 else
 rejects++;
 }
 rejsum += ((double)rejects)/ITERATIONS;
 total[current]++;
 }

 /* calculating the different types of norms to quantitatively study how
 well we approximated the target distribution */
 for (i=0; i<NODES; i++)
 {
 sdist[i] = ((double)total[i])/RUNS;
 vardist += fabs(sdist[i]-target[i]);
 l2distpi += pow(sdist[i]-target[i], 2.0)*target[i];
 l2distpiinv += pow(sdist[i]-target[i], 2.0)/target[i];
 }
 vardist = 0.5*vardist;
 l2distpi = sqrt(l2distpi);
 l2distpiinv = sqrt(l2distpiinv);
 rejperc = 100*rejsum/RUNS;
 fprintf (fp, "Variation distance is %g\n", vardist);
 fprintf (fp, "L2 dist(pi) is %g\n", l2distpi);
 fprintf (fp, "L2 dist(1/pi) is %g\n", l2distpiinv);
 fprintf (fp, "Rejection percentage is %g\n", rejperc);
 fclose(fp);
}

int distance(int i)
{
 if (NODES-i < i)
 return NODES-i;
 return i;
}

 35

Appendix #3 (findingA)

/* The following C program finds the value of A (specifically for our frog
 example) used in eigenvalue comparison in Diaconis and Saloff-Coste
 (1993), "Comparison theorems for reversible Markov chains." Ann. Appl.
 Prob. 3, 696-730 */

#define NODES 200 /* the size of the state space */
#define M1 10 /* P1 has edges between nodes within M1 of each other */
#define M2 9 /* P2 has edges between nodes within M2 of each other */
#define BETA 10 /* the target distribution is proportional to
 (dist(x,0)+1)^-BETA where dist(x,0) is the distance
 from node x to node 0 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int findLength(int, int, int, int);
int distance (int);

int main()
{
 int min, i, j, z, w, x, y, length;
 int searchstart, searchstart2, searchend, searchend2;
 double alpha, max=0, sum, denom=0;
 double P1[NODES][NODES], P2[NODES][NODES], pi1[NODES], pi2[NODES];

 for (i=0; i<NODES; i++)
 {
 min = distance(i);
 denom = denom + pow(min+1.0, -BETA);
 }
 for (i=0; i<NODES; i++)
 {
 min = distance(i);
 pi1[i] = pow(min+1.0, -BETA)/denom;
 pi2[i] = pi1[i]; /* the stationary distributions of P2 and P1 */
 }

 for (i=0; i<NODES; i++)
 {
 P1[i][i] = 1.0/(2*M1+1);
 P2[i][i] = 1.0/(2*M2+1);
 for (j=0; j<NODES; j++)
 {

 36

 if (pi1[j] >= pi1[i])
 alpha = 1; /* alpha is the probability that the proposed state, j,
 is accepted given that we are in state i; this is
 the same for P1 and P2 since they have the same
 stationary distribution. However, the proposals
 are different. */
 else
 alpha = pi1[j]/pi1[i];

 if ((0 < abs(i-j)) && (abs(i-j) < M1+1))
 {
 P1[i][j] = alpha/(2*M1+1);
 P1[i][i] = P1[i][i] + (1-alpha)/(2*M1+1);
 }
 else if (abs(i-j) >= NODES-M1) /* the highest nodes are connected to
 the lowest nodes */
 {
 P1[i][j] = alpha/(2*M1+1);
 P1[i][i] = P1[i][i] + (1-alpha)/(2*M1+1);
 }
 else if ((M1+1 <= abs(i-j)) && (abs(i-j) < NODES-M1))
 P1[i][i] = 0;

 if ((0 < abs(i-j)) && (abs(i-j) < M2+1))
 {
 P2[i][j] = alpha/(2*M2+1);
 P2[i][i] = P2[i][i] + (1-alpha)/(2*M2+1);
 }
 else if (abs(i-j) >= NODES-M2)
 {
 P2[i][j] = alpha/(2*M2+1);
 P2[i][i] = P2[i][i] + (1-alpha)/(2*M2+1);
 }
 else if ((M2+1 <= abs(i-j)) && (abs(i-j) < NODES-M2))
 P2[i][j] = 0;
 }
 }

 for (z=0; z<NODES; z++)
 {
 /* an edge of P cannot be outside the following boundaries */
 searchstart = (z+NODES-M1) % NODES;
 searchend = (z+M1) % NODES;
 if (searchstart > searchend)
 searchend += NODES; /* allows wrapping around from NODES-1 to 0 */
 for (i=searchstart; i<=searchend; i++)

 37

 {
 w = i % NODES;
 sum = 0;
 for (x=0; x<NODES; x++)
 {
 searchstart2 = (x+NODES-M2) % NODES;
 searchend2 = (x+M2) % NODES;
 if (searchstart2 > searchend2)
 searchend2 += NODES;
 for (j=searchstart2; j<=searchend2; j++)
 {
 y = j % NODES;
 length = findLength(z, w, x, y);
 sum = sum + length*pi2[x]*P2[x][y];
 }
 }
 sum = sum/(pi1[z]*P1[z][w]);
 if (sum > max)
 max = sum;
 }
 }
 printf ("A is %g\n", max);
 exit(0);
}

/* returns the path length from x to y if (z,w) was one of the steps on
 the path, otherwise returns 0 */
int findLength(int z, int w, int x, int y)
{
 int left, right, indicator, rem, min, len;

 indicator = 0; /* changes to 1 when (z,w) is found to be a step on the
 path from x to y */
 /* the edge comes by moving clockwise, e.g. 1->2*/
 if (((x<y) && (y-x < NODES/2)) || ((y<x) && (x-y >= NODES/2)))
 {
 left = x;
 right = (left + M1) % NODES;
 while ((abs(left-y) > M1) && (abs(left-y)<NODES-M1))
 {
 if ((left==z) && (right==w))
 {
 indicator = 1;
 left = y; /* ending the while loop */
 }
 right = (right+M1) % NODES; /* updating the values for the next

 38

 iteration */
 left = (left+M1) % NODES;
 }
 if ((left==z) && (y==w))
 indicator = 1;
 }

 /* the edge comes by moving counterclockwise, e.g. 2->1 */
 else if (((x<y) && (y-x >= NODES/2)) || ((y<x) && (x-y < NODES/2)))
 {
 right = x;
 left = (x+NODES-M1) % NODES;
 while ((abs(right-y)>M1) && (abs(right-y)<NODES-M1))
 {
 if ((right==z) && (left==w))
 {
 indicator = 1;
 right = y;
 }
 right = (right+NODES-M1) % NODES;
 left = (left+NODES-M1) % NODES;
 }
 if ((right==z) && (y==w))
 indicator = 1;
 }

 min = distance(abs(x-y)); /* the shortest distance from x to y */
 rem = min % M1;
 if (rem==0)
 len = indicator*min/M1; /* len is the quickest way to get from x to y
 jumping at most M1 nodes at time, but only
 if indicator=1 */
 else
 len = indicator*(min/M1+1);
 return len;
}

/* finds the shortest distance to node 0 from node i*/
int distance(int i)
{
 if (NODES-i < i)
 return NODES-i;
 return i;
}

 39

Appendix #4 (minorisation)

/* This C program uses the theory from Rosenthal (1995b) applied to the
 frog example to find a bound on the total variation distance after 200
 iterations */

#define NODES 100 /* the size of the state space */
#define M 4 /* P has edges between nodes within M of each other */
#define ITERS 200 /* the number of jumps before we take an approximate
 sample from the stationary distribution */
#define BETA 2 /* the target distribution is proportional to
 e^(-((distance to node zero)^BETA)) */
#define HEXP 2 /* the exponent in the calculation of h below */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int distance(int);

int main()
{
 int min, i, j, x, y, disti, distj, distx, disty;
 double P[NODES][NODES], pi[NODES];
 double bestbound=1, Eh0=0, Eh1=0, alph=100, epsilon, A=0, denom=0,
 acceptalpha, bound, temp;

 /* the following two loops calculate the stationary
 distribution of the chain */
 for (i=0; i<NODES; i++)
 {
 min = distance(i);
 denom = denom + exp(-pow(min, BETA));
 }
 for (j=0; j<NODES; j++)
 {
 min = distance(j);
 pi[j] = exp(-pow(min, BETA))/denom;
 }

 /* calculates a transition matrix with the desired stationary
 distribution */
 for (i=0; i<NODES; i++)
 {
 P[i][i] = 1.0/(2*M+1);
 for (j=0; j<NODES; j++)

 40

 {
 if (pi[j] > pi[i])
 acceptalpha = 1;
 else
 {
 disti = distance(i);
 distj = distance(j);
 /* to avoid dividing zero by zero; this makes P slightly
 different than actually specified, but the difference is
 minor, and the same thing had to be done in the eigenvalue
 calculation */
 if ((pi[i]<pow(10, -317)) && (distj>disti))
 acceptalpha = 0;
 else if ((pi[i]<pow(10, -317)) && (distj<=disti))
 acceptalpha = 1;
 else
 acceptalpha = pi[j]/pi[i];
 }

 if ((0 < abs(i-j)) && (abs(i-j) < M+1))
 {
 P[i][j] = acceptalpha/(2*M+1);
 P[i][i] = P[i][i] + (1-acceptalpha)/(2*M+1);
 }
 else if (abs(i-j) >= NODES-M)
 {
 P[i][j] = acceptalpha/(2*M+1);
 P[i][i] = P[i][i] + (1-acceptalpha)/(2*M+1);
 }
 else if ((M+1 <= abs(i-j)) && (abs(i-j) < NODES-M))
 P[i][j] = 0;
 }
 }

 /* finds expected value of h after 1 iteration and alph using
 h = 1 + dist(x,0)^HEXP + dist(y,0)^HEXP and taking the low value of
 temp since inequality holds for all x, y
 covering all pairs of x and y isn't necessary with this particular h
 since x will equal y, but it's nice to have the code in case we want
 to change h */
 for (x=1; x<NODES; x++)
 {
 for (y=x; y<NODES; y++)
 {
 Eh1 = 0;
 for (i=0; i<NODES; i++)

 41

 {
 min = distance(i);
 /* adding the two sums at the same time */
 Eh1 += pow(1.0*min, HEXP)*(P[x][i]+P[y][i]);
 }
 Eh1++;
 distx = distance(x);
 disty = distance(y);
 temp = (1+pow(distx, HEXP)+pow(disty, HEXP))/Eh1;
 if (temp < alph)
 alph = temp;
 }
 }

 epsilon = 1; /* for R = only one state */

 /* finds A; we're using k0 = 1 */
 for (i=0; i<NODES; i++)
 {
 min = distance(i);
 A += pow(min, HEXP)*P[0][i];
 }
 A = A*2 + 1;

 /* finds expected value of h for the initial distribution */
 for (i=0; i<NODES; i++)
 {
 min = distance(i);
 Eh0 += pow(min, HEXP)*pi[i];
 }
 Eh0 += 2; /* since the initial state is always zero here */

 /* tries different j's to find the best bound; in our case, the best j
 will always be 1 since epsilon is 1, but it's nice to have the code
 here if other cases are to be explored */
 for (j=1; j<=ITERS; j++)
 {
 bound = pow(1-epsilon, j) +
 Eh0*pow(A, j-1)*pow(alph, -ITERS+(j-1));
 if (bound < bestbound)
 bestbound = bound;
 }

 printf ("Bound is %g\n", bestbound);
 exit(0);
}

 42

int distance (int i)
{
 if (NODES-i < i)
 return NODES-i;
 return i;
}

 43

