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1.  Introduction 

 The following paper deals with the convergence rates of Markov Chain Monte 

Carlo (MCMC) algorithms.  Section 2 provides a short review of the Metropolis-Hastings 

algorithm and quantitative measures of rate of convergence.  It also mentions qualitative 

convergence, irreducibility, and recurrence, but those areas are not explored further.  

Section 3 introduces the “frog example” (Rosenthal, 1995a) and examines different 

proposal distributions and their rates of convergence to stationarity for a series of specific 

target distributions.  This is done with eigenvalue analysis, as well as simulations.  

Section 4 deals with bounding these eigenvalues using a method from Diaconis and 

Saloff-Coste (1993).  Section 5 discusses two other methods of bounding variation 

distance - minorisation conditions and logarithmic-Sobolev inequalities. 

 

 

2.1  Markov chain Monte Carlo 

 As explained in Evans and Rosenthal (2003), Monte Carlo techniques generate 

random variables having certain discrete distributions.  However, once it becomes too 

complex, it is not obvious how to simulate the distribution anymore.  This is where 

Markov chains can be used.  If we can find a Markov chain with a stationary distribution 

that is the same as the desired probability distribution { } (the target distribution), ( )iπ
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then we can run the Markov chain for a long time, say N iterations, and note what state 

the chain is in after these N iterations.  The probability that the chain is in state i will be 

approximately the same as the probability that our discrete random variable equals i.   

 We can get an idea of how far our approximation is from the target distribution by 

taking M samples using the Markov chain, finding the proportion of samples that ended 

up in state i (this is ) for each i in the sample space, and then adding up the 

absolute value of the difference between  and  for all i and multiplying by ½.  

i.e. the total variation distance is 

)(iNµ

)(iNµ ( )iπ

∑−
i

N i)(πµµ −N i)(=
2
1π .  This variation distance 

will not be zero because there is Markov chain error (N is not large enough) and there is 

Monte Carlo error (M is not large enough). 

 We are still left with the problem of finding the Markov chain with the desired 

stationary distribution.  As Evans and Rosenthal (2003), and many others before them, 

explain, the Metropolis-Hastings algorithm is one good way to do this. 

 

2.2  Metropolis-Hastings algorithm 

 This algorithm proposes a new point on the Markov chain which is either 

accepted or rejected.  If the point is accepted, the Markov chain moves to the new point.  

If the point is rejected, the Markov chain remains in the same state.  By choosing the 

acceptance probability correctly, we create a Markov chain which has { } as a 

stationary distribution. 

( )iπ
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 We begin with a state space  and a probability distribution { } on .  Then 

we choose a proposal distribution { } with q  and  for each 

.  Given that ,  is computed as follows. 

χ

q

( )iπ

∑
∈Sj

ijq

χ

χ∈jiij ,: 0≥ij 1=

χ∈i iX n = 1+nX

 1.  Choose Y  according to the Markov chain { } jn =+1 ijq

 2.  Set 












=
ij

ji
ij qi

qj
)(
)(

min
π
π

α  

 3.  With probability , let  (accept proposal) ijα jYX nn == ++ 11

       Otherwise, let  (reject proposal) iXX nn ==+1

 

As desired, this will create a chain with stationary distribution { } ( )iπ

Proof  (Evans and Rosenthal, 2003 and Grimmett and Stirzaker, 2001) 

Lemma 1  If  for all i, j (known as 

reversibility) then  is a stationary distribution of P. 

( ) ( jXiXPiXjXP nnjnni ===== ++ || 11 ππ

π

)

Proof of Lemma 1   If  satisfies the above conditions, then π

   j
i

jij
i

jij
i

iji ppp ππππ === ∑∑∑

 and so ππ = , which makes  a stationary distribution. P π

 

If we can show that the Markov chain resulting from the Metropolis-Hastings algorithm 

is reversible with respect to { }, then it follows that { } is the stationary 

distribution by Lemma 1. 

( )iπ ( )iπ

 3 



Obviously  holds if i = j, so we 

will only consider .  If , we need Y  to be proposed and accepted if we 

are to get .  Hence, 

( ) ( jXiXPiXjXP nnjnni ===== ++ || 11 ππ

ji ≠ iX n = jn =+1

)

jX n =+1

  ( ) ijijnn qiXjXP α===+ |1

            












=
iji

jij
ij q

q
q

π
π

,1min  

             








=
i

jij
ij

q
q

π
π

,min  

Multiplying both sides by , we get  iπ

  ( ) { }jijijinni qqiXjXP πππ ,min|1 ===+  

Similarly, we find that 

  ( ) { }jijijinnj qqjXiXP πππ ,min|1 ===+  

The left sides of the above equations must be equal, so we have shown reversibility. 

 The Metropolis-Hastings algorithm can also be used for continuous random 

variables by using densities and continuous proposal distributions, but we will not 

explore that here.  It is also possible to extend the theorem to the multidimensional case.  

The “Gibbs sampler”, which we will now discuss very briefly,  is a special case of the 

multivariate Metropolis-Hastings algorithm. 

 

2.3  Gibbs sampler 

 Suppose ( )π  is the joint distribution of .  Here, we update each 

component based on the value of each other component 

⋅ ( Nxxx ,...,, 21 )
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  ( ) ( Niiiii xxxxxxx ,...,,,...,|| 111 +−− = ππ )

These distributions are called full conditionals.  The Gibbs sampler is a special case of 

the Metropolis-Hastings algorithm where the proposals q are the full conditionals and the 

acceptance probability is always one. 

 The updating of components can be done systematically or randomly.  The above 

is from Gibbs (2000). 

 

2.4  Quantitative measures of convergence 

 In addition to the formula for total variation distance given in 2.1, there are two 

other equivalent definitions (see Rosenthal, 1995a).  All three are listed below.  Here,  

and  are probability measures, and  is the state space.  

1ν

2ν χ

 i)  ∑
∈

−=
χ

νν
x

xx )()(
2
1

211 −νν 2  

 ii)  )()(sup 1 AA
A

νν
χ

−=
∈

21 νν −   (supremum is taken over measurable subsets A) 

 iii)  )()(sup
21

1)(0
:

fEfE
xf
Rf

νν
χ

−=
≤≤

→
21 νν −   (where E stands for expected value) 

We will deal only with the first one in this paper. 

 We will also deal with 






π
12L  and  norms, which have connections to 

variation distance and eigenvalue analysis.  These  norms are defined as: 

( )π2L

2L

( )∑
∈







 









 −
=−

χπ π
νν

νν
x

L x
x

)(
))(( 2

21
121 2     and    ( ) ( )( )∑

∈

−=−
χ

π
πνννν

x
L

xx )())(( 2
2121 2  

In this paper, we will be using ( . )()())(21 xxx k πµνν −=−
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2.5  Relationship between these measures of convergence 

 ∑
∈

−=−
χ

πµπµ
x

kk xx )()(
2
1
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1
LLk    by Cauchy-Schwarz inequality 

      ∑
∈







−

χπ π
πππµ
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Lk x

xx
)(

1)()(
2
1

12=  

      






−=
π

πµ 122
1
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Hence, the variation distance is less than or equal to ½ the 






π
12L  norm.  Unfortunately, 

no nice inequality can be obtained between variation distance and the  norm, since 

we end up with 

( )π2L

∑
∈χ πx x)(

1  instead of the square root of 1 like we did above. 

 

2.6  Qualitative convergence 

 Gibbs (2000) and Barndorff-Nielsen, Cox and Kluppelberg (2001) both give the 

following two definitions which help to decide whether a chain converges quickly 

enough to be useful in simulations. 

 A chain is geometrically ergodic if  

  tt xMxP ρπ )()(),( ≤⋅−⋅  for finite M(x) and  1<ρ

 A chain is uniformly ergodic if for all x 

 6 



  tt MxP ρπ ≤⋅−⋅ )(),(  for finite M and  1<ρ

 

2.7  Irreducibility and recurrence 

 This information can also be found in Gibbs (2000) and Barndorff-Nielsen, Cox 

and Kluppelberg (2001).  We did not explore it further in this work. 

 Define Aτ  to be the time of the first visit to A for any  (  is the state 

space).  That is  (  if there are no visits to A).  A Markov 

chain is called  if there exists a non-zero probability measure on  such 

that for any  

χ∈A χ

{ }AXt t ∈= :min

eirreducibl

Aτ

−φ

χ∈

∞=Aτ

χ

A

   for all  ( ) 0|0)( 0 >=∞<⇒> xXPA Aτφ χ∈x

To state the above in words, any set with a positive  measure has a positive probability 

of being hit from any starting point x. 

ϕ

 To have the result hold for all initial states (instead of all but a probability-zero 

exceptional state), we need a slightly stronger notion called Harris recurrence.  This 

guarantees that for any , χ∈A

   for all  ( ) 1|0)( 0 ==∞<⇒> xXPA Aτφ χ∈x

Harris recurrence is important to have for a simulation so that you do not run your chain 

from the exceptional initial state. 
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3.1  The frog example 

 Consider the “frog example” (Rosenthal, 1995a) in which there are 1000 lily-pads 

arranged in a circle, numbered in order from 0 to 999.  Suppose that a frog makes a jump 

every minute, beginning on pad 0, and also suppose that he has an equal probability of 

landing on any lily-pad within m pads (nodes) of his previous location.  Rosenthal 

considers m = 1 and shows convergence to a uniform target distribution (the frog 

having an equal probability of being at each pad) is a very slow process.  In fact, 

π

πµ −k

1=ijα

 

> 0.1 until k exceeds 122,301.  Obviously, convergence will occur more quickly if m is 

increased, or if shortcuts are added to allow larger jumps.  In the case of the uniform 

target, m = 500 will give convergence immediately.  The situation is more complicated 

when a non-uniform target is desired, and the Metropolis-Hastings algorithm is used.  In 

the uniform case, no matter what m we choose, , and  so  , 

, and we always accept the proposal.  For non-uniform target distributions, we 

would expect an optimal m whose proposals lead to a Markov chain that converges the 

quickest.  This m will not be 500 because that leads to too many rejections, but it will not 

be too low either because the jumps will be too small in that case.  This introduces the 

idea of optimal scaling discussed by Roberts and Rosenthal (2001), although they deal 

almost exclusively with the continuous case.  Later in section 3, we will visit optimal 

scaling for the family of target distributions discussed in this paper. 

jiij qq = )()( ji ππ =

ji,∀

 

3.2  Family of target distributions used 

    where d(a, b) is the shortest distance from a to b on the 

circle.   equal to 0.5, 1.0, 2.0, 5.0, 10, 20 were all studied.  Clearly the higher  is, the 

) ( β−+1),0( xd(xπ

β

∝ )

β
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higher  is.  However, even this distribution is not peaked enough at 0 for a study of 

minorisation conditions to give reasonable bounds.  In that section (5.2), we will also 

look at  for  = 2 and 5. 

)0(π

π )(x

β

( )β),0( xde−∝

β

β

β

 

3.3  Study of eigenvalues 

 It is known that the second highest eigenvalue of a matrix P is related to the rate 

of convergence to its stationary distribution.  Using the proposal distribution and the 

acceptance rate, the matrix {P(x, y)} with stationary distribution { } is created for the 

different  and different m’s.  See Appendix #1 for the MATLAB program that does this 

and finds the second largest eigenvalue of this matrix.  Also, see Figure #1(a-g) below for 

a table of the results with 1000 nodes. 

)(xπ

 

 Figure #1(a)   = 0.5 
m 2nd highest eigenvalue 

180 0.87424681286953 
190 0.87166589971567 
191 0.87162483521290 
192 0.87161209098862 
193 0.87162491319268 
195 0.87171715104516 
200 0.87223907689506 

 
 Figure #1(b)  = 1 

m 2nd highest eigenvalue 
100 0.96454525127127 
110 0.96211699380438 
112 0.96202225156711 
113 0.96201625073779 
114 0.96203448162669 
115 0.96207438489506 
125 0.96320546327069 
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 Figure #1(c)   = 2 β
m 2nd highest eigenvalue 
50 0.98610315652020 
58 0.98244791674512 
59 0.98224599638054 
60 0.98220726967340 
61 0.98229619505990 
62 0.98245773197201 
65 0.98309090524785 

 
 
 Figure #1(d)   = 5 β

m 2nd highest eigenvalue 
10 0.99819871895349 
30 0.98657696383820 
32 0.98494713857452 
33 0.98410552801069 
34 0.98443694799826 
35 0.98487533604633 
40 0.98674255645486 

 
 Figure #1(e)   = 10 β

m 2nd highest eigenvalue 
10 0.99562710970574 
20 0.98496386158779 
23 0.98084123291182 
24 0.97955124183204 
25 0.98035315391692 
27 0.98178201545008 
50 0.99007931534401 

 
 Figure #1(f)   = 20 β

m 2nd highest eigenvalue 
10 0.98836991948443 
15 0.97682800076837 
16 0.97420529009865 
17 0.97149478015797 
18 0.97297292140747 
20 0.97560970956284 
25 0.98039211945248 
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 Figure #1(g) summary 
β  m 2nd highest eigenvalue rejection rate 

0.5 192 0.87161209098862 0.2123 
1 113 0.96201625073779 0.4997 
2 60 0.98220726967340 0.9005 
5 33 0.98410552801069 0.9811 
10 24 0.97955124183204 0.9795 
20 17 0.97149478015797 0.9714 

 

The m column in Figure #1(g) shows the optimal m for that particular .  As 

expected, there is an optimal m that is not too high and not too low.  We also see that  

of 2 and 5 have the slowest long-run convergence rate since their second highest 

eigenvalues for the optimal m are the highest. 

β

β

Unfortunately, the rejection rate column (calculated by multiplying ’s and ’s) 

shows no link to an optimal rejection percentage like that found in Roberts and Rosenthal 

(2001).  The probability of acceptance to a node other than the current one was also 

looked at, but there was no pattern there either. 

π α

A quantitative bound on variation distance and value of the  norm can be 

found using all the eigenvalues, instead of only the second highest one. See Rosenthal 

(1995a) for the proofs.  We find that: 

( )π2L

∑∑
−

=

−

=

≤−
1

0

1

1
var

)(
2
1 n

x

n

m

k
mmmk xva λπµ  

∑
−

=

=−
1

1

22

)(2

n

m

k
mmLk a λπµ

π
 

where k is the number of iterations before taking an approximation to the stationary 

distribution, n is the number of nodes,  are a basis of left eigenvectors of P 

corresponding to  respectively and  are the unique coefficients satisfying 

10 ,..., −nvv

ma10 ,..., −nλλ
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1111000 −−+⋅⋅⋅++= nn vavavaµ

β

.  The end of Appendix #1 has the code used to study these 

bounds. 

 Ideally, we would be able to use the above equations (even though they only 

provide an upper bound to the variation distance and  norm) to find the optimal m 

instead of running several long simulations.  We will explore this idea now. 

( )π2L

 

3.4  Connection between bounds using eigenvalues and simulation 

When doing simulations using MCMC, Markov chain error and Monte carlo error 

can both be problems as mentioned previously.  The Markov chain error can be 

controlled by constantly adding iterations (using a high constant number of runs to avoid 

a high Monte Carlo error).  When adding more iterations does not help reduce the 

variation distance very much, a satisfactory number has been reached.  The Monte Carlo 

error, however, is not as easy to avoid.  It should go down approximately as the square 

root of the number of runs goes up, but in the frog example, it is very hard to have this 

error lower than the actual difference in variation distance between two m’s.  Figure 

#2(b) below shows the variation distance after different numbers of runs for m = 24 and 

 = 10 with 400 iterations and 1000 nodes.  This almost completely gets rid of the 

Markov chain error as can be seen in Figure #2(a), but even though the runs are well into 

the millions, the Monte Carlo error would need more runs to become satisfactorily low.  

This can use up a lot of computational time.  Each entry below is completely separate; i.e. 

the data for 3 million runs does not affect the data for 5 million runs. 
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Figure #2(a) 
iterations variation distance 

100 2.4325e-4 
120 1.59147e-4 
140 1.02601e-4 
160 7.5728e-5 
180 6.70294e-5 
200 2.85437e-5 
220 2.61725e-5 
240 1.53473e-5 
260 1.31236e-5 
280 1.62452e-5 
300 1.37689e-5 
320 2.93243e-5 
340 3.0797e-5 
360 3.9397e-5 
380 4.78014e-5 
400 4.95985e-5 

 
 
 
Figure #2(b)  

number of runs 
(in millions) 

variation distance 

3 1.09555e-5 
5 4.95985e-5 
7 1.60423e-5 
9 8.93828e-6 
12 6.93959e-6 
14 7.95605e-6 
16 5.50603e-6 
18 2.28559e-5 
20 1.53241e-5 
24 2.68304e-6 
28 6.20349e-6 
32 1.50024e-5 

 

We can see by these figures that 32 million runs still will not be enough to avoid 

drastic Monte Carlo error.  Another example is shown below in Figure #3 (again 400 

iterations and 1000 nodes are used). 
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 Figure #3  
number of runs m = 24 var. dist. m = 50 var. dist. 

3 million 1.09555e-5 2.02942e-5 
5 million 4.95985e-5 6.60949e-5 

 
 

In the previous section, we saw that  = 10 had the fastest convergence for m = 

24 according to the eigenvalues.  Obviously we expect m = 24 to converge much quicker 

in our simulation than m = 50 since the second highest eigenvalue was much lower.  But 

in the above figure, m = 50 converged more after 3 million runs than m = 24 did after 5 

million runs. 

β

To actually show the connection between eigenvalue analysis and simulations, 

only 20 nodes were used with 900 million runs and 40 iterations to make the Monte Carlo 

error very small.  The target distribution was proportional to .  The 

simulation C program can be seen in Appendix #2.  Figure #4 below shows the 

simulation results, and Figure #5 shows the eigenvalue analysis. 

( 21),0( −+xd )

 

Figure #4 
m Variation 

distance 
( )π2L  








π
12L  

2 8.005e-3 3.818e-3 2.571e-2 
3 1.230e-3 6.347e-4 3.987e-3 
4 7.031e-4 3.108e-4 1.794e-3 
5 7.103e-4 4.537e-4 1.714e-3 
6 1.103e-3 7.711e-4 2.410e-3 
7 1.956e-3 1.364e-3 3.992e-3 
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Figure #5 
m 2nd eigenvalue 

∑∑
= =

19

0

19

1

40)(
2
1

x m
mmm xva λ  ∑

=

19

1

802

m
mma λ  

2 0.93167 8.512e-3 4.519e-5 
3 0.88472 1.369e-3 1.554e-6 
4 0.84846 4.403e-4 2.025e-7 
5 0.84243 4.989e-4 2.695e-7 
6 0.85373 9.235e-4 9.470e-7 
7 0.86722 1.755e-3 3.460e-6 

 
 

The inequalities from 3.3 do not all hold since we have not completely eliminated 

the Monte Carlo error.  However, we have done enough runs to have m = 4 show itself as 

the quickest converging m in both variation distance and  norm after 40 iterations 

just as the eigenvalues predicted for both.  Doing more than 900 million runs only makes 

this even clearer. 

( )π2L

 

 

4.1  Comparison of eigenvalues through Dirichlet forms 

 The following theory comes from work by Diaconis and Saloff-Coste (1993).  

Assume that P(x, y),  is a reversible, irreducible chain (as our frog example’s chain 

is) on a finite set , and let have the scalar product 

)(xπ

χ )(2 χl ∑
∈

=
χ

π
x

xxgxfgf )()()(,

2

.  

Also, the operator , with  is self-adjoint on l  (because 

of reversibility) with eigenvalues 

Pf→f ∑= ),()()( yxPyfxPf

11 −≥−Xβ1 21 ≥⋅⋅⋅≥≥>= ββ0β .  Let the Dirichlet 

form  be defined as ε

 ∑ −=−=
yx

yxPxyfxfffPIff
,

2 ),()())()((
2
1,)(),( πε  
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Proof of the second equality above 
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Now if   is a second reversible Markov chain on X, we get ),,(
~

yxP
~
π

  (*) 





 −−≤ iA

a ~
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It is important to be able to find A to come up with a bound.  Let  and  

be reversible Markov chains on a finite set .  Assume that we know the eigenvalues of 

 and we are trying to bound the eigenvalues of . 

~~
,πP π,P

χ

~~
,πP π,P
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 For each pair  with , fix a predetermined sequence of steps 

 with .  This sequence will be called a path  of 

length 

yx ≠ 0),(
~

>yxP

0)1 >+ixyxxxxx k == ,...,,, 210 ,( ixP xyγ

kxy =γ

),()(
~~

wzEeE =

.  Fix E to be the set of “edges” for P (i.e. the x, y such that P(x, y) > 0) 

and fix  to be the set of paths that contain e = (z, w).  Then if  
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we have .  The proof of this can be seen in Diaconis and Saloff-Coste (1993). εε A≤
~

 

4.2  Comparison in the frog example 

 Our goal is to see how tight the upper bound on eigenvalues is for a fixed  and 

different m’s.  To save computational time, only 200 nodes are used instead of 1000.  It is 

hoped that results can be extrapolated to that case or even the general case.  

Experimentation was done to find which m value gave the lowest second eigenvalue for 

nodes = 200 and  = 10.   An m of 9 was found to do so.  In Figure #6,  m1 and m2 are 

the m values for  and  respectively.  We are bounding the second highest 

eigenvalues of  in terms of those of .  See Appendix #3 for the C program that 

finds the value of A. 

β

β

P

π,

π,
~~

,πP

P
~~

,πP
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Figure #6 
m1 m2 2nd eig. for m2 A 2nd eig. for m1 upper bound 
7 9 0.94726373 4.47357 0.95831927 0.988212 
8 9 0.94726373 2.87749 0.94900079 0.981673 
10 9 0.94726373 1.10526 0.95228623 0.952286 
11 9 0.94726373 1.21053 0.95643526 0.956435 
50 9 0.94726373 5.31579 0.9900793 0.990079 
9 8 0.94900079 1.11765 0.94726373 0.954369 
9 10 0.95228623 2.91186 0.94726373 0.983614 
9 50 0.9900793 368.415 0.94726373 0.99973 

 

 The upper bound is perfect for values of m1 which are higher than m2 and also 

have higher second eigenvalues in the corresponding matrix (see boldface in the table 

above).  This leads us to believe that the second highest eigenvalues for the two m’s must 

be related only in terms of m1 and m2 in these cases.  To see why this is, look at how A is 

determined. 

 When m1 is higher than m2, there is only one path that contains the edge from z to 

w .  This path goes directly from z to w, and hence has length of one.  This 

implies the following 

( Ewz ∈∀ ),( )

 
122
112

112
1

122
1

),(
),(

)(
)(

~~

+
+

=

+

+==
m
m

m

m
wzP
wzP

z
zA

π
π  

 In this case,  and  are the same, so they cancel out above.  This also means 

 when a = 1.  Hence, we have the relation 

~
π π

ππ a≥
~







 −

+
+

−= 1

~

1 1
112
1221 ββ

m
m   (where  are the second highest eigenvalues) 

~

11 ,ββ

when m1 is higher than m2 and also has a higher second eigenvalue in the corresponding 

transition matrix. 
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4.3  The value of A in the frog example 

Theorem     In the frog example, A is always greater than or equal to 1 when we 

are comparing two chains with different m values. 

Proof     Assume m2 < m1.  Then the path length is always one, the ’s cancel 

out, and we are left with only 

π

),(
),(

~

wzP
wzP  which is greater than 1. 
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Where 





1
2

m
m   is the lowest integer greater than or equal to m2/m1.  i.e.   

the path length, which is at least 2 when m2 > m1. 

This completes the proof.   (Note: A = 1 when m1 = m2) 

 

Since A is always at least 1, when we want to use (*) from 4.1 to give an upper 

bound to the second highest eigenvalue of one chain in terms of another, it gives a 

meaningless bound when we use the higher second eigenvalue as known and try to bound 

the lower second eigenvalue.  The bound will be even greater than the higher second 

eigenvalue. 

 Although A is always at least 1 in the frog example, that is not true of every 

reversible  and .  Take for example, 
~~

,πP π,P
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Here, both P and  have stationary distributions 
~
P 





3
1

3
1

3
1 .  For each pair , the 

path from x to y can be of length 1, and for all (z, w), there is only one pair (x, y) where 

 that has (z, w) as an edge.  Hence,  

yx ≠

yx ≠

  
3
2

3
1

3
1

2
1

3
1

1
=






 ⋅

⋅
=A  

This actually gives perfect bounds on the eigenvalues using (*) since P has eigenvalues 1, 

2
1

− , 
2
1

−  and  has eigenvalues 1, 0, 0. 
~
P

 

 

5.1  Minorisation conditions 

 The following theory comes from Rosenthal (1995b).  Proofs of the lemmas and 

theorems can be found there.  The numbering is the same in the following to avoid 

confusion.  Some theorems are skipped here. 

 

Theorem 1  Suppose that a Markov chain P(x, dy) on state space  satisfies the 

following (a minorisation condition) 

χ

 ) ,   ∀  for all measurable subsets  (),(0 AQAxP k ε≥ χ⊆∈ Rx χ⊆A

    where Q  is a probability measure on , )(⋅ χ

     is a positive integer, and  0k 0>ε

Let  be two realizations of the Markov chain defined jointly from any starting 

distribution and let 

)()( , kk YX
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( ){ }RRYXmt mm ×∈= )()(
1 ,:inf ,     and for i > 1 let 

( ){ }RRm ×∈)(YXktmmt m
ii +≥= −

)(
01 ,,:inf  

Then set .  Now for any j > 0, { ktiN ik <= :max }

 )()1()()( 0)()( jNPYLXL k
k
j

kk <+−≤−









ε  

where [r] is the greatest integer not exceeding r 

The above theorem is usually applied with  and used to find the distance to 

stationarity.  If R can be kept small, then we can find a larger , which will clearly give a 

tighter bound. 

π=)( )0(YL

ε

 

Lemma 3    Let t  be the “ -delayed hitting times of ” as in the theorem above and 

let  (with ) represent the “ k -delayed  return time to ”.  

Then for any ,  

i

−it

0k

1

RR×

0





1−= ii tr

α

11 tr =

<kNP

thi RR×

> ( ) 

Π≤

=

−
j

i

k Ej αα
1

ir

If we bound exponential moments ( )irE α  of the return times of ( ))()( , kk YX  to , we 

can get a tighter bound.  The following lemma does this using an auxiliary function h 

whose expectation is decreasing when 

RR×

( ) RRYX kk ×∈)()( , .  This is related to “drift 

conditions”. 

 

Lemma 4    Let  and Y  be two Markov chains on  defined jointly just as in 

Theorem 1 with  and -delayed  return times to  as in Lemma 3.  

)(kX )(k

χ

χ

∈R 0k thi RR×
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Suppose there is an  and a function  such that h is always 

greater than or equal to 1 and  

1>α ℜ→× χχ:h

) ),(1 yxh−α x| )0(X

)0( ,YX

) ) XY =)0()1()1( |,≤−1 α

0(10 XhEA v
j

π×
−1( −≤

(( )yYx =)0(,

)

Xh k(

)0(

1 xi+

  (( ),, )0()1()1( yYxYXhE ≤== , ∀ RRy ×∈),(  

 Then  

  ( ) ( )( ))0(hEE ir ≤α  and for i > 1 and any choices of r , 11 ,..., −ir

  ( (( )yYxXhErrE
RRyx

k
i

ri =
×∈

)0(

),(
1 ,sup,...,| 0α  

 

Now we obtain the following, 

Theorem 5    Suppose a Markov chain P(x, dy) satisfies Theorem 1 and Lemma 4, then if 

 is the initial distribution and  is the stationary distribution, then for 

any j > 0, the variation distance to  after k iterations satisfies 

)( )0(XLv = π

π

  ( )[ ])0())1()( ,))( 0 YXL kjkk
j

k αεπ −+−









+−  

 where ) XYE k

RRyx
=

×∈

)0()()

),(
|,sup 00

π

A =  and  is distributed 

according to v and Y  according to . 

)0(X

Choosing j to be a small multiple of k is often a good idea, and a good choice for h is 

often of the form  where x is a vector and  is the i  

coordinate.  This works well when  drifts exponentially quickly towards the value a. 

( ) ( 22),( ayayxh i −+−=

ix

ix th

 

 The following lemma is good for establishing a minorisation condition 

 (see Theorem 1) in practice. )(),(0 AQAxP k ε≥
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Lemma 6 

 a)  Suppose that a Markov chain transition kernel P on state space  satisfies χ

  , ∀  and 12 ),(1 ε≥RxP k
1Rx∈

( )⋅≥⋅ QxP k
2),(2 ε , ∀   for some probability measure  on  2Rx∈ ( )⋅Q χ

Then the minorisation condition is satisfied when  with  

and . 

210 kkk += 1RR =

21εεε =

b)  Given a positive integer  and a subset , there exists a probability 

measure  so that 

0k χ⊆R

( )⋅Q

 ,   ) Rx∈∀(),(0 ⋅≥⋅ QxP k ε

where ( )∫ ∈
=

χ

ε ),(inf 0 dyxPk

Rx
 

Theorem 5 can also be stated in another way using a drift condition on the original chain 

rather than on the coupled chain. 

 

Theorem 12   Suppose that a Markov chain P(x, dy) on state space  satisfies the drift 

condition  

χ

( ) bxVxXXVE +≤= )(|)( )0()1( λ

1<λ ∞<

,  for some V  and some 

 and b   

χ∈x 0: ≥→ Rχ

and further satisfies a minorisation condition 

)(),( ⋅≥⋅ QxP ε ,   χ∈∀x
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with  for some , some probability measure  on  and 

some 

dxV ≤)( 0>ε )(⋅Q χ

λ−
>

1
2bd .  Then for any 0 < r < 1, beginning in the initial distribution v, 

we have 

 ))((
1

1()()1()( 0
)1()( XVEbAXL v

krrrkk +
−

++−≤− −−

λ
αεπ  

where 

 1
1
211 <
+
++

=−

d
db λα ,   )(21 bdA ++= λ

 

5.2  Minorisation condition in the frog example 

 Using Theorem 5, we wrote a program (see Appendix #4) that finds the bound on 

the variation distance πµ −k

β)x

.  With the target distribution used in the eigenvalue 

analysis and simulations, the bounds were barely less than 1, so a more peaked target 

distribution was used here to see if the bounds could be significantly better than 1.  This 

target has ) .  We used  of 2 and 5. (π ,0()( dex −∝ β

It appears that R with just a single state is a good choice for any value of m since 

R with more elements makes  less than 1, which more than offsets any increase in .  

R of only node 0 appears to be a good choice since 

ε α

( )


 , 

where , reaches its minimum over x and y with x and 

y equal to zero, which makes  less than 1.  We have also chosen .  Figure #7 

gives a summary of the bounds for different m and hexp with  = 5, 100 nodes and 200 

iterations. 




== yYxXYXhE

yxh
)0()0()1()1( ,|),(

),(

10 =k

β

expexp ),0(),0(1),( hh ydxdyxh += +

α
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Figure #7  
 hexp m bound 

1 2.08e-8 
2 9.01e-13 

15 

3 4.91e-9 
1 7.27e-13 
2 9.01e-13 

25 

3 4.91e-9 
1 7.64e-15 
2 9.02e-13 

30 

3 4.92e-9 
1 2.41e-18 
2 2.89e-12 

40 

3 2.42e-8 
 
 

 Once hexp gets bigger than 40, it reaches a point where the increase in h for 

different x and y more than offsets the very small chance of going to a node with a greater 

distance from node zero.  This makes the bound quite large since  < 1.  For hexp lower 

than 15,  is lower since the decrease in h for different x and y is not large enough to 

make a big difference in 

α

α

( )






== yYxXYXhE

yxh
)0()0()1()1( ,|),(

),( . 

 Figure #7 does show that for  = 5, m = 1 has the lowest bound (arrived at with 

hexp = 40).  In fact, according to the eigenvalue analysis, m = 1 does converge the fastest.  

The second eigenvalue for m = 1 is 0.6667 compared to 0.7265 for m = 2.  The variation 

distances after 200 iterations for these m’s are on the order of 10  and 10  

respectively.  So although the minorisation bound did give the ideal m in this case, the 

bound was so poor, that it would not be as reliable as eigenvalue analysis in this case. 

β

36− 28−

 Turning our attention to  = 2, we would expect since this stationary distribution 

is not as peaked at node zero that the minorisation bound would not be as good.  The 

eigenvalue analysis here tells us that m = 1, 2, or 3 should converge the quickest since the 

β
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eigenvalues for m = 1, 2 and 3 respectively are 0.7380, 0.7280 and 0.7468, which put the 

variation distance around the order of 10  after 200 iterations, whereas m = 4 has an 

eigenvalue of 0.8030 which after 200 iterations puts the variation distance on the order of 

.  However, taking hexp = 2.1 and m = 4 gives a bound of 0.000167 on the variation 

distance, which is lower than we get for m < 4 for any value of hexp.  Not surprisingly, 

since the bounds are so poor, we cannot tell which m will convergence the fastest by 

looking at the minorisation condition bounds.  The same thing happens when we use the 

same family of target distributions as in the eigenvalue analysis and simulations.   

26−

P

2010−

H t

π

 

5.3  Logarithmic-Sobolev inequalities 

 In addition to minorisation conditions, log-Sobolev inequalities can be used to 

bound the convergence of a Markov chain to its stationary distribution.  These 

inequalities often give tighter bounds.  The following theory comes from work by 

Diaconis and Saloff-Coste (1996).  Proofs of statements made here can be found in that 

paper. 

 Let χ  be a finite state space and let  with .  Also, let the 

continuous time semigroup associated with P be .  Denote its kernel 

by  which is the distribution at time t of the chain started at x. 

0),( ≥yx

H t =

1),( =∑
y

yxP

( ))( PIt −exp −

),()( yxy t
x H=

 We know that  and we want to bound )()( yyH x
t π→

TV

x
tH π− .  One way to do 

this is using the l  distance with respect to . i.e. 2

 
π

ππ
,2

1)/(2 −≤− x
tTV

x
t HH  

This norm can be represented as an operator norm, 
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∞→
−=−

2,2
1)/(max EHH t

x
tx π
π   where  is the operator that 

associates f to its mean with respect to . 

EffE →:

π

Now if we break up t into t  where both  and t  are greater than or equal to zero, 

we get 

21 t+ 1t 2

  
2222 21 →∞→∞→

−≤− EHHEH ttt  

We can bound the  norm in terms of the second eigenvalue 22 →

  







>= 0)(:

)(
),(min fVar

fVar
ffελ  

  where ∑ −=
yx

xyxPyfxf
,

2 )(),()()(
2
1 πff ),(ε  and 

   ∑ −=
yx

xyyfxff
,

2 )()()()(
2
1)( ππVar  

One bound using the second eigenvalue (following from taking t  = 0) is 1

   tx
t eH λ

π
π 2

*

2

var

14 −≤−      (eq. 1) 

The above bound can be improved upon by taking positive ’s.  To do this we need 

bounds on the decay of 

1t

22
/max πx

tx
HH =

∞→
 as a function of t.  Log-Sobolev 

inequalities can be used to estimate this decay. 

 A log-Sobolev inequality is of the form 

        (eq. 2)  ),()( ffCfL ε≤

       where ∑ 












= π2

2

2
2 log)(

f

f
ffL  

Define the log-Sobolev constant of the chain  by ),( πP

 28 



  







≠= 0)(:

)(
),(min fL

fL
ffεα  

Then 
α
1  is the smallest constant C such that eq. 2 holds for all f.   always satisfies α

2
λα ≤  and is sometimes equal to 

2
λ .  Using this log-Sobolev inequality, we can get 

t

TV

x
t eH α

π
π 2

*

2 1log2 −








≤−  which is an improvement on eq. 1 roughly when 

**

1loglog11log1
παπλ

≥ , which it does in our variations of the frog example.  However, 

log-Sobolev inequalities were not explored further than this. 
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Appendix #1   (2nd eigenvalue) 
% The following MATLAB .m program finds the value of the second highest 
% eigenvalue in absolute value of the matrix P from the 'frog example'. 
% A lower second highest eigenvalue generally means the matrix converges 
% more quickly to stationarity. 
 
m = 9;  % P(x,y) = 1/(2m+1) for all x, y within m of each other 
nodes = 200; % P is a nodes*nodes matrix 
beta = 10; % target distribution is proportional to (dist(x,1)+1)^-b 

                 % where dist(x,1) is the number of nodes to get from x to 1 
 
% the following two loops calculate the stationary (target) distribution 
% of the matrix P 
denom = 0; 
for i = 1:nodes  % array indices cannot be zero here, but this is allowed for by subtracting 

% one everywhere 
  min = i-1; 
  if nodes-i+1 < min 
    min = nodes-i+1;  % distance from the current node to 1 
  end 
  denom = denom + (min + 1)^(-beta); 
end 
for i = 1:nodes 
  min = i-1; 
  if nodes-i+1 < min 
    min = nodes-i+1; 
  end 
  pi(1, i) = (min + 1)^(-beta)/denom;    % stationary distribution of P 
end 
 
for i = 1:nodes 
   P(i, i) = 1/(2*m+1); 
   for j = 1:nodes 
      if pi(1, j) >= pi(1, i) 
         alpha = 1; % alpha is the probability that we jump from the 
                      % current node, i, to the proposed node, j 
      else 
         alpha = pi(1, j)/pi(1, i); 
      end 
 
      if 0 < abs(i-j) & abs(i-j) < (m+1) 
         P(i, j) = alpha/(2*m+1); 
         P(i, i) = P(i, i) + (1-alpha)/(2*m+1); 
      elseif abs(i-j) >= (nodes-m) % the highest nodes and the lowest 
                                     % nodes have edges between them too 
         P(i, j) = alpha/(2*m+1); 
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         P(i, i) = P(i, i) + (1-alpha)/(2*m+1); 
      elseif (m+1) <= abs(i-j) & abs(i-j) < (nodes-m) 
         P(i, j) = 0; 
      end 
   end 
end 
 
y = eig(P); % finds a vector of the eigenvalues; the following loop 
              % isolates the second highest one in absolute value 
max = 0; 
max2 = 0; 
for k = 1:nodes 
   if abs(y(k, 1)) > max 
      max2 = max; 
      max = abs(y(k, 1)); 
   elseif abs(y(k, 1))>max2 & max>= abs(y(k, 1)) 
      max2 = abs(y(k, 1)); 
   end 
end 
max2 
 
 
% the following can be added on to the above program to find bounds 
% on variation distance using all the eigenvalues; a slight modification 
% can be made to see bounds on L2(pi) distance 
iters = 40; 
Q = P'; % we want left eigenvectors of P which will be right eigenvectors 
            % of Q 
sum = 0; 
[evecs, evals] = eig(Q); 
start = zeros(nodes, 1); 
start(1,1) = 1; 
am = evecs\start;  % finding a sub m for all m 
for i = 1:nodes 
  for j = 2:nodes 
    sum = sum + abs(am(j,1)*evecs(i,j)) * abs(evals(j,j))^iters; 
  end 
end 
sum = sum/2; 
sum  % bound on variation distance 
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Appendix #2 (metropolishastings) 
 
/* The following C program studies the speed of convergence of a matrix to 
    its stationary distribution using the Metropolis-Hastings algorithm. 
    The 'frog example' is used again */ 
 
#define NODES 20              /* size of the state space */ 
#define ITERATIONS 40 /* number of jumps before we take an approximate 
                                                sample from the stationary distribution */ 
#define RUNS 500000      /* number of trials that are averaged together to 
                                                estimate the stationary distribution */ 
#define M 5                      /* all nodes within M of each other have an edge 
                                                 between them */ 
#define BETA 2               /* target distribution is proportional to (1 + 
                                                 distance to node zero)^-BETA */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
 
void simulate(); 
int distance (int); 
 
int main() 
{ 
  srand((unsigned) time(NULL)); 
  simulate(); 
  exit(0); 
} 
 
void simulate() 
{ 
  int edges[NODES][NODES], total[NODES], sum[NODES]; 
  int current, temp, partsum, proposal, c, i, j, rejects, min; 
  double sdist[NODES], target[NODES]; 
  double rejsum=0, vardist=0, l2distpi=0, l2distpiinv=0, denom=0; 
  double randomnum, randomnum2, alpha, rejperc; 
  FILE *fp; 
  fp = fopen("outputfile", "w"); 
 
  /* setting all values in arrays to zero so we can add them */ 
  for (i=0; i<NODES; i++) 
  { 
    for (j=0; j<NODES; j++) 
      edges[i][j] = 0; 
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    total[i] = 0; 
    sum[i] = 0; 
  } 
 
  /* setting all the edges with equal weight */ 
  for (i=0; i<NODES; i++) 
    for (j=0; j<=M; j++) 
    { 
      temp = (i+j) % NODES; 
      edges[i][temp] = 1; 
      edges[temp][i] = 1; 
    } 
 
  /* finding the number of edges from each node (actually just 2M+1 in 
      this case, but written more generally to allow changes to code) */ 
  for (i=0; i<NODES; i++) 
    for(j=0; j<NODES; j++) 
      sum[i] += edges[i][j]; 
 
  /* calculating the given target distribution for NODES and BETA 
      we don't actually need pi - only the ratios, but it's good to have it */ 
  for (i=0; i<NODES; i++) 
  { 
    min = distance(i); 
    denom += pow(min+1, -BETA); 
  } 
  for (i=0; i<NODES; i++) 
  { 
    min = distance(i); 
    target[i] = pow(min+1, -BETA)/denom; 
  } 
 
  /* the actual simulation */ 
  for (i=0; i<RUNS; i++) 
  { 
    rejects = 0; /* keeps track of rejections to find what percentage of 
                           proposals are rejected (this hopefully leads to a 
                         connection to 'optimal scaling'), resets often to 
                          avoid overflow */ 
    current = 0; /* starting the simulation at node 0 here */ 
    for (j=0; j<ITERATIONS; j++) 
    { 
      partsum = 0; 
      randomnum = rand()/(RAND_MAX+1.0)*sum[current]; 
      /* starting the loop M spots away from the current node maximizes 
          efficiency since this is where all the edges are */ 
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      c = (current + NODES - M) % NODES; 
      while (partsum < randomnum) 
      { 
        partsum += edges[current][c]; 
        proposal = c; 
        c = (c+1) % NODES; 
      } 
 
      randomnum2 = rand()/(RAND_MAX+1.0); 
      /* sum is q's reciprocal in this case */ 
      alpha = target[proposal]*sum[current]/(target[current]*sum[proposal]); 
      if (randomnum2 < alpha)    /* accepting the proposed jump */ 
        current = proposal; 
      else 
        rejects++; 
    } 
    rejsum += ((double)rejects)/ITERATIONS; 
    total[current]++; 
  } 
 
  /* calculating the different types of norms to quantitatively study how 
      well we approximated the target distribution */ 
  for (i=0; i<NODES; i++) 
  { 
    sdist[i] = ((double)total[i])/RUNS; 
    vardist += fabs(sdist[i]-target[i]); 
    l2distpi += pow(sdist[i]-target[i], 2.0)*target[i]; 
    l2distpiinv += pow(sdist[i]-target[i], 2.0)/target[i]; 
  } 
  vardist = 0.5*vardist; 
  l2distpi = sqrt(l2distpi); 
  l2distpiinv = sqrt(l2distpiinv); 
  rejperc = 100*rejsum/RUNS; 
  fprintf (fp, "Variation distance is %g\n", vardist); 
  fprintf (fp, "L2 dist(pi) is %g\n", l2distpi); 
  fprintf (fp, "L2 dist(1/pi) is %g\n", l2distpiinv); 
  fprintf (fp, "Rejection percentage is %g\n", rejperc); 
  fclose(fp); 
} 
 
int distance(int i) 
{ 
  if (NODES-i < i) 
    return NODES-i; 
  return i; 
} 
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Appendix #3   (findingA) 
 
/* The following C program finds the value of A (specifically for our frog 
   example) used in eigenvalue comparison in Diaconis and Saloff-Coste 
   (1993), "Comparison theorems for reversible Markov chains."  Ann. Appl. 
   Prob. 3, 696-730 */ 
 
#define NODES 200 /* the size of the state space */ 
#define M1 10 /* P1 has edges between nodes within M1 of each other */ 
#define M2 9 /* P2 has edges between nodes within M2 of each other */ 
#define BETA 10 /* the target distribution is proportional to 
                              (dist(x,0)+1)^-BETA where dist(x,0) is the distance 
                              from node x to node 0 */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
int findLength(int, int, int, int); 
int distance (int); 
 
int main() 
{ 
  int min, i, j, z, w, x, y, length; 
  int searchstart, searchstart2, searchend, searchend2; 
  double alpha, max=0, sum, denom=0; 
  double P1[NODES][NODES], P2[NODES][NODES], pi1[NODES], pi2[NODES]; 
 
  for (i=0; i<NODES; i++) 
  { 
    min = distance(i); 
    denom = denom + pow(min+1.0, -BETA); 
  } 
  for (i=0; i<NODES; i++) 
  { 
    min = distance(i); 
    pi1[i] = pow(min+1.0, -BETA)/denom; 
    pi2[i] = pi1[i];    /* the stationary distributions of P2 and P1 */ 
  } 
 
  for (i=0; i<NODES; i++) 
  { 
    P1[i][i] = 1.0/(2*M1+1); 
    P2[i][i] = 1.0/(2*M2+1); 
    for (j=0; j<NODES; j++) 
    { 
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      if (pi1[j] >= pi1[i]) 
        alpha = 1;  /* alpha is the probability that the proposed state, j, 
                       is accepted given that we are in state i; this is 
                       the same for P1 and P2 since they have the same 
                       stationary distribution.  However, the proposals 
                       are different. */ 
      else 
        alpha = pi1[j]/pi1[i]; 
 
      if ((0 < abs(i-j)) && (abs(i-j) < M1+1)) 
      { 
        P1[i][j] = alpha/(2*M1+1); 
        P1[i][i] = P1[i][i] + (1-alpha)/(2*M1+1); 
      } 
      else if (abs(i-j) >= NODES-M1) /* the highest nodes are connected to 
                                            the lowest nodes */ 
      { 
        P1[i][j] = alpha/(2*M1+1); 
        P1[i][i] = P1[i][i] + (1-alpha)/(2*M1+1); 
      } 
      else if ((M1+1 <= abs(i-j)) && (abs(i-j) < NODES-M1)) 
        P1[i][i] = 0; 
 
      if ((0 < abs(i-j)) && (abs(i-j) < M2+1)) 
      { 
        P2[i][j] = alpha/(2*M2+1); 
        P2[i][i] = P2[i][i] + (1-alpha)/(2*M2+1); 
      } 
      else if (abs(i-j) >= NODES-M2) 
      { 
        P2[i][j] = alpha/(2*M2+1); 
        P2[i][i] = P2[i][i] + (1-alpha)/(2*M2+1); 
      } 
      else if ((M2+1 <= abs(i-j)) && (abs(i-j) < NODES-M2)) 
        P2[i][j] = 0; 
    } 
  } 
 
  for (z=0; z<NODES; z++) 
  { 
    /* an edge of P cannot be outside the following boundaries */ 
    searchstart = (z+NODES-M1) % NODES; 
    searchend = (z+M1) % NODES; 
    if (searchstart > searchend) 
      searchend += NODES;   /* allows wrapping around from NODES-1 to 0 */ 
    for (i=searchstart; i<=searchend; i++) 
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    { 
      w = i % NODES; 
      sum = 0; 
      for (x=0; x<NODES; x++) 
      { 
        searchstart2 = (x+NODES-M2) % NODES; 
        searchend2 = (x+M2) % NODES; 
        if (searchstart2 > searchend2) 
          searchend2 += NODES; 
        for (j=searchstart2; j<=searchend2; j++) 
        { 
          y = j % NODES; 
          length = findLength(z, w, x, y); 
          sum = sum + length*pi2[x]*P2[x][y]; 
        } 
      } 
      sum = sum/(pi1[z]*P1[z][w]); 
      if (sum > max) 
        max = sum; 
    } 
  } 
  printf ("A is %g\n", max); 
  exit(0); 
} 
 
/* returns the path length from x to y if (z,w) was one of the steps on 
    the path, otherwise returns 0 */ 
int findLength(int z, int w, int x, int y) 
{ 
  int left, right, indicator, rem, min, len; 
 
  indicator = 0; /* changes to 1 when (z,w) is found to be a step on the 
                             path from x to y */ 
  /* the edge comes by moving clockwise, e.g. 1->2*/ 
  if (((x<y) && (y-x < NODES/2)) || ((y<x) && (x-y >= NODES/2))) 
  { 
     left = x; 
     right = (left + M1) % NODES; 
     while ((abs(left-y) > M1) && (abs(left-y)<NODES-M1)) 
     { 
        if ((left==z) && (right==w)) 
        { 
           indicator = 1; 
           left = y;   /* ending the while loop */ 
        } 
        right = (right+M1) % NODES; /* updating the values for the next 
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                                                              iteration */ 
        left = (left+M1) % NODES; 
     } 
     if ((left==z) && (y==w)) 
        indicator = 1; 
  } 
 
  /* the edge comes by moving counterclockwise, e.g. 2->1 */ 
  else if (((x<y) && (y-x >= NODES/2)) || ((y<x) && (x-y < NODES/2))) 
  { 
     right = x; 
     left = (x+NODES-M1) % NODES; 
     while ((abs(right-y)>M1) && (abs(right-y)<NODES-M1)) 
     { 
        if ((right==z) && (left==w)) 
        { 
           indicator = 1; 
           right = y; 
        } 
        right = (right+NODES-M1) % NODES; 
        left = (left+NODES-M1) % NODES; 
     } 
     if ((right==z) && (y==w)) 
        indicator = 1; 
  } 
 
  min = distance(abs(x-y));    /* the shortest distance from x to y */ 
  rem = min % M1; 
  if (rem==0) 
    len = indicator*min/M1; /* len is the quickest way to get from x to y 
                                 jumping at most M1 nodes at time, but only 
                               if indicator=1 */ 
  else 
    len = indicator*(min/M1+1); 
  return len; 
} 
 
/* finds the shortest distance to node 0 from node i*/ 
int distance(int i) 
{ 
  if (NODES-i < i) 
    return NODES-i; 
  return i; 
} 
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Appendix #4  (minorisation) 
 
/* This C program uses the theory from Rosenthal (1995b) applied to the 
   frog example to find a bound on the total variation distance after 200 
   iterations */ 
 
#define NODES 100   /* the size of the state space */ 
#define M 4      /* P has edges between nodes within M of each other */ 
#define ITERS 200  /* the number of jumps before we take an approximate 
                                        sample from the stationary distribution */ 
#define BETA 2     /* the target distribution is proportional to 
                                        e^(-((distance to node zero)^BETA)) */ 
#define HEXP 2     /* the exponent in the calculation of h below */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
int distance(int); 
 
int main() 
{ 
  int min, i, j, x, y, disti, distj, distx, disty; 
  double P[NODES][NODES], pi[NODES]; 
  double bestbound=1, Eh0=0, Eh1=0, alph=100, epsilon, A=0, denom=0, 
     acceptalpha, bound, temp; 
 
  /* the following two loops calculate the stationary 
     distribution of the chain */ 
  for (i=0; i<NODES; i++) 
  { 
    min = distance(i); 
    denom = denom + exp(-pow(min, BETA)); 
  } 
  for (j=0; j<NODES; j++) 
  { 
    min = distance(j); 
    pi[j] = exp(-pow(min, BETA))/denom; 
  } 
 
  /* calculates a transition matrix with the desired stationary 
     distribution */ 
  for (i=0; i<NODES; i++) 
  { 
    P[i][i] = 1.0/(2*M+1); 
    for (j=0; j<NODES; j++) 
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    { 
       if (pi[j] > pi[i]) 
          acceptalpha = 1; 
       else 
       { 
          disti = distance(i); 
          distj = distance(j); 
          /* to avoid dividing zero by zero; this makes P slightly 
             different than actually specified, but the difference is 
             minor, and the same thing had to be done in the eigenvalue 
             calculation */ 
          if ((pi[i]<pow(10, -317)) && (distj>disti)) 
            acceptalpha = 0; 
          else if ((pi[i]<pow(10, -317)) && (distj<=disti)) 
            acceptalpha = 1; 
          else 
            acceptalpha = pi[j]/pi[i]; 
       } 
 
       if ((0 < abs(i-j)) && (abs(i-j) < M+1)) 
       { 
          P[i][j] = acceptalpha/(2*M+1); 
          P[i][i] = P[i][i] + (1-acceptalpha)/(2*M+1); 
       } 
       else if (abs(i-j) >= NODES-M) 
       { 
          P[i][j] = acceptalpha/(2*M+1); 
          P[i][i] = P[i][i] + (1-acceptalpha)/(2*M+1); 
       } 
       else if ((M+1 <= abs(i-j)) && (abs(i-j) < NODES-M)) 
          P[i][j] = 0; 
    } 
  } 
 
  /* finds expected value of h after 1 iteration and alph using 
     h = 1 + dist(x,0)^HEXP + dist(y,0)^HEXP and taking the low value of 
     temp since inequality holds for all x, y 
     covering all pairs of x and y isn't necessary with this particular h 
     since x will equal y, but it's nice to have the code in case we want 
     to change h */ 
  for (x=1; x<NODES; x++) 
  { 
    for (y=x; y<NODES; y++) 
    { 
      Eh1 = 0; 
      for (i=0; i<NODES; i++) 
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      { 
        min = distance(i); 
        /* adding the two sums at the same time */ 
        Eh1 += pow(1.0*min, HEXP)*(P[x][i]+P[y][i]); 
      } 
      Eh1++; 
      distx = distance(x); 
      disty = distance(y); 
      temp = (1+pow(distx, HEXP)+pow(disty, HEXP))/Eh1; 
      if (temp < alph) 
        alph = temp; 
    } 
  } 
 
  epsilon = 1; /* for R = only one state */ 
 
  /* finds A; we're using k0 = 1 */ 
  for (i=0; i<NODES; i++) 
  { 
    min = distance(i); 
    A += pow(min, HEXP)*P[0][i]; 
  } 
  A = A*2 + 1; 
 
  /* finds expected value of h for the initial distribution */ 
  for (i=0; i<NODES; i++) 
  { 
    min = distance(i); 
    Eh0 += pow(min, HEXP)*pi[i]; 
  } 
  Eh0 += 2; /* since the initial state is always zero here */ 
 
  /* tries different j's to find the best bound; in our case, the best j 
     will always be 1 since epsilon is 1, but it's nice to have the code 
     here if other cases are to be explored */ 
  for (j=1; j<=ITERS; j++) 
  { 
    bound = pow(1-epsilon, j) + 
             Eh0*pow(A, j-1)*pow(alph, -ITERS+(j-1)); 
    if (bound < bestbound) 
      bestbound = bound; 
  } 
 
  printf ("Bound is %g\n", bestbound); 
  exit(0); 
} 
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int distance (int i) 
{ 
  if (NODES-i < i) 
    return NODES-i; 
  return i; 
} 
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