
Notes About Markov Chain CLTs

[Rough notes by Jeffrey S. Rosenthal, February 2007, based on very helpful conversations

with J.P. Hobert, N. Madras, G.O. Roberts, and T. Salisbury. For discussion and clarification

only – not for publication. Comments appreciated.]

1. Introduction.

These notes concern various issues surrounding central limit theorems (CLTs) for Markov

chains, important notably for MCMC algorithms. A number of other papers have discussed

related matters ([8], [13], [5], [3], [6], [7]), and probably much of the discussion below is

already known, but we wanted to write it up for our own clarification.

Let π(·) be a probability measure on a measurable space (X ,F). Let P be a Markov chain

operator reversible with respect to π(·). Write 〈f, g〉 =
∫
X f(x) g(x) π(dx); by reversibility,

〈f, Pg〉 = 〈Pf, g〉.
Let h : X → R be measurable, with π(h2) < ∞ and (say) π(h) = 0. Let {Xn}∞n=0 follow

the transitions P in stationarity, so L(Xn) = π(·) and P[Xn+1 ∈ A |Xn] = P (Xn, A) for

all A ∈ F , for n = 0, 1, 2, . . .. Let γk = E[h(X0) h(Xk)] = 〈h, P kh〉. Let r(x) = P[X1 =

x |X0 = x] for x ∈ X . Let E be the spectral measure (e.g. [12]) associated with P , so that

f(P ) =
∫ 1

−1
f(λ) E(dλ)

for “all” analytic functions f : R → R, and also E(R) = I. Let Eh be the induced measure

for h, viz.

Eh(S) = 〈h, E(S)h〉 , S ⊆ [−1, 1] Borel

a positive Borel measure (cf. [5], p. 1753), which is finite if π(h2) < ∞ since then Eh(R) =

〈h, E(R)h〉 = 〈h, h〉 = π(h2) < ∞.

We are interested in the question of whether/when a root-n CLT exists for h, meaning

that n−1/2∑n
i=1 h(Xi) converges weakly to Normal(0, σ2) for some σ2 < ∞.

2. Representations of the Variance.

There are a number of possible formulae for σ2 in the literature (e.g. [8], [5], [3]), including:

A = lim
n→∞

n−1Var

(
n∑

i=1

h(Xi)

)
;
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B = 1 + 2
∞∑

k=1

γk = 1 + 2 lim
n→∞

n∑
k=1

γk ;

C =
∫ 1

−1

1 + λ

1− λ
Eh(dλ) .

It is proved in [8] that if C < ∞, then a CLT exists for h (with σ2 = C). And, it is

proved in [9] that if limn→∞ nE[h2(X0) r(X0)
n] = ∞, then A = ∞. So, it seems important

to sort out the relationship between A, B, and C. It is various implied (e.g. [5]) that A, B,

and C are usually all equivalent, and here we consider conditions which make that true.

We shall also have occasion to consider versions of A and B where the limit is taken over

odd integers only:

A′ = lim
j→∞

(2j + 1)−1Var

2j+1∑
i=1

h(Xi)

 ;

B′ = 1 + 2 lim
j→∞

2j+1∑
k=1

γk .

Obviously, A′ = A and B′ = B provided the limits in A and B exist. But it may be possible

that A′ and/or B′ are well-defined even if A and/or B are not.

We begin with a lemma (somewhat similar to Theorem 3.1 of [5]).

Lemma 1. If P is reversible, then γ2i ≥ 0, and |γ2i+1| ≤ γ2i, and |γ2i+2| ≤ γ2i.

Proof. By reversibility, γ2i = 〈f, P 2if〉 = 〈P if, P if〉 = ‖P if‖2 ≥ 0.

Also, |γ2i+1| = 〈f, P 2i+1f〉 = |〈P if, P (P if)〉| ≤ ‖P if‖2‖P‖ ≤ ‖P if‖2 = γ2i.

Similarly, |γ2i+2| = 〈f, P 2i+2f〉 = |〈P if, P 2(P if)〉| ≤ ‖P if‖2‖P 2‖ ≤ ‖P if‖2 = γ2i.

To continue, recall that P is ergodic if limn→∞ supA∈F |P k(x, A) − π(A)| = 0 for π-a.e.

x ∈ X . This follows (cf. [13], [11], [10]) if P is φ-irreducible and aperiodic.

Lemma 2. If P is reversible and ergodic, then limk→∞ γk = 0.

Proof. Since P is ergodic, its spectral measure E does not have an atom at 1 or −1,

i.e. E({−1, 1}) = 0, so also Eh({−1, 1}) = 0 (cf. [5], Lemma 5). Hence, by dominated

convergence (since |λk| ≤ 1, and
∫

1 Eh(dλ) = π(h2) < ∞), we have:

lim
k→∞

γk = lim
k→∞

〈h, P kh〉 = lim
k→∞

∫ 1

−1
λk Eh(dλ)

=
∫ 1

−1

(
lim
k→∞

λk
)
Eh(dλ) =

∫ 1

−1
0 Eh(dλ) = 0 .
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Proposition 3. If P is reversible and ergodic, then A′ = B′. (We allow for the possibility

that A′ = B′ = ∞.)

Proof. We compute directly (by expanding the square) that

n−1 Var

(
n∑

i=1

h(Xi)

)
= γ0 + 2

n−1∑
k=1

n− k

n
γk .

Hence,

(2j + 1)−1 Var

2j+1∑
i=1

h(Xi)

 = γ0 + 2γ1 + 2
j∑

i=1

(
2j + 1− 2i

2j + 1
γ2i +

2j + 1− 2i− 1

2j + 1
γ2i+1

)

= γ0 + 2γ1 + 2
j∑

i=1

γ2i

2j + 1
+ 2

j∑
i=1

2j + 1− 2i− 1

2j + 1
(γ2i + γ2i+1) .

By Lemma 1, γ2i + γ2i+1 ≥ 0, so as j →∞, for fixed i,

2j + 1− 2i− 1

2j + 1
(γ2i + γ2i+1) ↗ γ2i + γ2i+1 ,

i.e. the convergence is monotonic. Hence, by the monotone convergence theorem,

lim
j→∞

2
j∑

i=1

2j + 1− 2i− 1

2j + 1
(γ2i + γ2i+1) = 2

∞∑
i=1

(γ2i + γ2i+1) = 2
∞∑

k=2

γk .

By Lemma 2, γ2i → 0 as i →∞, so
∑j

i=1
γ2i

2j+1
→ 0 as j →∞. Putting this all together, we

conclude that

lim
j→∞

(2j + 1)−1 Var

2j+1∑
i=1

h(Xi)

 = γ0 + 2 lim
j→∞

2j+1∑
k=1

γk ,

i.e. A′ = B′, Q.E.D.

Corollary 4. If P is reversible and ergodic, then A = B. (We allow for the possibility

that A = B = ∞.)

Proof. If P is ergodic, then by Lemma 2, γk → 0, so B = B′. Also,

(n + 1)−1Var

(
n+1∑
i=1

h(Xi)

)
− n−1Var

(
n∑

i=1

h(Xi)

)
(1)
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= n−1

[
Var

(
n+1∑
i=1

h(Xi)

)
− Var

(
n∑

i=1

h(Xi)

)]
+ [n(n + 1)]−1Var

(
n+1∑
i=1

h(Xi)

)

Now, the first term above is equal to n−1∑n
i=1 γi (which goes to 0 since γk → 0), plus

n−1E[h2(Xi+1)] (which goes to 0 since π(h2) < ∞). The second term is equal to

γ0

n(n + 1)
+ 2

n−1∑
k=1

n− k

n2(n + 1)
γk

which also goes to 0. We conclude that the difference in (1) goes to 0 as n → ∞, so that

A = A′. Hence, by Proposition 3, A = A′ = B′ = B.

Remark 5. If γ2i 6→ 0, then since γ2i+2 ≤ γ2i by Lemma 1, we must have
∑∞

i=1 γ2i = ∞.

But is it possible that, say, γ2i = 1/i and γ2i+1 = −1/i for all large i, so that B′ is finite, but

A′ is infinite?

Proposition 6. If P is reversible and ergodic, then B = C. (We allow for the possibility

that B = C = ∞.)

Proof. We compute (recalling that Eh({−1, 1}) = 0) that:

B = lim
k→∞

(
〈h, h〉+ 2 〈h, Ph〉+ 2 〈h, P 2h〉+ . . . + 2 〈h, P kh〉

)
B = lim

k→∞

〈
h, (I + 2P + 2P 2 + . . . + 2P k)f

〉
= lim

k→∞

∫ 1

−1
(1 + 2λ + 2λ2 + . . . + 2λk) Eh(dλ)

= lim
k→∞

∫ 1

−1
(2

1− λk+1

1− λ
− 1) Eh(dλ)

= lim
k→∞

∫ 1

−1
(
1 + λ− λk+1

1− λ
) Eh(dλ)

=
∫ 1

−1
(
1 + λ

1− λ
) Eh(dλ) = C ,

where the penultimate equality is justified by the monotone convergence theorem, since

{1 + λ− λk+1

1− λ
} ↗ 1 + λ

1− λ
, k →∞

whenever −1 < λ < 1.
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Remark. The above use of the monotone convergence theorem is somewhat subtle, in

that the monotonicity is not on the original random variables, only for the λ’s with respect

to the spectral measure.

Corollary 7. If P is reversible and ergodic, then A = B = C (though they may all be

infinite).

Using the result from [8], we have:

Corollary 8. If P is reversible and ergodic, and any one of A, B, and C is finite, then a

CLT exists for h (with σ2 = A = B = C).

Using the result from [9], we have:

Corollary 9. If P is reversible and ergodic, and if limn→∞ nE[h2(X0) r(X0)
n] = ∞, then

A, B, and C are all infinite.

3. Converse: CLT Necessity.

The result from [8] raises the question of the converse. Suppose n−1∑n
i=1 h(Xi) converges

weakly to Normal(0, σ2) for some σ2 < ∞. Does it necessarily follow that any of A, B, and

C are finite?

Even in the i.i.d. case (where P (x, A) = π(A) for all x ∈ X and A ∈ F), this appears to

be a non-trivial question. However, Sections IX.8 and XVII.5 of Feller [4] appear to resolve

the issue, as we now discuss. (For related comments see e.g. [2], [1].)

Theorem 1a on p. 313 of [4] says that a distribution belongs to the domain of attraction of

the normal distribution if and only if its truncated variance is slowly varying. More precisely,

letting U(z) = E[X2
1I|X1|≤z], the theorem says that in the i.i.d. case, there are sequences {an}

and {bn} with a−1
n (X1 + . . . + Xn) ⇒ N(0, 1) if and only if limz→∞ [U(sz)/U(z)] = 1 for all

s > 0.

Now, if E(X2
1 ) = σ2 < ∞, then of course U(z) → σ2, so U(sz)/U(z) → σ2/σ2 = 1, and

the (classical) CLT applies.

On the other hand, there are many other distributions which have infinite variance, but

for which U is slowly varying as above. Examples include the density function x−31|x|≥1,

and the cumulative distribution function 1− (1 + x)−2 for x ≥ 0. The result in [4] says that

in such cases we still have a−1
n (X1 + . . . + Xn) ⇒ N(0, 1), but the question is whether we

could perhaps still have an = c n1/2 even if the variance is infinite.
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It appears the answer is no. Specifically, equation (8.12) on p. 314 of [4] (see also equa-

tion (5.23) on p. 579 of [4]) says that in such cases, we can always arrange that

lim
n→∞

n a−2
n U(an) = 1 .

If we did have an = c n1/2, then this would imply that limn→∞ cU(cn1/2) = 1, i.e. that

limz→∞ U(z) < ∞, i.e. that the variance is finite. (In examples like x−31|x|≥1 we would have

something like an = (n log n)−1/2 instead.) So, this appears to prove:

Proposition 10. The converse to the result in [8] holds in the i.i.d. case. That is, if {Xi}
are i.i.d., and n−1/2∑n

i=1 h(Xi) converges weakly to Normal(0, σ2) for some σ2 < ∞, then A,

B, and C are all finite, and σ2 = A = B = C.

Meanwhile, the non-i.i.d. case appears to still be open.

4. Possible Open Questions.

I would appreciate clarification about any of the following questions. Are they known?

trivial? interesting? etc.

How much of the above carries over if P is not ergodic, and γk 6→ 0? (See Remark 5.)

Do we still always have A′ = B′ (even though A′ and B′ may be undefined)? And, could it

be that, say, A is defined even though B is not?

How much of the above carries over if π(h2) = ∞? Does the spectral measure Eh still

make sense then? Are A and B both necessarily equal to +∞ in this case?

And, most importantly: does Proposition 10 hold in the non-i.i.d. case, i.e. for general

reversible Markov chains?

In a different direction, does any of the above carry over to the case where P is not

reversible? (Even to the case where P = P1P2 where each Pi is reversible?)

Also, I think most of the results presented in Sections 2 and 3 above are already known

in some form. But were they previous written down and proved somewhere? If so, where?
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