Notes About Markov Chain CLTs

[Rough notes by Jeffrey S. Rosenthal, February 2007, based on very helpful conversations with J.P. Hobert, N. Madras, G.O. Roberts, and T. Salisbury. For discussion and clarification only - not for publication. Comments appreciated.]

1. Introduction.

These notes concern various issues surrounding central limit theorems (CLTs) for Markov chains, important notably for MCMC algorithms. A number of other papers have discussed related matters ([8], [13], [5], [3], [6], [7]), and probably much of the discussion below is already known, but we wanted to write it up for our own clarification.

Let $\pi(\cdot)$ be a probability measure on a measurable space $(\mathcal{X}, \mathcal{F})$. Let P be a Markov chain operator reversible with respect to $\pi(\cdot)$. Write $\langle f, g\rangle=\int_{\mathcal{X}} f(x) g(x) \pi(d x)$; by reversibility, $\langle f, P g\rangle=\langle P f, g\rangle$.

Let $h: \mathcal{X} \rightarrow \mathbf{R}$ be measurable, with $\pi\left(h^{2}\right)<\infty$ and (say) $\pi(h)=0$. Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ follow the transitions P in stationarity, so $\mathcal{L}\left(X_{n}\right)=\pi(\cdot)$ and $\mathbf{P}\left[X_{n+1} \in A \mid X_{n}\right]=P\left(X_{n}, A\right)$ for all $A \in \mathcal{F}$, for $n=0,1,2, \ldots$. Let $\gamma_{k}=\mathbf{E}\left[h\left(X_{0}\right) h\left(X_{k}\right)\right]=\left\langle h, P^{k} h\right\rangle$. Let $r(x)=\mathbf{P}\left[X_{1}=\right.$ $\left.x \mid X_{0}=x\right]$ for $x \in \mathcal{X}$. Let \mathcal{E} be the spectral measure (e.g. [12]) associated with P, so that

$$
f(P)=\int_{-1}^{1} f(\lambda) \mathcal{E}(d \lambda)
$$

for "all" analytic functions $f: \mathbf{R} \rightarrow \mathbf{R}$, and also $\mathcal{E}(\mathbf{R})=I$. Let \mathcal{E}_{h} be the induced measure for h, viz.

$$
\mathcal{E}_{h}(S)=\langle h, \mathcal{E}(S) h\rangle, \quad S \subseteq[-1,1] \text { Borel }
$$

a positive Borel measure (cf. [5], p. 1753), which is finite if $\pi\left(h^{2}\right)<\infty$ since then $\mathcal{E}_{h}(\mathbf{R})=$ $\langle h, \mathcal{E}(\mathbf{R}) h\rangle=\langle h, h\rangle=\pi\left(h^{2}\right)<\infty$.

We are interested in the question of whether/when a root- n CLT exists for h, meaning that $n^{-1 / 2} \sum_{i=1}^{n} h\left(X_{i}\right)$ converges weakly to $\operatorname{Normal}\left(0, \sigma^{2}\right)$ for some $\sigma^{2}<\infty$.

2. Representations of the Variance.

There are a number of possible formulae for σ^{2} in the literature (e.g. [8], [5], [3]), including:

$$
A=\lim _{n \rightarrow \infty} n^{-1} \operatorname{Var}\left(\sum_{i=1}^{n} h\left(X_{i}\right)\right) ;
$$

$$
\begin{gathered}
B=1+2 \sum_{k=1}^{\infty} \gamma_{k}=1+2 \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \gamma_{k} \\
C=\int_{-1}^{1} \frac{1+\lambda}{1-\lambda} \mathcal{E}_{h}(d \lambda)
\end{gathered}
$$

It is proved in [8] that if $C<\infty$, then a CLT exists for h (with $\sigma^{2}=C$). And, it is proved in [9] that if $\lim _{n \rightarrow \infty} n \mathbf{E}\left[h^{2}\left(X_{0}\right) r\left(X_{0}\right)^{n}\right]=\infty$, then $A=\infty$. So, it seems important to sort out the relationship between A, B, and C. It is various implied (e.g. [5]) that A, B, and C are usually all equivalent, and here we consider conditions which make that true.

We shall also have occasion to consider versions of A and B where the limit is taken over odd integers only:

$$
\begin{gathered}
A^{\prime}=\lim _{j \rightarrow \infty}(2 j+1)^{-1} \operatorname{Var}\left(\sum_{i=1}^{2 j+1} h\left(X_{i}\right)\right) ; \\
B^{\prime}=1+2 \lim _{j \rightarrow \infty} \sum_{k=1}^{2 j+1} \gamma_{k}
\end{gathered}
$$

Obviously, $A^{\prime}=A$ and $B^{\prime}=B$ provided the limits in A and B exist. But it may be possible that A^{\prime} and/or B^{\prime} are well-defined even if A and/or B are not.

We begin with a lemma (somewhat similar to Theorem 3.1 of [5]).
Lemma 1. If P is reversible, then $\gamma_{2 i} \geq 0$, and $\left|\gamma_{2 i+1}\right| \leq \gamma_{2 i}$, and $\left|\gamma_{2 i+2}\right| \leq \gamma_{2 i}$.

Proof. By reversibility, $\gamma_{2 i}=\left\langle f, P^{2 i} f\right\rangle=\left\langle P^{i} f, P^{i} f\right\rangle=\left\|P^{i} f\right\|^{2} \geq 0$.
Also, $\left|\gamma_{2 i+1}\right|=\left\langle f, P^{2 i+1} f\right\rangle=\left|\left\langle P^{i} f, P\left(P^{i} f\right)\right\rangle\right| \leq\left\|P^{i} f\right\|^{2}\|P\| \leq\left\|P^{i} f\right\|^{2}=\gamma_{2 i}$.
Similarly, $\left|\gamma_{2 i+2}\right|=\left\langle f, P^{2 i+2} f\right\rangle=\left|\left\langle P^{i} f, P^{2}\left(P^{i} f\right)\right\rangle\right| \leq\left\|P^{i} f\right\|^{2}\left\|P^{2}\right\| \leq\left\|P^{i} f\right\|^{2}=\gamma_{2 i}$.

To continue, recall that P is ergodic if $\lim _{n \rightarrow \infty} \sup _{A \in \mathcal{F}}\left|P^{k}(x, A)-\pi(A)\right|=0$ for π-a.e. $x \in \mathcal{X}$. This follows (cf. [13], [11], [10]) if P is ϕ-irreducible and aperiodic.

Lemma 2. If P is reversible and ergodic, then $\lim _{k \rightarrow \infty} \gamma_{k}=0$.

Proof. \quad Since P is ergodic, its spectral measure \mathcal{E} does not have an atom at 1 or -1 , i.e. $\mathcal{E}(\{-1,1\})=0$, so also $\mathcal{E}_{h}(\{-1,1\})=0$ (cf. [5], Lemma 5). Hence, by dominated convergence (since $\left|\lambda^{k}\right| \leq 1$, and $\int 1 \mathcal{E}_{h}(d \lambda)=\pi\left(h^{2}\right)<\infty$), we have:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \gamma_{k}=\lim _{k \rightarrow \infty}\left\langle h, P^{k} h\right\rangle=\lim _{k \rightarrow \infty} \int_{-1}^{1} \lambda^{k} \mathcal{E}_{h}(d \lambda) \\
& =\int_{-1}^{1}\left(\lim _{k \rightarrow \infty} \lambda^{k}\right) \mathcal{E}_{h}(d \lambda)=\int_{-1}^{1} 0 \mathcal{E}_{h}(d \lambda)=0 .
\end{aligned}
$$

Proposition 3. If P is reversible and ergodic, then $A^{\prime}=B^{\prime}$. (We allow for the possibility that $A^{\prime}=B^{\prime}=\infty$.)

Proof. We compute directly (by expanding the square) that

$$
n^{-1} \operatorname{Var}\left(\sum_{i=1}^{n} h\left(X_{i}\right)\right)=\gamma_{0}+2 \sum_{k=1}^{n-1} \frac{n-k}{n} \gamma_{k}
$$

Hence,

$$
\begin{gathered}
(2 j+1)^{-1} \operatorname{Var}\left(\sum_{i=1}^{2 j+1} h\left(X_{i}\right)\right)=\gamma_{0}+2 \gamma_{1}+2 \sum_{i=1}^{j}\left(\frac{2 j+1-2 i}{2 j+1} \gamma_{2 i}+\frac{2 j+1-2 i-1}{2 j+1} \gamma_{2 i+1}\right) \\
=\gamma_{0}+2 \gamma_{1}+2 \sum_{i=1}^{j} \frac{\gamma_{2 i}}{2 j+1}+2 \sum_{i=1}^{j} \frac{2 j+1-2 i-1}{2 j+1}\left(\gamma_{2 i}+\gamma_{2 i+1}\right)
\end{gathered}
$$

By Lemma 1, $\gamma_{2 i}+\gamma_{2 i+1} \geq 0$, so as $j \rightarrow \infty$, for fixed i,

$$
\frac{2 j+1-2 i-1}{2 j+1}\left(\gamma_{2 i}+\gamma_{2 i+1}\right) \quad \nearrow \gamma_{2 i}+\gamma_{2 i+1}
$$

i.e. the convergence is monotonic. Hence, by the monotone convergence theorem,

$$
\lim _{j \rightarrow \infty} 2 \sum_{i=1}^{j} \frac{2 j+1-2 i-1}{2 j+1}\left(\gamma_{2 i}+\gamma_{2 i+1}\right)=2 \sum_{i=1}^{\infty}\left(\gamma_{2 i}+\gamma_{2 i+1}\right)=2 \sum_{k=2}^{\infty} \gamma_{k}
$$

By Lemma 2, $\gamma_{2 i} \rightarrow 0$ as $i \rightarrow \infty$, so $\sum_{i=1}^{j} \frac{\gamma_{2 i}}{2 j+1} \rightarrow 0$ as $j \rightarrow \infty$. Putting this all together, we conclude that

$$
\lim _{j \rightarrow \infty}(2 j+1)^{-1} \operatorname{Var}\left(\sum_{i=1}^{2 j+1} h\left(X_{i}\right)\right)=\gamma_{0}+2 \lim _{j \rightarrow \infty} \sum_{k=1}^{2 j+1} \gamma_{k}
$$

i.e. $A^{\prime}=B^{\prime}$, Q.E.D.

Corollary 4. If P is reversible and ergodic, then $A=B$. (We allow for the possibility that $A=B=\infty$.)

Proof. If P is ergodic, then by Lemma 2, $\gamma_{k} \rightarrow 0$, so $B=B^{\prime}$. Also,

$$
\begin{equation*}
(n+1)^{-1} \operatorname{Var}\left(\sum_{i=1}^{n+1} h\left(X_{i}\right)\right)-n^{-1} \operatorname{Var}\left(\sum_{i=1}^{n} h\left(X_{i}\right)\right) \tag{1}
\end{equation*}
$$

$$
=n^{-1}\left[\operatorname{Var}\left(\sum_{i=1}^{n+1} h\left(X_{i}\right)\right)-\operatorname{Var}\left(\sum_{i=1}^{n} h\left(X_{i}\right)\right)\right]+[n(n+1)]^{-1} \operatorname{Var}\left(\sum_{i=1}^{n+1} h\left(X_{i}\right)\right)
$$

Now, the first term above is equal to $n^{-1} \sum_{i=1}^{n} \gamma_{i}$ (which goes to 0 since $\gamma_{k} \rightarrow 0$), plus $n^{-1} \mathbf{E}\left[h^{2}\left(X_{i+1}\right)\right]$ (which goes to 0 since $\pi\left(h^{2}\right)<\infty$). The second term is equal to

$$
\frac{\gamma_{0}}{n(n+1)}+2 \sum_{k=1}^{n-1} \frac{n-k}{n^{2}(n+1)} \gamma_{k}
$$

which also goes to 0 . We conclude that the difference in (1) goes to 0 as $n \rightarrow \infty$, so that $A=A^{\prime}$. Hence, by Proposition 3, $A=A^{\prime}=B^{\prime}=B$.

Remark 5. If $\gamma_{2 i} \nrightarrow 0$, then since $\gamma_{2 i+2} \leq \gamma_{2 i}$ by Lemma 1, we must have $\sum_{i=1}^{\infty} \gamma_{2 i}=\infty$. But is it possible that, say, $\gamma_{2 i}=1 / i$ and $\gamma_{2 i+1}=-1 / i$ for all large i, so that B^{\prime} is finite, but A^{\prime} is infinite?

Proposition 6. If P is reversible and ergodic, then $B=C$. (We allow for the possibility that $B=C=\infty$.)

Proof. We compute (recalling that $\left.\mathcal{E}_{h}(\{-1,1\})=0\right)$ that:

$$
\begin{gathered}
B=\lim _{k \rightarrow \infty}\left(\langle h, h\rangle+2\langle h, P h\rangle+2\left\langle h, P^{2} h\right\rangle+\ldots+2\left\langle h, P^{k} h\right\rangle\right) \\
B=\lim _{k \rightarrow \infty}\left\langle h,\left(I+2 P+2 P^{2}+\ldots+2 P^{k}\right) f\right\rangle \\
=\lim _{k \rightarrow \infty} \int_{-1}^{1}\left(1+2 \lambda+2 \lambda^{2}+\ldots+2 \lambda^{k}\right) \mathcal{E}_{h}(d \lambda) \\
=\lim _{k \rightarrow \infty} \int_{-1}^{1}\left(2 \frac{1-\lambda^{k+1}}{1-\lambda}-1\right) \mathcal{E}_{h}(d \lambda) \\
=\lim _{k \rightarrow \infty} \int_{-1}^{1}\left(\frac{1+\lambda-\lambda^{k+1}}{1-\lambda}\right) \mathcal{E}_{h}(d \lambda) \\
=\int_{-1}^{1}\left(\frac{1+\lambda}{1-\lambda}\right) \mathcal{E}_{h}(d \lambda)=C
\end{gathered}
$$

where the penultimate equality is justified by the monotone convergence theorem, since

$$
\left\{\frac{1+\lambda-\lambda^{k+1}}{1-\lambda}\right\} \nearrow \frac{1+\lambda}{1-\lambda}, \quad k \rightarrow \infty
$$

whenever $-1<\lambda<1$.

Remark. The above use of the monotone convergence theorem is somewhat subtle, in that the monotonicity is not on the original random variables, only for the λ 's with respect to the spectral measure.

Corollary 7. If P is reversible and ergodic, then $A=B=C$ (though they may all be infinite).

Using the result from [8], we have:

Corollary 8. If P is reversible and ergodic, and any one of A, B, and C is finite, then a CLT exists for h (with $\sigma^{2}=A=B=C$).

Using the result from [9], we have:
Corollary 9. If P is reversible and ergodic, and if $\lim _{n \rightarrow \infty} n \mathbf{E}\left[h^{2}\left(X_{0}\right) r\left(X_{0}\right)^{n}\right]=\infty$, then A, B, and C are all infinite.

3. Converse: CLT Necessity.

The result from [8] raises the question of the converse. Suppose $n^{-1} \sum_{i=1}^{n} h\left(X_{i}\right)$ converges weakly to $\operatorname{Normal}\left(0, \sigma^{2}\right)$ for some $\sigma^{2}<\infty$. Does it necessarily follow that any of A, B, and C are finite?

Even in the i.i.d. case (where $P(x, A)=\pi(A)$ for all $x \in \mathcal{X}$ and $A \in \mathcal{F}$), this appears to be a non-trivial question. However, Sections IX. 8 and XVII. 5 of Feller [4] appear to resolve the issue, as we now discuss. (For related comments see e.g. [2], [1].)

Theorem 1a on p. 313 of [4] says that a distribution belongs to the domain of attraction of the normal distribution if and only if its truncated variance is slowly varying. More precisely, letting $U(z)=\mathbf{E}\left[X_{1}^{2} I_{\left|X_{1}\right| \leq z}\right]$, the theorem says that in the i.i.d. case, there are sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with $a_{n}^{-1}\left(X_{1}+\ldots+X_{n}\right) \Rightarrow N(0,1)$ if and only if $\lim _{z \rightarrow \infty}[U(s z) / U(z)]=1$ for all $s>0$.

Now, if $\mathbf{E}\left(X_{1}^{2}\right)=\sigma^{2}<\infty$, then of course $U(z) \rightarrow \sigma^{2}$, so $U(s z) / U(z) \rightarrow \sigma^{2} / \sigma^{2}=1$, and the (classical) CLT applies.

On the other hand, there are many other distributions which have infinite variance, but for which U is slowly varying as above. Examples include the density function $x^{-3} \mathbf{1}_{|x| \geq 1}$, and the cumulative distribution function $1-(1+x)^{-2}$ for $x \geq 0$. The result in [4] says that in such cases we still have $a_{n}^{-1}\left(X_{1}+\ldots+X_{n}\right) \Rightarrow N(0,1)$, but the question is whether we could perhaps still have $a_{n}=c n^{1 / 2}$ even if the variance is infinite.

It appears the answer is no. Specifically, equation (8.12) on p. 314 of [4] (see also equation (5.23) on p. 579 of [4]) says that in such cases, we can always arrange that

$$
\lim _{n \rightarrow \infty} n a_{n}^{-2} U\left(a_{n}\right)=1
$$

If we did have $a_{n}=c n^{1 / 2}$, then this would imply that $\lim _{n \rightarrow \infty} c U\left(c n^{1 / 2}\right)=1$, i.e. that $\lim _{z \rightarrow \infty} U(z)<\infty$, i.e. that the variance is finite. (In examples like $x^{-3} \mathbf{1}_{|x| \geq 1}$ we would have something like $a_{n}=(n \log n)^{-1 / 2}$ instead.) So, this appears to prove:

Proposition 10. The converse to the result in [8] holds in the i.i.d. case. That is, if $\left\{X_{i}\right\}$ are i.i.d., and $n^{-1 / 2} \sum_{i=1}^{n} h\left(X_{i}\right)$ converges weakly to $\operatorname{Normal}\left(0, \sigma^{2}\right)$ for some $\sigma^{2}<\infty$, then A, B, and C are all finite, and $\sigma^{2}=A=B=C$.

Meanwhile, the non-i.i.d. case appears to still be open.

4. Possible Open Questions.

I would appreciate clarification about any of the following questions. Are they known? trivial? interesting? etc.

How much of the above carries over if P is not ergodic, and $\gamma_{k} \nrightarrow 0$? (See Remark 5.) Do we still always have $A^{\prime}=B^{\prime}$ (even though A^{\prime} and B^{\prime} may be undefined)? And, could it be that, say, A is defined even though B is not?

How much of the above carries over if $\pi\left(h^{2}\right)=\infty$? Does the spectral measure \mathcal{E}_{h} still make sense then? Are A and B both necessarily equal to $+\infty$ in this case?

And, most importantly: does Proposition 10 hold in the non-i.i.d. case, i.e. for general reversible Markov chains?

In a different direction, does any of the above carry over to the case where P is not reversible? (Even to the case where $P=P_{1} P_{2}$ where each P_{i} is reversible?)

Also, I think most of the results presented in Sections 2 and 3 above are already known in some form. But were they previous written down and proved somewhere? If so, where?

References

[1] S.K. Basu (1984), A local limit theorem for attraction to the standard normal law: The case of infinite variance. Metrika 31, 245-252. Available at http://www.springerlink.com/content/v616742404102u13/
[2] M. Breth, J. S. Maritz, and E. J. Williams (1978), On Distribution-Free Lower Confidence Limits for the Mean of a Nonnegative Random Variable. Biometrika 65, 529-534.
[3] K.S. Chan and C.J. Geyer (1994), Discussion paper. Ann. Stat. 22, 1747-1758.
[4] W. Feller (1971), An introduction to Probability Theory and its applications, Vol. II, $2^{\text {nd }}$ ed. Wiley \& Sons, New York.
[5] C.J. Geyer (1992), Practical Markov chain Monte Carlo. Stat. Sci., Vol. 7, No. 4, 473-483.
[6] J.P. Hobert, G.L. Jones, B. Presnell, and J.S. Rosenthal (2002), On the Applicability of Regenerative Simulation in Markov Chain Monte Carlo. Biometrika 89, 731-743.
[7] G.L. Jones (2004), On the Markov chain central limit theorem. Prob. Surveys 1, 299-320.
[8] C. Kipnis and S.R.S. Varadhan (1986), Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104, 1-19.
[9] G.O. Roberts (1999), A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms. J. Appl. Prob. 36, 1210-1217.
[10] G.O. Roberts and J.S. Rosenthal (2004), General state space Markov chains and MCMC algorithms. Prob. Surveys 1, 20-71.
[11] J.S. Rosenthal (2001), A review of asymptotic convergence for general state space Markov chains. Far East J. Theor. Stat. 5, 37-50.
[12] W. Rudin (1991), Functional Analysis, 2nd ed. McGraw-Hill, New York.
[13] L. Tierney (1994), Markov chains for exploring posterior distributions (with discussion). Ann. Stat. 22, 1701-1762.

