Notes About Markov Chain CLTs

[Rough notes by Jeffrey S. Rosenthal, February 2007, based on very helpful conversations with J.P. Hobert, N. Madras, G.O. Roberts, and T. Salisbury. For discussion and clarification only – not for publication. Comments appreciated.]

1. Introduction.

These notes concern various issues surrounding central limit theorems (CLTs) for Markov chains, important notably for MCMC algorithms. A number of other papers have discussed related matters ([8], [13], [5], [3], [6], [7]), and probably much of the discussion below is already known, but we wanted to write it up for our own clarification.

Let $\pi(\cdot)$ be a probability measure on a measurable space $(\mathcal{X}, \mathcal{F})$. Let P be a Markov chain operator reversible with respect to $\pi(\cdot)$. Write $\langle f, g \rangle = \int_{\mathcal{X}} f(x) g(x) \pi(dx)$; by reversibility, $\langle f, Pg \rangle = \langle Pf, g \rangle$.

Let $h: \mathcal{X} \to \mathbf{R}$ be measurable, with $\pi(h^2) < \infty$ and (say) $\pi(h) = 0$. Let $\{X_n\}_{n=0}^{\infty}$ follow the transitions P in stationarity, so $\mathcal{L}(X_n) = \pi(\cdot)$ and $\mathbf{P}[X_{n+1} \in A \mid X_n] = P(X_n, A)$ for all $A \in \mathcal{F}$, for $n = 0, 1, 2, \ldots$ Let $\gamma_k = \mathbf{E}[h(X_0) h(X_k)] = \langle h, P^k h \rangle$. Let $r(x) = \mathbf{P}[X_1 = x \mid X_0 = x]$ for $x \in \mathcal{X}$. Let \mathcal{E} be the spectral measure (e.g. [12]) associated with P, so that

$$f(P) = \int_{-1}^{1} f(\lambda) \mathcal{E}(d\lambda)$$

for "all" analytic functions $f : \mathbf{R} \to \mathbf{R}$, and also $\mathcal{E}(\mathbf{R}) = I$. Let \mathcal{E}_h be the induced measure for h, viz.

$$\mathcal{E}_h(S) = \langle h, \mathcal{E}(S)h \rangle, \qquad S \subseteq [-1, 1] \text{ Borel}$$

a positive Borel measure (cf. [5], p. 1753), which is finite if $\pi(h^2) < \infty$ since then $\mathcal{E}_h(\mathbf{R}) = \langle h, \mathcal{E}(\mathbf{R})h \rangle = \langle h, h \rangle = \pi(h^2) < \infty$.

We are interested in the question of whether/when a root-*n* CLT exists for *h*, meaning that $n^{-1/2} \sum_{i=1}^{n} h(X_i)$ converges weakly to Normal $(0, \sigma^2)$ for some $\sigma^2 < \infty$.

2. Representations of the Variance.

There are a number of possible formulae for σ^2 in the literature (e.g. [8], [5], [3]), including:

$$A = \lim_{n \to \infty} n^{-1} \mathbf{Var} \left(\sum_{i=1}^{n} h(X_i) \right) ;$$

$$B = 1 + 2\sum_{k=1}^{\infty} \gamma_k = 1 + 2\lim_{n \to \infty} \sum_{k=1}^n \gamma_k;$$
$$C = \int_{-1}^1 \frac{1+\lambda}{1-\lambda} \mathcal{E}_h(d\lambda).$$

It is proved in [8] that if $C < \infty$, then a CLT exists for h (with $\sigma^2 = C$). And, it is proved in [9] that if $\lim_{n\to\infty} n \mathbf{E}[h^2(X_0) r(X_0)^n] = \infty$, then $A = \infty$. So, it seems important to sort out the relationship between A, B, and C. It is various implied (e.g. [5]) that A, B, and C are usually all equivalent, and here we consider conditions which make that true.

We shall also have occasion to consider versions of A and B where the limit is taken over *odd* integers only:

$$A' = \lim_{j \to \infty} (2j+1)^{-1} \mathbf{Var} \left(\sum_{i=1}^{2j+1} h(X_i) \right) ;$$
$$B' = 1 + 2 \lim_{j \to \infty} \sum_{k=1}^{2j+1} \gamma_k .$$

Obviously, A' = A and B' = B provided the limits in A and B exist. But it may be possible that A' and/or B' are well-defined even if A and/or B are not.

We begin with a lemma (somewhat similar to Theorem 3.1 of [5]).

Lemma 1. If P is reversible, then $\gamma_{2i} \ge 0$, and $|\gamma_{2i+1}| \le \gamma_{2i}$, and $|\gamma_{2i+2}| \le \gamma_{2i}$.

Proof. By reversibility, $\gamma_{2i} = \langle f, P^{2i}f \rangle = \langle P^if, P^if \rangle = ||P^if||^2 \ge 0.$ Also, $|\gamma_{2i+1}| = \langle f, P^{2i+1}f \rangle = |\langle P^if, P(P^if) \rangle| \le ||P^if||^2 ||P|| \le ||P^if||^2 = \gamma_{2i}.$ Similarly, $|\gamma_{2i+2}| = \langle f, P^{2i+2}f \rangle = |\langle P^if, P^2(P^if) \rangle| \le ||P^if||^2 ||P^2|| \le ||P^if||^2 = \gamma_{2i}.$

To continue, recall that P is *ergodic* if $\lim_{n\to\infty} \sup_{A\in\mathcal{F}} |P^k(x,A) - \pi(A)| = 0$ for π -a.e. $x \in \mathcal{X}$. This follows (cf. [13], [11], [10]) if P is ϕ -irreducible and aperiodic.

Lemma 2. If P is reversible and ergodic, then $\lim_{k\to\infty} \gamma_k = 0$.

Proof. Since P is ergodic, its spectral measure \mathcal{E} does not have an atom at 1 or -1, i.e. $\mathcal{E}(\{-1,1\}) = 0$, so also $\mathcal{E}_h(\{-1,1\}) = 0$ (cf. [5], Lemma 5). Hence, by dominated convergence (since $|\lambda^k| \leq 1$, and $\int 1 \mathcal{E}_h(d\lambda) = \pi(h^2) < \infty$), we have:

$$\lim_{k \to \infty} \gamma_k = \lim_{k \to \infty} \langle h, P^k h \rangle = \lim_{k \to \infty} \int_{-1}^1 \lambda^k \, \mathcal{E}_h(d\lambda)$$
$$= \int_{-1}^1 \left(\lim_{k \to \infty} \lambda^k \right) \, \mathcal{E}_h(d\lambda) = \int_{-1}^1 0 \, \mathcal{E}_h(d\lambda) = 0 \,.$$

Proposition 3. If *P* is reversible and ergodic, then A' = B'. (We allow for the possibility that $A' = B' = \infty$.)

Proof. We compute directly (by expanding the square) that

$$n^{-1}\operatorname{Var}\left(\sum_{i=1}^{n}h(X_{i})\right) = \gamma_{0} + 2\sum_{k=1}^{n-1}\frac{n-k}{n}\gamma_{k}$$

Hence,

$$(2j+1)^{-1} \operatorname{Var}\left(\sum_{i=1}^{2j+1} h(X_i)\right) = \gamma_0 + 2\gamma_1 + 2\sum_{i=1}^j \left(\frac{2j+1-2i}{2j+1}\gamma_{2i} + \frac{2j+1-2i-1}{2j+1}\gamma_{2i+1}\right)$$
$$= \gamma_0 + 2\gamma_1 + 2\sum_{i=1}^j \frac{\gamma_{2i}}{2j+1} + 2\sum_{i=1}^j \frac{2j+1-2i-1}{2j+1}(\gamma_{2i}+\gamma_{2i+1}).$$

By Lemma 1, $\gamma_{2i} + \gamma_{2i+1} \ge 0$, so as $j \to \infty$, for fixed i,

$$\frac{2j+1-2i-1}{2j+1} \left(\gamma_{2i}+\gamma_{2i+1}\right) \nearrow \gamma_{2i}+\gamma_{2i+1},$$

i.e. the convergence is *monotonic*. Hence, by the monotone convergence theorem,

$$\lim_{j \to \infty} 2\sum_{i=1}^{j} \frac{2j+1-2i-1}{2j+1} \left(\gamma_{2i}+\gamma_{2i+1}\right) = 2\sum_{i=1}^{\infty} (\gamma_{2i}+\gamma_{2i+1}) = 2\sum_{k=2}^{\infty} \gamma_k.$$

By Lemma 2, $\gamma_{2i} \to 0$ as $i \to \infty$, so $\sum_{i=1}^{j} \frac{\gamma_{2i}}{2j+1} \to 0$ as $j \to \infty$. Putting this all together, we conclude that

$$\lim_{j \to \infty} (2j+1)^{-1} \operatorname{Var} \left(\sum_{i=1}^{2j+1} h(X_i) \right) = \gamma_0 + 2 \lim_{j \to \infty} \sum_{k=1}^{2j+1} \gamma_k \,,$$

i.e. A' = B', Q.E.D.

Corollary 4. If P is reversible and ergodic, then A = B. (We allow for the possibility that $A = B = \infty$.)

Proof. If P is ergodic, then by Lemma 2, $\gamma_k \to 0$, so B = B'. Also,

$$(n+1)^{-1}\mathbf{Var}\left(\sum_{i=1}^{n+1}h(X_i)\right) - n^{-1}\mathbf{Var}\left(\sum_{i=1}^nh(X_i)\right)$$
(1)

$$= n^{-1} \left[\mathbf{Var} \left(\sum_{i=1}^{n+1} h(X_i) \right) - \mathbf{Var} \left(\sum_{i=1}^{n} h(X_i) \right) \right] + [n(n+1)]^{-1} \mathbf{Var} \left(\sum_{i=1}^{n+1} h(X_i) \right)$$

Now, the first term above is equal to $n^{-1} \sum_{i=1}^{n} \gamma_i$ (which goes to 0 since $\gamma_k \to 0$), plus $n^{-1}\mathbf{E}[h^2(X_{i+1})]$ (which goes to 0 since $\pi(h^2) < \infty$). The second term is equal to

$$\frac{\gamma_0}{n(n+1)} + 2\sum_{k=1}^{n-1} \frac{n-k}{n^2(n+1)} \gamma_k$$

which also goes to 0. We conclude that the difference in (1) goes to 0 as $n \to \infty$, so that A = A'. Hence, by Proposition 3, A = A' = B' = B.

Remark 5. If $\gamma_{2i} \neq 0$, then since $\gamma_{2i+2} \leq \gamma_{2i}$ by Lemma 1, we must have $\sum_{i=1}^{\infty} \gamma_{2i} = \infty$. But is it possible that, say, $\gamma_{2i} = 1/i$ and $\gamma_{2i+1} = -1/i$ for all large *i*, so that *B'* is finite, but *A'* is infinite?

Proposition 6. If P is reversible and ergodic, then B = C. (We allow for the possibility that $B = C = \infty$.)

Proof. We compute (recalling that $\mathcal{E}_h(\{-1,1\}) = 0$) that:

$$B = \lim_{k \to \infty} \left(\langle h, h \rangle + 2 \langle h, Ph \rangle + 2 \langle h, P^2h \rangle + \ldots + 2 \langle h, P^kh \rangle \right)$$

$$B = \lim_{k \to \infty} \left\langle h, (I + 2P + 2P^2 + \ldots + 2P^k)f \right\rangle$$

$$= \lim_{k \to \infty} \int_{-1}^{1} (1 + 2\lambda + 2\lambda^2 + \ldots + 2\lambda^k) \mathcal{E}_h(d\lambda)$$

$$= \lim_{k \to \infty} \int_{-1}^{1} (2\frac{1 - \lambda^{k+1}}{1 - \lambda} - 1) \mathcal{E}_h(d\lambda)$$

$$= \lim_{k \to \infty} \int_{-1}^{1} (\frac{1 + \lambda - \lambda^{k+1}}{1 - \lambda}) \mathcal{E}_h(d\lambda)$$

$$= \int_{-1}^{1} (\frac{1 + \lambda}{1 - \lambda}) \mathcal{E}_h(d\lambda) = C,$$

where the penultimate equality is justified by the monotone convergence theorem, since

$$\left\{\frac{1+\lambda-\lambda^{k+1}}{1-\lambda}\right\} \nearrow \frac{1+\lambda}{1-\lambda}, \qquad k \to \infty$$

whenever $-1 < \lambda < 1$.

Remark. The above use of the monotone convergence theorem is somewhat subtle, in that the monotonicity is *not* on the original random variables, only for the λ 's with respect to the spectral measure.

Corollary 7. If P is reversible and ergodic, then A = B = C (though they may all be infinite).

Using the result from [8], we have:

Corollary 8. If P is reversible and ergodic, and any one of A, B, and C is finite, then a CLT exists for h (with $\sigma^2 = A = B = C$).

Using the result from [9], we have:

Corollary 9. If *P* is reversible and ergodic, and if $\lim_{n\to\infty} n \mathbf{E}[h^2(X_0) r(X_0)^n] = \infty$, then *A*, *B*, and *C* are all infinite.

3. Converse: CLT Necessity.

The result from [8] raises the question of the *converse*. Suppose $n^{-1} \sum_{i=1}^{n} h(X_i)$ converges weakly to Normal $(0, \sigma^2)$ for some $\sigma^2 < \infty$. Does it necessarily follow that any of A, B, and C are finite?

Even in the i.i.d. case (where $P(x, A) = \pi(A)$ for all $x \in \mathcal{X}$ and $A \in \mathcal{F}$), this appears to be a non-trivial question. However, Sections IX.8 and XVII.5 of Feller [4] appear to resolve the issue, as we now discuss. (For related comments see e.g. [2], [1].)

Theorem 1a on p. 313 of [4] says that a distribution belongs to the domain of attraction of the normal distribution if and only if its truncated variance is slowly varying. More precisely, letting $U(z) = \mathbf{E}[X_1^2 I_{|X_1| \leq z}]$, the theorem says that in the i.i.d. case, there are sequences $\{a_n\}$ and $\{b_n\}$ with $a_n^{-1}(X_1 + \ldots + X_n) \Rightarrow N(0, 1)$ if and only if $\lim_{z\to\infty} [U(sz)/U(z)] = 1$ for all s > 0.

Now, if $\mathbf{E}(X_1^2) = \sigma^2 < \infty$, then of course $U(z) \to \sigma^2$, so $U(sz)/U(z) \to \sigma^2/\sigma^2 = 1$, and the (classical) CLT applies.

On the other hand, there are many other distributions which have infinite variance, but for which U is slowly varying as above. Examples include the density function $x^{-3}\mathbf{1}_{|x|\geq 1}$, and the cumulative distribution function $1 - (1+x)^{-2}$ for $x \geq 0$. The result in [4] says that in such cases we still have $a_n^{-1}(X_1 + \ldots + X_n) \Rightarrow N(0, 1)$, but the question is whether we could perhaps still have $a_n = c n^{1/2}$ even if the variance is infinite. It appears the answer is no. Specifically, equation (8.12) on p. 314 of [4] (see also equation (5.23) on p. 579 of [4]) says that in such cases, we can always arrange that

$$\lim_{n \to \infty} n \, a_n^{-2} \, U(a_n) = 1 \, .$$

If we did have $a_n = c n^{1/2}$, then this would imply that $\lim_{n\to\infty} cU(cn^{1/2}) = 1$, i.e. that $\lim_{z\to\infty} U(z) < \infty$, i.e. that the variance is finite. (In examples like $x^{-3}\mathbf{1}_{|x|\geq 1}$ we would have something like $a_n = (n \log n)^{-1/2}$ instead.) So, this appears to prove:

Proposition 10. The converse to the result in [8] holds in the i.i.d. case. That is, if $\{X_i\}$ are i.i.d., and $n^{-1/2} \sum_{i=1}^n h(X_i)$ converges weakly to Normal $(0, \sigma^2)$ for some $\sigma^2 < \infty$, then A, B, and C are all finite, and $\sigma^2 = A = B = C$.

Meanwhile, the non-i.i.d. case appears to still be open.

4. Possible Open Questions.

I would appreciate clarification about any of the following questions. Are they known? trivial? interesting? etc.

How much of the above carries over if P is not ergodic, and $\gamma_k \neq 0$? (See Remark 5.) Do we still always have A' = B' (even though A' and B' may be undefined)? And, could it be that, say, A is defined even though B is not?

How much of the above carries over if $\pi(h^2) = \infty$? Does the spectral measure \mathcal{E}_h still make sense then? Are A and B both necessarily equal to $+\infty$ in this case?

And, most importantly: does Proposition 10 hold in the non-i.i.d. case, i.e. for general reversible Markov chains?

In a different direction, does any of the above carry over to the case where P is not reversible? (Even to the case where $P = P_1P_2$ where each P_i is reversible?)

Also, I think most of the results presented in Sections 2 and 3 above are already known in some form. But were they previous written down and proved somewhere? If so, where?

References

 S.K. Basu (1984), A local limit theorem for attraction to the standard normal law: The case of infinite variance. Metrika **31**, 245–252. Available at http://www.springerlink.com/content/v616742404102u13/

- [2] M. Breth, J. S. Maritz, and E. J. Williams (1978), On Distribution-Free Lower Confidence Limits for the Mean of a Nonnegative Random Variable. Biometrika 65, 529–534.
- [3] K.S. Chan and C.J. Geyer (1994), Discussion paper. Ann. Stat. 22, 1747–1758.
- [4] W. Feller (1971), An introduction to Probability Theory and its applications, Vol. II, 2nd ed. Wiley & Sons, New York.
- [5] C.J. Geyer (1992), Practical Markov chain Monte Carlo. Stat. Sci., Vol. 7, No. 4, 473-483.
- [6] J.P. Hobert, G.L. Jones, B. Presnell, and J.S. Rosenthal (2002), On the Applicability of Regenerative Simulation in Markov Chain Monte Carlo. *Biometrika* 89, 731–743.
- [7] G.L. Jones (2004), On the Markov chain central limit theorem. Prob. Surveys 1, 299–320.
- [8] C. Kipnis and S.R.S. Varadhan (1986), Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104, 1-19.
- [9] G.O. Roberts (1999), A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms. J. Appl. Prob. 36, 1210–1217.
- [10] G.O. Roberts and J.S. Rosenthal (2004), General state space Markov chains and MCMC algorithms. Prob. Surveys 1, 20–71.
- [11] J.S. Rosenthal (2001), A review of asymptotic convergence for general state space Markov chains. Far East J. Theor. Stat. 5, 37–50.
- [12] W. Rudin (1991), Functional Analysis, 2nd ed. McGraw-Hill, New York.
- [13] L. Tierney (1994), Markov chains for exploring posterior distributions (with discussion). Ann. Stat. 22, 1701–1762.