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Abstract. We explore a method of obtaining combinatorial identities
by analysing partially-completed runs of the Coupling from the Past
(CFTP) algorithm. In particular, using CFTP for simple symmetric
random walk (ssrw) with holding boundaries, we derive an identity in-
volving linear combinations of Cab(s) for different a and b, where Cab(s)
is the probability that unconstrained ssrw run from 0 for time n has
maximum value a, and minimum value b, and ends up at s at time n.

1. Introduction.

This paper shall prove the following combinatorial identity:

Theorem 1. For any fixed integers N , n, and i with 0 < n ≤ N and 0 ≤ i ≤ N , we have

1
N + 1

=
N∑

k=0

N∑
`=0

N−∑̀
m=0

[
`

N + 1
1j=i +

m

N + 1
1k=i +

1
N + 1

1k≤i≤j

]
C`,−m(k −m) , (1)

where j ≡ j(k, `, m) ≡ k + N −min(N, ` + m), and where Cab(s) is the probability that

unconstrained ssrw run from 0 for time n has maximum value a, and minimum value b,

and ends up at s at time n.

The identity (1) can probably be proved directly, though it appears to be non-trivial

to do so. Furthermore, we acknowledge that applications of this identity may be limited.

However, more important than the actual form of the identity is the manner in which it is

derived. Indeed, (1) emerges as a consequence of the correctness of the Coupling from the
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Past (CFTP) algorithm for a very simple Markov chain – the case of constrained simple

symmetric random walk on {0, 1, . . . , N}.

Since CFTP can be applied to essentially any ergodic Markov chain, it appears that

similar (though more complicated) methods could be used to derive other combinatorial

identities, using other Markov chains in other settings (e.g. for the Ising model, as in Propp

and Wilson, 1996).

We explain the CFTP algorithm in Section 2. In Section 3, we explain how CFTP

gives rise to combinatorial identities. We derive the identity (1) in Sections 4 and 5.

Further remarks about the quantities Cab(j), and how to compute them, are presented in

Section 6.

2. Coupling from the Past (CFTP).

Markov chain Monte Carlo (MCMC) algorithms are an extremely popular tool in

statistics to approximately sample from a probability distribution π(·), by designing a

Markov chain P (x, ·) such that π is stationary for P (see e.g. Smith and Roberts, 1993;

Tierney, 1994; Gilks, Richardson, and Spiegelhalter, 1996).

More recently, Propp and Wilson (1996) have developed an algorithm called Coupling

from the Past (CFTP), which makes use of the Markov chain P in a novel way to sample

from π exactly. This has led to an explosion of research in this area; see e.g. Thönnes

(2000) and the multitude of papers described in Wilson (1998).

To define CFTP, let us assume that we have an ergodic Markov chain {Xn}n∈Z with

transition kernel P (x, ·) on a state space X , and a probability measure π on X , such that

π is stationary for P (i.e. (πP )(dy) ≡
∫
X π(dx) P (x, dy) = π(dy)). Let us further assume

that we have defined the Markov chain as a stochastic recursive sequence, so there is a

function φ : X ×R → X and an i.i.d. sequence of random variables {Un}n∈Z, such that

we always have Xn+1 = φ(Xn, Un). (It is not strictly necessary to use stochastic recursive

sequences to define CFTP, see e.g. Murdoch and Rosenthal, 2000. On the other hand, it is

easiest, and most common, to define CFTP in this way. Furthermore, the use of stochastic

recursive sequences involves essentially no loss of generality, cf. Borovkov and Foss, 1992.)

CFTP involves considering negative times n, rather than positive times. Specifically,
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let

φ(n)(x;u−n, . . . , u−1) = φ(φ(φ(. . . φ(x, u−n), u−n+1), u−n+2), . . .), u−1) . (2)

Then CFTP proceeds by considering various increasing choices of T > 0, in the search for

a value T > 0 such that

φ(T )(x;U−T , . . . , U−1) does not depend on x ∈ X , (3)

i.e. such that the chain has coalesced in the time interval from time −T to time 0.

Once such a T has been found, the resulting value

W ≡ φ(T )(x;U−T , . . . , U−1)

(which does not depend on x) is the output of the algorithm. Note in particular that,

because of the backward composition implicit in (2), W = φ(n)(y;U−n, . . . , U−1) for any

n ≥ T and any y ∈ X . In particular, letting n →∞, it follows by ergodicity that W ∼ π(·).

(See Propp and Wilson, 1996, for a formal proof of this.)

Note that the values {Un} should be thought of as being fixed in advance, even though

of course they are only computed as needed. In particular, crucially, all previously-used

values of {Un} must be used again, unchanged, as T is increased.

In the special case in which φ is monotone, meaning that there is an ordering �

on X such that φ(x, u) � φ(y, u) whenever x � y (which implies that P is stochastically

monotone), and there are maximal and minimal elements xmax, xmin ∈ X , then to check (3)

it suffices to check that

φ(T )(xmin;U−T , . . . , U−1) = φ(T )(xmax;U−T , . . . , U−1) . (4)
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3. Identities arising from CFTP.

As mentioned above, CFTP does a search for a value of T satisfying (3), by checking

increasing values of T (often simply doubling the value of T each time) until (3) is satisfied.

Suppose in particular that some fixed value of T has been tried, so that the values

U−T , . . . , U−1 have been generated, and the paths {φ(n)(x, ;U−n, . . . , U−1)}1≤n≤T have

been computed (and perhaps even displayed), though coalescence may have occured by

then. Conditional on the values U−T , . . . , U−1, the output value W will have some condi-

tional distribution. Since overall W ∼ π(·), we must have from the Law of Total Probability

that∫
. . .

∫
P(U−1 ∈ du−1, . . . , U−T ∈ du−T ) P(W ∈ A |U−1 = u−1, . . . , U−T = u−T ) = π(A) .

Now, P(W ∈ A |U−1 = u−1, . . . , U−T = u−T ) could be computed as

P(W ∈ A |U−1 = u−1, . . . , U−T = u−T ) = P(φ(T )(X−T ;U−1, . . . , U−T ) ∈ A) , (5)

except that X−T is unknown. On the other hand, given the values of {Un}, suppose we

choose S > T large enough that φ(S−T )(x;U−S , . . . , U−S+T−1) does not depend on x ∈ X ,

i.e. that coalescence occurs during the time interval from time −S to time −S + T . Let

Z = φ(S−T )(x;U−S , . . . , U−S+T−1) (which does not depend on x). Then, by the validity

of CFTP, we see that Z ∼ π(·). Also, by construction,

φ(S)(x; u−S , . . . , u−1) = φ(T )(φ(S−T )(x; u−S , . . . , u−T−1); u−T , . . . , u−1)

= φ(T )(Z; u−T , . . . , u−1) .

This suggests that in (5), we can assume that X−T = Z ∼ π(·). The following result

confirms this.

Theorem 2. Consider any CFTP algorithm as described above. Then for any T ∈ N,∫
. . .

∫
P(U−1 ∈ du−1, . . . , U−T ∈ du−T ) π{x ∈ X ; φ(T )(x;u−1, . . . , u−T ) ∈ A} = π(A) .

(6)
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Proof. This follows immediately from the stationarity of π, since all says is that if we

start a Markov chain in stationarity at time −T , then it will still be in stationarity at

time 0.

Remark. The proof of Theorem 2 shows that the result does not really depend on CFTP

at all, just on the stationarity of π(·) for the Markov chain. However, it was CFTP that

led us to consider these identities, and provides the proper context for them.

In principle, (6) gives a separate identity for every single Markov chain. The difficulty

lies in interpreting (6) in a way that is meaningful and insightful. To do this, it is necessary

to consider particular Markov chains.

4. The case of ssrw on {0, . . . , N}.

Consider simple symmetric random walk (ssrw) on X = {0, . . . , N}, with holding

boundaries. That is, let {Un}n∈Z be i.i.d., with P(Un = +1) = P(Un = −1) = 1
2 , and

define a Markov chain by

Xn+1 = max
[
0, min[N, Xn + Un]

]
. (7)

As a stochastic recursive sequence, we can write this as Xn+1 = φ(Xn, Un), where

φ(x, u) = max
[
0, min[N, x + u]

]
.

This Markov chain has as its stationarity distribution the uniform distribution on X ,

so that π(x) = 1/(N + 1) for x ∈ X . (Indeed, the chain is reversible with respect to π(·),

and in fact it may be regarded as a Metropolis algorithm for π(·) with proposal given by

unconstrained ssrw.) Hence, we can run CFTP for this Markov chain, to output a value

W ∼ π(·). See Rosenthal (1998) for an interactive display of CFTP for this Markov chain,

which illustrates the status of the algorithm after a particular choice of T has been tried

but coalescence has not been achieved.

Note that this chain is indeed monotone, with maximal and minimal values xmax = N

and xmin = 0. Hence, to check for coalescence we need only check (4). Thus, we consider

just the “bottom process” starting at 0, and the “top process” starting at N .
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We wish to specialise the general identity (6) to this particular case. To do so, we

proceed as follows.

We first define a “hold” for the top or bottom process to be a time such that the chain

remains in the same state. That is, for fixed N , we let

Htop
n = #

{
m; 1 ≤ m ≤ n; φ(n−m)(N ;U−n, . . . , U−n+m) = φ(n−m+1)(N ;U−n, . . . , U−n+m−1)

}
,

and

Hbot
n = #

{
m; 1 ≤ m ≤ n; φ(n−m)(0;U−n, . . . , U−n+m) = φ(n−m+1)(0;U−n, . . . , U−n+m−1)

}
.

Let RN,n,`,m,k be the probability that the Markov chain given by (7), when run for a

time n, has all of the following properties: (a) the bottom process ends up at k ∈ X ; (b)

the top process has ` holds; and (c) the bottom process has m holds. It necessarily follows

from this that (d) the top process ends up at j = j(k, `, m) = k + N −min(N, ` + m).

In symbols, if we fix N throughout, then we can write this as

RN,n,`,m,k = P(φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) .

We have the following.

Lemma 3. Consider a partial run of CFTP for ssrw, from time −n to time 0, as above.

Let j ≡ j(k, `, m) ≡ k + N −min(N, ` + m). Then if ` + m < N (so that j < k), then

P (W = k |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) =
` + 1
N + 1

,

P (W = j |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) =
m + 1
N + 1

,

and for j < i < k,

P (W = i |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) =
1

N + 1
.

If instead ` + m = N , so that j = k, then

P (W = k |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) = 1 .
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Proof. As in the proof of Theorem 2, we may assume (either by extending the CFTP

construction back far enough, or by simply using stationarity of π) that the run {Xt} is

already in stationarity at time −n.

Now, from time −n to 0, assuming the processes have not yet coalesced, then every

time the top process holds, the process {Xt} moves one unit closer to the top process.

Similarly, every time the bottom process holds, the process {Xt} moves one unit closer to

the bottom process. It follows that X0 = j if and only if X−n ≥ N − `, and X0 = k if

and only if X−n ≤ m. Otherwise, the values of X−n strictly between m and N − ` are in

a one-one correspondence with the values of X0 strictly between k and j.

Hence, if ` + m < N so that j < k, then

P (W = k |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) = P (X−n ≤ m) ,

and

P (W = j |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) = P (X−n ≥ N − `) ,

while for j < i < k,

P (W = i |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) = P (X−n = m− k + i) .

Since X−n ∼ π(·), the result for the case j < k follows.

On the other hand, if ` + m = N so that j = k, then

P (W = k |φ(n)(0, U−n, . . . , U−1) = k, Htop
n = `, Hbot

n = m) = P (X−n ∈ X ) = 1 ,

thus establishing the result in the case ` + m = N as well.

Using this lemma and the definition of RN,n,`,m,k, we see that Theorem 2 can now be

written as follows. (For the case `+m = N , we use the observation that if i = j = k, then
`

N+1 1j=i + m
N+1 1k=i + 1

N+1 1k≤i≤j = 1.)
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Proposition 4. For fixed integers N , n, and i, with 0 < n ≤ N and 0 ≤ i ≤ N , letting

j = j(k, `, m) = k + N −min(N, ` + m), we have the identity

1
N + 1

=
N∑

k=0

∑
`,m≥0

m+`≤n

[
`

N + 1
1j=i +

m

N + 1
1k=i +

1
N + 1

1k≤i≤j

]
RN,n,`,m,k .

5. Interpreting the quantities RN,n,`,m,k.

To clarify the result of Proposition 4, we wish to better interpret the quantities

RN,n,`,m,k. Fix N,n ∈ N throughout. We first note the following.

Proposition 5. If ` + m ≤ N , then RN,n,`,m,k is equal to the probability that uncon-

strained ssrw starting at 0 and run for time n, has maximum value `, minimum value −m,

and ends up at k −m. In symbols,

RN,n,`,m,k = C`,−m(k −m) ,

where

Cab(s) = P
[

max
0≤t≤n

Zt = a, min
0≤t≤n

Zt = b, Zn = s

]
,

where {Zt} is unconstrained ssrw started at 0 and run for time n.

Proof. Consider running CFTP as described above, using random variables U−n, . . . , U−1.

Let Z0 = 0, and Zt = U−n + . . . + U−n+t−1 for 0 < t ≤ n. Then {Zt} is indeed equal to

an unconstrained ssrw started at 0 and run for time n. However, it has now been coupled

with the CFTP algorithm under consideration, and we shall make use of this fact.

Now, suppose that for the CFTP algorithm, the event whose probability is RN,n,`,m,k

has indeed occurred. That is, suppose that the bottom process of CFTP ends up at k, the

top process has ` holds, and the bottom process has m holds. We wish to see what effect

these suppositions have on the unconstrained process {Zt}.

Let −s be the time just after the last hold of the bottom process of the CFTP algo-

rithm. Then the corresponding value of the {Zt} process, namely Zn−s, must be equal to

−m. Furthermore, we will then have Zt ≥ −m for all t ≥ n − s. It follows that we will

have min0≤t≤n Zt = −m. Similarly, we will have max0≤t≤n Zt = −m.
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Finally, the value of Zn must be equal to the value of the bottom process in the

CFTP algorithm, minus the number of times the bottom process held at 0 (so that it

didn’t decrease, even though {Zt} did). Hence, we must have Zn = k −m.

Conversely, it is easily checked that if min0≤t≤n Zt = −m, and max0≤t≤n Zt = −m,

and Zn = k −m, then it must be that the bottom process of CFTP ends up at k, the top

process has ` holds, and the bottom process has m holds.

We conclude that

RN,n,`,m,k = P( min
0≤t≤n

Zt = −m , max
0≤t≤n

Zt = −m , Zn = k −m) .

This gives the result.

Combining Proposition 5 with Proposition 4, we immediately obtain Theorem 1.

Remark. If ` + m > N , then it is possible that the bottom process will actually reach

the top value of N , and then hold at the top value. This implies that the final value of

the corresponding unconstrained ssrw will no longer be just a function of k, `, m, which

causes additional complications. It is possible to overcome these complications, however

to do so is somewhat messy and not particularly useful. Hence, in the above proposition,

we restrict to the case ` + m ≤ N . In Theorem 1, we restrict to the case n ≤ N , precisely

so that these additional complications do not arise.

6. Computing the quantities Cab(s).

In order to verify the result of Theorem 1 numerically (say), it is necessary to know

how to compute the quantities Cab(s). The reflection principle for ssrw is of some help

here. However, since the events corresponding to Cab(s) specify both a maximum value

and a minimum value, it seems that the best we can do is compute Cab(s) in terms of a

sum of O(n) terms. We present that here.

To begin, let

Qn(x) =

 2−n

(
n

n+x
2

)
, − n ≤ x ≤ n, x + n even

0 , otherwise
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be the probability that unconstrained ssrw on the set of all integers, starting from 0, is at

the point x at time n.

Now, for any integers x1, x2, . . . , xr, j, let Ax1x2...xr
(j) be the probability that uncon-

strained ssrw, starting from 0 and run for time n, hits in turn the values x1, x2, . . . , xr,

and then ends up at j at time n. Also, say a sequence x1, x2, . . . , xr is sign alternating if

(xq − xq−1)(xq+1 − xq) ≤ 0 for 2 ≤ q ≤ r − 1.

Lemma 6. If the sequence x1, x2, . . . , xr, j is sign-alternating, then

Ax1x2...xr
(j) = Qn (|x1|+ |x2 − x1|+ . . . + |xr − xr−1|+ |j − xr|) .

Proof. Just use the reflection principle for ssrw, r times (cf. pp. 72, 96 of Feller, 1968).

Now let Bab(j) be the probability that unconstrained ssrw hits run from time 0 to n,

hits both a and b, and furthermore ends up at j at time n.

Lemma 7. We always have B00(j) = 0. Otherwise, for (a, b) 6= (0, 0) and ab ≤ 0,

Bab(j) = [Aab(j)−Aaba(j) + Aabab(j)−Aababa(j) + . . .]

+ [Aba(j)−Abab(j) + Ababa(j)−Ababab(j) + . . .] .

(Since Ax1x2...xr
(j) = 0 whenever |x1|+ |x2 − x1|+ . . . + |xr − xr−1| > n, the above sums

each terminate after at most n/|b− a| terms.)

Proof. By the inclusion-exclusion principle, the probability that we first hit b, and then

hit a, finally ending up at j, is equal to

Aab(j)−Abab(j) + Aabab(j)−Ababab(j) + . . . .

Similarly, the probability that we first hit a, and then hit b, finally ending up at j, is equal

to the same sum but with a and b reversed. Adding these two sums, we obtain the formula

for Bab(j) as claimed.
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Remark. Note that we cannot compute Bab(j) in simple closed form, as

[Aab(j)−Abab(j)] + [Aba(j)−Aaba(j)] .

The problem with this is that paths of the form abab would end up getting added and

subtracted equally often, and therefore counted a total of zero times, rather than one time

as desired.

Now recall that Cab(j) is the probability that unconstrained ssrw has maximum value

a, and minimum value b, and ends up at j at time n.

Lemma 8. For a ≥ 0 ≥ b,

Cab(j) = Bab(j)−Ba+1,b(j)−Ba,b−1(j) + Ba+1,b−1(j) .

Proof. Bab(j) is the probability that the max is at least a and the min is at most b

(and we end up at j). The formula then follows from the basic probability result that

P(A1 ∩ AC
2 ∩ AC

3 ) = P(A1) − P(A1 ∩ A2) − P(A1 ∩ A3) + P(A1 ∩ A2 ∩ A3), where

A1 = {max ≥ a , min ≤ b}, A2 = {max ≥ a + 1}, A3 = {min ≤ b− 1}.

The above three lemmas together provide a fully computable formula for RN,n,`,m,j ,

whenever ` + m ≤ N . This allows us to numerically verify the identity (1), for any appro-

priate choices of N , n, and i. Such verification has been done in the C program combin.c,

freely available at http://markov.utstat.toronto.edu/jeff/comp/combin.c

The three lemmas also allow the possibility of analytically expanding the identity of

Theorem 1 further, in an effort to simplify or better understand it. However, it is not clear

that such an expanded version provides any helpful new insights, so we do not pursue it

here.
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