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Summary. This short note argues that 95% confidence intervals for MCMC estimates can

be obtained even without establishing a CLT, by multiplying their widths by 2.3.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are very widely used to estimate of

expected values in a variety of settings, especially for Bayesian inference (see e.g. Brooks et

al., 2011, and the many references therein).

It has been pointed out by various authors (e.g. Jones and Hobert, 2001; Flegal et al.,

2008) that in addition to providing an estimate, it is also important to quantify the error in

the estimate, hopefully by providing confidence intervals for the value being estimated.

Such error estimation and confidence intervals are usually obtained via Markov chain

Central Limit Theorems (CLTs), see e.g. Tierney (1994, Theorem 4), Chan and Geyer (1994),

Jones (2004), Roberts and Rosenthal (2004), and Jones et al. (2006). Indeed, CLTs are often

considered essential for this purpose, e.g. Jones (2007, p. 131) writes “The CLT is the basis

of all error estimation in Monte Carlo”. However, establishing CLTs for MCMC requires

the verification of challenging properties like geometric ergodicity, which is often difficult in

applied problems. This makes confidence intervals harder to obtain in MCMC applications.

In this short note, we show (Theorem 1) that for typical MCMC applications, as long as

the asymptotic variance can be estimated, a confidence interval (or at least an upper-bound

on a confidence interval) can be obtained quite simply, via Chebychev’s inequality, without

requiring any sort of CLT or distributional convergence at all.

2 Assumptions

Let {Xn} be a Markov chain on a state space X which converges to a target distribution π.

Let h : X → R be some functional, and assume we wish to estimate the stationary expected

value of h, i.e. π(h) :=
∫
h(x) π(dx), by the usual MCMC estimate, en = 1

n

∑n
i=1 h(Xi).
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In typical MCMC applications, the estimate en will have variance O(1/n) and bias O(1/n)

(see e.g. page 21 of Geyer, 2011). Consistent with this, we assume:

(A1) (Order 1/n variance.) The limit V := limn→∞ nVar(en) exists and is in (0,∞).

(A2) (Smaller-order bias.) limn→∞ n
1/2|E(en)− π(h)| = 0.

We also require an estimator of the asymptotic variance value V . Such estimators are

quite common, and can be obtained in many different ways, including repeated runs, in-

tegrated autocorrelation times, batch means, window estimators, regenerations, and more;

see e.g. Section 3 of Geyer (1992), Hobert et al. (2002), Jones et al. (2006), Häggström and

Rosenthal (2007), etc. We thus assume:

(A3) (Variance estimator.) There is an estimator σ̂2
n with limn→∞ σ̂

2
n = V in probability.

3 Main Result

Under the above mild assumptions, our result is as follows:

Theorem 1. Assume (A1)–(A3) above, fix 0 < α < 1 and ε > 0, and define the interval

In,ε :=
(
en − n−1/2σ̂nα−1/2(1 + ε), en + n−1/2σ̂nα

−1/2(1 + ε)
)
.

Then

lim inf
n→∞

P
(
π(h) ∈ In,ε

)
≥ 1− α ,

i.e. the interval In,ε includes the true expected value π(h) with asymptotic probability at

least 1− α, i.e. In,ε has asymptotic coverage probability at least 1− α.

Theorem 1 may be interpreted as saying that the interval In,ε contains an asymptotic

(1−α)-confidence interval for π(h), i.e. it is an overly-conservative confidence interval. Since

the main purpose of MCMC confidence intervals is to provide approximate guarantees for

estimates, this conservativeness is not a major limitation.

Most commonly, the significance level α = 0.05. In that case, the usual CLT-derived 95%

asymptotic confidence interval for π(h) would be given by [en−1.96 σ̂n/
√
n, en+1.96 σ̂n/

√
n].

By contrast, taking α = 0.05 and ε = 0.001, our interval is computed to be In,ε = [en −
4.48 σ̂n/

√
n, en+4.48 σ̂n/

√
n]. So, Theorem 1 can be interpreted as saying that even without

establishing a Markov chain CLT, the usual MCMC asymptotic 95% confidence interval still

applies, except with “1.96” replaced by “4.48”, i.e. multiplying by just under 2.3 (and with
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the asymptotic coverage probability being ≥ 95% instead of exactly 95%, i.e. being overly

conservative). Given the difficulty of establishing CLTs for MCMC algorithms, it seems

easier to instead simply multiply the confidence interval width by 2.3.

4 Proof of Theorem 1

For any an > 0, we have by the triangle inequality that

P
(
|en − π(h)| ≥ an

)
= P

(∣∣∣(en − E(en)
)

+
(
E(en)− π(h)

)∣∣∣ ≥ an

)
≤ P

(
|en − E(en)|+ |E(en)− π(h)| ≥ an

)
= P

(
|en − E(en)| ≥ an − |E(en)− π(h)|

)
.

Hence, if

an − |E(en)− π(h)| > 0 , (∗)

then by Chebychev’s inequality (e.g. Rosenthal, 2006, Proposition 5.1.2),

P
(
|en − π(h)| ≥ an

)
≤ Var(en)

/(
an − |E(en)− π(h)|

)2
.

We now set an =
√
V/nα. Then by (A2), limn→∞ |E(en)− π(h)| / an = 0. Hence, (∗) is

satisfied for all sufficiently large n, and as n→∞, we have from the above and (A1) that

lim sup
n→∞

P(|en − π(h)| ≥ an) ≤ lim sup
n→∞

(V/n a2n) = lim sup
n→∞

(V/n (V/nα)) = α .

It remains to replace the true variance coefficient V by its estimator σ̂2
n. For this, let

ε > 0. Then by (A3), lim supn→∞P(σ̂2
n(1 + ε)2 ≤ V ) = 0. Therefore,

lim sup
n→∞

P
(
|en − π(h)| ≥ n−1/2σ̂nα

−1/2(1 + ε)
)

= lim sup
n→∞

P
(
|en − π(h)| ≥

√
σ̂2
n(1 + ε)2/nα

)
≤ lim sup

n→∞

[
P
(
|en − π(h)| ≥

√
V/nα or σ̂2

n(1 + ε)2 ≤ V
) ]

≤ lim sup
n→∞

[
P
(
|en − π(h)| ≥

√
V/nα

)
+ P

(
σ̂2
n(1 + ε)2 ≤ V

)]
≤ α + 0 = α .

Taking complements, we obtain that

lim inf
n→∞

P
(
|en − π(h)| < n−1/2σ̂nα

−1/2(1 + ε)
)
≥ 1− α .

Finally, note that |en − π(h)| < n−1/2σ̂nα
−1/2(1 + ε) if and only if π(h) ∈ In,ε. Hence, this

completes the proof of Theorem 1.
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Remark. The recent paper Atchadé (2016) also obtains confidence intervals for MCMC

without requiring CLTs. However, its results apply only to reversible chains, and require

knowledge of the spectrum of a complicated kernel φ, and proceed by establishing conver-

gence in distribution to a complicated generalised T-distribution which appears to be difficult

and challenging to work with, so they cannot be described as “simple”.
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