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We use nonstandard analysis to significantly generalize the well-known Markov chain ergodic theo-

rem and establish a fundamentally new complete class theorem, making progress on two core problems

in stochastic process theory and statistical decision theory, respectively.

In the first part, we study the ergodicity of time-homogenous Markov processes. A time-homogeneous

Markov process with stationary distribution π is said to be ergodic if its transition probability converges

to π in total variation distance. In the most general setting of continuous-time Markov processes with

general state spaces, there are few results characterizing the ergodicity of the underlying Markov pro-

cesses. Using the method of nonstandard analysis, for every standard Markov process {Xt}t≥0, we

construct a nonstandard Markov process {X ′t }t∈T that inherits most of the key properties of {Xt}t≥0

hence establishing the ergodicity without technical conditions, such as on drift or skeleton chains.

In the second part, we study the relationship between frequentist and Bayesian optimality, extending

the line of work initiated by Wald in the 1940’s. Existing results are subject to technical conditions that

rule out semi-parametric decision problems and generally rule out non-parametric ones. Using nonstan-

dard analysis, we show that, among decision procedures with finite risk functions, a decision procedure

is extended admissible if and only if its extension has infinitesimal excess Bayes risk. The result holds in

complete generality, i.e, without regularity conditions or restrictions on the model or the loss function.

This nonstandard characterization of extended admissibility also generates a purely standard theorem:

when risk functions are continuous on a compact Hausdorff parameter space, a procedure is extended

admissible if and only if it is Bayes.
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Chapter 1

Introduction

During the period of 1957–1965, Abraham Robinson introduced nonstandard analysis, a formal frame-

work built on mathematical logic in which one can rigorously define infinitesimal and infinite number-

s. Nonstandard analysis has advanced rapidly since its introduction by Robinson, with much of this

progress driven by applications to new areas of mathematics, especially probability theory. However,

due to the use of mathematical logic, the proportion of mathematicians who use nonstandard analy-

sis effectively in research is, and always has been, infinitesimal. As a result, the potential impact of

nonstandard analysis has not been fully realized. In this dissertation, we will illustrate the power of

nonstandard analysis by significantly generalizing the well-known Markov chain ergodic theorem and

establishing a fundamentally new complete class theorem, making progress on two core problems in

stochastic process theory and statistical decision theory, respectively.

Nonstandard models are constructed to satisfy the following three principles:

1. extension, associating every standard mathematical object with a nonstandard mathematical object

called its extension;

2. transfer, allowing us to use first-order logic to make connections between standard and nonstan-

dard object; and

3. saturation, giving us a powerful mechanism for proving the existence of nonstandard objects.

The formal definitions of these three principles are easily understood but the consequences are far

reaching. Indeed, all the results in this dissertation involving nonstandard analysis are consequences of

effective applications of these three principles.

The power of nonstandard analysis comes from its ability to link finite/discrete with the infinite/continuous.
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Figure 1.1: The structure of a “push up/down” argument in nonstandard analysis. (Image courtesy of
Daniel Roy.)

One way to establish such a link is via hyperfinite objects. Roughly speaking, hyperfinite objects are

infinite objects which possesses all the first-order logic properties of finite objects. Hyperfinite objects

can be used to represent standard infinite mathematical objects. For example, Henson [17] and Ander-

son [2] show that, under moderate assumptions, every probability measure can be “represented” by a

nonstandard probability measure with hyperfinite support. As a concrete example, Lebesgue measure λ

on [0,1] can be replaced in many situations by the uniform distribution on {0, 1
N ,

2
N , . . . ,

N−1
N ,1}, where

N is an infinitely large natural number. As for a more sophisticated example, Anderson [1] showed that

Brownian motion can be represented by a hyperfinite random walk with an infinitesimal increment.

In the other direction, we can often construct standard mathematical objects from hyperfinite ones.

Thus, nonstandard analysis provides a general methodology to solve standard mathematical problems.

The general structure of this approach is the following (see Fig. 1.1): Consider an existing mathemat-

ical theorem involving one or more finite objects. In order to establish an analogous result for infinite

objects, we can search for hyperfinite approximations of these infinite objects and use the properties of

hyperfinite sets to establish a hyperfinite counterpart of the original theorem. Under regularity condi-

tions, we may then be able to “push down” the hyperfinite result to obtain a standard theorem. Thus,

this general approach can be used to solve mathematical problems involving infinite objects provided

that the finite case is well-understood.

1.1 Applications to Probability Theory and Statistics

In this dissertation, we study Markov chain ergodic theorems in probability theory and complete class

theorems in statistical decision theory. In both theories, finite/discrete theorems are well-understood.
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Using nonstandard analysis, we establish hyperfinite counterparts of both theorems. Neither is a trivial

application of the transfer principle—saturation is essential. We then apply push-down techniques to

establish infinite/continuous versions of a Markov chain ergodic theorem and a complete class theorem.

Both theorems are new results.

1.1.1 Markov Chain Ergodic Theorem

A Markov process is ergodic if its transition probability converges to its stationary distribution in total

variation distance. The ergodicity of Markov processes is of fundamental importance in the study of

Markov processes. On one hand, the ergodicity of a Markov process allows us to disregard the initial

distribution of the Markov process and replace its n-step transition probability by the stationary distri-

bution for n large enough. On the other hand, in the Markov chain Monte Carlo context, one can sample

form the n-step transition distribution instead of sampling from the stationary distribution for large n.

The Markov chain ergodic theorem is well-known for Markov processes with discrete time-line and

countable state space (see e.g., [7, 15, 42]). However, for processes in continuous time and space, there

is no such clean result; the closest are apparently the results in [31–33] using complicated assumptions

about skeleton chains together with drift conditions (see Theorem 5.3.7). Other existing results (see e.g.,

[51]) make extensive use of the techniques are results from [32, 33].

Meanwhile, nonstandard analysis provides an alternative way to study general stochastic processes

by associating every standard stochastic process with a hyperfinite stochastic process. Anderson [1]

gave a nonstandard construction of the Brownian motion and the Itô integral. In particular, he showed

that the Brownian motion can be represented as a hyperfinite random walk with infinitesimal increment.

Keisler [23] used Anderson’s result as the starting point for a deep study of stochastic differential equa-

tions and Markov processes. In this dissertation, we generalize Anderson’s work to give a hyperfinite

representation for continuous-time general state space Markov processes satisfying certain regularity

conditions. We also give a proof of the Markov chain ergodic theorem in a very general setting.

Given a continuous-time general state space Markov process {Xt}t≥0, under moderate regularity

conditions, we associate it with a hyperfinite Markov process {X ′t }t∈T , that is, a Markov process with

hyperfinite state space and hyperfinite time-line. To construct {X ′t }t∈T , we first define the time-line T

to be {0,δ t,2δ t, . . . ,K} for some positive infinitesimal δ t and some positive infinite number K. We

then partition the nonstandard extension of the state space of {Xt}t≥0 into hyperfinitely many pieces of

nonstandard Borel sets with infinitesimal radius and pick one “representative” point from each piece to

form the hyperfinite state space S = {s1,s2, . . . ,sN} of {X ′t }t∈T . For si,s j ∈ S, the one-step transition
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probability from si to s j is defined to be the nonstandard transition probability from si to B(s j) at time

δ t, where B(s j) denotes the nonstandard Borel set containing s j. It can be shown that the nonstandard

transition probability of {X ′t }t∈T differs from the transition probability of {Xt}t≥0 by only infinitesimal,

hence {X ′t }t∈T provides a robust approximation of {Xt}t≥0

Meanwhile, due to the similarity between hyperfinite objects and finite objects, {X ′t }t∈T satisfies

the same first-order logic properties as Markov processes with discrete time-line and finite state space.

Thus, we can establish the ergodicity of {X ′t }t∈T by mimicking the proof of the Markov chain ergodic

theorem for discrete-time Markov processes with finite state spaces. Finally, we show that, under mod-

erate regularity conditions, the ergodicity of {X ′t }t∈T implies the ergodicity of {Xt}t≥0, establishing the

Markov chain ergodic theorem for continuous-time general state space Markov processes.

1.1.2 Statistical Decision Theory

Statistical decision theory provides a formal framework in which to study the process of making de-

cisions under uncertainty. Statistical decision theory was introduced in 1939 by Wald, who noted that

many hypotheses testing and parameter estimation could be considered as special cases of his general

notion of decision problems. Since its introduction, statistical decision theory has served as a rigorous

foundation of statistics for over half of a century. In this dissertation, we are interested in studying the

deep connection between frequentist notions (in particular, admissibility and extended admissibility)

and Bayesian optimality.

A decision procedure is inadmissible if there exists another procedure whose risk is everywhere no

worse and somewhere strictly better. Ignoring issues of computational complexity, one should never

use an inadmissible decision procedure. Thus, admissibility is necessary condition for any reasonable

notion of optimality.

It has long been known that there are deep connections between admissibility and Bayes optimal-

ity. In one direction, under suitable regularity conditions, every admissible procedure is Bayes with

respect to a carefully chosen prior, improper prior, or sequence thereof. The resulting (quasi-)Bayesian

interpretation provides insight into the strengths and weaknesses of the procedure from an average-case

perspective. In the other direction, (necessary and) sufficient conditions for admissibility expressed in

terms of (generalized) priors point us towards Bayesian procedures with good frequentist properties.

For statistical decision problems with finite parameter spaces, it is well-known that a decision proce-

dure is extended admissible if and only if it is Bayes (see e.g., [14, 26]). For statistical decision problems

with infinite parameter spaces, on the other hand, there exists an admissible decision procedure which
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is not Bayes. Thus, one must relax the notion of Bayesian optimality to regain a tight link between

frequentist and Bayesian optimality (see e.g., [5, 9, 10, 20, 25, 43, 50, 52, 54–57]). As the literature

stands, for statistical decision problems with infinite parameter spaces, connections between frequentist

and Bayesian optimality are subject to regularity conditions, and these conditions often rule out semi-

parametric and nonparametric problems. As a result, the relationship between frequentist and Bayesian

optimality in the setting of modern statistical decision problems is often uncharacterized.

In contrast to existing methods in the literature, nonstandard analysis offers a different approach

in solving this long-standing open problem. Informally speaking, the utility of nonstandard models for

statistical decision theory stems from two sources: first, every nonstandard model possesses nonstandard

reals numbers, including infinitesimal / infinite positive numbers which can be used to construct priors

to make extreme statement, e.g., priors assigning positive but infinitesimal mass to some points. Using

these priors, we are able to form a nonstandard version of Bayesian optimality and are able to establish

the equivalence between frequentist and Bayesian optimality without any regularity conditions.

In particular, using a separating hyperplane argument in concert with the three principles outline in

nonstandard analysis (extension, transfer and saturation), we show that a standard decision procedure

δ is extended admissible if and only if, for some nonstandard prior, the Bayes risk of its extension ∗δ

is within an infinitesimal of the minimum Bayes risk among all extensions. Such a decision procedure

is said to be nonstandard Bayes. For any metric on the parameter space Θ such that risk functions are

continuous, we are able to show that a procedure is admissible if its extension is nonstandard Bayes with

respect to a prior that assigns sufficient mass to every standard open ball. The result is a nonstandard

variant of Blyth’s method, in which a sequence of priors is replaced by a single nonstandard prior in

order to witness admissibility. We also apply our nonstandard theory to give a purely standard result:

On compact Hausdorff parameter spaces when risk functions are continuous, a decision procedure is

extended admissible if and only if is Bayes.

1.2 Overview of the Dissertation

We conclude with a chapter-by-chapter summary: In Chapter 1, we develop, from the beginning, the

notions needed from nonstandard analysis, including the three basic principles, the standard part map,

internal sets, hyperfinite sets, and Loeb measures. We then discuss various sufficient conditions under

which the standard part map is measurable. We close with a general discussion on hyperfinite represen-

tations of standard probability spaces.
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We start Chapter 2 by introducing hyperfinite Markov processes, and then prove a hyperfinite

Markov chain ergodic theorem in Section 3.1. In Sections 3.2 and 3.3, we give explicit constructions of

hyperfinite representations for discrete-time general state space Markov processes and continuous-time

general state space Markov processes, respectively.

In Chapter 3, under moderate regularity conditions, we establish the Markov chain ergodic theorem

for continuous-time Markov processes with general state spaces using results from Chapter 2. For a

continuous-time general state space Markov process {Xt}t≥0, we first establish the ergodicity of its hy-

perfinite representation {X ′t }t∈T then apply “push-down” techniques to establish ergodicity of {Xt}t∈T .

In Chapter 4, we discuss constructions of standard Markov processes and stationary distributions

from hyperfinite Markov processes. We close with remarks and open problems related to Markov chains.

In Chapter 5, we begin our study of statistical decision theory by introducing its basic concepts and

discussing connections between admissibility, Bayes optimality, and complete classes. We close with

an extensive literature review of existing results on complete classes.

In Chapter 6, we study the nonstandard extensions of decision problems and define a novel notion

of nonstandard Bayes optimality. We then show that a decision procedure is extended admissible if and

only if its nonstandard extension is nonstandard Bayes, i.e., its Bayes risk is within an infinitesimal of

the minimum Bayes risk among all extensions. This result holds in complete generality.

In Chapter 7, we give sufficient nonstandard conditions for admissibility of a standard decision

procedure. We also establish a standard result: For decision problems with compact parameter space

and continuous risk functions, a decision procedure is extended admissible if and only if it is Bayes.

Finally we close with remarks and open problems in statistical decision theory.

We will assume that the reader is familiar with measure-theoretic probability theory, and has had

some basic exposure to statistics and mathematical logic. For background material on nonstandard

analysis, see [40], [3], [11], and [58]. For background on Markov processes, see [42] and [31]. For

background on statistical decision theory, see [14] and [26].
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Chapter 2

Nonstandard Analysis and Internal

Probability Theory

This dissertation uses Robinson’s nonstandard analysis to study fundamental problems in statistics and

probability theory. Nonstandard analysis is introduced by Abraham Robinson in [40]. A comprehensive

account of modern nonstandard analysis is contained in [3] and [11]. In this chapter, we develop from

the beginning the knowledge and notions needed from nonstandard analysis.

We start by introducing some basic notions in nonstandard analysis, including superstructures, in-

ternal and external sets, the transfer and the saturation principle. For construction of the nonstandard

universe, interested readers can read [3, Section. 1]. In Section 2.1.1, we investigate basic properties

of the nonstandard real line, ∗R, which is undoubtedly the most well-known nonstandard object. We

extend most of the notions and properties on ∗R to general topological (metric) spaces in Section 2.1.2.

In Section 2.2, we give an introduction to nonstandard measure theory. The nonstandard measure

theory is formulated by Peter Loeb in his landmark paper [28]. In [28], Loeb constructed a standard

countably additive probability space (called the Loeb space) which is the completion of a nonstandard

probability space (called an internal probability space). We start Section 2.2 by introducing internal

probability spaces followed by an explicit construction of Loeb spaces. A particular interesting class

of internal probability spaces is the class consisting of hyperfinite probability spaces. A hyperfinite set

is an infinite set with the same first-order logic properties as finite sets. Hyperfinite probability spaces

are simply internal probability spaces with hyperfinite sample space. Hyperfinite probability spaces

can often serve as “good representations” for standard probability spaces. We illustrate this idea in

Example 2.2.5 and the remark after it. We also discuss nonstandard product measure and nonstandard

7



integration theory in this section.

In Section 2.3, we discuss the measurability of the standard part map. A nonstandard element x

is near-standard if there is a standard element x0 which is infinitely close to it. Such x0 is called the

standard part of x. The standard part map st maps a near-standard nonstandard element to a its standard

part. The connection between a standard probability space and its nonstandard extension (which is

an internal probability space) can usually be established via studying the standard part map. Thus, it is

natural to require that st to be a measurable function. In other words, we would like to find out conditions

such that st−1(E) is Loeb measurable for every Borel set E. In [24], it has been shown that the answer

of this question largely depend on the Loeb measurability of NS(∗X) = {x ∈ ∗X : (∃y ∈ X)(y = st(x))}

(the collection of all near-standard points in ∗X). In [3, Exercise 4.19,1.20], NS(∗X) is Loeb measurable

if X is either a σ -compact, a locally compact Hausdorff or a complete metric space. We give a proof for

the σ -compact case in Lemma 2.3.5. We are also able to obtain a stronger result by assuming the space

is merely Cech-complete (see Theorem 2.3.6).

In Section 2.4, we discuss the idea of using hyperfinite probability spaces to represent standard

probability spaces. Such hyperfinite probability space is called a hyperfinite representation of the un-

derlying standard probability space. We restrict our attention to σ -compact metric spaces satisfying the

Heine-Borel condition. In Definition 2.4.3, we give the definition of hyperfinite representations of a

σ -compact metric space X satisfying the Heine-Borel condition. The idea is to decompose X into hy-

perfinitely many ∗Borel sets with infinitesimal diameters and pick one point from every such ∗Borel set.

We usually denote the hyperfinite representation by S and the hyperfinite collection of ∗Borel sets by

{B(s) : s ∈ S}. Note that it is generally impossible for {B(s) : s ∈ S} to cover ∗X . Thus, we only require

{B(s) : s ∈ S} to cover a “large enough” portion of ∗X . A hyperfinite representation S has two parame-

ters r and ε . The parameter r measures the portion of ∗X that is covered by {B(s) : s ∈ S} while ε puts

an upper bound on the diameters of the elements in {B(s) : s ∈ S}. Given an (ε,r)-hyperfinite represen-

tation S, in Theorem 2.4.11, we define an internal probability measure P′ on (S,I [S]) and establishes

the link between (X ,B[X ],P) and (S,I (S),P′). Theorem 2.4.11 is similar to [11, Theorem 3.5 page

159] which was proved in [2].

2.1 Basic Concepts in Nonstandard Analysis

Those familiar with nonstandard methods may safely skip this section on their first reading. Nonstandard

analysis is introduced by Abraham Robinson in [40]. For modern applications of nonstandard analysis,
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interested readers can read [3] or [11]. Our following introduction of nonstandard analysis owes much

to [3].

For a set S, let P(S) denote its power set. Given any set S, define V0(S) = S and Vn+1(S) =

Vn(S)∪P(()Vn(S)) for all n ∈ N. Then V(S) =
⋃

n∈NVn(S) is called the superstructure of S, and S is

called the ground set of the superstructure V(S). We treat the elements in V(S) as indivisible atomics.

The rank of an object a ∈ V(S) is the smallest k for which a ∈ Vk(S). The members of S have rank 0.

The objects of rank no less than 1 in V(S) are precisely the sets in V(S). The empty set /0 and S both

have rank 1.

We now formally define the language L (V(S)) of V(S).

• constants: one for each element in V(S).

• variables: x1,x2,x3, . . .

• relations: = and ∈.

• parentheses: ) and (

• connectives: ∧ (and), ∨ (or) and ¬ (not).

• quantifiers: ∀ and ∃

The formulas in L (V(S)) are defined recursively:

• If x and y are variables and a and b are constants,

(x = y),(x ∈ y),(a = x),(a ∈ x),(x ∈ a),(a = b),(a ∈ b) are formulas.

• If φ and ψ are formulas, then (φ ∧ψ),(φ ∨ψ) and (¬φ) are formulas.

• If φ is a formula, x is a variable and A ∈ V(S) then (∀x ∈ A)(φ) and (∃x ∈ A)(φ) are formulas.

A variable x is called a free variable if it is not within the scope of any quantifiers.

Let us agree to use the following abbreviations in constructing formulas in L (V(S)): We will write

(φ =⇒ ψ) instead of ((¬φ)∨ (ψ)) and (φ ⇐⇒ ψ) instead of (φ =⇒ ψ)∧ (ψ =⇒ φ).

It may seem that we should include more relation symbols and function symbols in our language.

For example, it is definitely natural to require 1 < 2 to be a well-defined formula. However, every

relation symbol and function symbol can be viewed as an element in V(S) and we already have a

constant symbol for that. Thus our language is powerful enough to describe all well-defined relation
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symbols and function symbols. In conclusion, there is no problem to include these symbols within our

formula.

Definition 2.1.1. Let κ be an uncountable cardinal number. A κ-saturated nonstandard extension of

a superstructure V(S) is a set ∗S and a rank-preserving map ∗ : V(S)→ V(∗S) satisfying the following

three principles:

• extension: ∗S is a superset of S and ∗s = s for all s ∈ S.

• transfer: For every sentence φ in L (V(S)), φ is true in V(S) if and only if its ∗-transfer ∗φ is true

in V(∗S).

• κ-saturation: For every family F = {Ai : i ∈ I} of internal sets indexed by a set I of cardinality

less than κ , if F has the finite intersection property, i.e., if every finite intersection of elements in

F is nonempty, then the total intersection of F is non-empty.

A ℵ1 saturated model can be constructed via an ultrafilter, see [3, Thm. 1.7.13].

The language of V(∗S) is almost the same as L except that we enlarge the set of constants to include

every element in V(∗S). We denote the language of V(∗(S)) by L (V(∗S)). If φ(x1, . . . ,xn) is a formula

in L (V(S)) with free variables x1, . . . ,xn, then the ∗-transfer of φ is the formula in L (V(∗S)) obtained

by changing every constant a to ∗a. Clearly, every constant in ∗φ(x1, . . . ,xn) is internal.

An important class of elements in V(∗S) is the class of internal elements.

Definition 2.1.2. An element a ∈ V(∗S) is internal when there exists b ∈ V(S) such that a ∈ ∗b, and a

is said to be external otherwise.

The next theorem shows that saturation to any uncountable cardinal number is possible:

Theorem 2.1.3 ([29]). For every superstructure V(S) and uncountable cardinal number κ , there exists

a κ-saturated nonstandard extension of V(S).

From this point on, we shall always assume that our nonstandard extension is always as saturated as

we want.

As one can see, internal elements are those “well-behaved” elements which can be carried over via

the transfer principle. It is natural to ask how to identify internal elements. By Definition 2.1.2, we

know that an element a ∈ V(∗S) is internal if and only if there exists a k ∈ N such that a ∈ ∗Vk(S). It is

then easy to see that every a ∈ ∗S is internal. The following lemma gives a characterization of internal

elements in P(∗S).
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Lemma 2.1.4. Consider a superstructure V(S) based on a set S with N⊂ S and its nonstandard exten-

sion, for any standard set C from this superstructure,
⋃

k<ω
∗Vk(S)∩P(∗C) = ∗P(C).

Proof. Let us assume that C has rank n for some n ∈ N. P(C) ∈ Vn+1(S) hence we have ∗P(C) ∈
∗Vn+1(S). Consider the following sentence (∀x ∈P(C))(∀y ∈ x)(y ∈C), the transfer of this sentence

implies that ∗P(C)⊂P(∗C). Hence we have ∗P(C)⊂
⋃

k<ω
∗Vk(S)∩P(∗C), completing the proof.

Thus, we know that that A⊂ ∗S is internal if and only if A ∈ ∗P(()S).

The following lemma shows a particularly useful fact of internal sets which will be used extensively

in this paper.

Lemma 2.1.5. Let a be an internal element in V(∗S). Then the collection of all internal subsets of a is

itself internal.

Proof. As a is an internal element, there exists a k ∈ N such that a ∈ ∗Vk(S). For any internal set

a′ ⊂ a, it is easy to see that a′ ∈ ∗Vk(S). Let b denote the collection of all internal subsets of a. The

sentence (∀x ∈ y)(x ∈ Vk(S)) =⇒ (Y ∈ Vk+1(S)) is true. Thus, by the transfer principle, we have that

b ∈ ∗Vk+1(S) hence b is an internal set.

It takes practice to identify general internal sets. The main tool for constructing internal sets is the

internal definition principle:

Lemma 2.1.6 (Internal Definition Principle). Let φ(x) be a formula in L (V(∗S)) with free variable x.

Suppose that all constants that occurs in φ are internal, then {x ∈ V(∗S) : φ(x)} is internal in V(∗S).

Saturation can be equivalently expressed in terms of the satisfiability of families of formulas. The

role of the finite intersection property is played by finite satisfiability:

Definition 2.1.7. Let J be an index set and let A⊆ V(∗S). A set of formulas {φ j(x) | j ∈ J} over V(∗S)

is said to be finitely satisfiable in A when, for every finite subset α ⊂ J, there exists c∈ A such that φ j(c)

holds for all j ∈ α .

We can now provide the following alternative expression of κ-saturation:

Theorem 2.1.8 ([3, Thm. 1.7.2]). Let ∗V(S) be a κ-saturated nonstandard extension of the superstruc-

ture V(S), where κ is an uncountable cardinal number. Let J be an index set of cardinality less than

κ . Let A be an internal set in ∗V(S). For each j ∈ J, let φ j(x) be a formula over ∗V(S), so all objects
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mentioned in φ j(x) are internal. Further, suppose that the set of formulas {φ j(x) | j ∈ J} is finitely

satisfied in A. Then there exists c ∈ A such that φ j(c) holds in ∗V(S) simultaneously for all j ∈ J.

Example 2.1.9. A particular interesting example of superstructure is V(R). The nonstandard extension

of this superstructure is V(∗R). V(∗R) contains hyperreals, ∗N, etc. We will study this particular

superstructure in detail in Section 2.1.1.

Through out this paper, we shall assume our ground set S always contain R as a subset.

We conclude this section by introducing a particularly useful class of sets in V(∗S): hyperfinite sets.

A hyperfinite set A is an infinite set that has the basic logical properties of a finite set.

Definition 2.1.10. A set A ∈V(∗S) is hyperfinite if and only if there exists an internal bijection between

A and {0,1, ....,N−1} for some N ∈ ∗N.

This N, if exists, is unique and this unique N is called the internal cardinality of A.

Just like finite sets, we can carry out all the basic arithmetics on a hyperfinite set. For example,

we can sum over a hyperfinite set just like we did for finite set. Basic set theoretic operations are also

preserved. For example, we can take hyperfinite unions and intersections just as taking finite unions and

intersections.

We have rather nice characterization of internal subsets of a hyperfinite set.

Lemma 2.1.11 ([3]). A subset A of a hyperfinite set T is internal if and only if A is hyperfinite.

An immediate consequence of Theorem 2.1.8 is:

Proposition 2.1.12 ([3, Proposition. 1.7.4]). Assume that the nonstandard extension is κ-saturated. Let

a be an internal set in V(∗S). Let A be a (possibly external) subset of a such that the cardinality of A is

strictly less than κ . Then there exists a hyperfinite subset b of a such that b contains A as a subset.

2.1.1 The Hyperreals

Probably the most well-known nonstandard extension is the nonstandard extension of R. We investigate

some basic properties and notations in ∗R.

Definition 2.1.13. The set ∗R is called the set of hyperreals and every element in ∗R is called a hyperreal

number. An element x ∈ ∗R is called an infinitesimal if x < 1
n for all n ∈N. An element y ∈ ∗R is called

an infinite number if y > n for all n ∈ N.
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We write x≈ 0 when x is an infinitesimal.

Definition 2.1.14. Two elements x,y ∈ ∗R are infinitesimally close if |x− y| ≈ 0. In which case, we

write x≈ y. An element x ∈ ∗R is near-standard if x is infinitesimally close to some a ∈ R. An element

x ∈ ∗R is finite if |x| is bounded by some standard real number a.

It is easy to see that if x ∈ ∗R is bounded then there exists some a ∈ R such that |x−a| is finite.

Lemma 2.1.15. An element x ∈ ∗R is finite if and only if x is near-standard.

Proof. It is clear that if x is near-standard then x is finite. Suppose there exists a x ∈ ∗R such that x is

finite but not near-standard. Then there exists a a0 ∈R such that |x| ≤ a0. This means that x∈ ∗[−a0,a0].

As x is not near-standard, for every standard a ∈ [−a0,a0] we can find an open interval Oa centered at

a with x 6∈ ∗Oa. The family {Oa : a ∈ [−a0,a0]} covers [−a0,a0] and therefore has a finite subcover

{O1, ...,On}. As [−a0,a0]⊂
⋃

i≤n Oi, ∗[−a0,a0]⊂
⋃

i≤n
∗Oi. Since x 6∈

⋃
i≤n
∗Oi, x 6∈ ∗[−a0,a0] which is

a contradiction. Hence x ∈ ∗R is finite if and only if it is near-standard.

Pick an arbitrary near-standard x ∈ ∗R. Suppose there are two different a1,a2 ∈ R such that x ≈ a1

and x ≈ a2. This implies a1 ≈ a2 which is impossible since a1,a2 ∈ R. Hence there exists a unique

a ∈ R such that x≈ a.

This lemma would fail if we take some points from R.

Example 2.1.16. Consider the set R \ {0}. Then every infinitesimal element in ∗R is finite since they

are bounded by 1. However, they are not near-standard since 0 is excluded.

Definition 2.1.17. Let NS(∗R) to denote the collection of all near-standard points in ∗R. For every

near-standard point x ∈ ∗R, let st(x) denote the unique element in a ∈ R such that |x−a| ≈ 0. st(x) is

called the standard part of x. We call st the standard part map.

For A ⊂ ∗R, we write st(A) to mean {x ∈ R : (∃a ∈ A)(x is the standard part of a)}. Similarly for

every B⊂ R, we write st−1(B) to mean {x ∈ ∗R : (∃b ∈ B)(|x−b| ≈ 0)}.

We now give an example of an external set. The example also shows that we have to be very careful

when applying the transfer principle.

Example 2.1.18. The monad µ(0) of 0 is defined to be {a ∈ ∗R : a ≈ 0}. We show that µ(0) is an

external set. Consider the sentence: ∀A ∈P(()R) if A is bounded above then there is a least upper

bound for A. By the transfer principle, we know that (∀A ∈ ∗P(()R))(for all internal subsets of ∗R
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if A is bounded above then there is a least upper bound for A). Suppose µ(0) is internal then there

exists a a0 ∈∗ R such that a0 is an least upper bound for µ(0). Clearly a0 > 0. Note that a0 can not

be infinitesimal since if a0 is infinitesimal then 2a0 would also be infinitesimal and 2a0 > a0. If a0 is

non-infinitesimal then so is a0
2 . But then a0

2 is an upper bound for µ(0). This contradict with the fact

that a0 is the least upper bound. Hence µ(0) is not an internal set.

It is easy to make the following mistake: if we write the sentence as “∀A⊂R if A is bounded above

then there is a least upper bound for A” the transfer of it seems to give that “∀A ⊂ ∗R if A is bounded

above then there is a least upper bound for A”. As we have already seen, this is not correct. The reason

is because ⊂ is not in the language of set theory thus we have an “illegal” formation of a sentence. This

shows that we have to be very careful when applying the transfer principle.

The following two principles derived from saturation are extremely useful in establishing the exis-

tence of certain nonstandard objects.

Theorem 2.1.19. Let A⊂ ∗R be an internal set

1. (Overflow) If A contains arbitrarily large positive finite numbers, then it contains arbitrarily small

positive infinite numbers.

2. (Underflow) If A contains arbitrarily small positive infinite numbers, then it contains arbitrarily

large positive finite numbers.

We conclude this section by the following lemma. This lemma will be used extensively in this paper.

Lemma 2.1.20. Let N be an element in ∗N. Let {a1, . . . ,aN} be a set of non-negative hyperreals such

that ∑
N
i=1 ai = 1. Let {b1, . . . ,bN} and {c1, . . . ,cN} be subsets of R such that bi ≈ ci for all i≤ N. Then

a1b1 +a2b2 + · · ·+aNbN ≈ a1c1 +a2c2 + · · ·+aNcN .

Proof. By the transfer of convex combination theorem, we know that (a1b1 + a2b2 + · · ·+ aNbN)−

(a1c1+a2c2+ · · ·+aNcN) = a1(b1−c1)+a2(b2−c2)+ · · ·+aN(bN−cN)≤max{ai|bi−ci| : i≤ N} ≈

0.

2.1.2 Nonstandard Extensions of General Metric Spaces

We generalize the concepts developed in Section 2.1.1 into generalized topological spaces. We espe-

cially emphasize on general metric spaces.

Let X be a topological space and let ∗X denote its nonstandard extension. For every x ∈ X , let Bx

denote a local base at point x.
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Definition 2.1.21. Given x ∈ X , the monad of x is

µ(x) =
⋂

U∈Bx

∗U . (2.1.1)

The near-standard points in ∗X are the points in the monad of some standard points.

If X is a metric space with metric d, then ∗d is a metric for ∗X . The monad of a point x ∈ X , in this

case, is µ(x) =
⋂

n∈N
∗Un where each Un = {y∈ X : d(x,y)< 1

n}. Thus we have the following definition:

Definition 2.1.22. Two elements x,y ∈ ∗X are infinitesimally close if ∗d(x,y)≈ 0. An element x ∈ ∗X is

near-standard if x is infinitesimally close to some a ∈ X . An element x ∈ ∗X is finite if ∗d(x,a) is finite

for some a ∈ X .

If x ∈ ∗X is finite, then generally x is not near-standard. This is not even true for complete metric

spaces.

Example 2.1.23. Consider the set of natural numbers N. Define the metric d on N to be d(x,y) = 1 if

x 6= y and equals to 0 otherwise. Then (N,d) is a complete metric space. Every element in ∗N is finite.

But those elements in ∗N\N are not near-standard.

Just as in ∗R, we have the following definition.

Definition 2.1.24. Let NS(∗X) to denote the collection of all near-standard points in ∗X . For every

near-standard point x ∈ ∗X , let st(x) denote the unique element in a ∈ X such that ∗d(x,a)≈ 0. st(x) is

called the standard part of x. We call st the standard part map.

In general, NS(∗X) is a proper subset of ∗X . However, when X is compact, we have NS(∗X) = ∗X .

This is the nonstandard way to characterize a compact space.

Theorem 2.1.25 ([3, Theorem 3.5.1]). A set A⊂ X is compact if and only if ∗A = NS(∗A).

Proof. Assume A is compact but there exists y ∈ A such that y is not near-standard. Then for every

x ∈ A, there exists an open set Ox containing x with y 6∈ ∗Ox. The family {Ox : x ∈ A} forms an open

cover of A. As A is compact, there exists a finite subcover {O1, . . . ,On} for some n∈N. As A⊂
⋃n

i=1 Oi,

by the transfer principle, we have ∗A⊂
⋃n

i=1
∗Oi. However, y 6∈ Oi for all i≤ n. This implies that y 6∈ A,

a contradiction.

We now show the reverse direction. Let U = {Oα : α ∈ A } be an open cover of A with no finite

subcover. By Proposition 2.1.12, let B be a hyperfinite collection of ∗U containing ∗Oα for all α ∈A .
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By the transfer principle, there exists a y ∈ ∗A such that y 6∈U for all U ∈B. Thus, y 6∈ ∗Oα for all

α ∈A . Hence y can not be near-standard, completing the proof.

This relationship breaks down for non-compact spaces as is shown by the following example.

Example 2.1.26. Consider ∗[0,1] = {x∈ ∗R : 0≤ x≤ 1}, as [0,1] is compact we have ∗[0,1] =NS(∗[0,1]).

(0,1) is not compact and this implies that ∗(0,1) 6= NS(∗(0,1)). Indeed, consider any positive infinites-

imal ε ∈ ∗R. Then ε ∈ ∗(0,1) but ε 6∈ NS(∗(0,1)).

However, under enough saturation, the standard part map st maps internal sets to compact sets.

Theorem 2.1.27 ([29]). Let (X ,T ) be a regular Hausdorff space. Suppose the nonstandard extension

is more saturated than the cardinality of T . Let A be a near-standard internal set. Then E = st(A) =

{x ∈ X : (∃a ∈ A)(a ∈ µ(x))} is compact.

Proof. Fix y ∈ ∗E. If U is a standard open set with y ∈ ∗U , then U ∩E 6= /0. Let x ∈ E ∩U . By the

definition of E, there exists an a ∈ A such that a ∈ µ(x)⊂ ∗U . Thus, for every open set U with y ∈ ∗U ,

there exists a ∈ A∩ ∗U . By saturation, there exists an a0 ∈ A such that a0 ∈ A∩ ∗U for all standard open

set U with y ∈ ∗U .

Let x0 = st(a0). In order to finish the proof, by Theorem 2.1.25, it is sufficient to show that y∈ µ(x0).

Suppose not, then there exists an open set V such that x0 ∈V and y 6∈ ∗V . By regularity of X , there exists

an open set V ′ such that x0 ∈ V ′ ⊂ V ′ ⊂ V . Then x ∈ V ′ and y ∈ ∗X \ ∗V ′. It then follows that a0 ∈ ∗V ′

and a0 ∈ ∗X \ ∗V ′. This is a contradiction.

Moreover, for σ -compact locally compact spaces, we have the following result.

Theorem 2.1.28. Let X be a Hausdorff space. Suppose X is σ -compact and locally compact. Then there

exists a non-decreasing sequence of compact sets Kn with
⋃

n∈N Kn = X such that
⋃

n∈N
∗Kn = NS(∗X).

Proof. As X is σ -compact, there exists a sequence of non-decreasing compact sets Gn such that X =⋃
n∈N Gn. Let K0 = G0. By locally compactness of X , for every x ∈ K0 ∪G1, let Cx denote a compact

subset of X containing a neighborhood Ux of x. The collection {Ux : x ∈ K0∪G1} is a cover of K0∪G1

hence there is a finite subcover {Ux1 , . . . ,Uxn}. Let K1 =
⋃

i≤nCxi . It is easy to see that K1 is a compact

and K0 ⊂ K1
o where K1

o denotes the interior of K1. For any n ∈ N, we can construct Kn based on

Kn−1∪Gn in exactly the same way as we constructs K1. Hence we have a sequence of compact sets Kn

such that
⋃

n∈N Kn = X and Kn ⊂ Kn+1
o for all n ∈ N.
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We now show that
⋃

n∈N
∗Kn = NS(∗X). As every Kn is compact, by ??, we know that

⋃
n∈N

∗Kn ⊂

NS(∗X). Now pick any element x ∈ NS(∗X). Then st(x) ∈ ∗Kn for some n. As Kn ⊂ Kn+1
o, we know

that µ(st(x))⊂ ∗Kn+1 hence we have x ∈ ∗Kn+1. Thus, we know that NS(∗X)⊂
⋃

n∈N
∗Kn, completing

the proof.

A merely Hausdorff σ -compact space may not have this property. For a σ -compact, locally compact

and Hausdorff space X , the sequence {Kn : n ∈ N} has to be chosen carefully.

Example 2.1.29. The set of rational numbers Q is a Hausdorff σ -compact space. Every compact subset

of Q is finite. Thus, for any collection {Kn : n ∈ N} of Q that covers Q, we have
⋃

n∈N
∗Kn = Q. That

is, any near-standard hyperrational is not in any of the ∗Kn.

Now consider the real line R. Let Kn = [−n,−1
n ]∪ [

1
n ,n]∪ {0} for n ≥ 1. It is easy to see that⋃

n∈N Kn = R. However, an infinitesimal is not an element of any ∗Kn.

2.2 Internal Probability Theory

In this section, we give a brief introduction to nonstandard probability theory. The interested reader can

consult [23] and [3, Section 4] for more details. The expert may safely skip this section on first reading.

Let Ω be an internal set. An internal algebra A ⊂P(()Ω) is an internal set containing Ω and

closed under taking complement and hyperfinite unions/intersections. A set function P : A → ∗R is

hyperfinitely additive when, for every n ∈ ∗N and mutually disjoint family A1, . . . ,An ∈ A , we have

P(
⋃

i≤n Ai) = ∑i≤n P(Ai).

We are now at the place to introduce the definition of internal probability spaces.

Definition 2.2.1. An internal finitely-additive probability space is a triple {Ω,A ,P} where:

1. Ω is an internal set.

2. A is an internal subalgebra of P(()Ω)

3. P : A → ∗R is a non-negative hyperfinitely additive internal function such that P(Ω) = 1 and

P( /0) = 0.

Example 2.2.2. Let (X ,A ,P) be a standard probability space. Then (∗X , ∗A , ∗P) is an internal proba-

bility space. Although A is a σ -algebra and P is countably additive, A is just an internal algebra and
∗P is only hyperfinitely additive. This is because “countable” is not an element of the superstructure.
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A special class of an internal probability spaces are hyperfinite probability spaces. Hyperfinite

probability spaces behave like finite probability spaces but can be good “approximation” of standard

probability space as we will see in future sections.

Definition 2.2.3. A hyperfinite probability space is an internal probability space (Ω,A ,P) where:

1. Ω is a hyperfinite set.

2. A = I (Ω) where I (Ω) denote the collection of all internal subsets of Ω.

Like finite probability spaces, we can specify the internal probability measure P by defining its mass

at each ω ∈Ω.

Peter Loeb in [28] showed that any internal probability space can be extended to a standard count-

ably additive probability space. The extension is called the Loeb space of the original internal probability

space. The central theorem in modern nonstandard measure theory is the following:

Theorem 2.2.4 ([28]). Let (Ω,A ,P) be an internal finitely additive probability space; then there is a

standard (σ -additive) probability space (Ω,A ,P) such that:

1. A is a σ -algebra with A ⊂A ⊂P(()Ω).

2. P(A) = st(P(A)) for any A ∈A .

3. For every A∈A and standard ε > 0 there are Ai,Ao ∈A such that Ai ⊂ A⊂ Ao and P(Ao \Ai)<

ε .

4. For every A ∈A there is a B ∈A such that P(A4B) = 0.

The probability triple (Ω,A ,P) is called the Loeb space of (Ω,A ,P). It is a σ -additive standard

probability space. From Loeb’s original proof, we can give the explicit form of A and P:

1. A equals to:

{A⊂Ω|∀ε ∈ R+∃Ai,Ao ∈A such that Ai ⊂ A⊂ Ao and P(Ao \Ai)< ε}. (2.2.1)

2. For all A ∈A we have:

P(A) = inf{P(Ao)|A⊂ Ao,Ao ∈A }= sup{P(Ai)|Ai ⊂ A,Ai ∈A }. (2.2.2)
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In fact, the Loeb σ -algebra can be taken to be the P-completion of the smallest σ -algebra generated

by A . In this paper, we shall assume that our Loeb space is always complete.

The following example of hyperfinite probability space motivates the idea of hyperfinite representa-

tion.

Example 2.2.5. Let (Ω,A ,P) be a hyperfinite probability space. Pick any N ∈ ∗N\N and let δ t = 1
N .

Then δ t is an infinitesimal. Let Ω = {δ t,2δ t, ....,1} and A =I (Ω)(Recall that I (Ω) is the collection

of all internal subsets of Ω). Define P on A by letting P(ω) = δ t for all ω ∈ Ω. This is called the

uniform hyperfinite Loeb measure.

Claim 2.2.6. st−1(0)∩Ω ∈A

Proof. st−1(0)∩Ω consists of elements from Ω that are infinitesimally close to 0. Let An = {ω ∈ Ω :

ω ≤ 1
n}. By the internal definition principle, An is internal for all n ∈ N. Thus An ∈ A for all n ∈ N.

Hence
⋂

n∈N An ∈A . Thus st−1(0)∩Ω =
⋂

n∈N An ∈A , completing the proof.

Let ν denote the Lebesgue measure on [0,1]. In Section 2.4, we will show that ν(A) = P(st−1(A)∩

Ω) for every Lebesgue measurable set A. This shows that we can use (Ω,A ,P) to represent the

Lebesgue measure on [0,1]. (Ω,A ,P) is called a “hyperfinite representation” of the Lebesgue measure

space on [0,1]. We will investigate such hyperfinite representation space in more detail in Section 2.4.

As st−1(0) is an external set, Example 2.2.5 shows that the Loeb σ -algebra contains external sets.

2.2.1 Product Measures

In this section, we introduce internal product measures. This would be useful when we are dealing with

the product of two hyperfinite Markov chains in later sections.

In this section, let (Ω,A ,P1) and (Γ,D ,P2) be two internal probability spaces. Let (Ω,A ,P1) and

(Γ,D ,P2) be the Loeb spaces of (Ω,A ,P1) and (Γ,D ,P2), respectively.

Definition 2.2.7. The product Loeb measure P1×P2 is defined to be the probability measure on (Ω×

Γ,A ⊗D) satisfying:

(P1×P2)(A×B) = P1(A) ·P2(B). (2.2.3)

for all A×B ∈A ×D , where A ⊗D denotes the σ -algebra generated by sets from A ×D .
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Note that this is nothing more than the standard definition of product measures. Thus (Ω×Γ,A ⊗

D ,P1×P2) is a standard σ -additive probability space.

It is sometimes more natural to consider the product internal measure P1×P2.

Definition 2.2.8. The product internal measure P1×P2 is defined to be the internal probability measure

on (Ω×Γ,A ⊗D) satisfying:

(P1×P2)(A×B) = P1(A) ·P2(B). (2.2.4)

for all A×B ∈A ×D , where A ⊗D denote the internal algebra generated by sets from A ×D .

In this case, we form a product internal probability space (Ω×Γ,A ⊗D ,P1×P2).

Example 2.2.9. Suppose both (Ω,A ,P1) and (Γ,D ,P2) are hyperfinite probability spaces. Recall from

Definition 2.2.3 that A = I (Ω) and D = I (Γ) where I (Ω) and I (Γ) denote the collection of all

internal sets of Ω and Γ,respectively. Then the product internal measure P1×P2 is defined on I (Ω×Γ).

To see this, it is enough to note that every internal subset of Ω×Γ is hyperfinite hence is a hyperfinite

union of singletons.

Once we have the product internal probability space (Ω×Γ,A ⊗D ,P1×P2), the Loeb construction

can be applied to give a Loeb probability space (Ω×Γ,(A ⊗D),(P1×P2)). It is natural to seek for

relation between (Ω×Γ,(A ⊗D),(P1×P2)) and (Ω×Γ,A ⊗D ,P1×P2).

Theorem 2.2.10 ([23]). Consider two Loeb probability spaces (Ω,A ,P1) and (Γ,D ,P2). We have

(P1×P2) = P1×P2 on A ⊗D .

Proof. We first show that A ⊗D ⊂ (A ⊗D). It is enough to show that for any A×B ∈ A ×D we

have A×B ∈ (A ⊗D). Fix an ε ∈ (0,1). As A ⊂ A , by Loeb’s construction, there exists Ai,Ao ∈ A

with Ai ⊂ A⊂ Ao such that P1(Ao \Ai)< ε . Similarly, there exist such Bi,Bo ∈D for B. Then we have

(P1×P2)((Ao×Bo)\ (Ai×Bi)) = (P1×P2)((Ao \Ao)× (Ai \Bi)) = ε
2 < ε. (2.2.5)

As our choice of ε is arbitrary, we have A×B ∈ (A ⊗D).

We now show that (P1×P2)=P1×P2 on A ⊗D . Again it is enough to just consider A×B∈A ×D .
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We then have:

P1×P2(A×B) (2.2.6)

= sup{st(P1(Ai))|Ai ⊂ A,Ai ∈A }× sup{st(P2(Bi))|Bi ⊂ A,Bi ∈D} (2.2.7)

= sup{st(P1(Ai))st(P2(Bi))|Ai ⊂ A,Ai ∈A ,Bi ⊂ A,Bi ∈D} (2.2.8)

= (P1×P2)(A×B), (2.2.9)

completing the proof.

However, A ⊗D will generally be a smaller σ -algebra than (A ⊗D) as is shown by the following

example which is due to Doug Hoover.

Example 2.2.11. [23] Let Ω be an infinite hyperfinite set. Let Γ = I (Ω). Let (Ω,I (Ω),P) and

(Γ,I (Γ),Q) be two uniform hyperfinite probability spaces over the respective sets. Let E = {(ω,λ ) :

ω ∈ λ ∈ Γ}. It can be shown that E ∈ (I (Ω)⊗I (Γ)) but E 6∈I (Ω)⊗I (Γ).

In fact, it can be shown that (P×Q)(E) > 0 while P(A)Q(B) = 0 for every A ∈ I [Ω] and every

B ∈ I [Γ]. However, the internal probability space (Γ,I [Γ],Q) does not corresponds to any standard

probability space.

Open Problem 1. Let (Ω,A ,P) be an internal probability space. Let (P×P)(B) > 0 for some B ∈

A ⊗A . Under what conditions does there exists C ∈ A ⊗A such that C ⊂ B and (P×P)(C) > 0?

Does (Ω,A ,P) being the nonstandard extension of some standard probability space help?

2.2.2 Nonstandard Integration Theory

In this section we establish the nonstandard integration theory on Loeb spaces. Fix an internal proba-

bility space (Ω,Γ,P) and let (Ω,Γ,P) denote the corresponding Loeb space. If Γ is ∗σ -algebra then we

have the notion of “P-integrability” which is nothing more than the usual integrability “copied” from the

standard measure theory. Note that the Loeb space (Ω,Γ,P) is a standard countably additive probability

space. The Loeb integrability is the same as the integrability with respect to the probability measure P.

We mainly focus on discussing the relationship between “P-integrability” and Loeb integrability in this

section.

Corollary 2.2.12 ([3, Corollary 4.6.1]). Suppose (Ω,Γ,P) is an internal probability space, and F : Ω→
∗R is an internal measurable function such that st(F) exists everywhere. Then st(F) is Loeb integrable
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and
∫

FdP≈
∫
st(F)dP.

The situation is more difficult when st(F) exists almost surely. We present the following well-known

result.

Theorem 2.2.13 ([3, Theorem 4.6.2]). Suppose (Ω,Γ,P) is an internal probability space, and F : Ω→
∗R is an internally integrable function such that st(F) exists P-almost surely. Then the following are

equivalent:

1. st(
∫
|F |dP) exists and it equals to limn→∞ st(

∫
|Fn|dP) where for n ∈ N, Fn = min{F,n} when

F ≥ 0 and Fn = max{F,−n} when F ≤ 0.

2. For every infinite K > 0,
∫
|F |>K |F |dP≈ 0.

3. st(
∫
|F |dP) exists, and for every B with P(B)≈ 0, we have

∫
B |F |dP≈ 0.

4. st(F) is P-integrable, and ∗
∫

FdP≈
∫
st(F)dP.

Definition 2.2.14. Suppose (Ω,Γ,P) is an internal probability space, and F : Ω→ ∗R is an internally

integrable function such that st(F) exists P-almost surely. If F satisfies any of the conditions (1)-(4) in

Theorem 2.2.13, then F is called a S-integrable function.

Up to now, we have been discussing the internal integrability as well as the Loeb integrability of

internal functions. An external function is never internally integrable. However, it is possible that some

external functions are Loeb integrable. We start by introducing the following definition.

Definition 2.2.15. Suppose that (Ω,Γ,P) is a Loeb space, that X is a Hausdorff space, and that f is a

measurable (possibly external) function from Ω to X . An internal function F : Ω→ ∗X is a lifting of f

provided that f = st(F) almost surely with respect to P.

We conclude this section by the following Loeb integrability theory.

Theorem 2.2.16 ([3, Theorem 4.6.4]). Let (Ω,Γ,P) be a Loeb space, and let f : Ω→R be a measurable

function. Then f is Loeb integrable if and only if it has a S-integrable lifting.

2.3 Measurability of Standard Part Map

When we apply nonstandard analysis to attack measure theory questions, the standard part map st plays

an essential role since st−1(E) for E ∈B[X ] is usually considered to be the nonstandard counterpart for
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E. Thus a natural question to ask is: when is the standard part map st a measurable function? There are

quite a few answers to this question in the literature (see, eg,. [3, Section 4.3]) and they should cover

most of the interesting cases. It turns out that, in most interesting cases, the measurability of st depends

on the Loeb measurability of NS(∗X). Such results are mentioned in [3, Exescise 4.19,4.20]. However,

we give a proof for more general topological spaces in this section.

The following theorem of Ward Henson in [18] is a key result regarding the measurability of st.

Theorem 2.3.1 ([3, Theorems 4.3.1 and 4.3.2]). Let X be a regular topological space, let P be an

internal, finitely additive probability measure on (∗X , ∗B[X ]) and suppose NS(∗X) ∈ ∗B[X ]; then st is

Borel measurable from (∗X , ∗B[X ]) to (X ,B[X ]).

Thus we only need to figure out what conditions on X will guarantee that NS(∗X) ∈ ∗B[X ]. In the

literature, people have shown that for σ -compact, locally compact or completely metrizable spaces X ,

we have NS(∗X) ∈ ∗B[X ]. In this section we will generalize such results to more general topological

spaces.

We first recall the following definitions from general topology.

Definition 2.3.2. Let X be a topological space. A subset A is a Gδ set if A is a countable intersection of

open sets. A subset is a Fσ set if its complement is a Gδ set.

Definition 2.3.3. For a Tychonoff space X , it is Cech complete if there exist a compactification Y such

that X is a Gδ subset of Y .

The following lemma is due to Landers and Rogge. We provide a proof here since it is closely

related to our main result of this section.

Lemma 2.3.4 ([24]). Suppose that (Ω,A ,P) is an internal finitely additive probability space with cor-

responding Loeb space (Ω,AL,P) and suppose that C is a subset of A such that the nonstandard model

is more saturated than the external cardinality of C . Then
⋂

C ∈AL. Furthermore, if P(A) = 1 for all

A ∈ C , then P(
⋂

C ) = 1

Proof. Without loss of generality we can assume that C is closed under finite intersections. Let r =

inf{P(C) : C ∈ C }. Fix a standard ε > 0. We can find Co ∈ C ⊂ A such that P(Co) < r+ ε . Denote

C = {Cα : α ∈ J} where J is some index set. Consider the set of formulas {φα(A)|α ∈ J} where

φα(A) is (A ∈A )∧ (P(A) > r− ε)∧ ((∀a ∈ A)(a ∈Cα)). As C is closed under finite intersection and

r = inf{P(C) : C ∈ C }, we have {φα(A) : α ∈ J} is finitely satisfiable. By saturation, we can find a set

Ai ∈A such that P(Ai)> r− ε and Ai ⊂
⋂

C . So
⋂

C ∈AL.
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If ∀C ∈ C we have P(C) = 1, by the same construction in the last paragraph, we have 1− ε ≤

P(Ai)≤ P(
⋂

C )≤ P(Ao) = 1 for every positive ε ∈ R. Thus we have the desired result.

In the context of Lemma 2.3.4, by considering the complement, it is easy to see that
⋃

C ∈ A .

Similarly, if we have P(A) = 0 for all A ∈ C then P(
⋃

C ) = 0.

We quote the next lemma which establishes the Loeb measurability of NS(∗X) for σ -compact s-

paces.

Lemma 2.3.5 ([24]). Let X be a σ -compact space with Borel σ -algebra B[X ] and let (∗X , ∗B[X ]L,P)

be a Loeb space. Then NS(∗X) ∈ ∗B[X ].

We are now at the place to prove the measurability of NS(∗X) for Cech complete spaces.

Theorem 2.3.6. If the Tychnoff space X is Cech complete then NS(∗X) ∈ ∗B[X ]L.

Proof. Let Y be a compactification of X such that X is a Gδ subset of Y . We use S to denote Y \X .

Then S is a Fσ subset of T hence is a σ -compact subset of Y. Let S =
⋃

i∈ω Si where each Si is a compact

subset of Y . Note that

∗Y = ∗X ∪ ∗S = NS(∗X)∪ ∗S∪Z. (2.3.1)

where Z = ∗X \NS(∗X). As Y is compact, we know that Z = {x ∈ ∗X : (∃s ∈ S)(x ∈ µ(s))}. Note that

NS(∗X), ∗S,Z are mutually disjoint sets. Let Ni = {y ∈ ∗Y : (∃x ∈ Si)(y ∈ µ(x))}.

Claim 2.3.7. For any i ∈ ω , Ni ∈ ∗B[X ].

Proof. : Without loss of generality, it is enough to prove the claim for N1. Let U = {U ⊂ X : U is open

and S1⊂U}. We claim that N1 =
⋂
{∗U :U ∈U }. To see this, we first consider any u∈

⋂
{∗U :U ∈U }.

Suppose u 6∈ N1, this means that for any y ∈ S1 there exists ∗Uy such that Uy is open and u 6∈ ∗Uy. As

S1 is compact, we can pick finitely many y1, . . . ,yn such that S1 ⊂
⋃

i≤nUyi . Thus we have ∗
⋃

i≤nUyi =⋃
i≤n
∗Uyi ⊂

⋃
y∈S1

∗Uy. Note that u 6∈
⋃

y∈S1
∗Uy implies that u 6∈ ∗

⋃
i≤nUyi . But

⋃
i≤nUyi is an element of

U . Hence we have a contradiction. Conversely, it is easy to see that N1 ⊂
⋂
{∗U : U ∈ U }. We also

know that each ∗U ∈ ∗B[X ]. Assume that we are working on a nonstandard extension which is more

saturated than the cardinality of the topology of X , then for any i ∈ ω Ni ∈ ∗B[X ] by Lemma 2.3.4.

It is also easy to see that
⋃

i<ω Ni = NS(∗S)∪Z. By Lemma 2.3.5, we know that both
⋃

i<ω Ni and

NS(∗S) belong to ∗B[Y ]. Hence Z ∈ ∗B[Y ].
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As S is σ -compact in Y, we know that S ∈ B[Y ]. By the transfer principle, we know that ∗S ∈
∗B[Y ]⊂ ∗B[Y ]. As both ∗S and Z belong to ∗B[Y ], it follows that NS(∗X) ∈ ∗B[Y ].

We now show that NS(∗X)∈ ∗B[X ]. Fix an arbitrary internal probability measure P on (∗X , ∗B[X ]).

Let P′ be the extension of P to (∗Y , ∗B[Y ]) defined by P′(A) = P′(A∩ X). We already know that

NS(∗X) ∈ ∗B[Y ]. By definition, this means that for every positive ε ∈R there exist Ai,Ao ∈ ∗B[Y ] such

that Ai ⊂ NS(∗X)⊂ Ao and P′(Ao \Ai)< ε . Let Bi = Ai∩ ∗X and Bo = Ao∩ ∗X . By the construction of

P and P′, it is clear that Bi ⊂ NS(∗X) ⊂ Bo and P(Bo \Bi) < ε . It remains to show that Bi and Bo both

lie in ∗B[X ]. The transfer of (∀A ∈B[Y ])(A∩X ∈B[X ]) gives us the final result.

Thus, by Theorem 2.3.1, we know that st is measurable for Cech-complete spaces. For regular

spaces, either locally compact spaces or completely metrizable spaces are Cech-complete. Thus we

have established the measurability of st for more general topological spaces. However, note that σ -

compact metric spaces need not be Cech complete.

We now introduce the concept of universally Loeb measurable sets.

Recall from Section 2.2 that given an internal algebra A its Loeb extension A is actually the P-

completion of the σ -algebra generated by A . So AL could differ for different internal probability

measures. We use A
P

to denote the Loeb extension of A with respect to the internal probability

measure P.

Definition 2.3.8. A set A ⊂ ∗X is called universally Loeb-measurable if A ∈ A
P

for every internal

probability measure P on (∗X ,A ).

We denote the collection of all universally-Loeb measurable sets by L (A ). By Theorem 2.3.6,

NS(∗X) is universally Loeb measurable if X is Cech complete. Moreover, Theorem 2.3.1 can be restated

as following:

Theorem 2.3.9 ([24]). Let X be a Hausdorff regular space equipped with Borel σ -algebra B[X ]. If

B ∈B[X ] then st−1(B) ∈ {A∩NS(∗X) : A ∈L (B[X ])}.

Thus, by Theorem 2.3.6, st−1(B) is universally measurable for every B ∈B[X ] if X is Cech com-

plete.

We conclude this section by giving an example of a relatively nice space where NS(∗X) is not

measurable.

Theorem 2.3.10. [3, Example 4.1] There is a separable metric space X and a Loeb space (∗X , ∗B[X ],P)

such that NS(∗X) is not measurable.
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Proof. Let X be the Bernstein set of [0,1]; for every uncountable closed subset A of [0,1], both A∩X

and A∩ ([0,1] \X) are nonempty. The topology on X is the natural subspace topology inherited from

standard topology on [0,1]. Clearly B⊂ X is Borel if and only if B = X ∩B′ for some Borel subset B′ of

[0,1]. Let µ denote the Lebesgue measure on ([0,1],B[[0,1]]). Let A be the σ -algebra generated from

B[[0,1]]∪{X}. Let m be the extension of µ to A by letting m(X) = 1.

Claim 2.3.11. m is a probability measure on ([0,1],A ).

Proof. It is sufficient to show that, for any A,B ∈B[[0,1]], we have

m(A∩X) = m(B∩X)→ m(A) = m(B). (2.3.2)

Suppose not. Then m(A4B) > 0. As m(A∩X) = m(B∩X), we have m((A4B)∩X) = 0. But we

already know that m([0,1]\X) = 0

Let P be the restriction of ∗m to ∗B[X ]. Consider the internal probability space (∗X , ∗B[X ],P). Let

A∈NS(∗X)∩∗B[X ] and let A′= stX(A) where stX(A) = {x∈X : (∃a∈A)(a≈ x)}. By Theorem 2.1.27,

we know that A′ is a compact subset of X . Thus A′ is a closed subset of [0,1]. As X does not contain

any uncountable closed subset of [0,1], we conclude that A′ must be countable. Thus, for any ε > 0,

there exists an open set Uε ⊂ [0,1] of Lebesgue measure less than ε that contains A′. As A′ = stX(A),

we know that A⊂ ∗X ∩ ∗Uε ⊂ ∗Uε . Then P(A)≤ ∗m(∗Uε)< ε . Thus the P-inner measure of NS(∗X) is

0. By applying the same technique to [0,1]\X , we can show that the P-outer measure of NS(∗X) is 1.

Thus NS(∗X) can not be Loeb measurable.

This is slightly different from [3, Example 4.1]. In [3, Example 4.1], the author let m be a finitely-

additive extension of Lebesgue measure to all subsets of [0,1]. In this paper, we let m to be a countably-

additive extension of the Lebesgue measure to include the Bernstein set.

2.4 Hyperfinite Representation of a Probability Space

In the literature of nonstandard measure theory, there exist quite a few results to represent standard

measure spaces using hyperfinite measure spaces. For example, see [2, 6, 17, 27]. In this section,

we establish a hyperfinite representation theorem for σ -compact complete metric spaces with Radon

probability measures. Although we restrict ourselves to a smaller class of spaces, we believe that we
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provide a more intuitive and simple construction. Moreover, such a construction will be used extensively

in later sections.

Let X be a σ -compact metric space. Let d denote the metric in X . Then ∗d will denote the metric

on ∗X . We impose the following definition on our space X .

Definition 2.4.1. A metric space is said to satisfy the Heine-Borel condition if the closure of every open

ball is compact.

Note that the Heine-Borel condition is equivalent to that every closed bounded set is compact.

As we mentioned in Section 2.1.2, finite elements of complete metric spaces need not be near-

standard. However, finite elements are near-standard for σ -compact metric spaces satisfying the Heine-

Borel condition.

Theorem 2.4.2. A metric space X satisfies the Heine-Borel condition if and only if every finite element

in ∗X is near-standard.

Proof. Let X be a metric space with metric d. Suppose X satisfies the Heine-Borel condition. Let y∈ ∗X

be a finite element. Then there exists x ∈ X and k ∈ N such that ∗d(x,y) < k. Let Uk
y denote the open

ball centered at y with radius k. Clearly we know that y ∈ ∗Uk
y ⊂ ∗(Uk

y ). As X satisfies the Heine-Borel

condition, we know that Uk
y is a compact set. By Theorem 2.1.25, there exists an element x0 ∈Uk

y such

that y ∈ µ(x0).

We now prove the reverse direction. Suppose X does not satisfy the Heine-Borel condition. Then

there exists an open ball U such that U is not compact. By Theorem 2.1.25, there exists an element

y ∈ ∗(U) such that y is not in the monad of any element x ∈U . As y ∈ ∗(U), y is finite hence is near-

standard. Thus there exists a x0 ∈ X \U such that y ∈ µ(x0). Thus there exists an open ball V centered

at x0 such that V ∩U = /0. Then we have y ∈ ∗V and y ∈ ∗U , which is a contradiction. Thus the closure

of every open ball of X must be compact, completing the proof.

We shall assume our state space X is a metric space satisfying the Heine-Borel condition in the

remainder of this paper unless otherwise mentioned. Note that metric spaces satisfying the Heine-Borel

condition are complete and σ -compact.

We are now at the place to introduce the hyperfinite representation of a topological space. The idea

behind hyperfinite representation is quite simple: For a metric space X , we partition an ”initial segment”

of ∗X into hyperfinitely pieces of sets with infinitesimal diameters. We then pick exactly one element

from each element of the partition to form our hyperfinite representation. The formal definition is stated

below.
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Definition 2.4.3. Let X be a σ -compact complete metric space satisfying the Heine-Borel condition.

Let ε ∈ ∗R+ be an infinitesimal and r be an infinite nonstandard real number. A hyperfinite set S ⊂ ∗X

is said to be an (ε,r)-hyperfinite representation of ∗X if the following three conditions hold:

1. For each s ∈ S, there exists a B(s) ∈ ∗B[X ] with diameter no greater than ε containing s such that

B(s1)∩B(s2) = /0 for any two different s1,s2 ∈ S.

2. For any x ∈ NS(∗X), ∗d(x, ∗X \
⋃

s∈S B(s))> r.

3. There exists a0 ∈ X and some infinite r0 such that

NS(∗X)⊂
⋃
s∈S

B(s) =U(a0,r0) (2.4.1)

where U(a0,r0) = {x ∈ ∗X : ∗d(x,a0)≤ r0}.

If X is compact, then
⋃

s∈S B(s) = ∗X . In this case, the second parameter of an (ε,r)-hyperfinite

representation is redundant. Thus, we have ε-hyperfinite representation for compact space X .

Definition 2.4.4. Let T denote the topology of X and K denote the collection of compact sets of X . A
∗open set is an element of ∗T and a ∗compact set is an element of ∗K .

By the transfer principle, a set A is a ∗compact set if for every ∗open cover of A there is a hyperfinite

subcover. By the Heine-Borel condition, the closure of every open ball is a compact subset of X . By the

transfer principle, we know that U(a0,r0) in Definition 2.4.3 is ∗compact.

Example 2.4.5. Consider the real line R with standard metric. Fix N1,N2 ∈ ∗N\N. Let ε = 1
N1

and let

r = 2N2. It then follows that

S = {−2N2,−2N2 +
1

N1
, . . . ,− 1

N1
,0,

1
N1

, . . . ,2N2} (2.4.2)

is a (ε,r)-hyperfinite representation of ∗R.

To see this, we need to check the three conditions in Definition 2.4.3. For s = 2N2, let B(s) = {2N2}.

For other s∈ S, let B(s)= [s,s+ 1
N1
). Clearly {B(s) : s∈ S} is a mutually disjoint collection of ∗Borel sets

with diameter no greater than 1
N1

. Moreover, it is easy to see that
⋃

s∈S B(s) = [−2N2,2N2] ⊃ NS(∗R).

For every element y ∈ ∗R\ [−2N2,2N2], we have ∗d(y,0) > 2N2. Then the distance between y and any

near-standard element is greater than N2. Finally, by the transfer principle, we know that
⋃

s∈S B(s) =

[−2N2,2N2] is a ∗compact set.
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Theorem 2.4.6. Let X be a σ -compact complete metric space satisfying the Heine-Borel condition.

Then for every positive infinitesimal ε and every positive infinite r there exists a (ε,r)-hyperfinite repre-

sentation Sr
ε of ∗X.

Proof. Let us start by assuming X is non-compact. Since X satisfies the Heine-Borel condition, X must

be unbounded. Fix an infinitesimal ε0 ∈ ∗R+ and an infinite r0. Pick any standard x0 ∈ X and consider

the open ball

U(x0,2r0) = {x ∈ ∗X : ∗d(x,x0)< 2r0}. (2.4.3)

As X is unbounded, U(x0,2r0) is a proper subset of ∗X . Moreover, as X satisfies the Heine-Borel

condition, U(x0,2r0) is a ∗compact proper subset of ∗X . The following sentence is true for X :

(∀r,ε ∈ R+)(∃N ∈ N)(∃A ∈P(B[X ]))(A has cardinality N and A is a collection of mutually

disjoint sets with diameters no greater than ε and A covers U(x0,r))

By the transfer principle, we have:

(∃K ∈ ∗N)(∃A ∈ ∗P(B[X ]))(A has internal cardinality K and A is a collection of mutually dis-

joint sets with diameters no greater than ε0 and A covers U(x0,2r0))

Let A = {Ui : i ≤ K}. Without loss of generality, we can assume that Ui is a subset of U(x0,2r0)

for all i ≤ K. It follows that
⋃

i≤K Ui = U(x0,2r0) which implies that NS(∗X) ⊂
⋃

i≤K Ui. For any

x ∈ NS(∗X) and any y ∈ ∗X \U(x0,2r0), we have ∗d(x,y) > r0. By the axiom of choice, we can pick

one element si ∈Ui for i≤ K. Let Sr0
ε0 = {si : i≤ K} and it is easy to check that this Sr0

ε0 satisfies all the

conditions in Definition 2.4.3.

It is easy to see that an essentially same but much simpler proof would work when X is compact.

For an (ε,r)-hyperfinite representation Sr
ε , it is possible for Sr

ε to contain every element of X .

Lemma 2.4.7. Suppose our nonstandard model is more saturated than the cardinality of X, then we can

construct Sr
ε so that X ⊂ Sr

ε .

Proof. Let A = {Ui : i ≤ K} be the same object as in Theorem 2.4.6 and let Sr
ε = {si : i ≤ K} be a

hyperfinite representation constructed from A . Let a={S: S is a hyperfinite subset of ∗X with internal

cardinality K}. Note that a is itself an internal set. Pick x ∈ X and let φx(S) be the formula

(S ∈ a)∧ ((∀s ∈ S)(∃!U ∈A )(s ∈U))∧ (x ∈ S). (2.4.4)
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Consider the family F = {φx(S)|x ∈ X}, we now show that this family is finitely satisfiable. Fix finitely

many elements x1, ....xk from X , we define a function f from Sr
ε to ∗X as follows: For each i ≤ N, if

{x1, ...xk}∩Ui = /0 then f (si) = si. If the intersection is nonempty, then {x1, ...xk}∩Ci = {x} for some

x ∈ {x1, ...xk}. In this case, we let f (si) = x. By the internal definition principle, such f is an internal

function and f (Sr
ε) is the realization of the formula φx1(S)∩ ·· ·∩φxk(S). By saturation, there would be

a S0 ∈ a satisfies all the formulas in F simultaneously. This S0 is the desired set.

Let (X ,B[X ],P) be a Borel probability space satisfying the conditions of Theorem 2.4.6 and let

S be an (ε,r)-hyperfinite representation of ∗X . We now show that we can define an internal measure

on (S,I (S)) such that the resulting internal probability space is a good representation of (X ,B[X ],P).

Similar theorems have been given assuming that X is merely Hausdorff [2]. Here we assume X is a σ -

compact complete metric space satisfying Heine-Borel conditions and as a consequence we will obtain

tighter control on the representation of (X ,B[X ],P).

Before we introduce the main theorem of this section, we first quote the following useful lemma by

Anderson.

Lemma 2.4.8 ([3, Thm 4.1]). Let (X ,B[X ],µ) be a σ -compact Borel probability space. Then st is

measure preserving from (∗X , ∗B[X ], ∗µ) to (X ,B[X ],µ). That is, we have µ(E) = ∗µ(st−1(E)) for all

E ∈B[X ].

Proof. Let E ∈B[X ], ε ∈ R+ and choose K compact, U open with K ⊂ E ⊂U and µ(U)−µ(K)< ε .

Note that ∗K ⊂ st−1(K)⊂ st−1(E)⊂ st−1(U)⊂ ∗U , and ∗µ(∗U)− ∗µ(∗K)< ε . By Theorem 2.3.9, we

have st−1(E) ∈ ∗B[X ]. Since ε is arbitrary, we have µ(E) = ∗µ(st−1(E)).

The following two lemmas are crucial in the proof of the main theorem of this section.

Lemma 2.4.9. Consider any (ε,r)-hyperfinite representation S of ∗X. Let F denote
⋃
{B(s) : s ∈

st−1(E)∩S}. Then for any E ∈B[X ], we have st−1(E) = F

Proof. First we show that F ⊂ st−1(E). Let x ∈ F then x must lie in B(s0) for some s0 ∈ st−1(E)∩ S.

Since s0 ∈ st−1(E), there exists a y ∈ E such that s0 ∈ µ(y). As B(s0) has infinitesimal radius, B(s0)⊂

µ(y). Hence x ∈ B(s0)⊂ µ(y)⊂ st−1(E). Hence, F ⊂ st−1(E).

Now we show the reverse direction. Let x ∈ st−1(E) . Since
⋃

s∈S B(s) ⊃ NS(∗X), x ∈ B(s0) for

some s0 ∈ S. As x ∈ st−1(E), there exists a y ∈ E such that x ∈ µ(y). This shows that s0 ∈ st−1(E)∩S

which implies that x ∈ F , completing the proof.
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Before proving the next lemma, recall that L (A ) denote the collection of universally Loeb mea-

surable sets of the internal algebra A .

Lemma 2.4.10. Let X be a σ -compact metric space satisfying the Heine-Borel condition equipped with

Borel σ -algebra B[X ]. Let S be a (ε,r)-hyperfinite representation of ∗X for some positive infinitesimal

ε . Then for any E ∈B[X ] we have

st−1(E) ∈L (∗B[X ]) and st−1(E)∩S ∈L (I (S)). (2.4.5)

Proof. By Theorem 2.3.9, st−1(E) ∈ {A∩NS(∗X) : A ∈ L (∗B[X ])}. As X is σ -compact, by Lem-

ma 2.3.5, we have NS(∗X) ∈L (∗B[X ]) hence st−1(E) ∈L (∗B[X ]). Let P be any internal probability

measure on (S,I (S)) Let P′ be an internal probability measure on (∗X , ∗B[X ]) with P′(B) = P(B∩S).

As S is internal and st−1(E) is universally Loeb measurable, we know that st−1(E)∩S ∈ ∗B[X ]
P′

where

∗B[X ]
P′

denotes the Loeb σ -algebra of ∗B[X ] under P′. Fix any ε > 0. We can then find Ai,Ao ∈ ∗B[X ]

such that Ai ⊂ st−1(E)∩S⊂ Ao and P′(Ao \Ai)< ε . We thus have

P′(Ao \Ai) = P((Ao \Ai)∩S) = P((Ao∩S)\ (Ai∩S))< ε. (2.4.6)

As both Ai,Ao ∈ ∗B[X ], we know that Ai∩S,Ao∩S ∈I (S). Moreover, we have Ai∩S⊂ st−1(E)∩S⊂

Ao∩S. Hence, by the construction of Loeb measure, st−1(E)∩S is Loeb measurable with respect to P.

As P is arbitrary, we know that st−1(E)∩S ∈L (I (S)).

We are now at the place to prove the main theorem of this section.

Theorem 2.4.11. Let (X ,B[X ],P) be a Borel probability space where X is a σ -compact complete metric

space satisfying the Heine-Borel condition, and let (∗X , ∗B[X ], ∗P) be its nonstandard extension. Then

for every positive infinitesimal ε ,every positive infinite r and every (ε,r)-hyperfinite representation S of

∗X there exists an internal probability measure P′ on (S,I (S))

1. P′({s})≈ ∗P(B(s)).

2. P(E) = P′(st−1(E)∩S) for every E ∈B[X ].

where P′ denotes the Loeb measure of P′.

Proof. Fix an infinitesimal ε ∈ ∗R+ and an positive infinite number r. Let S be a (ε,r)-hyperfinite

representation of ∗X and consider the hyperfinite measurable space (S,I (S)). Let P′({s}) =
∗P(B(s))

∗P(
⋃

s∈S B(s))
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for every s ∈ S. It follows that P′ is internal because the map s 7→ P′({s}) is internal. For any A ∈I (S),

let P′(A) = ∑s∈A P′({s}). Since ∑s∈A
∗P(B(s)) = ∗P(

⋃
s∈S B(s)) by the hyperfinite additivity of ∗P, it is

easy to see that P′ is an internal probability measure on (S,I (S)).

As
⋃

s∈S B(s)⊃NS(∗X), by Lemma 2.4.8, we know that ∗P(
⋃

s∈S B(s))≈ 1. Hence we have P′({s})≈
∗P(B(s)).

It remains to show that P(E) = P′(st−1(E)∩ S) for every E ∈B[X ]. As X is a σ -compact Borel

probability space, by Lemma 2.4.8 and Lemma 2.4.10, we have P(E) = ∗P(st−1(E)). By Lemma 2.4.9,

we then have

∗P(st−1(E)) = ∗P(
⋃
{B(s) : s ∈ st−1(E)∩S}). (2.4.7)

Consider any set Ao ⊃ st−1(E)∩ S,Ao ∈ I (S), then Ao is an internal subset of S hence is hyperfinite.

This means that
⋃

s∈Ao
B(s) is a hyperfinite union of ∗Borel sets hence is ∗Borel. Because st−1(E)∩S⊂

Ao, we have

∗P(
⋃
{B(s) : s ∈ st−1(E)∩S})≤ ∗P(

⋃
s∈Ao

B(s)) = st(∗P(
⋃

s∈Ao

B(s))). (2.4.8)

As
⋃

s∈S B(s)⊃ NS(∗X), by Lemma 2.4.8, we have ∗P(
⋃

s∈S B(s))≈ 1. Thus we have

st(∗P(
⋃

s∈Ao

B(s))) = st(
∗P(

⋃
s∈Ao

B(s))
∗P(

⋃
s∈S B(s))

) = st(P′(Ao)) = P′(Ao). (2.4.9)

Hence, for every set Ao ∈I (S) such that Ao ⊃ st−1(E)∩S, we have

∗P(st−1(E)) = ∗P(
⋃
{B(s) : s ∈ st−1(E)∩S})≤ P′(Ao). (2.4.10)

This means that

∗P(st−1(E))≤ inf{P′(Ao) : Ao ⊃ st−1(E)∩S,Ao ∈I (S)}. (2.4.11)

By a similar argument, we have

∗P(st−1(E))≥ sup{P′(Ai) : Ai ⊂ st−1(E)∩S,Ai ∈I (S)}. (2.4.12)
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By Lemma 2.4.10, we have st−1(E)∩S ∈I (S)L. Thus by the construction of Loeb measure, we have

inf{P′(Ao) : Ao ⊃ st−1(E)∩S,Ao ∈I (S)} (2.4.13)

= sup{P′(Ai) : Ai ⊂ st−1(E)∩S,Ai ∈I (S)} (2.4.14)

= P′(st−1(E)∩S). (2.4.15)

Hence P(E) = ∗P(st−1(E)) = P′(st−1(E)∩S) finishing the proof.

From the above proof, we see that

∗P(st−1(E)) = inf{P′(Ao) : Ao ⊃ st−1(E)∩S,Ao ∈I (S)} (2.4.16)

= inf{st(
∗P(

⋃
s∈Ao

B(s))
∗P(

⋃
s∈S B(s))

) : Ao ⊃ st−1(E)∩S,Ao ∈I (S)} (2.4.17)

= inf{∗P(
⋃

s∈Ao

B(s)) : Ao ⊃ st−1(E)∩S,Ao ∈I (S)}. (2.4.18)

Similarly we have:

∗P(st−1(E)) = sup{∗P(
⋃

s∈Ai

B(s)) : Ai ⊂ st−1(E)∩S,Ai ∈I (S)} (2.4.19)

Note that if X is compact, then ∗P(
⋃

s∈S B(s)) = ∗P(∗X) = 1. Hence P′({s}) = ∗P(B(s)) in Theo-

rem 2.4.11. We no longer need to normalize the probability space when X is compact.

We conclude this section by giving an explicit application of Theorem 2.4.11 to Example 2.2.5.

Example 2.4.12. Let µ be the Lebesgue measure on the unit interval [0,1] restricted to the Borel σ -

algebra on [0,1]. Let N be an infinite element in ∗N and let Ω = { 1
N ,

2
N , . . . ,

N−1
N ,1}. Let µ ′ be an internal

probability measure on (Ω,I (Ω)) such that µ ′({ω}) = 1
N for every ω ∈Ω.

Theorem 2.4.13. For every Borel measurable set A, we have

µ(A) = µ ′(st−1(A)∩Ω). (2.4.20)

Proof. Clearly Ω is a ( 1
N )-hyperfinite representation of ∗[0,1]. For every ω ∈ Ω, we have B(ω) =

(ω − 1
N ,ω] for ω 6= 1

N and B( 1
N ) = [0, 1

N ]. It is easy to see that {B(ω) : ω ∈ Ω} covers ∗[0,1] and

µ ′({ω}) = ∗µ(B(ω)) for every ω ∈ Ω. Thus, by Theorem 2.4.11, we have µ(A) = µ ′(st−1(A)∩Ω),

33



completing the proof.
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Chapter 3

Hyperfinite Representation of Standard

Markov Processes

A Hyperfinite set is an infinite set with the same first-order logic properties as finite sets. A Hyperfinite

stochastic process is a stochastic process with hyperfinite state space and time line. Thus, a hyperfi-

nite stochastic process is a “continuous” stochastic process with the same first-order logic properties as

discrete stochastic processes. There is a rich literature on studying hyperfinite stochastic process. In

[1], Robert Anderson constructed a standard Brownian motion from a hyperfinite random walk, and the

Itô stochastic integral from a hyperfinite sum. In [23], Jerome Keisler construct solutions of stochastic

integral equations from solutions of hyperfinite difference equations. In this chapter, we extend Ander-

son’s construction of the standard Brownian motion to all Markov processes satisfying certain regularity

conditions. In particular, we will construct a hyperfinite Markov process for every standard Markov pro-

cess such that their transition probability differ only by some infinitesimal. Unlike the construction in

[23], our construction of hyperfinite Markov processes only depend on the transition probabilities of the

original Markov processes.

In Section 3.1, we define hyperfinite Markov processes and investigate many of its properties. A

hyperfinite Markov process is characterized by the following four ingredients:

• a hyperfinite state space S.

• an initial distribution {νi}i∈S consisting of non-negative hyperreals summing to 1.

• a hyperfinite time line T = {0,δ t, . . . ,K} for some infinitesimal δ t and some infinite K ∈ ∗R.

• transition probabilities {pi j}i, j∈S consisting of non-negative hyperreals with ∑ j∈S pi j = 1 for all
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i ∈ S.

In other words, hyperfinite Markov processes behave very much like discrete-time Markov processes

with finite state spaces. The Markov chain ergodic theorem for discrete-time Markov processes with

finite state spaces can be proved using the “coupling” technique. Namely, for finite Markov processes,

we can show that two i.i.d Markov processes starting at different points will eventually “couple” at the

same point under moderate conditions. Similarly, for hyperfinite Markov processes, we can show that

two i.i.d copies starting at different points will eventually get infinitesimally close. This infinitesimal

coupling technique is illustrated in Lemma 3.1.8. In Theorems 3.1.19 and 3.1.26, we establish the

ergodic theorem for hyperfinite Markov processes.

In Section 3.2, we construct hyperfinite representations for discrete-time Markov processes. Given

a discrete-time Markov process {Xt}t∈N, we construct a hyperfinite Markov process {X ′t }t∈T such that

the internal transition probabilities of {X ′t }t∈T deviate from the transition probabilities of {Xt}t≥0 only

by some infinitesimal. The hyperfinite Markov process {X ′t }t∈T is defined on some hyperfinite represen-

tation S of X . Note that the time line T of {X ′t }t∈T in this case is {1,2, . . . ,K} for some infinite K ∈ ∗N.

At each step, an infinitesimal difference between the internal transition probabilities of {X ′t }t∈T and the

transition probabilities of {Xt} is generated. As there are only countably many steps, the internal transi-

tion probabilities provide a reasonably well approximation for the transition probabilities of of {Xt}t∈N.

We illustrate such result in Theorem 3.2.16.

In Section 3.3, we apply similar ideas developed in Section 3.2 to continuous-time Markov processes

with general state spaces. However, the construction of hyperfinite representation for a continuous-time

Markov process {Xt}t≥0 is much more complicated compared with the construction in Section 3.2.

When the time-line is continuous, the hyperfinite time-line T for the hyperfinite representation {X ′t }t∈T

is {0,δ t,2δ t, . . . ,K} where δ t is some infinitesimal and K is some infinite number. As it takes hyper-

finitely many infinitesimal steps to reach a non-infinitesimal time point, we need to make sure that the

difference between the transition probabilities {Xt}t≥0 and the internal transition probabilities {X ′t }t∈T

generated in every step is so small such that the accumulated difference will remain infinitesimal. We

establish this by using the internal induction principle (see Theorem 3.3.16). Unlike the construction

of {X ′t }t∈T in Section 3.2, the construction of {X ′t }t∈T in Section 3.3 involves picking the underlying

hyperfinite state space S carefully. Finally, we establish the connection between {Xt}t≥0 and {X ′t }t∈T in

Theorem 3.3.39.
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3.1 General Hyperfinite Markov Processes

In this section, we introduce the concept of general hyperfinite Markov processes. Intuitively, hyperfinite

Markov processes behaves like finite Markov processes but can be used to represent standard continuous

time Markov processes under certain conditions.

Definition 3.1.1. A general hyperfinite Markov chain is characterized by the following four ingredients:

1. A hyperfinite state space S⊂ ∗X where X is a metric space satisfying the Heine-Borel condition.

2. A hyperfinite time line T = {0,δ t, ....,K} where δ t = 1
N! for some N ∈ ∗N\N and K ∈ ∗N\N.

3. A set {vi : i ∈ S} where each vi ≥ 0 and ∑i∈S vi = 1.

4. A set {pi j}i, j∈S consisting of non-negative hyperreals with ∑ j∈S pi j = 1 for each i ∈ S

Thus the state space S naturally inherits the ∗metric of ∗X . An element s ∈ S is near-standard if it is

near-standard in ∗X . The near-standard part of S, NS(S), is defined to be NS(S) = NS(∗X)∩S.

Note that the time line T contains all the standard rational numbers but contains no standard irra-

tional number. However, for every standard irrational number r there exists tr ∈ T such that tr ≈ r.

Intuitively, the {pi j}i, j∈S refers to the internal probability of going from i to j at time δ t.

The following theorem shows the existence of hyperfinite Markov Processes.

Theorem 3.1.2. Given a non-empty hyperfinite state space S, a hyperfinite time line T = {0,δ t, ....,K},

{vi}i∈S and {pi j}i, j∈S as in Definition 3.1.1. Then there exists internal probability triple (Ω,A ,P) with

an internal stochastic process {Xt}t∈T defined on (Ω,A ,P) such that

P(X0 = i0,Xδ t = iδ t , ...Xt = it) = vi0 pi0iδ t ...pit−δ t it (3.1.1)

for all t ∈ T and i0, ....it ∈ S.

Note that vi0 pi0iδ t ...pit−δ t it is a product of hyperfinitely many hyperreal numbers. It is well-defined

by the transfer principle.

Proof. Let Ω={ω ∈ ST : ω is internal} which is the set of internal functions from T to S. As both S and

T are hyperfinite, Ω is hyperfinite. Let A be the set consisting of all internal subsets of Ω. We now

define the internal measure P on (Ω,A ). For every ω ∈Ω, let

P(ω) = viω(0) piω(0)iω(1) · · · piω(K−δ t)iω(K)
. (3.1.2)
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For every A ∈ A , let P(A) = ∑ω∈A P(ω). Let Xt(ω) = ω(t). It is easy to check that (Ω,A ,P) and

{Xt}t∈T satisfy the conditions of this theorem.

We use (Ω,A ,P) to denote the Loeb extension of the internal probability triple (Ω,A ,P) in Theo-

rem 3.1.2. The construction of hyperfinite Markov processes is similar to the construction of finite state

space discrete time Markov processes. Unlike the construction of general Markov processes, we do not

need to use the Kolmogorov extension theorem.

We introduce the following definition.

Definition 3.1.3. For any i, j ∈ S and any t ∈ T , we define:

p(t)i j = ∑
ω∈M

P({ω}|X0 = i) (3.1.3)

where M = {ω ∈Ω : ω(0) = i∧ω(t) = j}.

It is easy to see that p(δ t)
i j = pi j. For general t ∈ T , p(t)i j is the sum of piiδ t piδ t i2δ t · · · pit−δ t j over all

possible iδ t , i2δ t , . . . , it−δ t in S. Intuitively, p(t)i j is the internal probability of the chain reaches state j at

time t provided that the chain started at i. For any set A ∈ I (S), any i ∈ S and any t ∈ T , the internal

transition probability from x to A at time t is denoted by p(t)i (A) or p(t)(i,A). In both cases, they are

defined to be ∑ j∈A p(t)i j .

We are now at the place to show that the hyperfinite Markov chain is time-homogeneous.

Lemma 3.1.4. For any t,k ∈ T and any i, j ∈ S, we have P(Xk+t = j|Xk = i) = p(t)i j provided that

P(Xk = i)> 0.

Proof. It is sufficient to show that P(Xk+δ t = j|Xk = i) = pi j since the general case follows from a

similar calculation.

P(Xk+δ t = j|Xk = i) =
P(Xk+δ t = j,Xk = i)

P(Xk = i)
(3.1.4)

=
∑i0,iδ t ,...,ik−δ t

vi0 pi0iδ t · · · pik−δ t i pi j

∑i0,iδ t ,...,ik−δ t
vi0 pi0iδ t · · · pik−δ t i

(3.1.5)

= pi j. (3.1.6)

Hence we have the desired result.

We write Pi(Xt ∈ A) for P(Xt ∈ A|X0 = i). It is easy to see that p(t)i (A) = Pi(Xt ∈ A). Note that

for every i ∈ S and every t ∈ T , p(t)i (.) is an internal probability measure on (S,I (S)). We use p(t)i to
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denote the Loeb extension of this internal probability measure. For every A ∈ I (S), it is easy to see

that p(t)i (A) = Pi(Xt ∈ A).

We are now at the place to define some basic concepts for Hyperfinite Markov processes.

Definition 3.1.5. Let π be an internal probability measure on (S,I (S)). We call π a weakly sta-

tionary if there exists an infinite t0 ∈ T such that for any t ≤ t0 and any A ∈ I (S) we have π(A) ≈

∑i∈S π({i})p(t)(i,A).

The definition of weakly stationary distribution is similar to the definition of stationary distribution

for discrete time finite Markov processes. However, we only require π(A) ≈ ∑i∈S π({i})p(t)(i,A) for

t no greater than some infinite t0 for weakly stationary distributions. We use π to denote the Loeb

extension of π .

Definition 3.1.6. A hyperfinite Markov chain is said to be strong regular if for any A ∈ I (S), any

i, j ∈ NS(S) and any non-infinitesimal t ∈ T we have

(i≈ j) =⇒ (Pi(Xt ∈ A)≈ Pj(Xt ∈ A)). (3.1.7)

One might wonder whether Pi(Xt ∈ A) ≈ Pj(Xt ∈ A) for infinitesimal t ∈ T . This is generally not

true.

Example 3.1.7. Let the time line T = {0,δ t,2δ t, . . . ,K} for some infinitesimal δ t and some infinite K.

Let the state space S = { −K√
δ t
, . . . ,−

√
δ t,0,

√
δ t, . . . , K√

δ t
}. For any i ∈ S, we have p(δ t)(i, i+

√
δ t) = 1

2

and pii−
√

δ t = 1
2 . This is Anderson’s construction of Brownian motion which motivates the study

of infinitesimal stochastic processes (see [1]). It can also be viewed as a hyperfinite Markov process.

As the normal distributions with different means converge in total variation distance, the hyperfinite

Brownian motion is strong Feller. However, we have p(δ t)(0,
√

δ t) = 1
2 and p(δ t)(

√
δ t,
√

δ t) = 0.

For a general state space Markov processes, the transition probability to a specific point is usually

0. For hyperfinite Markov process, under some conditions, we can get infinitesimally close to a specific

point with probability 1.

Lemma 3.1.8. Consider a hyperfinite Markov chain on a state space S and two states i, j ∈ S, let

{U
1
n
j : n ∈ N} be the collection of balls with radius 1

n around j. Suppose ∀n ∈ N, we have Pi({ω : (∃t ∈

NS(T ))(Xt(ω) ∈U
1
n
j )}) = 1. Then for any infinite s0 ∈ T , we have Pi({ω : ∃t < s0Xt(ω)≈ j}) = 1.
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Proof. Pick any infinite s0 ∈ T and from the hypothesis we know that ∀n ∈ N, Pi({ω : (∃t ≤ s0)(Xt ∈

U
1
n
j )})> 1− 1

n .

Consider the set B = {n ∈ ∗N : Pi({ω : (∃t ≤ s0)(Xt ∈U
1
n
j )}) > 1− 1

n}, by the internal definition

principle, B is an internal set and contains N. By overspill, B contains an infinite number in ∗N and we

denote it by n0. Thus we have Pi({ω : (∃t ≤ s0)(Xt ∈U
1

n0
j )}) > 1− 1

n0
. Hence Pi({ω : (∃t ≤ s0)(Xt ∈

U
1

n0
j )}) = 1. The set {ω : (∃t ≤ s0)(Xt ≈ j)} is a superset of {ω : (∃t ≤ s0)(Xt ∈U

1
n0
j )}. Since the Loeb

measure is complete we know that Pi({ω : (∃t ≤ s0)(Xt ≈ j)}) = 1.

.

In the study of standard Markov processes, it is sometimes useful to consider the product of two i.i.d

Markov processes. The similar idea can be applied to hyperfinite Markov processes.

Definition 3.1.9. Let {Xt}t∈T be a hyperfinite Markov chain with internal transition probability {pi j}i, j∈S.

Let {Yt}t∈T be a i.i.d copy of {Xt}. Then product chain Zt is defined on the state space S×S with tran-

sition probability

{q(i, j),(k,l) = pik p jl}i, j,k,l∈S. (3.1.8)

Similarly q(i, j),(k,l) refers to the internal probability of going from point (i, j) to point (k, l). The

following lemma is an immediate consequence of this definition.

Lemma 3.1.10. Let {Xt}t∈T , {Yt}t∈T and {Zt}t∈T be the same as in Definition 3.1.9. Then for any

t ∈ T ,any i, j ∈ S and any A,B ∈I (S) we have q(t)(i, j)(A×B) = p(t)i (A)p(t)j (B).

Proof. We prove this lemma by internal induction on T .

Fix any i, j ∈ S and any A,B ∈I (S). We have

p(δ t)
i (A)p(δ t)

j (B) (3.1.9)

= ∑
(a,b)∈A×B

p(δ t)
i ({a})× p(δ t)

j ({b}) (3.1.10)

= ∑
(a,b)∈A×B

q(δ t)
(i, j)({(a,b)}) (3.1.11)

= q(δ t)
(i, j)(A×B). (3.1.12)

Hence we have shown the base case.
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Suppose we know that the lemma is true for t = k. We now prove the lemma for k+ δ t. Fix any

i, j ∈ S and any A,B ∈I (S). We have

p(k+δ t)
i (A)× p(k+δ t)

j (B) (3.1.13)

= ∑
s∈S

p(δ t)
i ({s})p(k)s (A)×∑

s′∈S
p(δ t)

j ({s′})p(k)s′ (B) (3.1.14)

= ∑
(s,s′)∈S×S

p(δ t)
i ({s})p(δ t)

j ({s′})p(k)s (A)p(k)s′ (B) (3.1.15)

By induction hypothesis, this equals to:

∑
(s,s′)∈S×S

q(δ t)
(i, j)({(s,s

′)})q(k)(s,s′)(A×B) = q(k+δ t)
(i, j) (A×B). (3.1.16)

As all the parameters are internal, by internal induction principle we have shown the result.

Definition 3.1.11. Consider a hyperfinite Markov chain {Xt}t∈T and two near-standard i, j ∈ S. A

near-standard (x,y) ∈ S× S is called a near-standard absorbing point with respect to i, j if P′(i, j)((∃t ∈

NS(T ))(Zt ∈ U
1
n

x ×U
1
n

y )) = 1 for all n ∈ N where P′ denotes the internal probability measure of the

product chain {Zt}t∈T and U
1
n

x ,U
1
n

y denote the open ball centered at x,y with radius 1
n ,respectively.

It is a natural to ask when a hyperfinite Markov chain has a near-standard absorbing point. We start

by introducing the following definitions.

Definition 3.1.12. For any A∈I (S), the stopping time τ(A) with respect to a hyperfinite Markov chain

{Xt}t∈T is defined to be τ(A) = min{t ∈ T : Xt ∈ A}.

Definition 3.1.13. A hyperfinite Markov chain {Xt}t∈T is productively near-standard open set irre-

ducible if for any i, j ∈ NS(S) and any near-standard open ball B with non-infinitesimal radius we have

P′(i, j)(τ(B×B)<∞)> 0 where P′ denotes the internal probability measure of the product chain {Zt}t∈T

as in Definition 3.1.9.

Recall that the state space of {Xt}t∈T is a hyperfinite set S⊂ ∗X where X is a metric space satisfying

the Heine-Borel condition. Let d denote the metric on X . A near-standard open ball of S is an internal

set taking the form {s ∈ S : ∗d(s,s0) < r} for some near-standard point s0 ∈ S and some near-standard

r ∈ ∗R.

Theorem 3.1.14. Let {Xt}t∈T be a hyperfinite Markov chain with weakly stationary distribution π such

that π(NS(S)) = 1. Suppose π×π is a weakly stationary distribution for the product Markov process
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{Zt}t∈T . If {Xt}t∈T is productively near-standard open set irreducible then for π×π almost all (i, j) ∈

S×S there exists an near-standard absorbing point (i0, i0) for (i, j) as in Definition 3.1.11.

Before we prove this theorem, we first establish the following technical lemma. Although this

lemma takes place in the non-standard universe, the proof of this lemma is similar to the proof of a

standard result in [38].

Lemma 3.1.15 ([38, Lemma. 20]). Consider a general hyperfinite Markov chain on a state space S,

having a weakly stationary distribution π(.) such that π(NS(S)) = 1. Suppose that for some internal

A⊂ S, we have Px(τ(A)< ∞)> 0 for π almost all x∈ S. Then for π-almost-all x∈ S, Px(τ(A)< ∞) = 1.

Proof. Suppose to the contrary that the conclusion does not hold. That means π(x∈ S : Px(τ(A)< ∞)<

1)> 0.

Claim 3.1.16. There exist l ∈ N, δ ∈ R+ and internal set B ⊂ S with π(B) > 0 such that Px(τ(A) =

∞,max{k ∈ T : Xk ∈ B}< l)≥ δ for all x ∈ B.

Proof. As π(x ∈ S : Px(τ(A) = ∞) > 0) > 0, This implies that there exist δ1 ∈ R+ and B1 ∈F with

π(B1) > 0 such that Px(τ(A) < ∞) ≤ 1− δ1 for all x ∈ B1 where F denote the Loeb extension of the

internal algebra I (S) with respect to π . By the construction of Loeb measure, we can assume that B1

is internal. On the other hand, as Px(τ(A) < ∞) > 0 for π almost surely x ∈ S, by countable additivity,

we can find l0 ∈ N and δ2 ∈ R+ and internal B2 ⊂ B1(again by the construction of Loeb measure)

with π(B2) > 0 such that ∀x ∈ B2, Px((∃t ≤ l0 ∧ t ∈ T )(Xt ∈ A)) ≥ δ2. Let η = |{k ∈ N∪{0} : (∃t ∈

T ∩ [k,k + 1))(Xk ∈ B2)}|. Then for any r ∈ N and x ∈ S, we have Px(τ(A) = ∞,η > r(l0 + 1)) ≤

Px(τ(A) = ∞|η > r(l0 +1))≤ (1−δ2)
r. In particular, Px(τ(A) = ∞,η = ∞) = 0.

Hence for x ∈ B2, we have

Px(τ(A) = ∞,η < ∞) (3.1.17)

= 1−Px(τ(A) = ∞,η = ∞)−Px(τ(A)< ∞) (3.1.18)

≥ 1−0− (1−δ1) = δ1. (3.1.19)

By countable additivity again there exist l ∈ N, δ ∈ R+ and B ⊂ B2 (again pick B to be internal) with

π(B) > 0 such that Px(τ(A) = ∞,max{t ∈ T : Xt ∈ B2} < l) ≥ δ for all x ∈ B. Finally as B ⊂ B2, we

have

max{t ∈ T : Xt ∈ B2} ≥max{t ∈ T : Xt ∈ B} (3.1.20)
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establishing the claim.

Claim 3.1.17. Let B, l,δ be as in Claim 3.1.16. Let K′ be the biggest hyperinteger such that K′l ≤ K

where K is the last element in T . Let

s = max{k ∈ ∗N : (1≤ k ≤ K′)∧ (Xkl ∈ B)} (3.1.21)

and s = 0 if the set is empty. Then for all 1≤ r ≤ j ∈ N we have

∑
x∈S

π({x})Px(s = r,X jl 6∈ A)' st(π(B)δ ). (3.1.22)

Proof. Pick any j ∈ N. we have

∑
x∈S

π({x})Px(s = r,X jl 6∈ A) = ∑
x∈S

π({x}) ∑
y∈B

Px(Xrl = y)Py(s = 0,X( j−r)l 6∈ A) (3.1.23)

Note that τ(A) = ∞ implies X( j−r)l 6∈ A and max{k ∈ T : Xk ∈ B}< l implies that s = 0. As r, l ∈ N

and π is a weakly stationary distribution, we have

∑
x∈S

π({x}) ∑
y∈B

Px(Xrl = y)Py(s = 0,X( j−r)l 6∈ A) (3.1.24)

≥∑
x∈S

π({x}) ∑
y∈B

Px(Xrl = y)δ (3.1.25)

≈ π(B)δ . (3.1.26)

By the definition of standard part, it is easy to see that this claim holds.

Now we are at the position to prove the theorem. For all j ∈ N, by Claim 3.1.16, we have

π(Ac)≈∑
x∈S

π({x})Px(X jl ∈ Ac) (3.1.27)

= ∑
x∈S

π({x})Px(X jl 6∈ A) (3.1.28)

≥
j

∑
r=1

∑
x∈S

π({x})Px(s = r,X jl 6∈ A) (3.1.29)

≥
j

∑
r=1

st(π(B)δ ). (3.1.30)

As π(B) > 0, so we can pick j ∈ N such that j > 1
st(π(B)δ ) . This gives that π(Ac) > 1 which is a
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contradiction, proving the result.

.

We are now at the place to prove Theorem 3.1.14.

proof of Theorem 3.1.14. Pick any near-standard i0 ∈ S. Recall that U
1
n

i0 denote the open ball around i0

with radius 1
n . It is clear that U

1
n

i0 ×U
1
n

i0 ∈I (S)×I (S). By Definition 3.1.13, we have P′(i, j)(τ(U
1
n

i0 ×

U
1
n

i0 ) < ∞) > 0 for all n ∈ N and π×π almost all (i, j) ∈ S×S. As π×π is a weakly stationary distri-

bution, by Lemma 3.1.15, we have P′(i, j)(τ(U
1
n

i0 ×U
1
n

i0 )< ∞) = 1 for π ′ almost surely (i, j) ∈ S×S and

every n ∈N. By Definition 3.1.11, we know that (i0, i0) is a near-standard absorbing point for π ′ almost

all (i, j) ∈ S×S.

Note that this proof shows that every near-standard point (i, j) is a near-standard absorbing point for

π×π almost all (x,y) ∈ S×S.

In the statement of Theorem 3.1.14, we require π ×π to be a weakly stationary distribution of the

product hyperfinite Markov chain {Zt}t∈T . Recall that t0 is an infinite element in T such that π(A) ≈

∑i∈S π({i})p(t)i (A) for all A ∈I (S) and all t ≤ t0.

Lemma 3.1.18. Let π ′= π×π . For any A,B∈I (S) and any t ≤ t0, we have π ′(A×B)≈∑(i, j)∈S×S π ′(i, j)q
(t)
(i, j)(A×

B) where q(t)(i, j)(A×B) denotes the t-step transition probability from (i, j) to the set A×B.

Proof. Pick A,B ∈I (S) and t ≤ t0. Then, by Definition 3.1.5 and Lemma 3.1.10, we have

∑
(i, j)∈S×S

π
′({(i, j)})q(t)(i, j)(A×B) (3.1.31)

= ∑
(i, j)∈S×S

π({i})π({ j})p(t)i (A)p(t)j (B) (3.1.32)

= (∑
i∈S

π({i})p(t)i (A))(∑
j∈S

π({ j})p(t)j (B)) (3.1.33)

≈ π(A)π(B) (3.1.34)

= π(A×B). (3.1.35)

However, we do not know whether π ′ would always be a weakly stationary distribution since

I (S)×I (S) is a bigger σ -algebra than I (S)×I (S). This gives rise to the following open ques-

tions.
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Open Problem 2. Does there exists a π ′ that fails to be a weakly stationary distribution of the product

hyperfinite Markov process {Zt}t∈T ?

More generally, we ask the following question:

Open Problem 3. Let P1,P2 be two internal probability measures on (Ω,A ). Suppose P1(A) ≈ P2(A)

for all A ∈A . Is it true that (P1×P1)(B)≈ (P2×P2)(B) for all B ∈A ×A ?

We are now at the place to prove the hyperfinite Markov chain ergodic theorem.

Theorem 3.1.19. Consider a strongly regular hyperfinite Markov chain having a weakly stationary

distribution π such that π(NS(S)) = 1. Suppose for π×π almost surely (i, j) ∈ S× S there exists a

near-standard absorbing point (i0, i0) for (i, j). Then there exists an infinite t0 ∈ T such that for π-

almost every x ∈ S, any internal set A, any infinite t ≤ t0 we have Px(Xt ∈ A)≈ π(A).

Proof. Let {Xt}t∈T be such a hyperfinite Markov chain with internal transition probability {p(t)i j }i, j∈S,t∈T .

Let {Yt}t∈T be a i.i.d copy of {Xt}t∈T and let {Zt}t∈T denote the product hyperfinite Markov chain. We

use P′ and P′ to denote the internal probability and Loeb probability of {Zt}t∈T . Let π ′({(i, j)}) =

π({i})π({ j}).

By the assumption of the theorem, we know that for π ′ almost surely (i, j) ∈ S× S there exists a

near-standard absorbing point (i0, i0) for (i, j). As π(NS(S)) = 1, both i, j can be taken to be near-

standard points. Pick an infinite t0 ∈ T such that π(A) ≈ ∑i∈S π({i})Pi(Xt ∈ A) for all t ≤ t0 and all

internal sets A ⊂ S. Now fix some internal set A and some infinite time t1 ≤ t0. Let M denote the

set {ω : ∃t < t1− 1,Xs(ω) ≈ Ys(ω) ≈ i0}. By Definition 3.1.11, we know that for π ′ almost surely

(i, j) ∈ S×S and any n ∈ N we have

P′(i, j)((∃t ∈ NS(T ))(Zt ∈U
1
n

i0 ×U
1
n

i0 )) = 1. (3.1.36)

By Lemma 3.1.8, we know that for π ′ almost surely (i, j) ∈ S× S we have P′(i, j)(M) = 1. Thus by

strongly regularity of the chain, we know that for π ′ almost surely (i, j) ∈ S×S:

|Pi(Xt1 ∈ A)−P j(Xt1 ∈ A)| (3.1.37)

= |P′(i, j)(Xt1 ∈ A)−P′(i, j)(Yt1 ∈ A)| (3.1.38)

= |P′(i, j)((Xt1 ∈ A)∩Mc)−P′(i, j)((Yt1 ∈ A)∩Mc)| (3.1.39)

≤ P′(i, j)(M
c) = 0 (3.1.40)
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To see Eq. (3.1.39), note that |P′(i, j)((Xt1 ∈ A)∩M)−P′(i, j)((Yt1 ∈ A)∩M)|= 0 since {Xt}t∈T is strong

regular. Hence we know that for π ′ almost surely (i, j) ∈ S×S we have |Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| ≈ 0.

Let the set F = {(i, j) ∈ S×S : |Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| ≈ 0}. We know that π ′(F) = 1. For each

i ∈ S, define Fi = { j ∈ S : (i, j) ∈ F}.

Claim 3.1.20. For π almost surely i ∈ S, π(Fi) = 1.

Proof. Note that π ′ = π×π and is defined on all I (S×S). Fix some n ∈ N. Let

Fn = {(i, j) ∈ S×S : |Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| ≤ 1
n
}. (3.1.41)

For each i ∈ S, let Fn
i = { j ∈ S : (i, j) ∈ Fn}. Note that both Fn and Fn

i are internal sets. Moreover, as

Fn ⊃ F , we know that π ′(Fn) = 1. We will show that, for π almost surely i ∈ S, Fn
i has π measure 1.

Let En = {i ∈ S : (∃ j ∈ S)((i, j) ∈ Fn)}. By the internal definition principle, En is an internal set. We

first show that π(En) = 1. Suppose not, then there exist a positive ε ∈ R such that st(π(En)) ≤ 1− ε .

As Fn ⊂ En×S, we have

π
′(Fn) = π(En)×π(S)≤ 1− ε (3.1.42)

Contradicting the fact that π ′(Fn) = 1.

Now suppose that there exists a set with positive π measure such that π(Fn
i )< 1 for every i from this

set. By countable additivity and the fact that π(En) = 1, there exist positive ε1,ε2 ∈R and an internal set

Dn ⊂ En such that π(Dn) = ε1 and π(Fn
i )< 1− ε2 for all i ∈ Dn. As each Fn

i is internal, the collection

{Fn
i : i ∈ Dn} is internal. Then the set A =

⋃
i∈Dn{i}×Fn

i is internal. Thus we have

π ′(Fn)≤ π ′(Fn∪A) = π
′(Fn \A)+π ′(A). (3.1.43)

Note that

π ′(Fn \A)≤ π ′((En \Dn)×S)≤ π ′((S\Dn)×S)≤ 1− ε1 (3.1.44)

π ′(A) = st(π(A)) = st( ∑
i∈Dn

π({i})π(Fn
i ))≤ st( ∑

i∈Dn
π({i})(1− ε2)) = ε1(1− ε2). (3.1.45)

In conclusion, π ′(Fn) = π ′(Fn \A)+π ′(A) ≤ (1− ε1)+ ε1(1− ε2) < 1. A contradiction. Hence, for

every n ∈ N, there exists a Bn with π(Bn) = 1 such that π(Fn
i ) = 1 for every i ∈ Bn. Without loss of
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generality, we can assume {Bn}n∈N is a decreasing sequence of sets. Thus, we have π(
⋂

n∈N Bn) = 1.

For every i ∈
⋂

n∈N Bn, we know that π(
⋂

n∈N Fn
i ) = 1. As

⋂
n∈N Fn

i = Fi, we have the desired result.

Thus we have

|Pi(Xt1 ∈ A)−π(A)| ≈ |∑
j∈S

π({ j})(Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A))| (3.1.46)

≤∑
j∈S

π({ j})|Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)|. (3.1.47)

Recall that Fi = { j ∈ S : |Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| ≈ 0}. By the previous claim, for π almost all i

we have π(Fi) = 1. Pick some arbitrary positive ε ∈ R+, we can find an internal F ′i ⊂ Fi such that

π(F ′i )> 1− ε . Now for π almost all i we have

∑
j∈S

π({ j})|Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| (3.1.48)

= ∑
j∈S\F ′i

π({ j})|Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)|+ ∑
j∈F ′i

π({ j})|Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| (3.1.49)

The first part of the last equation is less than ε and the second part is infinitesimal. Thus we have

∑ j∈S π({ j})|Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| / ε . As ε is arbitrary, we know that ∑ j∈S π({ j})|Pi(Xt1 ∈ A)−

Pj(Xt1 ∈ A)| is infinitesimal. Hence we know that for π almost all i∈ S we have |Pi(Xt1 ∈ A)−π(A)| ≈ 0.

As t1 is arbitrary, we have the desired result.

An immediate consequence of this theorem is the following result.

Corollary 3.1.21. Consider a strongly regular hyperfinite Markov chain having a weakly stationary

distribution π such that π(NS(S)) = 1. Suppose {Xt}t∈T is productively near-standard open set irre-

ducible and π×π is a weakly stationary distribution of the product hyperfinite Markov chain {Zt}t∈T .

Then there exists an infinite t0 ∈ T such that for π-almost every x ∈ S, any internal set A, any infinite

t ≤ t0 we have Px(Xt ∈ A)≈ π(A).

Proof. The proof follows immediately from Theorems 3.1.14 and 3.1.19.

It follows immediately from the construction of Loeb measure that for any internal A⊂ S, we have

Px(Xt ∈ A) = π(A) for any infinite t ≤ t0. We can extend this result to all universally Loeb measurable

sets.
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Lemma 3.1.22. Let L (I (S)) denote the collection of all universally Loeb measurable sets (see Defi-

nition 2.3.8). Under the same assumptions of Theorem 3.1.19. For every B ∈L (I (S)), every infinite

t ≤ t0 we have Px(Xt ∈ B) = π(B) for π-almost every x ∈ S.

Proof. The proof follows directly from the construction of Loeb measures.

As X is a metric space satisfying the Heine-Borel condition, we always have st−1(E) ∈L (I (S))

for every E ∈B[X ].

We now show that we can actually obtain a stronger type of convergence than in Theorem 3.1.19

and Corollary 3.1.21.

Definition 3.1.23. Given two hyperfinite probability spaces (S,I (S),P1) and (S,I (S),P2), the total

variation distance is defined to be

‖ P1(.)−P2(.) ‖= sup
A∈I (S)

|P1(A)−P2(A)|. (3.1.50)

Lemma 3.1.24. We have

‖ P1(.)−P2(.) ‖≥ sup
f :S→∗[0,1]

|∑
i∈S

P1({i}) f (i)−∑
i∈S

P2({i}) f (i)|. (3.1.51)

The sup is taken over all internal functions.

Proof. |∑i∈S P1(i) f (i)−∑i∈S P2(i) f (i)| = |∑i∈S f (i)(P1(i)−P2(i))|. This is maximized at f (i) = 1 for

P1 > P2 and f (i) = 0 for P1 ≤ P2 (or vice versa). Note that such f is an internal function. Thus we have

|∑i∈S f (i)(P1(i)−P2(i))| ≤ |P1(A)−P2(A)| for A = {i ∈ S : P1(i) > P2(i)} (or {i ∈ S : P1(i) ≤ P2(i)}).

This establishes the desired result.

Consider the general hyperfinite Markov chain, for any fixed x ∈ S and any t ∈ T it is natural to

consider the total variation distance ‖ p(t)x (.)−π(.) ‖. Just as standard Markov chains, we can show that

the total variation distance is non-increasing.

Lemma 3.1.25. Consider a general hyperfinite Markov chain with weakly stationary distribution π .

Then for any x∈ S and any t1, t2 ∈ T such that t1+t2 ∈ T , we have ‖ p(t1)x (.)−π(.) ‖'‖ p(t1+t2)
x (.)−π(.) ‖

Proof. Pick t1, t2 ∈ T such that t1+t2 ∈ T and any internal set A⊂ S. Then we have |p(t1+t2)
x (A)−π(A)| ≈

|∑y∈S p(t1)xy p(t2)y (A)−∑y∈S π(y)p(t2)y (A)|. Let f (y) = p(t2)y (A). By the internal definition principle, we
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know that p(t2)y (A) is an internal function. By the previous lemma we know that

|p(t1+t2)
x (A)−π(A)|/‖ p(t1)x (.)−π(.) ‖ . (3.1.52)

Since this is true for all internal A, we have shown the lemma.

We conclude this section by introducing the following theorem which gives a stronger convergence

result compared with Theorem 3.1.19 and Corollary 3.1.21.

Theorem 3.1.26. Under the same hypotheses in Theorem 3.1.19. For π almost every s ∈ NS(S), the

sequence {supB∈L (I (S)) |Ps(Xt ∈ B)−π(B)| : t ∈ NS(T )} converges to 0.

Proof. We need to show that for any positive ε ∈ R there exists a t1 ∈ NS(T ) such that for every t ≥ t1

we have

sup
B∈L (I (S))

|Ps(Xt ∈ B)−π(B)|< ε. (3.1.53)

Pick any real ε > 0, by Theorem 3.1.19, we know that for any infinite t ≤ t0 we have ‖ p(t)s (.)−π(.) ‖< ε

2 .

By underspill, there exist a t1 ∈ NS(T ) such that ‖ p(t1)s (.)− π(.) ‖< ε

2 . Fix any t2 ≥ t1. Then by

Lemma 3.1.25 we have ‖ p(t2)s (.)−π(.) ‖< ε . Now fix any internal set A⊂ S. By the definition of total

variation distance, we have |Ps(Xt2 ∈ A)−π(A)|< ε . This implies that |Ps(Xt2 ∈ A)−π(A)| ≤ ε for all

A ∈I (S). For external B ∈L (I (S)), we have

Ps(Xt2 ∈ B) = sup{Ps(Xt2 ∈ Ai) : Ai ⊂ B,Ai ∈I (S)} (3.1.54)

π(B) = sup{π(Ai) : Ai ⊂ B,Ai ∈I (S)} (3.1.55)

hence we have |P(t2)
s (B)−π(B)| ≤ ε for all B ∈L (I (S)). Thus we have the desired result.

As st−1(E) ∈L (I (S)) for all E ∈B[X ], we have

lim
t→∞

{ sup
E∈B[X ]

|P(t)
x (st−1(E))−π(st−1(E))| : t ∈ NS(T )}= 0. (3.1.56)

Note that the statement of Theorem 3.1.26 is very similar to the statement of the standard Markov chain

ergodic theorem. We will use this theorem in later sections to establish the standard Markov chain

ergodic theorem.
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3.2 Hyperfinite Representation for Discrete-time Markov Processes

As one can see from Section 3.1, hyperfinite Markov processes behave like discrete-time finite state

space Markov processes in many ways. Discrete-time finite state space Markov processes are well-

understood and easy to work with. This makes hyperfinite Markov processes easy to work with. Thus it

is desirable to construct a hyperfinite Markov process for every standard Markov process. In this section,

we illustrate this idea by constructing a hyperfinite Markov process for every discrete-time general state

space Markov process. Such hyperfinite Markov process is called a hyperfinite representation of the

standard Markov process. For continuous-time general state space Markov processes, such construction

will be done in the next section.

We start by establishing some basic properties of general Markov processes. Note that we establish

these properties for general state space continuous time Markov processes. It is easy to see that these

properties also hold for discrete-time general state space Markov processes.

3.2.1 General properties of the transition probability

Consider a Markov chain {Xt}t≥0 on (X ,B[X ]) where X is a metric space satisfying the Heine-Borel

condition. Note that X is then a σ -compact complete metric space. We shall denote the transition

probability of {Xt}t≥0 by

{P(t)
x (A) : x ∈ X , t ∈ R+,A ∈B[X ]}. (3.2.1)

Once again P(t)
x (A) refers to the probability of going from x to set A at time t. For each fixed x ∈ X , t ≥

0, we know that P(t)
x (.) is a probability measure on (X ,B[X ]). It is sometimes desirable to treat the

transition probability as a function of three variables. Namely, we define a function g : X×R+×B[X ] 7→

[0,1] by g(x, t,A) = P(t)
x (A). We will use these to notations of transition probability interchangeably.

The nonstandard extension of g is then a function from ∗X× ∗R+× ∗B[X ] to ∗[0,1].

Lemma 3.2.1. For any given x ∈ ∗X, any t ∈ ∗R+, ∗g(x, t, .) is an internal finitely-additive probability

measure on (∗X , ∗B[X ]).

Proof. : Clearly ∗X is internal and ∗B[X ] is an internal algebra. The following sentence is clearly true:

(∀x∈X)(∀t ∈R)(g(x, t, /0)= 0∧g(x, t,X)= 1∧((∀A,B∈B[X ])(g(x, t,A∪B)= g(x, t,A)+g(x, t,B)−

g(x, t,A∩B)))).
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By the transfer principle and the definition of internal probability space, we have the desired result.

Recall that for every fixed A ∈B[X ] and any t ≥ 0, we require that P(t)
x (A) is a measurable function

from X to [0,1]. This gives rise to the following lemma.

Lemma 3.2.2. For each fixed A ∈ ∗B[X ] and time point t ∈ ∗R+, ∗g(x, t,A) is a ∗-Borel measurable

function from ∗X to ∗[0,1].

Proof. We know that ∀A ∈B[X ] ∀t ∈ R+ ∀B ∈B[[0,1]] {x : g(x, t,A) ∈ B} ∈B[X ]. By the transfer

principle, we get the desired result.

For every x ∈ ∗X and t ∈ ∗R+, we use ∗P(t)
x (.) or ∗g(x, t, .) to denote the Loeb measure with respect

to the internal probability measure ∗g(x, t, .).

We now investigate some properties of the internal function ∗g. We first introduce the following

definition.

Definition 3.2.3. For any A,B ∈B[X ], any k1,k2 ∈ R+ and any x ∈ X , let f (k1,k2)
x (A,B) be Px(Xk1+k2 ∈

B|Xk1 ∈ A) when P(k1)
x (A)> 0 and let f (k1,k2)

x (A,B) = 1 otherwise.

Intuitively, f (k1,k2)
x (A,B) denotes the probability that {Xt}t≥0 reaches set B at time k1 + k2 con-

ditioned on the chain reaching set A at time k1 had the chain started at x. For every x ∈ X , ev-

ery k1,k2 ∈ R+ and every A ∈ B[X ] it is easy to see that f (k1,k2)
x (A, .) is a probability measure on

(X ,B[X ]) provided that P(k1)
x (A) > 0. For those A such that P(k1)

x (A) > 0, by the definition of con-

ditional probability, we know that f (k1,k2)
x (A,B) =

Px(Xk1+k2∈B∧Xk1∈A)

P(k1)
x (A)

. We can view f as a function from

X×R+×R+×B[X ]×B[X ] to [0,1]. By the transfer principle, we know that ∗ f is an internal function

from ∗X × ∗R+× ∗R+× ∗B[X ]× ∗B[X ] to ∗[0,1]. Moreover, ∗ f (k1,k2)
x (A, .) is an internal probability

measure on (∗X , ∗B[X ]) provided that ∗g(x,k1,A)> 0.

We first establish the following standard result of the functions g and f .

Lemma 3.2.4. Consider any k1,k2 ∈R+, any x∈ X and any two sets A,B∈B[X ] such that g(x,k1,A)>

0 . If there exists an ε > 0 such that for any two points x1,x2 ∈ A we have |g(x1,k2,B)−g(x2,k2,B)| ≤ ε ,

then for any point y ∈ A we have |g(y,k2,B)− f (k1,k2)
x (A,B)| ≤ ε .

Proof. Since g(x,k1,A)> 0, we have

f (k1,k2)
x (A,B) =

Px(Xk1+k2 ∈ B,Xk1 ∈ A)
Px(Xk1 ∈ A)

=

∫
A g(s,k2,B)g(x,k1,ds)

g(x,k1,A)
. (3.2.2)
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For any y ∈ A, we have

|g(y,k2,B)− f (k1,k2)
x (A,B)|=

∫
A |g(y,k2,B)−g(s,k2,B)|g(x,k1.ds)

g(x,k1,A)
. (3.2.3)

As |g(x1,k2,B)−g(x2,k2,B)| ≤ ε for any x1,x2 ∈ A, we have

∫
A |g(y,k2,B)−g(s,k2,B)|g(x,k1.ds)

g(x,k1,A)
≤ ε ·g(x,k1,A)

g(x,k1,A)
= ε. (3.2.4)

Intuitively, this lemma means that if the probability of going from any two different points from A

to B are similar then it does not matter much which point in A do we start.

Transferring Lemma 3.2.4, we obtain the following lemma

Lemma 3.2.5. Consider any k1,k2 ∈ ∗R+, any x ∈ ∗X and any two internal sets A,B ∈ ∗B[X ] such

that g(x,k1,A) > 0. If there exists a positive ε ∈ ∗R such that for any two points x1,x2 ∈ A we have

|∗g(x1,k2,B)− ∗g(x2,k2,B)| ≤ ε , then for any point y ∈ A we have |∗g(y,k2,B)− ∗ f (k1,k2)
x (A,B)| ≤ ε .

In particular, if |∗g(x1,k2,B)− ∗g(x2,k2,B)| ≈ 0 for all x1,x2 in some A then we have |∗g(y,k2,B)−
∗ f (k1,k2)

x (A,B)| ≈ 0 for all y ∈ A. It is easy to see that Lemmas 3.2.4 and 3.2.5 hold for discrete-time

Markov processes. We simply restrict to k1,k2 in N or ∗N, respectively. When k1 = 1 and the context is

clear, we write f (k2)
x (A,B) instead of f (k1,k2)

x (A,B).

3.2.2 Hyperfinite Representation for Discrete-time Markov Processes

In this section, we consider a discrete-time general state space Markov process {Xt}t∈N with a metric

state space X satisfying the Heine-Borel condition. Let {Px(.)}x∈X denote the one-step transition prob-

ability of {Xt}t∈N. The probability Px(A) refers to the probability of going from x to A in one step. For

general n-step transition probability P(n)
x (A), we view it as a function g : X ×N×B[X ] 7→ [0,1] in a

same way as in last section. The nonstandard extension ∗g is an internal function from ∗X× ∗N× ∗B[X ]

to ∗[0,1]. We start by making the following assumption on {Xt}t∈N.

Condition DSF. A discrete-time Markov process {Xt}t∈N is called strong Feller if for every x ∈ X and

every ε > 0 there exists δ > 0 such that

(∀x1 ∈ X)(|x1− x|< δ =⇒ ((∀A ∈B[X ])|Px1(A)−Px(A)|< ε)). (3.2.5)
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We quote the following lemma regarding total variation distance. This lemma is the “standard

counterpart” of Lemma 3.1.24.

Lemma 3.2.6 ([38]). Let ν1,ν2 be two different probability measures on some space (X ,F ) and let

‖ ν1−ν2 ‖ denote the total variation distance between ν1,ν2. Then ‖ ν1−ν2 ‖= sup f :X→[0,1] |
∫

f dν1−∫
f dν2| where f is measurable.

An immediate consequence of Lemma 3.2.6 is the following result which can be viewed as a

discrete-time counterpart of Lemma 3.1.25.

Lemma 3.2.7. Consider the discrete-time Markov process {Xt}t∈N with state space X. For every ε > 0,

every x1,x2 ∈ X and every positive k ∈ N we have

((∀A ∈B[X ])(|P(k)
x1 (A)−P(k)

x2 (A)| ≤ ε)) =⇒ ((∀A ∈B[X ])(|P(k+1)
x1 (A)−P(k+1)

x2 (A)| ≤ ε)). (3.2.6)

Proof. : Pick any arbitrary ε > 0, any x1,x2 ∈ X and any k ∈ N. We have

sup
A∈B[X ]

{|P(k+1)
x1 (A)−P(k+1)

x2 (A)|} (3.2.7)

= sup
A∈B[X ]

{|
∫

y∈X
Py(A)P

(k)
x1 (dy)−

∫
y∈X

Py(A)P
(k)
x2 (dy)|} (3.2.8)

≤‖ P(k)
x1 (.)−P(k)

x2 (.) ‖≤ ε. (3.2.9)

Thus we have proved the result.

By the transfer principle and (DSF), we have the following result.

Lemma 3.2.8. Suppose {Xt}t∈N satisfies (DSF). Let x1 ≈ x2 ∈ NS(∗X). Then for every positive k ∈ N

and every A ∈ ∗B[X ] we have ∗g(x1,k,A)≈ ∗g(x2,k,A).

Proof. Fix x1,x2 ∈NS(∗X). We first prove the result for k = 1. Let x0 = st(x1) = st(x2) and let ε be any

positive real number. By (DSF) and the transfer principle, we know that there exists δ ∈ R+ such that

(∀x ∈ ∗X)(|x− x0|< δ =⇒ ((∀A ∈ ∗B[X ])|∗g(x,1,A)− ∗g(x0,1,A)|< ε)) (3.2.10)

As x1 ≈ x2 ≈ x0 and ε is arbitrary, we know that ∗g(x1,1,A) ≈ ∗g(x0,1,A) ≈ ∗g(x2,1,A) for all A ∈
∗B[X ].
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We now prove the lemma for all k ∈ N. Again fix some ε ∈ R+. We know that

(∀A ∈ ∗B[X ])(|∗g(x1,1,A)− ∗g(x2,1,A)|< ε). (3.2.11)

By the transfer of Lemma 3.2.7, we know that for every k ∈ N we have

(∀A ∈ ∗B[X ])(|∗g(x1,k,A)− ∗g(x2,k,A)|< ε). (3.2.12)

As ε is arbitrary, we have the desired result.

We are now at the place to construct a hyperfinite Markov process {X ′t }t∈N which represents our

standard Markov process {Xt}t∈N. Our first task is to specify the state space of {X ′t }t∈N. Pick any

positive infinitesimal δ and any positive infinite number r. Our state space S for {X ′t }t∈N is simply a

(δ ,r)-hyperfinite representation of ∗X . The following properties of S will be used later.

1. For each s ∈ S, there exists a B(s) ∈ ∗B[X ] with diameter no greater than δ containing s such that

B(s1)∩B(s2) = /0 for any two different s1,s2 ∈ S.

2. NS(∗X)⊂
⋃

s∈S B(s).

For every x ∈ ∗X , we know that ∗g(x,1, .) is an internal probability measure on (∗X , ∗B[X ]). When

X is non-compact,
⋃

s∈S B(s) 6= ∗X . We can truncate ∗g to an internal probability measure on
⋃

s∈S B(s).

Definition 3.2.9. For i ∈ {0,1}, let g′(x, i,A) :
⋃

s∈S B(s)× ∗B[X ]→ ∗[0,1] be given by:

g′(x, i,A) = ∗g(x, i,A∩
⋃
s∈S

B(s))+δx(A)∗g(x, i, ∗X \
⋃
s∈S

B(s)). (3.2.13)

where δx(A) = 1 if x ∈ A and δx(A) = 0 if otherwise.

Intuitively, this means that if our ∗Markov chain is trying to reach ∗X \
⋃

s∈S B(s) then we would

force it to stay at where it is. For any x ∈
⋃

s∈S B(s) and any A ∈ ∗B[X ], it is easy to see that g′(x,0,A) =

1 if x ∈ A and equals to 0 otherwise. Clearly, g′(x,0, .) is an internal probability measure for every

x ∈
⋃

s∈S B(s).

We first show that g′ is a valid internal probability measure.

Lemma 3.2.10. Let B[
⋃

s∈S B(s)] = {A∩
⋃

s∈S B(s) : A∈ ∗B[X ]}. Then for any x ∈
⋃

s∈S B(s), the triple

(
⋃

s∈S B(s),B[
⋃

s∈S B(s)],g′(x,1, .)) is an internal probability space.
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Proof. Fix x ∈
⋃

s∈S B(s). We only need to show that g′(x,1, .) is an internal probability measure on

(
⋃

s∈S B(s),B[
⋃

s∈S B(s)]).

By definition, it is clear that g′(x,1, /0) = 0 and g′(x,1,
⋃

s∈S B(s)) = 1. Consider two disjoint A,B ∈

B[
⋃

s∈S B(s)], we have:

g′(x,1,A∪B) (3.2.14)

= ∗g(x,1,A∪B)+δx(A∪B)∗g(x,1, ∗X \
⋃
s∈S

B(s)) (3.2.15)

= ∗g(x,1,A)+δx(A)∗g(x,1, ∗X \
⋃
s∈S

B(s))+ ∗g(x,1,B)+δx(B)∗g(x,1, ∗X \
⋃
s∈S

B(s)) (3.2.16)

= g′(x,1,A)+g′(x,1,B). (3.2.17)

Thus we have the desired result.

In fact, for x ∈ NS(∗X) = st−1(X), the probability of escaping to infinity is always infinitesimal.

Lemma 3.2.11. Suppose {Xt}t∈N satisfies (DSF). Then for any x ∈ NS(∗X) and any t ∈ N, we have

∗g(x, t,st−1(X)) = 1.

Proof. Pick a x ∈ NS(∗X) and some t ∈ N. Let x0 = st(x). By Lemma 3.2.8, we know that ∗g(x, t,A)≈
∗g(x0, t,A) for every A ∈ ∗B[X ]. Thus we have ∗g(x, t,st−1(X)) = ∗g(x0, t,st−1(X)) = 1, completing

the proof.

We now define the hyperfinite Markov chain {X ′t }t∈N on (S,I (S)) from {Xt}t∈N by specifying its

“one-step” transition probability. For i, j ∈ S let G(0)
i j = g′(i,0,B( j)) and Gi j = g′(i,1,B( j)). Intuitively,

Gi j refers to the probability of going from i to j in one step. For any internal set A ⊂ S and any i ∈ S,

Gi(A)=∑ j∈A Gi j. Then {X ′t }t∈N is the hyperfinite Markov chain on (S,I (S)) with “one-step” transition

probability {Gi j}i, j∈S. We first verify that Gi(.) is an internal probability measure on (S,I (S)) for every

i ∈ S.

Lemma 3.2.12. For every i ∈ S, Gi(.) and G(0)
i (.) are internal probability measure on (S,I (S)).

Proof. Clearly G(0)
i (A) = 1 if i ∈ A and G(0)

i (A) = 0 otherwise. Thus G(0)
i (.) is an internal probability

measure on (S,S ).
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Now consider Gi(.). By definition, it is clear that

Gi( /0) = g′(i,1, /0) = 0 (3.2.18)

Gi(S) = g′(i,1,
⋃
s∈S

B(s)) = ∗g(i,1,
⋃
s∈S

B(s))+δi(
⋃
s∈S

B(s))∗g(i,1, ∗X \
⋃
s∈S

B(s)) = 1. (3.2.19)

For hyperfinite additivity, it is sufficient to note that for any two internal sets A,B⊂ S and any i ∈ S we

have Gi(A∪B) = ∑ j∈A∪B Gi j = Gi(A)+Gi(B).

We use G(t)
i (.) to denote the t-step transition probability of {X ′t }t∈N. Note that G(t)

i (.) is purely

determined from the “one-step” transition matrix {Gi j}i, j∈S. We now show that G(t)
i (.) is an internal

probability measure on (S,I (S)).

Lemma 3.2.13. For any i ∈ S and any t ∈ N, G(t)
i (.) is an internal probability measure on (S,I (S)).

Proof. We will prove this by internal induction on t.

For t equals to 0 or 1, we already have the results by Lemma 3.2.12.

Suppose the result is true for t = t0. We now show that it is true for t = t0 + 1. Fix any i ∈ S. For

all A ∈I (S) we have G(t0+1)
i (A) = ∑ j∈S Gi jG

(t0)
j (A). Thus we have G(t0+1)

i ( /0) = ∑ j∈S Gi jG
(t0)
j ( /0) = 0.

Similarly we have G(t0+1)
i (S) = ∑ j∈S Gi jG

(t0)
j (S) = 1. Pick any two disjoint sets A,B ∈I (S). We have:

G(t0+1)
i (A∪B) = ∑

j∈S
Gi j(G

(t0)
j (A)+G(t0)

j (B)) = G(t0+1)
j (A)+G(t0+1)

j (B). (3.2.20)

Hence G(t0+1)
i (.) is an internal probability measure on (S,I (S)). Thus by internal induction, we have

the desired result.

The following lemma establishes the link between ∗transition probability and the internal transition

probability of {X ′t }t∈N.

Theorem 3.2.14. Suppose {Xt}t∈N satisfies (DSF). Then for any n ∈ N, any x ∈ NS(S) and any A ∈
∗B[X ], ∗g(x,n,

⋃
s∈A∩S B(s))≈ G(n)

x (A∩S).

Proof. We prove the theorem by induction on n ∈ N.
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Let n = 1. Fix any x ∈ NS(∗X)∩S and any A ∈ ∗B[X ]. We have

Gx(A∩S) (3.2.21)

= g′(x,1,
⋃

s∈A∩S

B(s)) (3.2.22)

= ∗g(x,1,
⋃

s∈A∩S

B(s))+δx(
⋃

s∈A∩S

B(s))∗g(x,1, ∗X \
⋃
s∈S

B(s)) (3.2.23)

≈ ∗g(x,1,
⋃

s∈A∩S

B(s)) (3.2.24)

where the last ≈ follows from Lemma 3.2.11.

We now prove the general case. Fix any x ∈ NS(∗X)∩S and any A ∈ ∗B[X ]. Assume the theorem

is true for t = k and we will show the result holds for t = k+1. We have

∗g(x,k+1,
⋃

s′∈A∩S

B(s′)) (3.2.25)

= (∑
s∈S

∗g(x,1,B(s))∗ f (k)x (B(s),
⋃

s′∈A∩S

B(s′)) (3.2.26)

+ ∗g(x,1, ∗X \
⋃
s∈S

B(s))∗ f (k)x (∗X \
⋃
s∈S

B(s),
⋃

s′∈A∩S

B(s′)) (3.2.27)

≈∑
s∈S

∗g(x,1,B(s))∗ f (k)x (B(s),
⋃

s′∈A∩S

B(s′)). (3.2.28)

where the last ≈ follows from Lemma 3.2.11.

By Lemmas 3.2.5 and 3.2.8, we have ∗ f (k)x (B(s),
⋃

s′∈A∩S B(s′)) ≈ ∗g(s,k,
⋃

s′∈A∩S B(s′)). Thus we

have

∑
s∈S

∗g(x,1,B(s))∗ f (k)x (B(s),
⋃

s′∈A∩S

B(s′))≈∑
s∈S

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S

B(s′)). (3.2.29)

It remains to show that ∑s∈S
∗g(x,1,B(s))∗g(s,k,

⋃
s′∈A∩S B(s′)) ≈ G(k+1)

x (A∩S). Fix any positive

ε ∈ R. By Lemma 3.2.11, we can pick an internal set M ⊂ NS(S) such that ∗g(x,1,
⋃

s∈M B(s))> 1− ε .

We then have

∑
s∈S

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S

B(s′)) (3.2.30)

= ∑
s∈M

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S

B(s′))+ ∑
s∈S\M

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S

B(s′)). (3.2.31)
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By induction hypothesis, we have ∗g(s,k,
⋃

s′∈A∩S B(s′))≈ G(k)
s (A∩S) for all s ∈M. By Lemma 2.1.20

we have

∑
s∈M

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S

B(s′))≈ ∑
s∈M

∗g(x,1,B(s))G(k)
s (A∩S). (3.2.32)

As all B(s) are mutually disjoint, x lies in at most one element of the collection {B(s) : s ∈M}. Suppose

x ∈ B(s0) for some s0 ∈M. Then we have

|∑
s∈M

∗g(x,1,B(s))G(k)
s (A∩S)− ∑

s∈M
g′(x,1,B(s))G(k)

s (A∩S)| (3.2.33)

= |(∗g(x,1,B(s0))−g′(x,1,B(s0)))G
(k)
s0 (A∩S)| (3.2.34)

= |∗g(x,1, ∗X \
⋃
s∈S

B(s))G(k)
s0 (A∩S)| ≈ 0 (3.2.35)

where the last ≈ follows from Lemma 3.2.11. Thus, by Eq. (3.2.32), we have

∑
s∈M

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S

B(s′)) (3.2.36)

≈ ∑
s∈M

g′(x,1,B(s))G(k)
s (A∩S) (3.2.37)

= ∑
s∈M

Gx({s})G(k)
s (A∩S). (3.2.38)

As ∗g(x,1,
⋃

s∈M B(s))> 1− ε , we know that

∑
s∈S\M

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S

B(s′))< ε. (3.2.39)
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On the other hand, we have

∑
s∈S\M

Gx({s})G(k)
s (A∩S) (3.2.40)

= ∑
s∈S\M

g′(x,1,B(s))G(k)
s (A∩S) (3.2.41)

≤ ∑
s∈S\M

g′(x,1,B(s)) (3.2.42)

≤ ∗g(x,1,
⋃

s∈S\M
B(s))+ ∗g(x,1, ∗X \

⋃
s∈S

B(s)) (3.2.43)

≈ ∗g(x,1,
⋃

s∈S\M
B(s))< ε (3.2.44)

where the second last ≈ follows from Lemma 3.2.11.

Thus the difference between

∑s∈M
∗g(x,1,B(s))∗g(s,k,

⋃
s′∈A∩S B(s′))+∑s∈S\M

∗g(x,1,B(s))∗g(s,k,
⋃

s′∈A∩S B(s′)) and ∑s∈M Gx({s})G(k)
s (A∩

S)+∑s∈S\M Gx({s})G(k)
s (A∩S) is less or approximately to ε . Hence we have

|∗g(x,k+1,
⋃

s′∈A∩S

B(s′))−G(k+1)
x (A∩S)|/ ε (3.2.45)

As our choice of ε is arbitrary, we have ∗g(x,k+1,
⋃

s′∈A∩S B(s′))≈G(k+1)
x (A∩S), completing the proof.

The following lemma is a slight generalization of [3, Thm 4.1].

Lemma 3.2.15. Suppose {Xt}t∈N satisfies (DSF). Then for any Borel set E, any x ∈ NS(∗X) and any

n ∈ N, we have ∗g(x,n, ∗E)≈ ∗g(x,n,st−1(E)).

Proof. Fix x ∈ NS(∗X) and n ∈ N. Let x0 = st(x). Fix any positive ε ∈ R, as g(x0,n, .) is a Radon

measure, we can find K compact, U open with K ⊂ E ⊂ U such that g(x0,n,U)− g(x0,n,K) < ε

2 .

By the transfer principle, we know that ∗g(x0,n, ∗U)− ∗g(x0,n, ∗K) < ε/2. By (DSF) we know that
∗g(x0,n, ∗U)≈ ∗g(x,n, ∗U) and ∗g(x0,n, ∗K)≈ ∗g(x,n, ∗K). Hence we know that ∗g(x,n, ∗U)−∗g(x,n, ∗K)<

ε . Note that ∗K ⊂ st−1(K) ⊂ st−1(E) ⊂ st−1(U) ⊂ ∗U . Both ∗g(x,n, ∗E) and ∗g(x,n,st−1(E)) lie be-

tween ∗g(x,n, ∗U) and ∗g(x,n, ∗K). So |∗g(x,n, ∗E)− ∗g(x,n,st−1(E))| < ε . This is true for any ε and

hence ∗g(x,n, ∗E)≈ ∗g(x,n,st−1(E)).

We are now at the place to establish the link between the transition probability of {Xt}t∈N and the
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internal transition probability of {X ′t }t∈N.

Theorem 3.2.16. Suppose {Xt}t∈N satisfies (DSF). Then for any s ∈ NS(S), any n ∈ N and any E ∈

B[X ], P(n)
st(s)(E) = G(n)

s (st−1(E)∩S).

Proof. Fix any s ∈ NS(S), any n ∈ N and any Borel set E. By Lemma 3.2.15, we have P(n)
st(s)(E) =

∗g(st(s),n, ∗E)≈ ∗g(s,n, ∗E)≈ ∗g(s,n,st−1(E)). By Eq. (2.4.19), we have

∗g(s,n,st−1(E)) = sup{∗g(s,n,
⋃

s∈Ai

B(s)) : Ai ⊂ st−1(E)∩S,Ai ∈I (S)}. (3.2.46)

By Theorem 3.2.14, we have ∗g(s,n,
⋃

s∈Ai
B(s)) = G(n)

s (Ai). Thus we have

∗g(s,n,st−1(E)) = sup{G(n)
s (Ai) : Ai ⊂ st−1(E)∩S,Ai ∈I (S)}= G(n)

s (st−1(E)∩S). (3.2.47)

Hence we have the desired result.

Thus the transition probability of {Xt}t∈N agrees with the Loeb probability of {X ′t }t∈N via standard

part map.

3.3 Hyperfinite Representation for Continuous-time Markov Processes

In Section 3.2.2, for every standard discrete-time Markov process, we construct a hyperfinite Markov

process that represents it. In this section, we extend the results developed in Section 3.2 to continuous-

time Markov processes. Let {Xt}t≥0 be a continuous-time Markov process on a metric state space X

satisfying the Heine-Borel condition. The transition probability of {Xt}t≥0 is given by

{P(t)
x (A) : x ∈ X , t ∈ R+,A ∈B[X ]}. (3.3.1)

When we view the transition probability as a function of three variables, we again use g(x, t,A) to denote

the transition probability P(t)
x (A). We have already established some general properties regarding the

transition probability g(x, t,A) in Section 3.2.1. We recall some important definitions are results here.

Definition 3.3.1. For any A,B ∈B[X ], any k1,k2 ∈ R+ and any x ∈ X , let f (k1,k2)
x (A,B) be Px(Xk1+k2 ∈

B|Xk1 ∈ A) when P(k1)
x (A)> 0 and let f (k1,k2)

x (A,B) = 1 otherwise.
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Again, f can be viewed as a function of five variables. Let {An : n∈N} be a partition of X consisting

of Borel sets and let k1,k2 ∈ R+. For any x ∈ X and any A ∈B[X ], we have

g(x,k1 + k2,A) = ∑
n∈N

g(x,k1,An) f (k1,k2)
x (An,A). (3.3.2)

Intuitively, this means that the Markov chain first go to one of the An’s at time k1 and then go from that

An to A in time k2.

As in Section 3.2.1, we are interested in the relation between the nonstandard extensions of g and f .

Recall Lemma 3.2.5 from Section 3.2.1.

Lemma 3.3.2. Consider any k1,k2 ∈ ∗R+, any x∈ ∗X and any two sets A,B∈ ∗B[X ] such that g(x,k1,A)>

0. If there exists a positive ε ∈ ∗R such that for any two points x1,x2 ∈ A we have |∗g(x1,k2,B)−
∗g(x2,k2,B)| ≤ ε , then for any point y ∈ A we have |∗g(y,k2,B)− ∗ f (k1,k2)

x (A,B)| ≤ ε .

Let the hyperfinite time line T = {δ t, . . . ,K} as in Section 3.1. When k1 = δ t and the context is

clear, we write f (k2)
x (A,B) instead of f (k1,k2)

x (A,B).

In Section 3.2.2, we constructed a hyperfinite Markov chain {X ′t }t∈N which represents our standard

Markov chain {Xt}t∈N. The idea was that the difference between the transition probability of {Xt}t∈N

and the internal transition probability {X ′t }t∈N generated from each step is infinitesimal. Since the time-

line was discrete, this implies that the transition probability of {Xt}t∈N and {X ′t }t∈N agree with each

other. However, for continuous-time Markov process, we need to make sure that if we add up the errors

up to any near-standard time t0 the sum is still infinitesimal. Thus, instead of taking any hyperfinite

representation of ∗X to be our state space we need to carefully choose our state space for our hyperfinite

Markov process.

3.3.1 Construction of Hyperfinite State Space

In this section, we will carefully pick a hyperfinite set S ⊂ ∗X to be the hyperfinite state space for

our hyperfinite Markov chain. The set S will be a (δ0,r)-hyperfinite representation of ∗X for some

infinitesimal δ0 and some positive infinite r. Intuitively, δ0 measures the closeness between the points in

S and r measures the portion of ∗X to be covered by S. We first pick ε0 such that ε0
t

δ t ≈ 0 for all t ∈ T .

This ε0 will be fixed for the remainder of this section. We first choose r according to this ε0. We start

by making the following assumption:

Condition VD. The Markov chain {Xt}t≥0 is said to vanish in distance if for all t ≥ 0 and all compact

K ⊂ X we have:
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1. (∀ε > 0)(∃r > 0)(∀x ∈ K)(∀A ∈B[X ])(d(x,A)> r =⇒ g(x, t,A)< ε).

2. (∀ε > 0)(∃r > 0)(∀x ∈ X)(d(x,K)> r =⇒ g(x, t,K)< ε).

An alternative but stronger assumption is

Condition SVD. For all t ≥ 0 we have

(∀ε > 0)(∃r > 0)(∀x ∈ X)(∀A ∈B[X ])(d(x,A)> r =⇒ g(x, t,A)< ε). (3.3.3)

It is easy to see that (SVD) implies (VD).

Example 3.3.3. The Ornstein-Uhlenbeck is a continuous time stochastic process {Xt}t≥0 satisfies the

stochastic differential equation:

dXt = θ(µ−Xt)dt +σdWt . (3.3.4)

where θ > 0, µ > 0 and σ > 0 are parameters and Wt denote the Wiener process. The Ornstein-

Uhlenbeck process is a stationary Gauss-Markov process. Note that the Ornstein-Uhlenbeck process

satisfies (VD) but not (SVD).

An open ball centered at some x0 ∈ ∗X with radius r is simply the set

{x ∈ ∗X : ∗d(x,x0)≤ r} (3.3.5)

We usually use U(x0,r) to denote such set.

Theorem 3.3.4. Suppose (VD) holds. For every positive ε ∈ ∗R, there exists an open ball U(a,r)

centered at some standard point a with radius r such that:

1. ∗g(x,δ t, ∗X \U(a,r))< ε for all x ∈ NS(∗X).

2. ∗g(y, t,A)< ε for all y ∈ ∗X \U(a,r), all near-standard A ∈ ∗B[X ] and all t ∈ T .

where U(a,r) = {x ∈ ∗X : ∗d(x,a)≤ r}.

Proof. : Fix a positive ε ∈ ∗R. Let X =
⋃

n∈N Kn . For every n ∈ N, by the transfer of condition 1 of

(VD), there exists r ∈ ∗R+ such that the following formula ψn(r) holds:

(∀x ∈ ∗Kn)(∀A ∈ ∗B[X ])(∗d(x,A)> r =⇒ ∗g(x,δ t,A)< ε). (3.3.6)
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It is easy to see that {ψn(r) : n∈N} is a family of finitely satisfiable internal formulas. By the saturation

principle, there is a rδ t such that

(∀x ∈
⋃

n∈N

∗Kn)(∀A ∈ ∗B[X ])(∗d(x,A)> rδ t =⇒ ∗g(x,δ t,A)< ε). (3.3.7)

Claim 3.3.5. For every n ∈ N, the formula φn(r)

(∀x ∈ ∗X)(∗d(x, ∗Kn)> r =⇒ ((∀t ∈ T )(∗g(x, t, ∗Kn)< ε))). (3.3.8)

is satisfiable.

Proof. Fix some n ∈ N. For every t ∈ T , by the transfer of condition 2 of (VD), there exists r ∈ ∗R+

such that the following formula holds:

(∀x ∈ ∗X)(∗d(x, ∗Kn)> r =⇒ ∗g(x, t, ∗Kn)< ε). (3.3.9)

Define h : T → ∗R+ by

h(t) = min{r ∈ ∗R+ : (∀x ∈ ∗X)(∗d(x, ∗Kn)> r =⇒ ∗g(x, t, ∗Kn)< ε)} (3.3.10)

By the internal definition principle, h is an internal function thus h(T ) is a hyperfinite set. Let rn =

max{r : r ∈ h(T )}. Then rn witnesses the satisfiability of the formula φn(r).

For any k ∈ N, it is easy to see that max{rni : i ≤ k} witnesses the satisfiability of {φni(r) : i ≤ k}.

Hence the family {φn(r) : n ∈ N} is finitely satisfiable. By the saturation principle, there exists a r′

satisfies all φn(r) simultaneously. This means

(∀x ∈ ∗X)(∀n ∈ N)(∗d(x, ∗Kn)> r′ =⇒ ((∀t ∈ T )(∗g(x, t, ∗Kn)< ε))). (3.3.11)

Consider any near-standard internal set A.

Claim 3.3.6. There exists n ∈ N such that A⊂ ∗Kn.

Proof. Suppose not. Then Mn = {a ∈ A : a 6∈ ∗Kn} is non-empty for every n ∈ N. It is easy to see

that any finite intersection of these is non-empty. By saturation, we know that
⋂

n∈NMn 6= /0. Hence
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there exists a ∈ A such that a 6∈
⋃

n∈N
∗Kn. By Theorem 2.1.28, we know that

⋃
n∈N

∗Kn = NS(∗X). This

contradicts with the fact that A is near-standard.

Thus, we know that for every x ∈ ∗X and every near-standard A ∈ ∗B[X ] we have

((∀n ∈ N)(∗d(x, ∗Kn)> r′)) =⇒ ((∀t ∈ T )(∗g(x, t,A)< ε)). (3.3.12)

Pick an infinite r∞ ∈ ∗R>0. Let a be any standard element in X and let r = 2max{rδ t ,r′,r∞}.

We claim that U(a,r) satisfies the two conditions of this lemma. By the choice of r, we know that
∗d(x, ∗X \U(a,r))> rδ t for all x ∈

⋃
n∈N

∗Kn. As
⋃

n∈N
∗Kn = NS(∗X), by Eq. (3.3.7), we have

(∀x ∈ NS(∗X))(∗g(x,δ t, ∗X \U(a,r))< ε). (3.3.13)

Fix any y∈ ∗X \U(a,r) and any near-standard A∈ ∗B[X ]. By the choice of r, we know that ∗d(y, ∗Kn)>

r′ for all n ∈N. Thus, by Eq. (3.3.12) we have ∗g(y, t,A)< ε for all t ∈ T . As our choices of y and A are

arbitrary, we have the desired result.

For the particular ε0 fixed above, we can find a standard a0 ∈ ∗X and some positive infinite r1 ∈ ∗R

such that the open ball U(a0,r1) satisfies the conditions in Theorem 3.3.4. We fix a0 and r1 for the

remainder of this section.

Lemma 3.3.7. Suppose (VD) holds. There exists a positive infinite r0 > 2r1 such that

(∀y ∈U(a0,2r1))(
∗g(y,δ t, ∗X \U(a0,r0))< ε0). (3.3.14)

Proof. By the transfer of the Heine-Borel condition, U(a0,2r1) is a ∗compact set. Then the proof

follows easily from the transfer of condition 1 of (VD). Note that we can always pick r0 to be bigger

than 2r1.

We will see how do we use Lemma 3.3.7 in Theorem 3.3.16. We now fix r0 for the remainder of

this section. An immediate consequence of Theorem 3.3.4 and Lemma 3.3.7 is:

Lemma 3.3.8. Suppose (VD) holds. For any x ∈ X, any t ∈ T , any near-standard internal set A ⊂ ∗X

we have ∗ f (t)x (∗X \U(a0,2r0),A)< 2ε0.

Proof. Fix a x ∈ ∗X , a near-standard internal set A and some t ∈ T . By Theorem 3.3.4, we know

that (∀y ∈ ∗X \U(a0,2r0))(
∗g(y, t,A) < ε0). This means that for any y1,y2 ∈ ∗X \U(a0,2r0) we have
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|∗g(y1, t,A)− ∗g(y2, t,A)|< ε0. By Lemma 3.2.5, we know that for any y ∈ ∗X \U(a0,2r0) we have

|∗g(y, t,A)− ∗ f (t)x (∗X \U(a0,2r0),A)|< ε0 (3.3.15)

which then implies that ∗ f (t)x (∗X \U(a0,2r0),A)< 2ε0.

Thus, our hyperfinite state space S is a (δ0,2r0)-hyperfinite representation of ∗X such that
⋃

s∈S B(s)=

U(a0,2r0). We now choose an appropriate δ0 to partition U(a0,2r0) into hyperfinitely pieces. We as-

sume the following condition on the Markov chain {Xt}t≥0. We shall use this condition to control the

diameter of each B(s) for s ∈ S.

Condition SF. The Markov chain{Xt}t≥0 is said to be strong Feller if for every t > 0, every x ∈ X and

every ε > 0 there exists δ > 0 such that

(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(|y− x|< δ =⇒ (∀A ∈B[X ])|P(t)
y (A)−P(t)

x (A)|< ε)). (3.3.16)

Note that this δ depends on ε , t and x. View the transition probability as the function g and by the

transfer principle, we have for every t ∈ T \{0},every ε ∈ ∗R+ and every x ∈ ∗X there exists δ ∈ ∗R+

such that:

((∀y ∈ ∗X)(|y− x|< δ =⇒ (∀A ∈ ∗B[X ])|∗g(y, t,A)− ∗g(x, t,A)|< ε)). (3.3.17)

We can then show that the total variation distance between transition probabilities for Markov pro-

cesses is non-increasing. The following lemma is a “standard counterpart” of Lemma 3.1.25. The proof

is identical to Lemma 3.2.7 hence omitted.

Lemma 3.3.9. Consider a standard Markov process with transition probability measure P(t)
x (.), then

for every ε ∈ R+, every x1,x2 ∈ X, every t1, t2 ∈ R+ and every A ∈B[X ] we have

(|P(t1)
x1 (A)−P(t1)

x2 (A)| ≤ ε =⇒ |P(t1+t2)
x1 (A)−P(t1+t2)

x2 (A)| ≤ ε). (3.3.18)

Apply the transfer principle to the above lemma and restrict out time line to T , we know that for

every ε ∈ ∗R+, every x1,x2 ∈ ∗X ,every t1, t2 ∈ T+ and every A ∈ ∗B[X ] we have:

((|∗P(t1)
x1

(A)− ∗P(t1)
x2

(A)| ≤ ε) =⇒ (|∗P(t1+t2)
x1

(A)− ∗P(t1+t2)
x2

(A)| ≤ ε)). (3.3.19)
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where ∗P(t)
x (A) = ∗g(x, t,A).

(SF) ensures the uniform continuity of the transition probability g(x, t,A) with respect to x as is

shown by the following lemma.

Lemma 3.3.10. Suppose (SF) holds. There exists δ0 ∈ ∗R+ such that for any x1,x2 ∈U(a0,2r0) with

|x1− x2|< δ0 we have |∗g(x1, t,A)− ∗g(x2, t,A)|< ε0 for all A ∈ ∗B[X ] and all t ∈ T+.

Proof. By the transfer of strong Feller, for every x ∈U(a0,2r0) there exists δx ∈ ∗R+ such that:

(∀y ∈ ∗X)(|y− x|< δx =⇒ (∀A ∈ ∗B[X ])|∗g(x,δ t,A)− ∗g(y,δ t,A)|< ε0

2
). (3.3.20)

The internal collection L = {U(x, δx
2 ) : x∈U(a0,2r0)} of open balls forms an open cover of U(a0,2r0).

By the transfer of Heine-Borel condition, we know that U(a0,2r0) is ∗compact hence there exists a

hyperfinite subset of the cover L that covers U(a0,2r0). Denote this hyperfinite subcover by F =

{B(xi,
δxi
2 ) : i ≤ N} for some N ∈ ∗N. The set ∆ = { δxi

2 : i ≤ N} is a hyperfinite set thus there exists a

minimum element of ∆. Let δ0 = min{ δxi
2 : i≤ N}.

Pick any x,y ∈ U(a0,2r0) with |x− y| < δ0. We have x ∈ U(xi,
δxi
2 ) for some i ≤ N. Then we

have ∗d(y,xi) ≤ ∗d(y,x) + ∗d(x,xi) ≤ δxi . Thus both x,y are in U(xi,δxi). This means that (∀A ∈
∗B[X ])(|∗g(x,δ t,A)−∗g(y,δ t,A)|< ε0). By Eq. (3.3.19), we know that (∀A∈ ∗B[X ])(∀t ∈T |∗g(x, t,A)−
∗g(y, t,A)|< ε0), completing the proof.

Now we have determined a0,r0 and δ0. We now construct a (δ0,2r0)-hyperfinite representation set

S with
⋃

s∈S B(s) =U(a0,2r0). The following lemma is an immediate consequence.

Theorem 3.3.11. Suppose (SF) holds. Let S be a (δ0,2r0)-hyperfinite representation with
⋃

s∈S B(s) =

U(a0,2r0). For any s ∈ S, any x1,x2 ∈ B(s), any A ∈ ∗B[X ] and any t ∈ T+ we have |∗g(x1, t,A)−
∗g(x2, t,A)|< ε0

An immediate consequence of the above lemma is:

Lemma 3.3.12. Suppose (SF) holds. Let S be a (δ0,2r0)-hyperfinite representation with
⋃

s∈S B(s) =

U(a0,2r0). For for any s ∈ S, any y ∈ B(s), any x ∈ ∗X, any A ∈ ∗B[X ] and any t ∈ T+ we have

|∗g(y, t,A)− ∗ f (t)x (B(s),A)|< ε0.

Proof. First recall that we use ∗ f (t)x (B(s),A) to denote ∗ f (δ t,t)
x (B(s),A). This lemma then follows easily

by applying Lemma 3.2.4 to Theorem 3.3.11.
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For the remainder of this paper we shall fix our hyperfinite state space S to be a (δ0,2r0)-hyperfinite

representation of ∗X with
⋃

s∈S B(s) =U(a0,2r0). That is:

1.
⋃

s∈S B(s) =U(a0,2r0).

2. {B(s) : s ∈ S} is a mutually disjoint collection of ∗Borel sets with diameters no greater than δ0.

This S will be the state space of our hyperfinite Markov process which is a hyperfinite representation

of our standard Markov process {Xt}t≥0.

3.3.2 Construction of Hyperfinite Markov Processes

In the last section, we have constructed the hyperfinite state space S to be a (δ0,2r0)-hyperfinite repre-

sentation of ∗X . In this section, we will construct a hyperfinite Markov {X ′t }t∈T process on S which is

hyperfinite representation of our standard Markov process {Xt}t≥0.

The following definition is very similar to Definition 3.2.9.

Definition 3.3.13. Let g′(x,δ t,A) :
⋃

s∈S B(s)× ∗B[X ]→ ∗[0,1] be given by:

g′(x,δ t,A) = ∗g(x,δ t,A∩
⋃
s∈S

B(s))+δx(A)∗g(x,δ t, ∗X \
⋃
s∈S

B(s)). (3.3.21)

where δx(A) = 1 if x ∈ A and δx(A) = 0 if otherwise.

For any i, j ∈ S, let G(δ t)
i ({ j}) = g′(i,δ t,B( j)) and let G(δ t)

i (A) = ∑ j∈A G(δ t)
i ({ j}) for all internal

A⊂ S. For any internal A⊂ S, G(0)
i (A) = 1 if i ∈ A and G0

i (A) = 0 otherwise.

The following two lemmas are identical to Lemmas 3.2.10, 3.2.12 and 3.2.13 after substituting δ t

for 1. Likewise, G(t)
i (.) denotes the t-step transition probability of {X ′t }t∈T which is purely generated

from {G(δ t)
i (.)}i∈S.

Lemma 3.3.14. Let B[
⋃

s∈S B(s)] = {A∩
⋃

s∈S B(s) : A ∈ ∗B[X ]}. Then for any x ∈
⋃

s∈S B(s) we have

(
⋃

s∈S B(s),B[
⋃

s∈S B(s)],g′(x,δ t, .)) is an internal probability space.

Lemma 3.3.15. For any i ∈ S and any t ∈ T , we know that G(t)
i (.) is an internal probability measure on

(S,I (S)).

For any i ∈ S and any t ∈ T we shall use G(t)
i (.) to denote the Loeb extension of the internal proba-

bility measure G(t)
i (.) on (S,I (S)).
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In order for the hyperfinite Markov chain {X ′t }t∈T to be a good representation of {Xt}t≥0, one of the

key properties which needs to be shown is that the internal transition probability of {X ′t }t∈T agrees with

the transition probability of {Xt}t≥0 up to an infinitesimal. The following technical result is a key step

towards showing this property (recall that ε0 is a positive infinitesimal such that ε0
t

δ t ≈ 0 for all t ∈ T ).

This result is similar to Theorem 3.2.14 but is more complicated.

Theorem 3.3.16. Suppose (VD) and (SF) hold. Then for any t ∈ T , any x ∈ S and any near-standard

A ∈ ∗B[X ], we have

|∗g(x, t,
⋃

s′∈A∩S

B(s′))−G(t)
x (A∩S)| ≤ ε0 +5ε0

t−δ t
δ t

. (3.3.22)

In particular, we have |∗g(x, t,
⋃

s′∈A∩S B(s′))−G(t)
x (A∩ S)| ≈ 0 for all t ∈ T , all x ∈ S and all near-

standard A ∈ ∗B[X ].

Proof. We will prove the result by internal induction on t ∈ T .

We first prove the theorem for t = 0. As x ∈ S, it is easy to see that x ∈
⋃

s′∈A∩S B(s′) if and only if

x ∈ A∩S. Hence ∗g(x,0,
⋃

s′∈A∩S B(s′)) = G(0)
x (A∩S)

We now show the case where t = δ t. Pick any near-standard set A ∈ ∗B[X ] and any x ∈ S. By

definition, we have:

G(δ t)
x (A∩S) = g′(x,δ t,

⋃
s′∈A∩S

B(s′)) (3.3.23)

= ∗g(x,δ t,
⋃

s′∈A∩S

B(s′))+δx(
⋃

s′∈A∩S

B(s′))∗g(x,δ t, ∗X \
⋃
s∈S

B(s)). (3.3.24)

For any x∈
⋃

s′∈A∩S B(s′), by Theorem 3.3.4 and the fact that
⋃

s′∈A∩S B(s′) is near-standard, we have
∗g(x,δ t, ∗X \

⋃
s∈S B(s))< ε0 since ∗d(x, ∗X \

⋃
s∈S B(s))> r0. Thus we have |∗g(x,δ t,

⋃
s′∈A∩S B(s′))−

G(δ t)
x (A∩S)|< ε0.

We now prove the induction case. Assume the statement is true for some t ∈ T . We now show that

it is true for t +δ t. Fix a near-standard A ∈ ∗B[X ] and any x ∈ S. We know that:

∗g(x, t+δ t,
⋃

s′∈A∩S B(s′))=∑s∈S
∗g(x,δ t,B(s))∗ f (t)x (B(s),

⋃
s′∈A∩S B(s′))+∗g(x,δ t, ∗X \

⋃
s∈S B(s))∗ f (t)x (∗X \⋃

s∈S B(s),
⋃

s′∈A∩S B(s′)).

Consider ∗g(x,δ t, ∗X \
⋃

s∈S B(s))∗ f (t)x (∗X \
⋃

s∈S B(s),
⋃

s′∈A∩S B(s′)). By Lemma 3.3.8, we have
∗ f (t)x (∗X \

⋃
s∈S B(s),

⋃
s′∈A∩S B(s′))< 2ε0. Thus we conclude that:
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|∗g(x, t +δ t,
⋃

s′∈A∩S

B(s′))−∑
s∈S

∗g(x,δ t,B(s))∗ f (t)x (B(s),
⋃

s′∈A∩S

B(s′))|< 2ε0. (3.3.25)

By the construction of our hyperfinite representation S and Lemma 3.3.12, we know that for any s∈ S

we have |∗g(s, t,
⋃

s′∈A∩S B(s′))− ∗ f (t)x (B(s),
⋃

s′∈A∩S B(s′))| < ε0. By the transfer of Lemma 2.1.20, we

have that:

|∑
s∈S

∗g(x,δ t,B(s))∗ f (t)x (B(s),
⋃

s′∈A∩S

B(s′))−∑
s∈S

∗g(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))|< ε0. (3.3.26)

Let us now consider formulas

∑
s∈S

∗g(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′)) and ∑
s∈S

g′(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′)). (3.3.27)

There exists an unique s0 ∈ S such that x ∈ B(s0). This means that ∗g(x,δ t,B(s)) is the same as

g′(x,δ t,B(s)) for all s 6= s0. Thus we have:

|∑
s∈S

∗g(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))−∑
s∈S

g′(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))| (3.3.28)

= |∗g(x,δ t,B(s0))−g′(x,δ t,B(s0))|∗g(s0, t,
⋃

s′∈A∩S

B(s′)). (3.3.29)

Recall the properties of r1 constructed after Theorem 3.3.4. If ∗d(s0,y) > r1 for all near-standard

y ∈ NS(∗X), by Theorem 3.3.4, we have ∗g(s0, t,
⋃

s′∈A∩S B(s′))< ε0. This implies that

|∗g(s0,δ t,B(s))−g′(s0,δ t,B(s))|∗g(s0, t,
⋃

s′∈A∩S

B(s′))< ε0. (3.3.30)

If there exists some x0 ∈ NS(∗X) such that ∗d(s0,x0) < r1 then s0 ∈U(a0,2r1). By the definition of g′

and Lemma 3.3.7, we know that ∗g(s0,δ t, ∗X \
⋃

s∈S B(s)) < ε0. As x ∈ B(s0), by Theorem 3.3.11, we

know that

|∗g(x,δ t,B(s0))−g′(x,δ t,B(s0))|= |∗g(x,δ t, ∗X \
⋃
s∈S

B(s))|< 2ε0. (3.3.31)
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To conclude we have:

|∑
s∈S

∗g(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))−∑
s∈S

g′(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))|< 2ε0. (3.3.32)

Finally by induction hypothesis and the transfer of Lemma 2.1.20 we know that:

|∑
s∈S

g′(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))−G(t+δ t)
x (A∩S)| (3.3.33)

= |∑
s∈S

g′(x,δ t,B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))−∑
s∈S

g′(x,δ t,B(s))G(t)
s (A∩S)| (3.3.34)

≤ |∗g(s, t,
⋃

s′∈A∩S

B(s′))−G(t)
s (A∩S)| ≤ ε0 +5ε0

t−δ t
δ t

. (3.3.35)

Thus by Eq. (3.3.25),Eq. (3.3.26),Eq. (3.3.32) and Eq. (3.3.35) we conclude that

|∗g(x, t +δ t,
⋃

s′∈A∩S

B(s′))−G(t+δ t)
x (A∩S)| (3.3.36)

≤ ε0 +4ε0
t−δ t

δ t
+5ε0 = ε0 +5ε0

t
δ t

. (3.3.37)

As all the parameters in this statement are internal, by internal induction principle, we have shown the

statement. As ε0
t

δ t ≈ 0 for all t ∈ T , in particular, we have |∗g(x, t,
⋃

s′∈A∩S B(s′))−G(t)
x (A∩S)| ≈ 0 for

all t ∈ T , all x ∈ S and all near-standard A ∈ ∗B[X ].

As the state space X is σ -compact, by Lemma 2.3.5 and Theorem 2.3.9, we know that st−1(A) is

universally Loeb measurable for A∈B[X ]. We now extend Theorem 3.3.16 to establish the relationship

between ∗g and G.

Theorem 3.3.17. For any x ∈
⋃

s∈S B(s) let sx denote the unique element in S such that x ∈ B(sx). Then,

under (VD) and (SF), for any E ∈B[X ] and any t ∈ T , we have ∗g(x, t,st−1(E)) = G(t)
sx
(st−1(E)∩ S)

for any x ∈ ∗X.

Proof. When t = 0, ∗g(x,0,st−1(E)) is 1 if x ∈ st−1(E) and is 0 otherwise. Note that x ∈ st−1(E) if and

only if sx ∈ st−1(E)∩S. Hence ∗g(x, t,st−1(E)) = G(t)
sx
(st−1(E)∩S).

We now prove the case for t > 0. By the transfer principle, we know that for any x ∈ ∗X and

any t ∈ T we have ∗g(x, t, .) is an internal probability measure. By the construction of Loeb measures
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(Eq. (2.4.19)), for t > 0 we have

∗g(x, t,st−1(E)) = sup{∗g(x, t,
⋃

s∈Ai

B(s)) : Ai ⊂ st−1(E)∩S,Ai ∈I (S)}. (3.3.38)

As the distance between x and sx is less than δ0, by Theorem 3.3.11 we know that

|∗g(x, t,
⋃

s∈Ai

B(s))− ∗g(sx, t,
⋃

s∈Ai

B(s))|< ε0. (3.3.39)

By Theorem 3.3.16, we know that |∗g(sx, t,
⋃

s∈Ai
B(s))−G(t)

sx (Ai)| ≈ 0 as Ai is a near-standard internal

set. Thus we know that ∗g(x, t,
⋃

s∈Ai
B(s)) = G(t)

sx
(Ai). Thus we know that

∗g(x, t,st−1(E)) = sup{Gsx(Ai) : Ai ⊂ st−1(E)∩S,Ai ∈I (S)}= G(t)
sx
(st−1(E)∩S) (3.3.40)

finishing the proof.

One of the desired properties for a hyperfinite Markov chain is strong regularity. Recall from Defi-

nition 3.1.6 that a hyperfinite Markov chain is strong regular if for any A ∈I (S), any non-infinitesimal

t ∈ T and any i≈ j ∈ NS(S) we have G(t)
i (A)≈ G(t)

j (A). We now show that {X ′t } satisfies strong regu-

larity. We first prove the following “locally continuous” property for ∗g.

Lemma 3.3.18. Suppose (SF) holds. For any two near-standard x1 ≈ x2 from ∗X ,any t ∈ ∗R+ that is

not infinitesimal and any A ∈ ∗B[X ] we have ∗g(x1, t,A)≈ ∗g(x2, t,A).

Proof. Fix two near-standard x1,x2 from ∗X . Let x0 = st(x1) = st(x2). Fix some t0 ∈ ∗R+ that is not

infinitesimal and also fix some positive ε ∈R. Pick some standard t ′ ∈R+ with t ′ ≤ t0. By strong Feller

we can pick a δ ∈R+ such that (∀y∈ X)(|y−x0|< δ =⇒ ((∀A∈B[X ])|g(y, t ′,A)−g(x0, t ′,A)|< ε)).

By the transfer principle and the fact that x1 ≈ x2 ≈ x0 we know that

(∀A ∈ ∗B[X ])(|∗g(x1, t ′,A)− ∗g(x2, t ′,A)|< ε). (3.3.41)

As t ′ ≤ t0, by Eq. (3.3.19), we know that |∗g(x1, t0,A)− ∗g(x2, t0,A)| < ε for all A ∈ ∗B[X ]. Since our

choice of ε is arbitrary, we can conclude that ∗g(x1, t0,A)≈ ∗g(x2, t0,A) for all A ∈ ∗B[X ].

An immediate consequence of this lemma is the following:
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Lemma 3.3.19. Suppose (SF) holds. For any two near-standard x1 ≈ x2 from ∗X ,any t ∈ ∗R+ that is

not infinitesimal and any universally Loeb measurable set A we have ∗g(x1, t,A) = ∗g(x2, t,A).

Next we show that the internal measure ∗g(x, t, .) concentrates on the near-standard part of ∗X for

near-standard x and standard t.

Lemma 3.3.20. Suppose (SF) holds. For any Borel set E, any x ∈ NS(∗X) and any t ∈ R+ we have

∗g(x, t, ∗E)≈ ∗g(x, t,st−1(E)).

Proof. Fix any x ∈ NS(∗X) and any t ∈ R+. Let x0 = st(x). Fix any ε , as the probability measure

P(t)
x0 (.) is Radon, we can find K compact, U open with K ⊂ E ⊂ U and P(t)

x0 (U)− P(t)
x0 (K) < ε/2.

By the transfer principle, we know that ∗g(x0, t, ∗U)− ∗g(x0, t, ∗K) < ε/2. By Lemma 3.3.18, we

know that ∗g(x0, t, ∗U)≈ ∗g(x, t, ∗U) and ∗g(x0, t, ∗K)≈ ∗g(x, t, ∗K). Hence we know that ∗g(x, t, ∗U)−
∗g(x, t, ∗K)< ε . Note that ∗K⊂ st−1(K)⊂ st−1(E)⊂ st−1(U)⊂ ∗U . Both ∗g(x, t, ∗E) and ∗g(x, t,st−1(E))

lie between ∗g(x, t, ∗U) and ∗g(x, t, ∗K). So |∗g(x, t, ∗E)− ∗g(x, t,st−1(E))| < ε . This is true for any ε

and hence ∗g(x, t, ∗E)≈ ∗g(x, t,st−1(E)).

We are now at the place to establish that {X ′t } is strong regular. Note that the time line T =

{0,δ t, ....,K} contains all the rational numbers but none of the irrational numbers.

Theorem 3.3.21. Suppose (VD) and (SF) hold. For any two near-standard s1 ≈ s2 from S, any t ∈ T

that is not infinitesimal and any A ∈I (S) we have G(t)
s1 (A)≈ G(t)

s2 (A).

Proof. Fix any two near-standard s1 ≈ s2 ∈ S and any non-infinitesimal t ∈ T . Pick a non-zero t ′ ∈ Q

such that t ′ ≤ t. By Theorem 3.3.17, we know that ∗g(x, t,st−1(E)) = G(t)
sx
(st−1(E)∩S). Fix any ε ∈R+

and any A ∈I (S), we now consider Gt ′
s1
(A) and Gt ′

s2
(A). By Lemma 3.3.20, we can find a near-standard

Ai ∈I (S) such that |G(t ′)
s1 (A)−G(t ′)

s1 (Ai)|< ε

3 and |G(t ′)
s2 (A)−G(t ′)

s2 (Ai)|< ε

3 . As Ai is near-standard, by

Theorem 3.3.16, we know that G(t ′)
s1 (Ai)≈ ∗g(s1, t ′,

⋃
s∈Ai∩S B(s)) and G(t ′)

s2 (Ai)≈ ∗g(s2, t ′,
⋃

s∈Ai∩S B(s)).

Moreover, by Lemma 3.3.18, we know that |∗g(s1, t ′,
⋃

s∈Ai∩S B(s))− ∗g(s2, t ′,
⋃

s∈Ai∩S B(s))| ≈ 0. Hence

we know that |G(t ′)
s1 (Ai)−G(t ′)

s2 (Ai)| ≈ 0. Thus we have |G(t ′)
s1 (A)−G(t ′)

s2 (A)| < ε . As our choice ε is

arbitrary, we know that |G(t ′)
s1 (A)−G(t ′)

s2 (A)| ≈ 0. Hence we know that ‖ G(t ′)
s1 (.)−G(t ′)

s1 (.) ‖≈ 0 where

‖ G(t ′)
s1 (.)−G(t ′)

s1 (.) ‖ denotes the total variation distance between G(t ′)
s1 and G(t ′)

s1 . By Lemma 3.1.25, we

know that ‖ G(t)
s1 (.)−G(t)

s1 (.) ‖≈ 0 hence finishes the proof.

We are now able to establish to following theorem which is an immediate consequence of Theo-

rem 3.3.21.
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Lemma 3.3.22. Suppose (VD) and (SF) hold. For any two near-standard s1 ≈ s2 from S, any t ∈ T that

is not infinitesimal and any universally Loeb measurable set A we have G(t)
s1
(A) = G(t)

s2
(A).

There exists a natural link between the transition probability g of {Xt} and its nonstandard extension
∗g. We have already established a strong link between ∗g and the internal transition probability G of

{X ′t }. We have also established the “ local continuity” of ∗g. We are now at the place to establish the

relationship between the internal transition probability of {X ′t } and the transition probability of {Xt}.

Theorem 3.3.23. Suppose (VD) and (SF) hold. For any s ∈ NS(S), any non-negative t ∈ Q and any

E ∈B[X ], we have P(t)
st(s)(E) = G(t)

s (st−1(E)∩S).

Proof. We first prove the theorem when t = 0. Fix any s ∈ NS(S) and any E ∈B[X ]. We know that

P(t)
st(s)(E) = 1 if st(s)∈ E and P(t)

st(s)(E) = 0 otherwise. For any x∈ S and A∈I (S), note that G(0)
x (A) = 1

if and only if x ∈ A and G(0)
x (A) = 0 otherwise. This establishes the theorem for t = 0.

We now prove the result for positive t ∈Q. Fix any s∈NS(S), any positive t ∈Q and any E ∈B[X ].

By Lemmas 3.3.18 and 3.3.20 and Theorem 3.3.17, we know that

g(st(s), t,E) = ∗g(st(s), t, ∗E)≈ ∗g(s, t, ∗E)≈ ∗g(s, t,st−1(E)) = G(t)
s (st−1(E)∩S). (3.3.42)

Thus we have for any s ∈ NS(S), any non-zero t ∈ Q+ and any E ∈B[X ]: P(t))
st(s)(E) = G(t)

s (st−1(E)∩

S).

It is desirable to extend Theorem 3.3.23 to all non-negative t ∈R. In order to do this, we need some

continuity condition of the transition probability with respect to time.

Condition OC. The Markov chain {Xt} is said to be continuous in time if there exists a basis B0 such

that g(x, t,U) is a continuous function of t > 0 for every x ∈ X and every U which is a finite intersection

of elements from B0.

It is easy to see that g(x, t,U) is continuous function of t > 0 for every x ∈ X and every U which

is a finite union of elements from B0. Note that (OC) is weaker than assuming g(x, t,U) is a con-

tinuous function of t > 0 for every x ∈ X and every open set U . We establish this by the following

counterexample.

Example 3.3.24. Let µn be the uniform probability measure on the set {1
n , . . . ,1} for every n≥ 1. Let µ

be the Lebesgue measure on [0,1]. It is easy to see that µn(I) converges to µ(A) for every open interval

I. However, it is not the case that µn(U) converges to µ(U) for every open set. To see this, let U be
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an open set containing the set of rational numbers Q such that µ(Q) ≤ 1
2 . We can find such U since

µ(Q) = 0. We know limn→∞ µn(U) = 1 which does not equal to µ(U) = 1
2 .

Let us fix a basis B0 satisfying the conditions in (OC) for the remainder of this section.

Lemma 3.3.25. Suppose (SF) and (OC) hold. For any near-standard x1 ≈ x2, any non-infinitesimal

t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and any U which is a finite intersection of elements in B0, we have

∗g(x1, t1, ∗U)≈ ∗g(x2, t2, ∗U).

Proof. Fix near-standard x1 ≈ x2 ∈ ∗X , some U ⊂ X which is a finite intersection of elements in B0 and

some ε ∈ R+. Also fix two non-infinitesimal t1, t2 ∈ NS(∗R+) such that t1 ≈ t2. Let x0 ∈ X and t0 ∈ R+

denote the standard parts of x1,x2 and t1, t2,respectively. Note that t0 > 0.

As U is a finite intersection of elements from B0, by (OC), there exists δ ∈ R+ such that

(∀t ∈ R+)((|t− t0|< δ ) =⇒ (|g(x0, t,U)−g(x0, t0,U)|< ε)). (3.3.43)

By the transfer principle, we know that

(∀t ∈ ∗R+)((|t− t0|< δ ) =⇒ (|∗g(x0, t, ∗U)− ∗g(x0, t0, ∗U)|< ε)). (3.3.44)

Since ε is arbitrary and st(t1) = st(t2) = t0, we have

∗g(x0, t1, ∗U)≈ ∗g(x0, t0, ∗U)≈ ∗g(x0, t2, ∗U). (3.3.45)

By Lemma 3.3.18, we then have

∗g(x1, t1, ∗U)≈ ∗g(x0, t1, ∗U)≈ ∗g(x0, t2, ∗U)≈ ∗g(x2, t2, ∗U), (3.3.46)

completing the proof.

The next lemma establishes the relation between U and st−1(U).

Lemma 3.3.26. Suppose (SF) and (OC) hold. For any U which is a finite intersection of elements from

B0, any x ∈ NS(∗X) and any t ∈ NS(∗R+) we have ∗g(x, t, ∗U)≈ ∗g(x, t,st−1(U)).

Proof. Fix some U which is a finite intersection of elements from B0, some x ∈ NS(∗X) and some

t ∈NS(∗R+). As st−1(U)⊂ ∗U , it is sufficient to show that ∗g(x, t, ∗U)− ∗g(x, t,st−1(U))< ε for every
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ε ∈ R+. Fix some ε1 ∈ R+. By Lemma 3.3.25, we know that

∗g(x, t, ∗U)≈ ∗g(st(x),st(t), ∗U). (3.3.47)

Let U =
⋃

n∈NUn where Un ∈ B0 for all n ∈ N. As X is a metric space satisfying the Heine-Borel

condition, X is locally compact. Thus, without loss of generality, we can assume that Un ⊂U for all

n ∈ N. By the continuity of probability and the transfer principle, there exists a N ∈ N such that

∗g(st(x),st(t), ∗U)− ∗g(st(x),st(t), ∗(
⋃

n≤N

)Un)< ε1. (3.3.48)

By Lemma 3.3.25 again, we know that ∗g(x, t, ∗U)− ∗g(x, t, ∗(
⋃

n≤N)Un) < ε1. As
⋃

n≤N Un ⊂U , we

know that ∗(
⋃

n≤N)Un ⊂ st−1(U). Hence we know that ∗g(x, t, ∗U)− ∗g(x, t,st−1(U)) < ε1. As the

choice of ε1 is arbitrary, we have the desired result.

Before we extend Theorem 3.3.23 to all non-negative t ∈ R, we introduce the following concept.

Definition 3.3.27. A class C of subsets of some space X is called a π-system if it is closed under finite

intersections.

π-system can be used to determine the uniqueness of measures.

Lemma 3.3.28 ([22, Lemma 1.17]). Let µ and ν be bounded measures on some measurable space

(Ω,A ), and let C be a π-system in Ω such that Ω ∈ C and σ(C ) = A where σ(C ) denote the σ -

algebra generated by C . Then µ = ν if and only if µ(A) = ν(A) for all A ∈ C .

Lemma 3.3.28 allows us to obtain slightly stronger results than Lemmas 3.3.25 and 3.3.26.

Lemma 3.3.29. Suppose (SF) and (OC) hold. For any near-standard x1 ≈ x2, any non-infinitesimal

t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and any E ∈B[X ], we have ∗g(x1, t1, ∗E)≈ ∗g(x2, t2, ∗E).

Proof. Fix two near-standard x1 ≈ x2 and two near-standard t1 ≈ t2. Let µ1(A) = ∗g(x1, t1, ∗A) and

µ2(A) = ∗g(x2, t2, ∗A) for all A ∈B[X ]. It is easy to see that both µ1 and µ2 are probability measures on

X . By Lemma 3.3.25, we know that µ1(U) = µ2(U) for any U which is a finite intersection of elements

in B0. By Lemma 3.3.28, we have the desired result.

By using essentially the same argument, we have

Lemma 3.3.30. Suppose (SF) and (OC) hold. For any E ∈B[X ], any x∈NS(∗X) and any t ∈NS(∗R+)

we have ∗g(x, t, ∗E)≈ ∗g(x, t,st−1(E)).

75



We are now at the place to extend Theorem 3.3.23 to all non-negative t ∈ R.

Theorem 3.3.31. Suppose (VD), (SF) and (OC) hold. For any s ∈ NS(S), any non-infinitesimal t ∈

NS(T ) and any E ∈B[X ], we have P(st(t))
st(s) (E) = G(t)

s (st−1(E)∩S).

Proof. Fix any s ∈ NS(S), any non-infinitesimal t ∈ NS(T ) and any E ∈ B[X ]. By Lemmas 3.3.29

and 3.3.30, we know that

g(st(s),st(t),E) = ∗g(st(s),st(t), ∗E)≈ ∗g(s, t, ∗E)≈ ∗g(s, t,st−1(E)). (3.3.49)

By Theorem 3.3.17, we know that ∗g(s, t,st−1(E))=G(t)
s (st−1(E)∩S). Thus we know that g(st(s),st(t),E)=

G(t)
s (st−1(E)∩S), completing the proof.

It is possible to weaken (OC) to: g(x, t,U) is a continuous function of t > 0 for x ∈ X and U ∈B0.

From the proof of Theorem 3.3.31, we can show that g(st(s),st(t),U) = G(t)
s (st−1(U)∩S) for all U ∈

B0. Then the question is: if two finite Borel measures on some metric space agree on all open balls, do

they agree on all Borel sets? Unfortunately, this is not true even for compact metric spaces.

Theorem 3.3.32 ([13, Theorem .2]). There exists a compact metric space Ω, and two distinct probability

Borel measures µ1,µ2 on Ω, such that µ1(U) = µ2(U) for every open ball U ⊂Ω.

However, we do have an affirmative answer of the above question for metric spaces we normally

encounter.

Theorem 3.3.33 ([36]). Whenever finite Borel measures µ and ν over a separable Banach space agree

on all open balls, then µ = ν .

The following definition of “continuous in time” is weaker than (OC).

Condition WC. The Markov chain {Xt} is said to be weakly continuous in time if for any open ball

A⊂X , and any x∈X , the function t 7→P(t)
x (A) is a right continuous function for t > 0. Moreover, for any

t0 ∈ R+, any x ∈ X and any E ∈B[X ] we have limt↑t0 P(t)
x (E) always exists although it not necessarily

equals to P(t0)
x (E).

This condition is usually assumed for all the continuous time Markov processes. An immediate

implication of this definition is the following lemma:

Lemma 3.3.34. Suppose (SF) and (WC) hold. For any near-standard x1 ≈ x2, any non-infinitesimal

t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and t1, t2 ≥ st(t1) and any open ball A we have ∗g(x1, t1, ∗A) ≈
∗g(x2, t2, ∗A).
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Proof. The proof is similar to the proof of Lemma 3.3.25.

This lemma, just like Lemma 3.3.25, is stronger than Lemma 3.3.18 since t1 and t2 need not be

standard positive real numbers. We now generalize Lemma 3.3.20 to all t ∈ NS(∗R). Before proving it,

we first recall the following theorem.

Theorem 3.3.35 (Vitali-Hahn-Saks Theorem). Let µn be a sequence of countably additive functions

defined on some fixed σ -algebra Σ, with values in a given Banach space B such that

lim
n→∞

µn(X) = µ(X). (3.3.50)

exists for every X ∈ Σ, then µ is countably additive.

An immediate consequence of Theorem 3.3.35 is that the limit of probability measures remain a

probability measure. The following lemma generalizes Lemma 3.3.20 to all t ∈ NS(∗R).

Lemma 3.3.36. Suppose (SF) and (WC) hold. For any x ∈ NS(∗X) and for any non-infinitesimal t ∈

NS(∗R) we have ∗g(x, t, ∗E)≈ ∗g(x, t,st−1(E)) for all E ∈B[X ]. Moreover, ∗g(x, t,st−1(X)) = 1 for all

x ∈ NS(∗X) and all t ∈ NS(∗R).

Proof. Pick any x ∈ NS(∗X), any t ∈ NS(∗R) and any E ∈B[X ]. Let x0 = st(x) and t0 = st(t). We

first show the result for t < t0. For any B ∈B[X ], let h(x0, t0,B) denote lims↑t0 g(x0,s,B). By Vitali-

Hahn-Saks theorem, h is a probability measure on (X ,B[X ]). Since X is a Polish space, h is a Radon

measure. By Lemma 2.4.8, we know that ∗h(x0, t0,st−1(X)) = 1. As t ≈ t0, we know that ∗g(x0, t, ∗B)≈
∗h(x0, t0, ∗B) for all B ∈B[X ]. Pick some ε ∈ R+ and choose K compact, U open with K ⊂ E ⊂U and

h(x0, t0,U)−h(x0, t0,K)< ε

2 . We have

|∗g(x0, t,st−1(E))− ∗h(x0, t0,st−1(E))| (3.3.51)

/ |∗g(x0, t,st−1(E))− ∗g(x0, t, ∗K)|+ |∗h(x0, t0, ∗K)− ∗h(x0, t0,st−1(E))|/ ε (3.3.52)

As ε is arbitrary, we have ∗g(x0, t,st−1(E)) = ∗h(x0, t0,st−1(E)). Hence we have ∗g(x0, t,st−1(E)) =

∗g(x0, t, ∗E). By Lemma 3.3.18, we know that ∗g(x0, t,D)≈ ∗g(x, t,D) for all D∈ ∗B[X ]. Thus, we have

∗g(x0, t,st−1(E)) = ∗g(x, t,st−1(E)) and ∗g(x0, t, ∗E) ≈ ∗g(x, t, ∗E). Hence we have ∗g(x, t,st−1(E)) =

∗g(x, t, ∗E).

For t ≥ t0, we can simply take h(x0, t0,B) to be g(x0, t0,B) for every B ∈B[X ].
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Suppose there exist some x0 ∈ NS(∗X) and some infinitesimal t0 such that ∗g(x0, t0,st−1(X)) < 1.

This implies that there exist n ∈ N and A ∈ ∗B[X ] such that

(A∩ st−1(X) = /0)∧ (∗g(x0, t0,A)>
1
n
). (3.3.53)

Pick some positive t1 ∈ R.

Claim 3.3.37. ∗ f (t0,t1)x0
(A, ∗K)≈ 0 for all compact K ⊂ X.

Proof. Pick some compact subset K and some positive ε ∈ R. By condition (2) of (VD), there exists

positive r ∈ R such that

(∀x ∈ X)(d(x,K)> r =⇒ g(x, t1,K)< ε). (3.3.54)

By the transfer principle, we know that ∗g(x, t1, ∗K) ≈ 0 for all x ∈ A. By Lemma 3.2.5, we have
∗ f (t0,t1)x0

(A, ∗K)≈ 0.

Fix some compact K ⊂ X . Note that

∗g(x0, t0 + t1,K) = ∗g(x0, t0,A)∗ f (t0,t1)x0
(A, ∗K)+ ∗g(x0, t0, ∗X \A)∗ f (t0,t1)x0

(∗X \A, ∗K). (3.3.55)

Hence ∗g(x0, t0 + t1,K) / 1− 1
n . As this is true for all compact K ⊂ X , we know that ∗g(x0, t0 +

t1,st−1(X))≤ 1− 1
n . This is a contradiction hence we have the desired result.

A consequence of this lemma is the following result:

Lemma 3.3.38. Suppose (SF) and (WC) hold. For any s ∈NS(S) and any t ∈NS(T ) we have G(t)
s (S) =

G(t)
s (NS(S)) = 1.

Proof. Fix any s ∈ NS(S) and any t ∈ NS(T ). By Theorem 3.3.17 and Lemma 3.3.36, we know that

G(t)
s (st−1(X)∩S) = ∗g(s, t,st−1(X)) = 1. (3.3.56)

Assuming (WC) instead of (OC), we have the following result which is similar to Theorem 3.3.31.

78



Theorem 3.3.39. Suppose (VD), (SF) and (WC) hold. Suppose the state space X of {Xt}t≥0 is a sepa-

rable Banach space. Then for any s ∈ NS(S), any t ∈ NS(T ) with t > st(t) and any E ∈B[X ], we have

P(st(t))
st(s) (E) = G(t)

s (st−1(E)∩S).

Proof. We require X to be a separable Banach space to apply Theorem 3.3.33. The proof is similar to

the proof of Theorem 3.3.31 hence omitted.
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Chapter 4

Convergence Results for Standard

Markov Processes

In the previous chapter, for a continuous-time general state space Markov process {Xt}t≥0 satisfying

certain regularity conditions, we have constructed a hyperfinite Markov process {X ′t }t∈T such that the

internal transition probabilities of {X ′t }t∈T differs from the transition probabilities of {Xt}t≥0 only by

infinitesimal. Such {X ′t }t∈T is called a hyperfinite representation of {Xt}t≥0. In this chapter, we will

establish some convergence results for the standard Markov process {Xt}t≥0 using convergence result

on {X ′t }t∈T in Section 3.1.

In Section 4.1, we establish the Markov chain ergodic theorem for continuous-time general state

space Markov processes. We show that the hyperfinite representation {X ′t }t∈T inherit many key prop-

erties from {Xt}t≥0 (see Theorem 4.1.6 and Lemmas 4.1.8 and 4.1.15). By Theorem 3.1.26, we know

that {X ′t }t∈T is ergodic. The ergodicity of {Xt}t∈T (Theorem 4.1.16) follows from Theorem 3.1.26. It

will be shown in Example 5.3.8 that the Markov chain ergodic theorem established in this dissertation

is incomparable to the existing result (Theorem 5.3.7) in the literature.

One of the major assumptions on {Xt}t≥0 is the strong Feller assumption which asserts that transition

probability of {Xt}t≥0 is a continuous function of the starting points with respect to the total variation

distance. It is desirable to weaken this condition to only assuming that the transition probability is

a continuous function of the starting points for every Borel set (such condition is called the Feller

condition). In Section 4.2, we establish how to construct a hyperfinite representation {X ′t }t∈T of {Xt}t≥0

when {Xt}t≥0 just satisfies the Feller condition. We also give a proof of a weaker Markov chain ergodic

theorem under the Feller condition. It remains open whether the Markov chain ergodic theorem is true
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when {Xt}t≥0 only satisfies the Feller condition.

4.1 Markov Chain Ergodic Theorem

In the last section, we established the relation between the transition probability of {Xt}t≥0 and {X ′t }t∈T .

In this section, we will show that {X ′t }t∈T inherits some other key properties from {Xt}t≥0. Most im-

portantly, we show that if π is a stationary distribution then its nonstandard counterpart is a weakly

stationary distribution. Finally we will establish the Markov chain ergodic theorem for {Xt}t≥0 by

showing that {X ′t }t∈T converges.

Let π be a stationary distribution for our standard Markov process {Xt}t≥0. We now show that π ′,

the hyperfinite representation measure of π , is a weakly stationary distribution for {X ′t }t∈T .

Since X is a Polish space equipped with Borel σ -algebra, the stationary distribution π for {Xt}must

be a Radon measure. We first establish the following fact of stationary distributions.

Lemma 4.1.1. For any t ∈ R+, any finite partition of X with Borel sets A1, ....,An,B of X and any

A ∈B[X ] such that:

1. for each Ai ∈ {A1, ....,An} there exists an εi ∈ R+ such that for any x,y ∈ Ai we have |P(t)
x (A)−

P(t)
y (A)|< εi.

2. there exists an ε ∈ R+ such that π(B)< ε .

We have |π(A)−∑i≤n π(Ai)P
(t)
xi (A)| ≤ ∑i≤n π(Ai)εi + ε for any xi ∈ Ai.

Proof. Fix a t ∈ R+ and suppose there exists such a finite partition A1, ....,An,B of X satisfying the two

conditions in the lemma. Pick any A ∈B[X ] and any xi ∈ Ai. We then have:

|π(A)−∑
i≤n

π(Ai)P
(t)
xi (A)| (4.1.1)

= |
∫

X
P(t)

x (A)π(dx)−∑
i≤n

(
∫

Ai

π(dx))P(t)
xi (A)| (4.1.2)

= |∑
i≤n

∫
Ai

P(t)
x (A)π(dx)+

∫
B

P(t)
x (A)π(dx)−∑

i≤n

∫
Ai

P(t)
xi (A)π(dx)| (4.1.3)

≤ |∑
i≤n

(
∫

Ai

(P(t)
x (A)−P(t)

xi (A))π(dx))|+ ε (4.1.4)

≤∑
i≤n

(
∫

Ai

εiπ(dx))+ ε (4.1.5)

= ∑
i≤n

π(Ai)εi + ε. (4.1.6)
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Write P(t)
x (A) as g(x, t,A) and then apply the transfer principle, we have the following lemma:

Lemma 4.1.2. For any t ∈ ∗R+, for any hyperfinite partition of ∗X with ∗Borel sets A1, ....,AN ,B of ∗X

and any A ∈ ∗B[X ] such that:

1. for each Ai ∈ {A1, ....,AN} there exists an εi ∈ ∗R+ such that for any x,y ∈ Ai |∗g(x, t,A)−
∗g(x, t,A)|< εi.

2. there exists an ε ∈ ∗R+ such that π(B)< ε .

We have

|∗π(A)−∑
i≤N

∗
π(Ai)

∗g(xi, t,A)| ≤ ∑
i≤N

∗
π(Ai)εi + ε. (4.1.7)

for any xi ∈ Ai

Recall the definition of weakly stationary distribution:

Definition 4.1.3. An internal distribution π ′ on (S,I (S)) is called weakly stationary with respect to the

Markov chain {X ′t }t∈T if there exists an infinite t0 ∈ T such that for every t ≤ t0 and every A ∈I (S) we

have π ′(A)≈ ∑s∈S π ′({s})G(t)
s (A).

We now construct a weak-stationary distribution for {X ′t }t∈T from the stationary distribution π of

{Xt}t≥0.

Definition 4.1.4. Define an internal probability measure π ′ on (S,I (S)) as following:

1. For all s ∈ S let π ′({s}) =
∗π(B(s))

∗π(
⋃

s′∈S B(s′)) .

2. For all internal sets A⊂ S let π ′(A) = ∑s∈A π ′({s}).

The following lemma is a direct consequence of Definition 4.1.4.

Lemma 4.1.5. π ′ is an internal probability measure on (S,I (S)). Moreover, for any A ∈B[X ], we

have π(A) = π ′(st−1(A)∩S).

Proof. Clearly π ′ is an internal measure on (S,I (S)). The second part of the lemma follows directly

from Theorem 2.4.11.
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We now show that π ′ is a weakly stationary distribution for {X ′t }.

Theorem 4.1.6. Suppose (VD), (SF) and (WC) hold. Then π ′ is a weakly stationary distribution for

{X ′t }t∈T .

Proof. Fix an internal set A ∈ S and some near-standard t ∈ T . Consider the hyperfinite partition F =

{B(s1), ....,B(sN),
∗X \

⋃
s∈S B(s)} of ∗X where S = {s1,s2, ...,sN} is the state space of {X ′t }. Note that

every member of F is an member of ∗B[X ]. By Theorem 3.3.11 and Eq. (3.3.19), we know that

(∀i≤ N)(∀x,y ∈ B(si))(∀C ∈ ∗B[X ])(|∗g(x, t,C)− ∗g(y, t,C)|< ε0). (4.1.8)

Let B=
⋃

s∈A B(s) then B∈ ∗B[X ] since it is a hyperfinite union of ∗Borel sets. As π is a Radon measure,

we know that there exists an infinitesimal ε1 such that ∗π(∗X \
⋃

s∈S B(s)) = ε1.

By Lemma 4.1.2 , we have

|∗π(B)−∑
i≤N

∗
π(B(si))

∗g(si, t,B)| ≤ ∑
i≤N

∗
π(B(si))ε0 + ε1 ≤ ε0 + ε1 ≈ 0. (4.1.9)

By Definition 4.1.4, we know that π ′(A) =
∗π(B)

∗π(
⋃

s′∈S B(s′)) and π ′(si) =
∗π(B(si))

∗π(
⋃

s′∈S B(s′)) . Thus, we have

|π ′(A)−∑
i≤N

π
′(si)

∗g(si, t,B)| ≈ 0. (4.1.10)

Fix positive ε ∈ R. As π ′ concentrates on NS(S), there is a near-standard internal set C with π ′(C) >

1− ε . Thus we have

|∑
s∈S

π
′({s})∗g(si, t,B)−∑

s∈C
π
′({s})∗g(si, t,B)|< ε (4.1.11)

Claim 4.1.7. Suppose (VD), (SF) and (WC) hold. Then ∗g(s, t,B) ≈ G(t)
s (A) for all s ∈ NS(S) and

t ∈ NS(T ).

Proof. Fix n0 ∈ N, s ∈ NS(S) and t ∈ NS(T ). By Lemma 3.3.38, there exist near-standard Ai ∈I (S)

with Ai ⊂ A such that G(t)
s (A)−G(t)

s (Ai)<
1
n0

. By Lemma 3.3.36, there exist near-standard Ci ∈ ∗B[X ]

with Ci ⊂ B such that ∗g(s, t,B)− ∗g(s, t,Ci)<
1
n0

. As X is σ -compact, let X =
⋃

n∈N Kn where {Kn : n ∈

N} is a sequence of non-decreasing compact sets. Without loss of generality, we can assume Ci ⊂ ∗Km

for some m ∈ N. As Km is compact, there exists a near-standard Bi ∈I (S) such that ∗Km ∈
⋃

s∈Bi
B(s).
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Thus, we have Ci ⊂
⋃

s∈Bi
B(s)⊂ B. By the construction of B, it is easy to see that Bi ⊂ A. Note that, by

Theorem 3.3.16, we have

∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′))≈ G(t)
s (Ai∪Bi) (4.1.12)

Thus we have

|∗g(s, t,B)−G(t)
s (A)| (4.1.13)

≈ |∗g(s, t,B)− ∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′))+G(t)
s (Ai∪Bi)−G(t)

s (A)| (4.1.14)

≤ |∗g(s, t,B)− ∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′))|+ |G(t)
s (Ai∪Bi)−G(t)

s (A)|< 2
n0

(4.1.15)

As the choice of n0 is arbitrary, we have the desired result.

As C is near-standard, by Lemma 2.1.20, we have

|∑
s∈C

π
′({s})∗g(si, t,B)−∑

s∈C
π
′({s})G(t)

s (A)| ≈ 0. (4.1.16)

By the construction of C again, we have

|∑
s∈C

π
′({s})G(t)

s (A)−∑
s∈S

π
′({s})G(t)

s (A)|< ε. (4.1.17)

By Eqs. (4.1.10), (4.1.11), (4.1.16) and (4.1.17), we have

|π ′(A)−∑
s∈S

π
′({s})G(t)

s (A)|< 2ε. (4.1.18)

As the choice of ε is arbitrary, we have π ′(A)≈ ∑s∈S π ′({s})G(t)
s (A) for all t ∈ NS(T ).

Consider the set D = {t ∈ T : (∀A∈I (S))(|π ′(A)−∑s∈S π ′({s})G(t)
s (A)|< 1

t )}. This is an internal

set and contains all t ∈ NS(T ). Suppose there is no infinite t0 such that D contains all the infinite t no

greater than t0. This implies T \D contains arbitrarily small infinite element hence, by underspill, T \D

contains some t0 ∈ NS(T ). This contradicts with the fact that D contains all t ∈ NS(T ). Thus π ′ is a

weakly stationary distribution of {X ′t }t∈T .

Note that if π is a stationary distribution of {Xt}t≥0 then π×π is a stationary distribution of {Xt ×
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Xt}t≥0. Thus, we have the following lemma.

Lemma 4.1.8. Suppose (VD) and (SF) hold. Then π ′×π ′ is a weakly stationary distribution of {X ′t ×

X ′t }t∈T .

Proof. It is straightforward to verify that S×S is a (δ0,r)-hyperfinite representation of ∗X × ∗X . Since

π × π is a stationary distribution, by Theorem 4.1.6, (π × π)′ is a weakly stationary distribution of

{X ′t ×X ′t }t∈T . In order to finish the proof, it is sufficient to show that (π×π)′ = π ′×π ′.

Pick any (s1,s2) ∈ S×S. As {B(s) : s ∈ S} is a collection of mutually disjoint sets, we have

(π×π)′({(s1,s2)}) =
∗(π×π)(B(s1)×B(s2))

∗(π×π)(
⋃

s∈S B(s)×
⋃

s∈S B(s))
(4.1.19)

=
∗π(B(s1))

∗π(
⋃

s∈S B(s))
·
∗π(B(s2))

∗π(
⋃

s∈S B(s))
(4.1.20)

= π
′(s1)π

′(s2). (4.1.21)

Hence we have (π×π)′ = π ′×π ′, completing the proof.

In order to show that {X ′t }t∈T converges to π ′, by Theorem 3.1.19, it remains to show that for

π ′×π ′-almost surely (i, j) ∈ S×S there exists a near-standard absorbing point i0. By Theorem 3.1.14,

it is enough to show that {X ′t }t∈T is productively near-standard open set irreducible. We first recall

the definition of productively near-standard open set irreducible. We now impose some conditions on

{Xt}t≥0 to show that {X ′t }t∈T is productively near-standard open set irreducible. We first recall the

following definitions.

Definition 4.1.9. A Markov chain {Xt}t≥0 with state space X is said to be open set irreducible on X if

for every open ball B⊆ X and any x ∈ X , there exists t ∈ R+ such that P(t)
x (B)> 0.

An internal set B ⊂ S is an open ball if B = {s ∈ S : ∗d(s,s0) < r} for some s0 ∈ S and r ∈ ∗R. An

open ball is near-standard if it contains only near-standard elements.

Definition 4.1.10. A hyperfinite Markov chain {Yt}t∈T is called near-standard open set irreducible if

for any near-standard s ∈ S, any near-standard open ball B ⊂ ∗X with non-infinitesimal radius we have

Pi(τ(B)< ∞)> 0

We first establish the connection between open set irreducibility of {Xt}t≥0 and {X ′t }t∈T . Note that

the consequence of the following theorem implies the near-standard open-set irreducibility of {X ′t }t∈T .
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Theorem 4.1.11. Suppose (VD), (SF) and (WC) hold. If {Xt}t≥0 is open set irreducible, then for any

near-standard s ∈ S, any near-standard open ball B with non-infinitesimal radius there is a positive

t ∈ NS(T ) such that G(t)
s (B)> 0.

Proof. Consider any near-standard open ball B ⊂ S with non-infinitesimal radius k. Without loss of

generality let B = {s ∈ S : ∗d(s,s0)< r} for some near-standard s0 ∈ S and some near-standard r ∈ ∗R+.

Let A be the ball in X centered at st(s0) with radius st(r)
2 .

Claim 4.1.12. st−1(A)∩S⊂ B.

Proof. Pick any point x ∈ st−1(A)∩S. There exists a ∈ A such that x ∈ µ(a). We then have ∗d(x,s0)≤
∗d(x,a)+∗d(a,st(s0))+

∗d(st(s0),s0)/
st(r)

2 . Thus ∗d(x,s0)/
st(r)

2 < r. This implies that st−1(A)∩S⊂

B.

Consider any near-standard s ∈ S, there exists a x ∈ X such that x = st(s). As {Xt}t≥0 is open set

irreducible, there exists a t ∈ R+ such that P(t)
x (A) > 0. Pick t ′ ∈ T such that t ′ ≈ t and t ′ ≥ t. By

Lemma 3.3.34, Lemma 3.3.36 and Theorem 3.3.17, we know that

P(t)
x (A) = g(x, t,A) = ∗g(x, t, ∗A)≈ ∗g(s, t ′, ∗A)≈ ∗g(s, t ′,st−1(A)) = G(t ′)

s (st−1(A)∩S). (4.1.22)

Then we have st((G(t)
s (B)))> 0.

Let {X ′t }t∈T and {Y ′t }t∈T be two i.i.d hyperfinite Markov chains on (S,I (S)) both with internal

transition probability {G(δ t)
i j)}i, j∈S. Let {Z′t}t∈T be the product hyperfinite Markov chain live on (S×

S,I (S× S)) with respect to {X ′t }t∈T and {Y ′t }t∈T . Recall that the internal transition probability of

{Z′t}t∈T is then defined to be

F(δ t)
(i, j) ({(a,b)}) = G(δ t)

i ({a})×G(δ t)
j ({b}). (4.1.23)

where (F(δ t)
(i, j) ({(a,b)}) denote the internal probability of Z′t starts at (i, j) and reach (a,b) at δ t.

Before we prove that {Z′t}t∈T is near-standard open set irreducible, we impose the following condi-

tion on the standard joint Markov chain.

Definition 4.1.13. The Markov chain {Xt}t≥0 is productively open set irreducible if the joint Markov

chain {Xt ×Yt}t≥0 is open set irreducible on X ×X where {Yt}t≥0 is an independent identical copy of

{Xt}t≥0.
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The following lemma gives a sufficient condition for a Markov process being productively open set

irreducible.

Lemma 4.1.14. Let {Xt}t≥0 be an open set irreducible Markov process. If there exists t0 ∈R+ such that

for any open set A and any x ∈ A, we have P(t)
x (A)> 0 for all t ≥ t0. Then {Xt}t∈R is productively open

set irreducible.

Proof. Consider a basic open set A×B. Suppose {Xt} reaches A first. Then {Xt} will wait for {Yt} to

reach B.

Most of the diffusion processes satisfy the condition of this lemma.

Recall that {X ′t }t∈T is productively near-standard open set irreducible if {Z′t}t∈T is near-standard

open set irreducible.

Lemma 4.1.15. Suppose (VD), (SF) and (WC) hold. If {Xt}t≥0 is productively open set irreducible,

then {X ′t }t∈T is productively near-standard open set irreducible.

Proof. Let {Yt}t≥0 denote an independent identical copy of {Xt}t≥0. We use P to denote the transition

probability of Xt and Yt . Let {Zt}t∈R be the product chain of {Xt} and {Yt}. We use Q to denote

the transition probability of the joint chain Zt . Let {Y ′t }t∈T denote an independent identical copy of

{X ′t }t∈T . We use G to denote the internal transition probability of X ′t and Y ′t and use F to denote the

internal transition probability of the product hyperifnite chain Z′t . It is sufficient to show that {Z′t}t∈T is

near-standard open set irreducible.

Pick any near-standard open ball B with non-infinitesimal radius from S× S and fix some near-

standard (i, j) ∈ S× S. Then there exists (x,y) ∈ X ×X such that (i, j) ∈ µ((x,y)). We can find two

open balls B1,B2 ∈ S with non-infinitesimal radius such that B1×B2 ⊂ B. As in Theorem 4.1.11, we

can find two open balls A1,A2 such that st−1(A1)∩ S ⊂ B1 and st−1(A2)∩ S ⊂ B2,respectively. Thus

in conclusion we have (st−1(A1)∩S)× (st−1(A2)∩S) = (st−1(A1×A2))∩ (S×S) ⊂ B. As {Xt}t≥0 is

productively open set irreducible, there exists t ∈ R+ such that Q(t)
(x,y)(A1×A2) > 0. By (WC), we can

pick t to be a rational number. By the definition of {Zt}t≥0 and Theorem 3.3.23, we have

Q(t)
(x,y)(A1×A2) = P(t)

x (A1)×P(t)
y (A2) = G(t)

i (st−1(A1)∩S)×G(t)
j (st−1(A2)∩S). (4.1.24)

By Lemma 3.1.10 and the construction of Loeb measure, we know that

G(t)
i (st−1(A1)∩S)×G(t)

j (st−1(A2)∩S) = F(t)
(i, j)(st

−1(A1×A2))∩ (S×S)). (4.1.25)
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Thus F(t)
(i, j)(st

−1(A1×A2))∩ (S×S))> 0. As (st−1(A1×A2))∩ (S×S)⊂ B we have that F(t)
(i, j)(B)> 0,

completing the proof.

Now we are at the place to prove the main theorem of this paper.

Theorem 4.1.16. Let {Xt}t≥0 be a general-state-space continuous in time Markov chain on some metric

space X satisfying the Heine-Borel condition. Suppose {Xt}t≥0 is productively open set irreducible and

has a stationary distribution π . Suppose {Xt}t≥0 also satisfies (VD), (SF) and (WC). Then for π-almost

surely x ∈ X we have limt→∞ supA∈B[X ] |P
(t)
x (A)−π(A)|= 0.

Proof. Let {X ′t }t∈T denote the corresponding hyperfinite Markov chain on the hyperfinite set S. We use

P to denote the transition probability of {Xt}t≥0 and use G to denote the internal transition probability

for {X ′t }t∈T . Let π ′ be defined as in Definition 4.1.4. By Theorem 4.1.6, we know that π ′ is a weakly

stationary distribution for {X ′t }t∈T . We first show that the internal transition probability of {X ′t }t∈T

converges to π ′. As {Xt}t≥0 is productively open set irreducible, by Lemma 4.1.15, we know that

{X ′t }t∈T is productively near-standard open set irreducible. By Theorem 3.3.21, we know that {X ′t }t∈T

is strong regular. Thus by Theorems 3.1.19 and 3.1.26, we know that for π ′ almost surely s ∈ S and any

A ∈L (I (S)), limt→∞ supB∈L (I (S)) |G
(t)
s (B)−π ′(B)|= 0.

Now fix any A ∈ B[X ]. Then by Theorem 2.3.9, we know that st−1(A) ∈ L (I (S)). Consider

any x ∈ X and any s ∈ st−1({x})∩ S. By Theorem 3.3.23, we know that for any t ∈ Q+ we have

P(t)
x (A) = G(t)

s (st−1(A)∩ S). By Lemma 4.1.5, we know that π(A) = π ′(st−1(A)∩ S). Suppose that

there exists a set B ∈B[X ] with π(B)> 0 such that, for any x ∈ B, P(t)
x (.) does not converge to π(.) in

total variation distance. This means that for any s ∈ st−1(B)∩S we have

sup
A∈B[X ]

|G(t)
s (st−1(A)∩S)−π ′(st−1(A)∩S)|9 0. (4.1.26)

where we can restrict t to Q+⊂ T since total variation distance is non-increasing. However, as π(B)> 0,

we know that π ′(st−1(B)∩S)> 0. This contradict the fact that for π ′ almost surely s, limt→∞ supB∈L (I (S)) |G
(t)
s (B)−

π ′(B)|= 0. Hence we have the desired result.

4.2 The Feller Condition

In Sections 3.2 and 4.1, our analysis depend on the strong Feller condition ((SF)). In the literature,

however, it is sometimes more desirable to replace strong Feller condition with a weaker condition
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which we call Feller condition. In this section, we will discuss the difference between strong Feller

and Feller conditions. Moreover, we will construct a hyperfinite representation {X ′t }t∈T of {Xt}t≥0

under Feller condition. Finally, we will establish some of the key properties of {X ′t }t∈T inherited from

{Xt}t≥0.

We first recall the definition of strong Feller.

Remark 4.2.1. (SF) The Markov chain{Xt}t≥0 is said to be strong Feller if for any t > 0 and any ε > 0

we have:

(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(|y− x|< δ =⇒ (∀A ∈B[X ])|P(t)
y (A)−P(t)

x (A)|< ε)). (4.2.1)

We then introduce the Feller condition.

Condition WF. The Markov chain{Xt}t≥0 is said to be Feller if for all t > 0 and all ε > 0 we have:

(∀A ∈B[X ])(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(|y− x|< δ =⇒ |P(t)
y (A)−P(t)

x (A)|< ε)). (4.2.2)

As one can see, the choice of δ in (WF) depends on the Borel set A. We present the following Feller

Markov process which is not strong Feller.

Example 4.2.2 (suggested by Neal Madras). [30, Page. 889] Let {Xt}t∈N be a discrete-time Markov

processes with state space [−π,π]. For every n ∈ N, let 1+sin(ny)
2π

be the density of P1
n
(dy). Let µ be the

Lebesgue measure on [−π,π] divided by 2π and let µ(A) = P0(A) for all Borel sets A.

Claim 4.2.3. limn→∞ P1
n
(A) = µ(A) for all Borel sets A.

Proof. Let A be an internal with end points a and b.

lim
n→∞

P1
n
(A) = lim

n→∞

∫ b

a

1+ sin(ny)
2π

dy (4.2.3)

= lim
n→∞

(
b−a
2π
− cos(nb)− cos(na)

2nπ
) (4.2.4)

=
b−a
2π

= µ(A) (4.2.5)

By Theorem 3.3.33, we have the desired result.

Claim 4.2.4. supA∈B[[−π,π]] |P1
n
(A)−µ(A)| ≥ 1

π
for all n ∈ N
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Proof. Let A be an internal with end points a and b. Then we have |P1
n
(A)−µ(A)|= | cos(nb)−cos(na)

2nπ
|. For

any m ∈ N, we can find an open set Um which is a union of m open intervals (a1,b1), . . . ,(am,bm) such

that cos(nbn)− cos(nan) = 2 for all n≤ m. Then |P1
m
(Um)−µ(Um)|= 1

π
, completing the proof.

4.2.1 Hyperfinite Representation under the Feller Condition

In this section, we will show that, by carefully picking a hyperfinite representation, we can construct a

hyperfinite Markov process {X ′t }t∈T which is a hyperfinite representation of {Xt}t≥0. We use P(t)
x (A) to

denote the transition probability of {Xt}t≥0. When we view the transition probability as a function of

three variables, we denote it by g(x, t,A).

The state space of {X ′t }t∈T is a hyperfinite representation S of ∗X . By Definition 2.4.3, the hy-

perfinite set S should be a (δ0,r0)-hyperfinite representation of ∗X for some positive infinitesimal δ0

and some positive infinite number r0. We need to pick δ0 and r0 carefully. Recall that the time line

T = {0,δ t, . . . ,K}. Let ε0 be a positive infinitesimal such that ε0
t

δ t ≈ 0 for all t ∈ T . We can pick r0 the

same way as we did in Section 3.2. Recall (VD) and Theorem 3.3.4 from Section 3.2.

Remark 4.2.5 ((VD)). The Markov chain {Xt}t≥0 is said to be vanish in distance if for all t ≥ 0 and all

K ∈K [X ] we have:

1. (∀ε > 0)(∃r > 0)(∀x ∈ K)(∀A ∈B[X ])(d(x,A)> r =⇒ g(x, t,A)< ε).

2. (∀ε > 0)(∃r > 0)(∀x ∈ X)(d(x,K)> r =⇒ g(x, t,K)< ε).

where K denote the collection of all compact sets of X .

We have the following lemma from the above definition.

Lemma 4.2.6 (Theorem 3.3.4). Suppose (VD) holds. For every positive ε ∈ ∗R, there exists an open

ball centered at some standard point a with radius r such that:

1. ∗g(x,δ t, ∗X \U(a,r))< ε for all x ∈ NS(∗X).

2. ∗g(y, t,A)< ε for all y ∈ ∗X \U(a,r), all near-standard A ∈ ∗B[X ] and all t ∈ T .

where U(a,r) = {x ∈ ∗X : ∗d(x,a)≤ r}.

Fix a standard a0 ∈ X . For the particular ε0, we can find a r1 such that the ball U(a0,r1) satisfies the

conditions in Lemma 4.2.6.

Recall the following results from Section 3.2
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Lemma 4.2.7 (Lemma 3.3.7). Suppose (VD) holds. There exists a positive infinite r0 > 2r1 such that

(∀y ∈U(a0,2r1))(
∗g(y,δ t, ∗X \U(a0,r0))< ε0). (4.2.6)

Just as in Section 3.2,we fix a0, r1 and r0 for the remainder of this section.

Lemma 4.2.8 (Lemma 3.3.8). Suppose (VD) holds. For any x∈X, any t ∈ T , any near-standard internal

set A⊂ ∗X we have ∗ f (t)x (∗X \U(a0,r0),A)< 2ε0.

Just as in Section 3.2, our hyperfinite state space will cover U(a0,2r0). We will choose δ0 to partition

U(a0,2r0) into ∗Borel sets with diameters no greater than δ0.

We start by picking an arbitrary positive infinitesimal δ1 and let S1 be a (δ1,2r0)-hyperfinite repre-

sentation of ∗X such that {B1(s) : s ∈ S1}=U(a0,2r0). We fix S1 for the remainder of this section.

Lemma 4.2.9. Suppose (VD) and (WF) hold. There exists a positive infinitesimal δ0 such that for any

x1,x2 ∈U(a0,2r0) with |x1− x2|< δ0 we have for all A ∈I (S1) and all t ∈ T+:

|∗g(x1, t,
⋃
s∈A

B1(s))− ∗g(x2, t,
⋃
s∈A

B1(s))|< ε0 (4.2.7)

Proof. Fix a A ∈I (S1). By the transfer of (WF), for every x ∈U(a0,2r0) there exists δx ∈ ∗R+ such

that ∀y ∈ ∗X we have

|y− x|< δx =⇒ |∗g(x,δ t,
⋃
s∈A

B1(s))− ∗g(y,δ t,
⋃
s∈A

B1(s))|<
ε0

2
. (4.2.8)

The collection {U(x, δx
2 ) : x ∈U(a0,2r0)} forms an open cover of U(a0,2r0). By the transfer of Heine-

Borel condition, U(a0,2r0) is ∗compact hence there exists a hyperfinite subset of the cover {U(x, δx
2 ) :

x ∈U(a0,2r0)} that covers U(a0,2r0). Denote this hyperfinite subcover by F = {U(xi,
δxi
2 ) : i ≤ N}

where { δxi
2 : i≤ N} is a hyperfinite set. Let δA = min{ δxi

2 : i≤ N}.

Pick any x,y∈U(a0,2r0) with |x−y|< δA. We know that x∈B(xi,
δxi
2 ) for some i≤N and ∗d(y,xi)≤

∗d(y,x)+ ∗d(x,xi)≤ δxi . Thus both x,y are in some B(xi,δxi). This means that

|∗g(x,δ t,
⋃
s∈A

B1(s))− ∗g(y,δ t,
⋃
s∈A

B1(s))|< ε0. (4.2.9)

Let M = {δA : A ∈ I (S)}. Note that M is a hyperfinite set hence there exists a minimum element,

denoted by δ δ t . We can carry out this argument for every t ∈ T . Let δ t denote the minimum element
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for time t and consider the hyperfinite set {δ t : t ∈ T}. This set again has a minimum element δ0. It is

easy to check that this δ0 satisfies the condition of this lemma.

Definition 4.2.10. Let S,S′ be two hyperfinite representations of ∗X . The hyperfinite representation S′

is a refinement of S if for every A ∈I (S) there exists a A′ ∈I (S′) such that
⋃

s∈A B(s) =
⋃

s′∈A′ B
′(s′).

The set A′ is called an enlargement of A.

Let S′ be a refinement of S. For any A ∈ I (S), note that the enlargement A′ is unique. Fix δ0 in

Lemma 4.2.9 for the remainder of this section. We present the following result.

Lemma 4.2.11. There exists a (δ0,2r0)-hyperfinite representation S with
⋃

s∈S B(s) = U(a0,2r0) such

that S is a refinement of S1.

Proof. Fix an arbitrary (δ0,2r0)-hyperfinite representation H such that the collection {BH(h) : h∈H}=

U(a0,2r0). For every s ∈ S1, let

M(s) = {BH(h) : BH(h)∩B1(s) 6= /0}. (4.2.10)

Note that M(s) is hyperfinite for every s ∈ S1. Let

N(s) = {BH(h)∩B1(s) : BH(h) ∈M(s)}. (4.2.11)

Note that N(s) is also hyperfinite for every s ∈ S1. It is easy to see that
⋃

s∈S1
N(s) =

⋃
s∈S1

B1(s) =

U(a0,2r0). Note that
⋃

s∈S1
N(s) is a collection of mutually disjoint ∗ Borel set with diameter no greater

than δ2. Pick one point from each element of
⋃

s∈S1
N(s) and form a hyperfinite set S. This S is a

hyperfinite set satisfying all the conditions of this lemma.

For each s ∈ S, we use B(s) to denote the corresponding ∗Borel set. By the construction in Lem-

ma 4.2.11, we can see that every B(s) is a subset of B1(s′) for some s′ ∈ S1 and every B1(s′) is a

hyperfinite union of B(s).

By Lemmas 4.2.9 and 4.2.11, we have the following result:

Theorem 4.2.12. Let S1,S be the same hyperfinite representations as in Lemma 4.2.11. Then for any

s ∈ S, any x1,x2 ∈ B(s), any A ∈I (S1) and any t ∈ T+ we have

|∗g(x1, t,
⋃
s∈A

B1(s))− ∗g(x2, t,
⋃
s∈A

B1(s))|< ε0. (4.2.12)
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An immediate consequence of this theorem is:

Corollary 4.2.13. Let S1,S be the same hyperfinite representations as in Lemma 4.2.11. For for

any s ∈ S, any y ∈ B(s), any x ∈ ∗X, any A ∈ I (S1) and any t ∈ T+ we have |∗g(y, t,
⋃

s∈A B1(s))−
∗ f (t)x (B(s),

⋃
s∈A B1(s))|< ε0.

We fix S constructed above for the remainder of this section. In summary, S1 is a (δ1,2r0)-hyperfinite

representation of ∗X for some infinitesimal δ1 such that {B1(s) : s ∈ S1} covers U(a0,2r0). S is a

refinement of S1 satisfying the following conditions:

1. The diameter of B(s) is less than δ0 for all s ∈ S.

2.
⋃

s∈S B(s) =U(a0,2r0).

We let S be the hyperfinite state space of our hyperfinite Markov process. Note that for any x ∈

NS(∗X) and any y ∈ ∗X \
⋃

s∈S B(s), we have ∗d(x,y)> r0.

We construct {X ′t }t∈T on S in a similar way as in Section 3.2. Let g′(x,δ t,A)= ∗g(x,δ t,A∩
⋃

s∈S B(s))+

δx(A)∗g(x,δ t, ∗X \
⋃

s∈S B(s)) where δx(A) = 1 if x ∈ A and δx(A) = 0 if otherwise. For i, j ∈ S let

G(δ t)
i j = g′(i,δ t,B( j)) be the “one-step” internal transition probability of {X ′t }t∈T . We use G(t)

i (.) to

denote the t-step internal transition measure. By Lemmas 3.2.12 and 3.2.13, we know that G(t)
i (.) is an

internal probability measure on (S,I (S)) for all t ∈ T .

Similar to Theorem 3.3.16, we have the following theorem. The two proofs are similar to each other.

Theorem 4.2.14. Suppose (VD) and (WF) hold. For any t ∈ T , any x ∈ S and any near-standard

A ∈I (S1), we have

|∗g(x, t,
⋃

s∈AS

B(s))−G(t)
x (AS)| ≤ ε0 +5ε0

t−δ t
δ t

. (4.2.13)

where AS is the enlargement of A. In particular, for all t ∈ T , all x ∈ S and all near-standard A ∈I (S1)

we have

|∗g(x, t,
⋃

s∈AS

B(s))−G(t)
x (AS)| ≈ 0 (4.2.14)

Proof. : In the proof of Theorem 3.3.16, by (SF), we know that for any s0 ∈ S and any t ∈ T+

(∀x1,x2 ∈ B(s0))(∀A ∈I (S))(|∗g(x1, t,
⋃
s∈A

B(s))− ∗g(x2, t,
⋃
s∈A

B(s))|< ε0). (4.2.15)
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Under (WF), by Theorem 4.2.12 and Corollary 4.2.13 and the fact that S is a refinement of S1, we know

that for any s0 ∈ S and any t ∈ T+

(∀x1,x2 ∈ B(s0))(∀A ∈I (S1))(|∗g(x1, t,
⋃

s∈AS

B(s))− ∗g(x2, t,
⋃

s∈AS

B(s))|< ε0). (4.2.16)

We use this formula to replace the Eq. (4.2.15) in the proof of Theorem 3.3.16. Then the rest of the

proof is identical to the proof of Theorem 3.3.16.

In Section 3.2, we have shown that {X ′t } is a hyperfinite representation of {Xt}t≥0 in terms of tran-

sition probability. We first establish a similar result as Theorem 3.3.17.

Theorem 4.2.15. Suppose (VD) and (WF) hold. For any x ∈
⋃

s∈S B(s) let sx denote the unique el-

ement in S such that x ∈ B(sx). Then for any E ∈ B[X ] and any t ∈ T , we have ∗g(x, t,st−1(E)) =

G(t)
sx
(st−1(E)∩S).

Proof. We first prove the case when t = 0. ∗g(x,0,st−1(E)) is 1 if x ∈ st−1(E) and is 0 otherwise. Note

that x ∈ st−1(E) if and only if sx ∈ st−1(E)∩S. Hence ∗g(x,0,st−1(E)) = G(0)
sx
(st−1(E)∩S).

We now prove the case for t > 0. Fix some x ∈
⋃

s∈S B(s), some t > 0 and some E ∈B[X ]. By the

construction in Theorem 2.4.11 and Eq. (2.4.19), we know that for every t > 0:

∗g(x, t,st−1(E)) = sup{∗g(x, t,
⋃
s∈A

B1(s)) : A⊂ st−1(E)∩S1,A ∈I (S1)} (4.2.17)

By Theorem 4.2.12, we have |∗g(x, t,
⋃

s∈A B1(s))− ∗g(sx, t,
⋃

s∈A B1(s))| < ε0. By Theorem 4.2.14, we

know that |∗g(sx, t,
⋃

s∈A B1(s))−G(t)
sx (AS)| ≈ 0. Thus we know that ∗g(x, t,

⋃
s∈A B1(s)) = G(t)

sx
(AS).

Hence we have

∗g(x, t,st−1(E)) = sup{G(t)
sx
(AS) : A⊂ st−1(E)∩S2,A ∈I (S1)}. (4.2.18)

Claim 4.2.16.

G(t)
sx
(st−1(E)∩S) = sup{G(t)

sx
(AS) : A⊂ st−1(E)∩S2,A ∈I (S1)}. (4.2.19)

Proof. Let B be an internal subset of S such that B⊂ st−1(E)∩S. For any b ∈ B, there exists a sb ∈ S1

such that b ∈ B1(sb). Let A = {sb : b ∈ B}. Then A ∈ I (S1) and it is easy to see that B ⊂ AS ⊂
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st−1(E)∩S. Thus we can conclude that

sup{G(t)
sx
(AS) : A⊂ st−1(E)∩S2,A ∈I (S2)}= G(t)

sx
(st−1(E)∩S). (4.2.20)

Thus we have the desired result.

The next lemma establishes a weaker form of local continuity of ∗g.

Lemma 4.2.17. Suppose (WF) holds. For any two near-standard x1 ≈ x2 from ∗X ,any t ∈ R+ and any

A ∈B[X ] we have ∗g(x1, t, ∗A)≈ ∗g(x2, t, ∗A).

Proof. Fix two near-standard x1,x2 from ∗X . Let x0 = st(x1) = st(x2). Also fix t ∈ R+ and A ∈B[X ].

Pick ε ∈ R+. By (WF), we can pick a δ ∈ R+ such that

(∀y ∈ X)(|y− x0|< δ =⇒ (|g(y, t,A)−g(x0, t,A)|< ε)). (4.2.21)

By the transfer principle and the fact that x1 ≈ x2 ≈ x0 we know that

(|∗g(x1, t, ∗A)− ∗g(x2, t, ∗A)|< ε). (4.2.22)

As ε is arbitrary, this completes the proof.

As Lemma 3.3.20, the next lemma establishes the link between ∗E and st−1(E) for every E ∈B[X ].

Lemma 4.2.18. Suppose (WF) holds. For any Borel set E, any x ∈ NS(∗X) and any t ∈ R+ we have

∗g(x, t, ∗E)≈ ∗g(x, t,st−1(E)).

Proof. The proof uses Lemma 4.2.17 and is similar to the proof of Lemma 3.3.20.

Lemmas 4.2.17 and 4.2.18 allow us to obtain the result in Theorem 3.3.23 under weaker assump-

tions.

Theorem 4.2.19. Suppose (VD) and (WF) hold. For any s ∈ NS(S), any non-negative t ∈ Q and any

E ∈B[X ], we have P(t)
st(s)(E) = G(t)

s (st−1(E)∩S).

Proof. The proof uses Lemmas 4.2.17 and 4.2.18 and is similar to the proof of Theorem 3.3.23.
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In order to extend the result in Theorem 4.2.19 to all non-negative t ∈ R, we follow the same path

as Section 3.2. Recall that we needed (OC):

Condition OC. The Markov chain {Xt} is said to be continuous in time if for any open ball U ⊂ X and

any x ∈ X , we have g(x, t,U) being a continuous function for t > 0.

Using the same proof as in Section 3.2, we obtain the following result.

Theorem 4.2.20. Suppose (VD), (OC) and (WF) hold. For any s ∈ NS(S), any t ∈ NS(T ) and any

E ∈B[X ], we have P(st(t))
st(s) (E) = G(t)

s (st−1(E)∩S).

Thus, in conclusion, we have the following theorem.

Theorem 4.2.21. Let {Xt}t≥0 be a continuous time Markov process on a metric state space satisfying the

Heine-Borel condition. Suppose {Xt}t≥0 satisfies (VD), (OC) and (WF). Then there exists a hyperfinite

Markov process {X ′t }t∈T with state space S⊂ ∗X such that for all s ∈ NS(S) and all t ∈ NS(T )

(∀E ∈B[X ])(P(st(t))
st(s) (E) = G(t)

s (st−1(E)∩S)). (4.2.23)

where P and G denote the transition probability of {Xt}t≥0 and {X ′t }t∈T , respectively.

This theorem shows that, given a standard Markov process, we can almost always use a hyperfinite

Markov process to represent it. In [1], Robert Anderson discussed such hyperfinite representation for

Brownian motion. In this paper, we extend his idea to cover a large class of general Markov processes.

4.2.2 A Weaker Markov Chain Ergodic Theorem

In Section 4.1, we have shown the Markov chain ergodic theorem under strong Feller condition. In this

section, under Feller condition, we give a proof of a weaker form of the Markov Chain ergodic theorem.

In order to do this, we start by showing that {X ′t }t∈T inherits some key properties from {Xt}t≥0.

Let π be a stationary distribution of {Xt}t≥0. As in Definition 4.1.4, we define an internal probability

measure π ′ on (S,I (S)) by letting π ′({s}) =
∗π(B(s))

∗π(
⋃

s′∈S B(s′)) for every s ∈ S. By Lemma 4.1.5, for any

A ∈B[X ] we have π(A) = π ′(st−1(A)∩S). This π ′ is a weakly stationary for some internal subsets of

S.

Theorem 4.2.22. Suppose (VD) and (WF) hold. There exists an infinite t0 ∈ T such that for every
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A ∈I (S1) and every t ≤ t0 we have

π
′(AS)≈∑

i∈S
π
′(i)G(t)

i (AS). (4.2.24)

where AS is the enlargement of A.

Proof. The proof is similar to the proof of Theorem 4.1.6. We use Theorem 4.2.14 instead of Theo-

rem 3.3.16.

Condition CS. There exists a countable basis B of bounded open sets of X such that any finite inter-

section of elements from B is a continuity set with respect to π and g(x, t, .) for all x ∈ X and t > 0.

We shall fix this countable basis B for the remainder of this section. (CS) allows us to prove the

following lemma.

Lemma 4.2.23. Suppose (CS) holds. Then we have π(O) = π ′((∗O∩S1)S) where O is a finite intersec-

tion of elements from B.

Proof. Let O be a finite intersection of elements of B and let O denote the closure of O. By the

construction of π ′, we know that π ′(st−1(O)∩S) = π(O) = π(O) = π ′(st−1(O)∩S). In order to finish

the proof, it is sufficient to prove the following claim.

Claim 4.2.24. st−1(O)∩S⊂ (∗O∩S1)S ⊂ st−1(O)∩S.

Proof. Pick any point s ∈ st−1(O)∩ S. Then s ∈ B1(s′) for some s′ ∈ S1. Note also that s ∈ µ(y) for

some y ∈O. As O is open, we have µ(y)⊂ ∗O which implies that B1(s′)⊂ ∗O which again implies that

s ∈ (∗O∩S1)S.

Now pick some point y ∈ (∗O∩S1)S. Then y ∈ B1(y′) for some y′ ∈ ∗O∩S1. As y is near-standard,

we know that y′ is near-standard hence y′ ∈ µ(x) for some x ∈ X . Suppose x 6∈ O. Then there exists

an open ball U(x) centered at x such that U(x)∩O = /0. This would imply that y′ 6∈ ∗O which is a

contradiction. Hence x ∈ O. This means that y ∈ µ(x)⊂ st−1(O), completing the proof.

This finishes the proof of this lemma.

In order to show that the hyperfinite Markov chain {X ′t }t∈T converges, we need to establish the

strong regularity (at least for finite intersection of open balls) for {X ′t }t∈T .

We first prove the following lemma which is analogous to Theorem 4.2.21.
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Theorem 4.2.25. Suppose (VD), (OC), (WF) and (CS) hold. For any s ∈ NS(S) and any t ∈ NS(T ) we

have g(st(s),st(t),O)≈ G(t)
s ((∗O∩S1)S) where O is a finite intersection of elements from B.

Proof. By Theorem 4.2.21, we know that Pst(t)
st(s) (O) = G(t)

s (st−1(O)∩S) and Pst(t)
st(s) (O) = G(t)

s (st−1(O)∩

S) where O denote the closure of O. By (CS), we know that Pst(t)
st(s) (O) = Pst(t)

st(s) (O). Then the result

follows from Claim 4.2.24.

We now show that {X ′t } is strong regular for open balls.

Lemma 4.2.26. Suppose (VD), (OC), (WF) and (CS) hold. For every s1 ≈ s2 ∈ NS(T ), there exists an

infinite t1 ∈ T such that G(t)
s1 ((

∗O∩S1)S)≈G(t)
s2 ((

∗O∩S1)S) for and all t ≤ t1 and all O which is a finite

intersection of elements from B.

Proof. Pick s1 ≈ s2 ∈ NS(S) and let O be a finite intersection of elements from B. Let x = st(s1) =

st(s2). By Theorem 4.2.25, for any t ∈ NS(T ), we know that G(t)
s1 ((

∗O∩ S1)S) ≈ g(x,st(t),O) and

G(t)
s2 ((

∗O∩S1)S)≈ g(x,st(t),O). Hence we have G(t)
s1 ((

∗O∩S1)S)≈ G(t)
s2 ((

∗O∩S1)S) for all t ∈ NS(T ).

Consider the following set

TO = {t ∈ T : |G(t)
s1 ((

∗O∩S1)S)−G(t)
s2 ((

∗O∩S1)S)|<
1
t
}. (4.2.25)

The set TO contains all the near-standard t ∈ T hence it contains an infinite tO ∈ T by overspill. As

every countable descending infinite reals has an infinite lower bound, there exists an infinite t1 which is

smaller than every element in {tO : O ∈B}.

By using essentially the same argument as in Theorem 3.1.19, we have the following result for

{X ′t }t∈T . The proof is omitted.

Theorem 4.2.27. Suppose (VD), (OC), (WF) and (CS) hold. Suppose {Xt}t≥0 is productively open

set irreducible with stationary distribution π . Let π ′ be the internal probability measure defined in

Theorem 4.2.22. Then for π ′-almost every s ∈ S there exists an infinite t ′ ∈ T such that

G(t)
s ((∗O∩S1)S)≈ π

′((∗O∩S1)S) (4.2.26)

for all infinite t ≤ t ′ and all O which is a finite intersection of elements from B.

This immediately gives rise to the following standard result.
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Lemma 4.2.28. Suppose (VD), (OC), (WF) and (CS) hold. Suppose {Xt}t≥0 is productively open set

irreducible with stationary distribution π . Then for π-almost surely x ∈ X we have limt→∞ g(x, t,O) =

π(O) for all O which is a finite intersection of elements from B.

Proof. Suppose not. Then there exist an set B and some O which is a finite intersection of elements

from B with π(B)> 0 such that g(x, t,O) does not converge to π(O) for x ∈ B. Fix a x0 ∈ B and let s0

be an element in S with s0 ≈ x0. Then there exists an ε > 0 and a unbounded sequence of real numbers

{kn : n ∈ N} with |g(x0,kn,O)−π(O)| > ε for all n ∈ N. By Theorem 4.2.25 and Lemma 4.2.23, we

have |G(kn)
s0 ((∗O∩ S1)S)− π ′((∗O∩ S1)S)| > ε for all n ∈ N. Let t ′ be the same infinite element in T

as in Theorem 4.2.27. By overspill, there is an infinite t0 < t ′ such that |G(t0)
s0 ((∗O∩ S1)S)−π ′((∗O∩

S1)S)| > ε . As x0 and s0 are arbitrary, we have for every s ∈ st−1(B)∩ S there is an infinite ts < t ′

such that |G(ts)
s0 ((∗O∩ S1)S)− π ′((∗O∩ S1)S)| > ε . As π ′(st−1(B)∩ S) = π(B), this contradicts with

Theorem 4.2.27 hence completing the proof.

We now generalize the convergence to all Borel sets. We will need the following definition.

Definition 4.2.29 ([41, Page. 85]). Let Pn and P be probability measures on a metric space X with

Borel σ -algebra B[X ]. A subclass C of B[X ] is a convergence determining class if weak convergence

Pn to P is equivalent to Pn(A)→ P(A) for all P-continuity sets A ∈ C .

For separable metric spaces, we have the following result.

Lemma 4.2.30 ([34, Page. 416]). Let Pn and P be probability measures on a separable metric space X

with Borel σ -algebra B[X ]. A class C of Borel sets is a convergence determining class if C is closed

under finite intersections and each open set in X is at most a countable union of elements in C .

Theorem 4.2.31. Suppose (VD), (OC), (WF) and (CS) hold. Suppose {Xt}t≥0 is productively open

set irreducible with stationary distribution π . Then for π-almost surely x ∈ X we have P(t)
x (.) weakly

converges to π(.).

Proof. Let B′ to be the smallest set containing B such that B′ is closed under finite intersection. By

Lemma 4.2.28, we know that limt→∞ P(t)
x (A) = π(A) for all A ∈B′. The theorem then follows from

Lemma 4.2.30.

As one can see, with Feller condition, we can only show that {X ′t }t∈T is strong regular for some

particular class of sets. In order to prove some result like Theorem 4.1.16, we need {X ′t }t∈T to be strong

regular on a larger class of sets.
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Open Problem 4. Suppose (WF) holds. Is it possible to pick a hyperfinite representation S1 such that

G(t)
x (AS)≈ G(t)

y (AS) for all x≈ y, all t ∈ T and all A ∈I (S1)?
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Chapter 5

Push-down of Hyperfinite Markov

Processes

In the previous chapter, we discuss how to construct hyperfinite Markov processes from standard Markov

processes. The procedure for using hyperfinite Markov processes to construct standard Markov process-

es as well as stationary distributions is the reverse of the material that discussed in the previous chapter.

In Section 5.1, we begin with an internal probability measure on ∗X and use the standard part

map to “push” the corresponding Loeb measure down to X to generate a standard probability measure.

This push-down technique is useful in establishing existence result. We then discuss how to construct

standard Markov processes and stationary distributions from hyperfinite Markov processes and weakly

stationary distributions (“stationary” distributions for hyperfinite Markov processes). This also gives rise

to some new insights in establishing existence of stationary distributions for general Markov processes.

A Markov process {Xt}t≥0 satisfies the merging property if for all x,y ∈ X

lim
t→∞

‖ P(t)
x (·)−Py ‖= 0. (5.0.1)

Note that a Markov process with the merging property does not need to have a stationary distribution.

In Section 5.2, we discuss conditions on {Xt}t≥0 for it to have the merging property. Finally, we close

with some remarks and open problems in Section 5.3.
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5.1 Push-down Results

In Section 3.2, we discuss how to construct a corresponding hyperfinite Markov process for every s-

tandard general Markov processes satisfying certain conditions. In this section, we discuss the reverse

procedure of constructing stationary distributions and Markov processes from weakly stationary distri-

butions and hyperfinite Markov processes. Generally, we begin with an internal measure on ∗X and

use standard part map to push the corresponding Loeb measure down to X . We start this section by

introducing the following classical result.

Theorem 5.1.1 ([11, Thm. 13.4.1]). Let X be a Heine-Borel metric space equipped with Borel σ -algebra

B[X ]. Let M be an internal probability measure defined on (∗X , ∗B[X ]). Let

C = {C ⊂ X : st−1(C) ∈ ∗B[X ]}. (5.1.1)

Define a measure µ on the sets C by: µ(C) = M(st−1(C)). Then µ is the completion of a regular Borel

measure on X.

Proof. We first show that the collection C is a σ -algebra. Obviously /0 ∈ C . By Lemma 2.4.10, we

know that X ∈ C . We now show that it is closed under complement. Suppose A ∈ C . It is easy to

see that st−1(Ac) = (NS(∗X) \ st−1(A)). By Theorem 2.3.1 and the fact that ∗B[X ] is a σ -algebra,

Ac ∈ C . We now show that C is closed under countable union. Suppose {Ai : i ∈ N} be a countable

collection of pairwise disjoint elements from C . It is easy to see that
⋃

i∈ω(st
−1(Ai) = st−1(

⋃
i∈ω Ai).

As st−1(Ai) ∈ ∗B[X ] for every i ∈ N, we have st−1(
⋃

i∈ω Ai) ∈ ∗B[X ]. Hence
⋃

i∈ω Ai ∈ C .

We now show that µ is a well-defined measure on (X ,C ). Clearly µ( /0) = 0. Suppose {Ai}i∈ω is a

mutually disjoint collection from C . We have

µ(
⋃
i∈ω

Ai) = M(st−1(
⋃
i∈ω

Ai)) = M(
⋃
i∈ω

(st−1(Ai))). (5.1.2)

As Ai’s are mutually disjoint, we know that st−1(Ai)’s are mutually disjoint. Thus,

M(
⋃
i∈ω

(st−1(Ai))) = ∑
i∈ω

M(st−1(Ai)) = ∑
i∈ω

µ(Ai). (5.1.3)

This shows that µ is countably additive.

Finally we need to show that such µ is the completion of a regular Borel measure. By universal Loeb

measurability (Theorems 2.3.1 and 2.3.9), we know that st−1(B) ∈ ∗B[X ] for all B ∈B[X ]. Consider
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any B ∈ B[X ] such that µ(B) = 0 and any C ⊂ B. It is clear that st−1(C) ⊂ st−1(B). As the Loeb

measure M is a complete measure, we know that M(st−1(C)) = 0 since M(st−1(B)) = 0. Thus we have

µ(C) = 0, completing the proof.

Note that the measure µ constructed in Lemma 8.1.1 need not have the same total measure as M.

For example, if the internal measure M concentrates on some infinite element then µ would be a null

measure. However, if we require M(NS(∗X)) = st(M(∗X)) then µ(X) = st(M(∗X)). In particular, if

M is an internal probability measure with M(NS(∗X)) = 1 then µ is the completion of a regular Borel

probability measure on X . Such µ is called a push-down measure of M and is denoted by Mp.

The following corollary is an immediate consequence of Lemma 8.1.1.

Corollary 5.1.2. Let X be a Heine-Borel metric space equipped with Borel σ -algebra B[X ] and let SX

be a hyperfinite representation of X. Let M be an internal probability measure defined on (SX ,I [SX ]).

Let

C = {C ⊂ X : st−1(C)∩SX ∈I [SX ]}. (5.1.4)

Then the push-down measure Mp on the sets C given by Mp(C) = M(st−1(C)∩SX) is the completion of

a regular Borel measure on X.

The following theorem shows the close connection between an internal probability measure and its

push-down measure under integration.

Lemma 5.1.3. Let X be a metric space equipped with Borel σ -algebra B[X ], let ν be an internal

probability measure on (∗X , ∗B[X ]) with ν(NS(∗X)) = 1. let f : X → R be a bounded measurable

function. Define g : NS(∗X)→R by g(s) = f (st(s)). Then g is integrable with respect to ν restricted to

NS(∗X) and we have
∫

X f dνp =
∫

NS(∗X) gdν .

Proof. As ν(NS(∗X)) = 1, the push-down measure νp is a probability measure on (X ,B[X ]). For every

n ∈ N and k ∈ Z, define Fn,k = f−1([ k
n ,

k+1
n )) and Gn,k = g−1([ k

n ,
k+1

n )). As f is bounded, the collection

Fn = {Fn,k : k ∈ Z}\{ /0} forms a finite partition of X , and similarly for Gn = {Gn,k : k ∈ Z}\{ /0} and
∗X . Note that Gn,k = st−1(Fn,k) for every n ∈ N and k ∈ Z. By Lemma 2.4.10, Gn,k is ν-measurable.

For every n ∈ N, define f̂n : X → R and ĝn : ∗X → R by putting f̂n =
k
n on Fn,k and ĝn =

k
n on Gn,k for

every k ∈ Z. Thus f̂n (resp., ĝn) is a simple (resp., ∗simple) function on the partition Fn (resp., Gn).

By construction f̂n ≤ f < f̂n +
1
n and ĝn ≤ g < ĝn +

1
n . It follows that

∫
X f dνp = limn→∞

∫
X f̂ndνp. By
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Lemma 8.1.1, we have ν(Gn,k) = νp(Fn,k) for every n ∈ N and k ∈ Z. Thus, for every n ∈ N and k ∈ Z,

we have

∫
X

f̂ndνp =
k
n

νp(Fn,k) =
k
n

ν(Gn,k) =
∫

NS(∗X)
ĝndν (5.1.5)

Hence we have limn→∞

∫
NS(∗X) ĝndν exists and

∫
NS(∗X) gdν =

∫
X f dνp, completing the proof.

5.1.1 Construction of Standard Markov Processes

In Section 3.2, we discussed how to construct a hyperfinite Markov process from a standard Markov

process. In this section, we discuss the reverse direction. Starting with a hyperfinite Markov process,

we will construct a standard Markov process from it.

Let X be a metric space satisfying the Heine-Borel condition. Let S be a hyperfinite representation

of ∗X . Let {Yt}t∈T be a hyperfinite Markov process on S with transition probability G(t)
s (·) satisfying the

following condition:

1. For all s1,s2 ∈ NS(S) and all t1, t2 ∈ NS(T ):

(s1 ≈ s2∧ t1 ≈ t2) =⇒ (∀A ∈I [S]G(t1)
s1

(A) = G(t2)
s2

(A)) (5.1.6)

2.

(∀s ∈ NS(S))(∀t ∈ NS(T ))(G(t)
s (NS(S)) = 1). (5.1.7)

For every x ∈ X , every h ∈ R+ and every A ∈B[X ], define

g(x,h,A) = G(t)
s (st−1(A)∩S) (5.1.8)

where s ≈ x and t ≈ h. Such g(x,h,A) is well-defined because of Eq. (5.1.6). By Lemma 8.1.1 and

Eq. (5.1.7), it is easy to see that g(x,h, .) is a probability measure on (X ,B[X ]) for x ∈ X and h ∈ R+.

In fact, g(x,h, ·) is the push-down measure of the internal probability measure G(t)
s (·).

We would like to show that {g(x,h, .)}x∈X ,h≥0 is the transition probability measure of a Markov

process on (X ,B[X ]). We first recall Definition 2.2.15 and Theorem 2.2.16.

Definition 5.1.4. Suppose that (Ω,Γ,P) is a Loeb space, that X is a Hausdorff space, and that f is a
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measurable (possibly external) function from Ω to X . An internal function F : Ω→ ∗X is a lifting of f

provided that f = st(F) almost surely with respect to P.

Theorem 5.1.5 ([3, Theorem 4.6.4]). Let (Ω,Γ,P) be a Loeb space, and let f : Ω→R be a measurable

function. Then f is Loeb integrable if and only if it has a S-integrable lifting.

We are now at the place to establish the following result.

Lemma 5.1.6. Suppose {Yt}t≥0 satisfies Eqs. (5.1.6) and (5.1.7). Then for any t1, t2 ∈NS(T ), any s0 ∈ S

and any E ∈B[X ], the internal transition probability G(t2)
s (st−1(E)∩S) is a G(t1)

s0
(·)-integrable function

of s.

Proof. Fix t1, t2 ∈ NS(T ), s0 ∈ NS(S) and E ∈ B[X ]. By Eqs. (5.1.6) and (5.1.7), we know that

g(st(s),st(t2),E) = G(t2)
s (st−1(E)∩S) for all s ∈ NS(S). The proof will be finished by Theorem 2.2.16

and the following claim.

Claim 5.1.7. The internal function ∗g(·,st(t2), ∗E) : S 7→ ∗[0,1] is a S-integrable lifting of G(t2)
s (st−1(E)∩

S) : S 7→ ∗[0,1] with respect to the internal probability measure G(t1)
s0 (·).

Proof. As G(t1)
s0 (·) is an internal probability measure concentrating on a hyperfinite set, by Corol-

lary 2.2.12, it is easy to see that ∗g(·,st(t2), ∗E) is S-integrable. As g(st(s),st(t2),E) = G(t2)
s (st−1(E)∩

S), it is sufficient to show that ∗g(·,st(t2), ∗E) is a S-continuous function on NS(S). Pick some x1 ∈ X

and ε ∈ R+. Let s1 ∈ S be any element such that s1 ≈ x1. Let M = {s ∈ S : (∀A ∈ I [S])(|G(t2)
s (A)−

G(t2)
s1 (A)| < ε}. By Eq. (5.1.6), M contains every element in S which is infinitesimally close to s1. By

overspill, there is a δ ∈ R+ such that

(∀s ∈ S)(∗d(s,s1)< δ =⇒ (∀A ∈I [S])(|G(t2)
s (A)−G(t2)

s1 (A)|< ε

2
)). (5.1.9)

This clearly implies that

(∀s ∈ S)(∗d(s,s1)< δ =⇒ (∀E ∈B[X ])(|G(t2)
s (st−1(E)∩S)−G(t2)

s1
(st−1(E)∩S)|< ε)). (5.1.10)

By the construction of g(·,st(t2),E), we have |g(x,st(t2),E)− g(x1,st(t2),E)| < ε for all x ∈ X such

that d(x,x1) <
δ

2 . Hence g(·,st(t2),E) is a continuous function for every x ∈ X which implies that
∗g(·,st(t2),E) is S-continuous on NS(S).
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We now establish the following result on “Markov property” of G(t)
s (st−1(E)∩S).

Lemma 5.1.8. Suppose {Yt}t∈T satisfies Eqs. (5.1.6) and (5.1.7). For any t1, t2 ∈ NS(T ), s0 ∈ NS(S)

and E ∈B[X ], we have

G(t1+t2)
s0

(st−1(E)∩S)≈
∫

G(t2)
s (st−1(E)∩S)G(t1)

s0
(ds). (5.1.11)

Proof. Pick some E ∈B[X ], some s0 ∈ NS(S) and some t1, t2 ∈ NS(T ). For any set A ∈ I [S] with

st−1(E)∩S⊂ A, we have G(t2)
s (st−1(E)∩S)≤ G(t2)

s (A). Hence we have

∫
G(t2)

s (st−1(E)∩S)G(t1)
s0

(ds)≤
∫

G(t2)
s (A)G(t1)

s0
(ds). (5.1.12)

By Corollary 2.2.12, we have

∫
G(t2)

s (A)G(t1)
s0

(ds) = st(
∫

G(t2)
s (A)G(t1)

s0 (ds)) = st(G(t1+t2)
s0 (A)) (5.1.13)

Hence, we have

∫
G(t2)

s (st−1(E)∩S)G(t1)
s0

(ds)≤ inf{st(G(t1+t2)
s0 (A)) : st−1(E)∩S⊂ A ∈I [S]}. (5.1.14)

Similarly, we have

∫
G(t2)

s (st−1(E)∩S)G(t1)
s0

(ds)≥ sup{st(G(t1+t2)
s0 (B)) : st−1(E)∩S⊃ B ∈I [S]}. (5.1.15)

Hence, by the construction of Loeb measure, we have

G(t1+t2)
s0

(st−1(E)∩S)≈
∫

G(t2)
s (st−1(E)∩S)G(t1)

s0
(ds). (5.1.16)

We now establish the main result of this section.

Theorem 5.1.9. Suppose {Yt}t∈T satisfies Eqs. (5.1.6) and (5.1.7). Then for any h1,h2 ∈R+, any x0 ∈ X

and any E ∈B[X ] we have

g(x0,h1 +h2,E) =
∫

g(x,h2,E)g(x0,h1,dx). (5.1.17)
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This means that the family of functions {g(x,h, ·)}x∈X ,h≥0 have the semi-group property.

Proof. Fix h1,h2 ∈ R+, x0 ∈ X and E ∈B[X ]. Let s0 ∈ S be some element such that s0 ≈ x0 and let

t1, t2 ∈ NS(T ) such that t1 ≈ h1 and t2 ≈ h2. By the construction of g and Lemma 5.1.8, we have

g(x0,h1 +h2,E) = G(t1+t2)
s0

(st−1(E)∩S) =
∫

G(t2)
s (st−1(E)∩S)G(t1)

s0
(ds). (5.1.18)

By Eq. (5.1.6), we know that g(x,h2,E) = G(t2)
s (st−1(E)∩ S) provided that s ≈ x. In Claim 5.1.7, we

know that g(·,h2,E) is a continuous function hence we have ∗g(s,h2,
∗E) ≈ G(t2)

s (st−1(E)∩ S) for all

s ∈ NS(S).

Thus, by Lemma 8.1.5, we have

∫
S

G(t2)
s (st−1(E)∩S)G(t1)

s0
(ds) (5.1.19)

=
∫

NS(S)
G(t2)

s (st−1(E)∩S)G(t1)
s0

(ds) (5.1.20)

=
∫

NS(S)
st(∗g(s,h2,

∗E))G(t1)
s0

(ds) (5.1.21)

=
∫

NS(S)
g(st(s),h2,E)G

(t1)
s0

(ds) (5.1.22)

=
∫

X
g(x,h2,E)g(x0,h1,dx). (5.1.23)

Note that the last step follows from Lemma 8.1.5. Hence we have the desired result.

As the transition probabilities {g(x,h, .)}x∈X ,h≥0 have the semigroup property, we know that {g(x,h, .)}x∈X ,h≥0

defines a standard continuous-time Markov process on the state space X with Borel σ -algebra B[X ]. In

fact, if we define X : Ω× [0,∞)→ X by X(ω,h) = st(Y (ω,h+)) where h+ is the smallest element in

T greater than or equal to h then {Xh}h≥0 is a standard continuous-time Markov process obtained from

pushing-down the hyperfinite Markov process {Yt}t∈T .

5.1.2 Push down of Weakly Stationary Distributions

Recall from Definition 3.1.5 that an internal probability measure π on (S,I [S]) is a weakly stationary

distribution if there is an infinite t0 such that

(∀t ≤ t0)(∀A ∈I (S))(π(A)≈∑
i∈S

π({i})p(t)(i,A)) (5.1.24)
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p(t)(i,A) denote the t-step internal transition probability of a hyperfinite Markov process.

In Section 5.1.1, we established how to construct a standard Markov process {Xt}t≥0 on the state

space X from a hyperfinite Markov process {Yt}t∈T on a state space S satisfying certain properties. Note

that S is a hyperfinite representation of X . It is natural to ask: if Π is a weakly stationary distribution of

{Yt}t∈T , is the push-down Πp a stationary distribution of {Xt}t≥0? We will show that, if {Yt} satisfies

Eqs. (5.1.6) and (5.1.7) then Πp is a stationary distribution on {Xt}t≥0.

For the remainder of this section, let {G(t)
s (·)}s∈S,t∈T denote the transition probabilities of {Yt}t∈T .

Let {Xt}t≥0 be the standard Markov process on the state space X constructed from {Yt} as in Sec-

tion 5.1.1. Let {g(x,h, ·)}x∈X ,h≥0 denote the transition probabilities of {Xt}t≥0. Moreover, let Π be a

weakly stationary distribution of {Yt}t∈T such that Π(NS(S)) = 1. Let Πp be the push down measure of

Π defined in Lemma 8.1.1. It is easy to see that Πp is a probability measure on (X ,B[X ]).

We first establish the following lemma.

Lemma 5.1.10. Suppose {Yt}t≥0 satisfies Eqs. (5.1.6) and (5.1.7). Then for any t ∈ NS(T ) and any

E ∈B[X ], the transition probability G(t)
s (st−1(E)∩S) is a Π-integrable function of s.

Proof. The proof of this lemma is similar to Lemma 5.1.6.

Lemma 5.1.11. Suppose {Yt}t∈T satisfies Eqs. (5.1.6) and (5.1.7). Then for any t ∈ NS(T ) and any

E ∈B[X ], we have

Π(st−1(E)∩S)≈
∫

G(t)
s (st−1(E)∩S)Π(ds). (5.1.25)

Proof. The proof is similar to Lemma 5.1.8

We now show that the push-down measure of the weakly stationary distribution Π is a stationary

distribution for {Xt}t≥0.

Theorem 5.1.12. Suppose {Yt}t≥0 satisfies Eqs. (5.1.6) and (5.1.7). Let Π be a weakly stationary

distribution of {Yt}t∈T with Π(NS(S)) = 1. Then the push-down measure Πp of Π is a stationary

distribution of {Xt}t≥0.

Proof. By Lemma 8.1.1 and the fact that Π(NS(S)) = 1, we know that Πp is a probability measure on

(X ,B[X ]).
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Fix t0 ∈ R+ and A ∈B[X ]. It is sufficient to show that Πp(A) =
∫

g(x, t0,A)Πp(dx). Let t be any

element in T such that t ≈ t0. By the construction of Πp and Lemma 5.1.11, we have

Πp(A) = Π(st−1(A)∩S) =
∫

G(t)
s (st−1(A)∩S)Π(ds). (5.1.26)

By the construction of g, we know that g(x, t0,A) = G(t)
s (st−1(A)∩ S) provided that s ≈ x. By a

similar argument as in Theorem 5.1.9, we have

∫
S

G(t)
s (st−1(A)∩S)Π(ds) (5.1.27)

=
∫

NS(S)
st(∗g(s, t0, ∗A))Π(ds) (5.1.28)

=
∫

X
g(x, t0,A)Πp(dx). (5.1.29)

Hence completing the proof.

Suppose we start with a standard Markov process {Xt}t≥0 satisfying (VD), (SF) and (WC). Note that

such {Xt}t≥0 may not necessarily have a stationary distribution. An simple example of such {Xt}t≥0 is

Brownian motion. The hyperfinite representation {X ′t }t∈T of {Xt}t≥0 satisfies Eqs. (5.1.6) and (5.1.7).

Thus, if there is a weakly stationary distribution Π of {X ′t }t∈T with Π(NS(SX)) = 1 then there is a

stationary distribution of {Xt}t≥0. This provides an alternative approach for establishing the existence

of stationary distributions for standard Markov processes. This will be discussed in detail in the next

section.

5.1.3 Existence of Stationary Distributions

The existence of stationary distribution for discrete-time Markov processes with finite state space is

well-understood (e.g [42, Section 8.4]). The situation is much more complicated for Markov processes

with non-finite state spaces. The stationary distribution may not exist at all even for well-behaved

Markov processes (e.g Brownian motion). By using the method developed in this paper, we consider

the hyperfinite counterpart of the original general-state space Markov process {Xt}t≥0. Assuming the

state space is compact, we show that a stationary distribution exists under mild regularity conditions.

We start by quoting the following results for finite-state space discrete-time Markov processes.

Definition 5.1.13. A n×n matrix P is regular if some power of P has only positive entries.
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Theorem 5.1.14. Let P be the transition matrix of some finite-state space discrete-time Markov process

{Yt}t∈N. Suppose P is regular. Then there exists a matrix W with all rows the same vector w such that

limn→∞Pn =W. Moreover, w is the unique stationary distribution of {Yt}t∈N.

Definition 5.1.15. A n×n matrix P is irreducible if for every pair of i, j ≤ n there is ni j ∈ N such that

the (i, j)-th entry of Pni j is positive.

The following theorem give a sufficient condition for P being regular.

Theorem 5.1.16. Let P be the transition matrix of some finite-state space discrete-time Markov process

{Yt}t∈N. If P is irreducible and at least one element in the diagonal of P is positive, then P is regular.

For an arbitrary hyperfinite Markov process, we can form its transition matrix as we did for finite

Markov process.

Definition 5.1.17. Let K ∈ ∗N. A K×K (hyperfinite) matrix P is ∗regular if some hyperfinite power of

P has only positive entries. A K×K matrix P is ∗irreducible if for any i, j ≤ K there is ni j ∈ ∗N such

that the (i, j)-th entry of Pni j is positive.

Similarly, we have the following result for hyperfinite Markov processes.

Theorem 5.1.18. Let P be the hyperfinite transition matrix for some hyperfinite Markov process {Yt}t∈T

with state space S. Suppose P is ∗regular. Then there exists a unique ∗stationary distribution Π for

{Yt}t∈T , i.e., for every s ∈ S, we have Π({s}) = ∑k∈S Π({k})P(δ t)
ks .

Proof. The proof follows from the transfer of Theorem 5.1.14.

Note that if Π is ∗stationary then Π is weakly stationary as in Definition 3.1.5. The following

theorem gives a sufficient condition for regularity of P.

Theorem 5.1.19. Let P be the transition matrix of some hyperfinite Markov process {Yt}t∈T with state

space S. If P is ∗irreducible and at least one element in the diagonal of P is positive, then P is ∗regular.

By ∗irreducible, we simply mean that for any i, j ∈ S there exists n ∈ ∗N such that P(n)
i j > 0. The

proof of this theorem follows from transfer of Theorem 5.1.16.

We now turn our attention to standard continuous-time Markov process {Xt}t≥0 and its correspond-

ing hyperfinite Markov process {X ′t }t∈T . We have the following result:
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Theorem 5.1.20. Let {Xt}t≥0 be a Markov process on a compact metric space X and let {X ′t }t∈T be a

hyperfinite Markov process on SX satisfying Eq. (4.2.23). Let P be the hyperfinite transition matrix of

{X ′t }t∈T . If P is ∗regular, then there exists a stationary distribution for {Xt}t≥0.

Proof. By Theorem 5.1.18, there exists a unique ∗stationary distribution Π for {X ′t }t∈T . Let Πp denote

the push-down measure of Π. As X is compact, by Theorem 5.1.12, Πp is a stationary distribution of

{Xt}t≥0.

Given a standard Markov process {Xt}t≥0. It is not difficult to find the hyperfinite transition matrix

of {X ′t }t∈T . Thus Theorem 5.1.20 provides a way to look for stationary distributions.

Example 5.1.21 (Brownian motion). Let {Xt}t≥0 be the standard Brownian motion. Clearly {Xt}t≥0

satisfies all the conditions in Theorem 3.3.31. Let {X ′t }t∈T be the corresponding hyperfinite Markov

process. The transition matrix of {X ′t }t∈T is regular (in fact G(δ t)
s1 ({s2}) > 0 for all s1,s2 ∈ S). By

Theorem 5.1.18, there exists a ∗stationary distribution Π of {X ′t }t∈T .

Standard Brownian motion does not have a stationary distribution. It does have a stationary measure

which is the Lebesgue measure on R. From a nonstandard prospective, as we can see from this example,

there exists a ∗stationary distribution of {X ′t }t∈T . However, this ∗stationary distribution will concentrate

on the infinite portion of ∗R since otherwise its push-down will be a stationary distribution for the

standard Brownian motion.

5.2 Merging of Markov Processes

In Section 4.1, we discussed the total variance convergence of the transition probabilities to stationary

distributions for Markov processes satisfying certain properties. In particular, we required our Markov

chain to be productively open set irreducible and to satisfy (VD), (SF), (OC) and (CS). However, such

Markov processes do not necessarily have a stationary distribution. A simple example is standard Brow-

nian motion. However, the transition probabilities of the standard Brownian motion “merge” in the

following sense.

Definition 5.2.1. A Markov process {Xt}t≥0 has the merging property if for every two points x,y ∈ X ,

we have

lim
t→∞

‖ P(t)
x (.)−P(t)

y (.) ‖= 0 (5.2.1)
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where P(t)
x (.) denotes the transition measure and ‖ P(t)

x (.)−P(t)
y (.) ‖ denotes the total variation distance

between P(t)
x (.) and P(t)

y (.).

Saloff-Coste and Zúñiga [44] discuss the merging property for time-inhomogeneous finite Markov

processes. In this section, we focus on time-homogeneous general Markov processes. For merging

result of general probability measures, see [12].

In this section, we give sufficient conditions to ensure that Markov processes have the merging

property. The following definition is analogous to Definition 3.1.11.

Definition 5.2.2. Given a Markov process {Xt}t≥0 on some state space X and fix some x1,x2 ∈ X . An

element (y1,y2) ∈ X×X is an absorbing point of (x1,x2) if for all n ∈ N

Q(x1,x2)(∃t Zt ∈U(y1,
1
n
)×U(y2,

1
n
)) = 1. (5.2.2)

where Q denote the probability measure of the product Markov chain {Zt}t≥0 of {Xt}t≥0 and a i.i.d copy

of {Xt}t≥0, and U(y, 1
n) is the open ball centered at y with radius 1

n .

Fix an infinitesimal ε0 such that ε0 · ( t
δ t ) ≈ 0 for all t ∈ T . As in Section 3.3, we construct a

hyperfinite Markov process {X ′t }t∈T on some (δ0,r0)-hyperfinite representation of ∗X where δ0 and r0

are chosen with respect to this ε0. Moreover, by Proposition 2.1.12 and Theorem 2.4.6, we can assume

our hyperfinite state space S contains every x∈X . The hyperfinite transition probabilities for {X ′t }t∈T are

defined in the same way as in the paragraph before Lemma 3.2.12 and are denoted by {G(t)
i (·)}i∈S,t∈T .

Lemma 5.2.3. Suppose {Xt}t≥0 satisfies (VD), (SF) and (OC). Suppose (y1,y2)∈ X×X is an absorbing

point of some x1,x2 ∈ X. Then (y1,y2) is a near-standard absorbing point of x1,x2 for the hyperfinite

Markov chain {X ′t }t∈T .

Proof. As {Xt}t≥0 satisfies (VD), (SF) and (OC), by Theorem 3.3.31, we have

P(st(t))
st(s) (E) = G(t)

s (st−1(E)∩S) (5.2.3)

hence implies that {X ′t }t∈T satisfies Eqs. (5.1.6) and (5.1.7). Let {X p
t }t≥0 denote the standard Markov

process obtained from pushing down {X ′t }t∈T as in Section 5.1.1. By the construction of {X p
t }t≥0, we

know that p(t)x (E) = P(t)
x (E) for all x ∈ X , t ≥ 0 and E ∈B[X ] where p and P denote the probability

measure for {X p
t }t≥0 and {Xt}t≥0, respectively.
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Now fix some x1,x2 ∈ X . There exists (y1,y2) ∈ X×X which is an absorbing point for x1,x2. Fix an

open ball U1×U2 centered at (y1,y2). By Definition 5.2.2, we know that Q(x1,x2)(∃t > 0 Zt ∈U1×U2) =

1. This implies that

q(x1,x2)(∃t > 0 Zp
t ∈U1×U2) = 1 (5.2.4)

where q denote the probability measure of the product Markov chain {Zp
t }t≥0 obtained from {X p

t }t≥0

and its i.i.d copy. By the construction of {X p
t }t≥0, we know that

F(x1,x2)(∃t ∈ NS(T ) Z′t ∈ (st−1(U1)× st−1(U2))∩ (S×S)) = 1 (5.2.5)

where F denote the probability measure of the product hyperfinite Markov chain {Z′t}t∈T obtained from

{X ′t }t∈T and its i.i.d copy. As st−1(U)⊂ ∗U for any open set U , we know that F(x1,x2)(∃t ∈ NS(T ) Z′t ∈

(∗U1× ∗U2)∩ (S× S)) = 1. As our choice of U1×U2 is arbitrary, this shows that (y1,y2) is a near-

standard absorbing point of x1,x2.

The proof of the following theorem is similar to the proof of Theorem 3.1.19.

Theorem 5.2.4. Suppose {Xt}t≥0 satisfies (VD), (SF) and (OC) and for every x1,x2 ∈ X there exists a

absorbing point (y,y) ∈ X ×X. Then for every x1,x2 ∈ X, every infinite t ∈ T and every A ∈ ∗B[X ] we

have G(t)
x1 (A)≈ G(t)

x2 (A).

Proof. Let {X ′t }t∈T be a corresponding hyperfinite Markov chain of {Xt}t≥0. Let {Yt}t∈T be a i.i.d copy

of {X ′t }t∈T and let {Zt}t∈T denote the product hyperfinite Markov chain of {X ′t }t∈T and {Yt}t∈T . We use

G′ and G′ for the internal probability and Loeb probability of {Zt}t∈T .

Fix x1,x2 ∈ X . By assumption, there exists a standard absorbing point y. Pick an infinite t0 ∈ T and

fix some internal set A⊂ S. Define

M = {ω : ∃t < t0−1,X ′t (ω)≈ Yt(ω)≈ y}. (5.2.6)

By Lemma 5.2.3, for all n ∈ N, we have

F(x1,x2)(∃t ∈ NS(T ) Z′t ∈ (∗U(y,
1
n
)× ∗U(y,

1
n
))∩ (S×S)) = 1. (5.2.7)

where F denote the internal transition probability for the product hyperfinite Markov chain {Z′t}t∈T
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obtained from {X ′t }t∈T and its i.i.d copy. By Lemma 3.1.8, we know that F(x1,x2)(M) = 1. By Theo-

rem 3.3.21, we know that {X ′t }t∈T is strong regular. Thus we have:

|G(t0)
x1

(A)−G(t)
j (A)| (5.2.8)

= |F(x1,x2)(X
′
t0 ∈ A)−F(x1,x2)(Yt0 ∈ A)| (5.2.9)

= |F(x1,x2)((X
′
t0 ∈ A)∩M)−F(x1,x2)((Yt0 ∈ A)∩M)| (5.2.10)

= 0. (5.2.11)

We now establish the following merging result for the standard Markov process {Xt}t≥0.

Theorem 5.2.5. Suppose {Xt}t≥0 satisfies (VD), (SF) and (OC) and for every x1,x2 ∈ X there exists a

standard absorbing point y. Then {Xt}t≥0 has the merging property.

Proof. Pick a real ε > 0 and fix two standard x1,x2 ∈ X . By Theorem 5.2.4, we know that |G(t)
x1 (A)−

G(t)
x2 (A)| < ε for all infinite t ∈ T and all A ∈ ∗B[X ]. Let M = {t ∈ T : (∀A ∈ ∗B[X ])(|G(t)

x1 (A)−

G(t)
x2 (A)|< ε)}. By the underspill principle, there exists a t0 ∈NS(T ) such that |G(t0)

x1 (A)−G(t0)
x2 (A)|< ε

for all A ∈ ∗B[X ]. Pick a standard t1 > t0 and let t2 ∈ T be the first element greater than t1.

Claim 5.2.6. |G(t2)
x1 (A)−G(t2)

x2 (A)|< ε for all A ∈ ∗B[X ].

Proof. Pick t3 ∈ T such that t0 + t3 = t2 and any A ∈ ∗B[X ]. Then we have

|G(t2)
x1 (A)−G(t2)

x2 (A)| (5.2.12)

≈ |∑
y∈S

G(t1)
x1 ({y})G(t2)

y (A)−∑
y∈S

G(t1)
x2 ({y})G(t2)

y (A)| (5.2.13)

Let f (y)=G(t2)
y (A). By the internal definition principle, we know that G(t2)

y (A) is an internal function

with value between ∗[0,1]. By Lemma 3.1.24, we know that

|G(t2)
x1 (A)−G(t2)

x2 (A)|/‖ G(t1)
x1 (.)−G(t1)

x2 (.) ‖ . (5.2.14)

Since this is true for all internal A, we have established the claim.
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By the construction of Loeb measure, we know that

(∀B ∈B[X ])(|G(t2)
x1

(st−1(B)∩S)−G(t2)
x2

(st−1(B)∩S)|< ε). (5.2.15)

By Theorem 3.3.31 and the fact that t2 ≈ t1, we know that |P(t1)
x1 (B)−P(t1)

x2 (B)| < ε for all B ∈B[X ].

This shows that {Xt}t≥0 has the merging property.

5.3 Remarks and Open Problems

(i) So far we have required that the state space X is a metric space satisfying the Heine-Borel prop-

erty. Such an X is automatically a σ -compact locally compact metric space. Let X =
⋃

n∈N Kn where

every Kn is a compact subset of X . Heine-Borel property is essential since it implies that ∗X =
⋃

n∈N
∗Kn.

However, the Heine-Borel condition turns out to be quite strong. For example, (0,1) and set of ratio-

nal numbers Q, while they are σ -compact and locally compact spaces, do not satisfy the Heine-Borel

property. The following theorem shows that, for every σ -compact locally compact metric space, we can

impose a Heine-Borel metric dH on X without changing the topology on X .

Theorem 5.3.1. Let (X ,d) be σ -compact locally compact metric space. There is a metric dH on X

inducing the same topology such that (X ,dH) satisfies the Heine-Borel property.

Proof. Let X =
⋃

n∈N Kn where every Kn is a compact subset of X . We now define a non-decreasing of

compact subsets of X as following:

• Let V1 = K1.

• Suppose we have defined Vn. As X is locally compact, there is a finite collection {U1, . . . ,Uk} of

open sets such that
⋃

i≤k Ui ⊃Vn and U i is compact for every i≤ k. Let Vn+1 = (
⋃

i≤k U i)∪Kn+1.

Thus, X =
⋃

n∈NVn and Vn ⊂Wn+1 where Wn+1 is the interior of Vn+1. Define fn : X 7→ R by letting

fn(x) =
d(x,Vn)

d(x,Vn)+d(x,X\Wn+1)
. Let f (x) = ∑

∞
n=1 fn(x). Note that ∑

∞
n=1 fn(x) is always finite since each x ∈ X

is in some Vn. Moreover, as both Vn and X \Wn+1 are closed, the function f : X 7→ R is continuous.

Define dH : X×X → R by

dH(x,y) = d(x,y)+ | f (x)− f (y)|. (5.3.1)
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Then

dH(x,z) = d(x,z)+ | f (x)− f (z)| ≤ d(x,y)+ | f (x)− f (y)|+d(y,z)+ | f (y)− f (z)| (5.3.2)

hence dH is a metric on X .

Claim 5.3.2. dH induces the same topology as d.

Proof. Let {xn : n ∈ N} be a subset of X and let y ∈ X . Suppose limn→∞ dH(xn,y) = 0. As d(xn,y) ≤

dH(xn,y) for all n ∈ N, we have limn→∞ d(xn,y) = 0. Now suppose limn→∞ d(xn,y) = 0. As f is contin-

uous in the original metric, we have limn→∞ f (xn) = f (y) hence we have limn→∞ dH(xn,y) = 0.

The metric space (X ,dH) satisfies the Heine-Borel condition since the following claim is true.

Claim 5.3.3. For every A⊂ X bounded with respect to dH , there is some Vn such that A⊂Vn.

Proof. Suppose A is not a subset of any element in {Vn : n ∈ N}. Fix some element n ∈ N and r ∈ R+.

Pick x ∈ Vn+1 \Vn. By the construction of f , we know that n+ 1 ≥ f (x) > n. Thus, we can pick an

element a ∈ A such that f (a)> f (x)+ r. Then dH(x,a)> r. As n and r are arbitrary, this shows that A

is not bounded.

As the Heine-Borel metric induces the same topology in X , instead of assuming the state space X

satisfies the Heine-Borel condition we only need X to be a σ -compact locally compact space.

(ii) There has been a rich literature on hyperfinite representations. In this paper, we cut ∗X into

hyperfinitely “small” pieces (denoted by {B(s) : s ∈ SX}) such that ∗g(x,1,A) ≈ g(y,1,A) for all A ∈
∗B[X ] for if x and y are in the same “small” piece B(s). This also depends on (DSF) which states that

the transition probability is a continuous function of starting points with respect to total variation norm.

In [27], Loeb showed that, for any Hausdorff topological space X , there is a hyperfinite partition BF of
∗X consisting of ∗Borel sets which is finer than any finite Borel-measurable partition of X . That is, there

exists N ∈ ∗N and {Ai : i≤ N} ∈P(∗B[X ]) such that

• For any i, j ≤ N, we have Ai 6= /0 and Ai∩A j = /0.

• ∗X =
⋃

i≤N Ai.
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• For every bounded measurable function f , we have

sup
x∈Ai

∗ f (x)− inf
x∈Ai

∗ f (x)≈ 0 (5.3.3)

for every i≤ N.

Now consider a discrete-time Markov process with state space X . There is a hyperfinite set S⊂ ∗X and a

hyperfinite partition {B(s) : s ∈ S} of ∗X consisting of ∗Borel such that for all s ∈ S, any x,y ∈ B(S) and

any A ∈B[X ] we have |∗g(x,1, ∗A)− ∗g(y,1, ∗A)| ≈ 0. However, it is not clear whether |∗g(x,1,B)−
∗g(y,1,B)| ≈ 0 for all B ∈ ∗B[X ]. A affirmative answer to this question may imply that (DSF) can be

eliminated in establishing the Markov chain ergodic theorem for discrete-time Markov processes.

(iii) It is possible to weaken the conditions mentioned in the Markov chain ergodic theorem (Theo-

rem 4.1.16). In particular, it would be interesting to reduce (SF) to (WF). In Section 4.2, we constructed a

hyperfinite representation {X ′t }t∈T of {Xt}t≥0 under the Feller condition. The problem with the Markov

chain ergodic theorem is: we do not know whether {X ′t }t∈T is strong regular. Recall that {X ′t }t∈T is

strong regular if for any A ∈I [S], any i, j ∈ NS(S) and any t ∈ T we have:

(i≈ j) =⇒ (G(t)
x (A)≈ G(t)

y (A)). (5.3.4)

where S denotes the state space of {X ′t }t∈T . This is related to the following question: Suppose {Xt}t≥0

satisfies (WF). For any B∈ ∗B[X ], any x,y∈NS(∗X) and any t ∈ T , is it true that ∗g(x, t,B)≈ ∗g(y, t,B)?

An affirmative answer of this question will imply that {X ′t }t∈T is strong regular. By the transfer of (WF),

it is not hard to see that ∗g(x, t, ∗A) ≈ ∗g(y, t, ∗A) for all x ≈ y ∈ NS(∗X), all t ∈ R+ and all A ∈B[X ].

Thus, an affirmative answer to Open Problem 5 should allow us to reduce (SF) to (WF) in the Markov

chain ergodic theorem (Theorem 4.1.16).

(iv) The following nonstandard measure theoretical question is related to the previous point. Let X

be a topological space and let (X ,B[X ]) be a Borel-measurable space. The question is: is an internal

probability measure on (∗X , ∗B[X ]) determined by its value on {∗A : A ∈ B[X ]}? For nonstandard

extensions of standard probability measures on (X ,B[X ]), the answer is affirmative by the transfer

principle. For general internal probability measures on (∗X , ∗B[X ]), the answer is false. We can have

two internal probability measures concentrating on two different infinitesimals. They are very different

internal measures but they agree on the nonstandard extensions of all standard Borel sets. We are

interested in the case in between.
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Open Problem 5. Let X be a topological space and let (X ,B[X ]) be a Borel-measurable space. Let P

be a probability measure on (X ,B[X ]) and let P1 be an internal probability measure on (∗X , ∗B[X ]).

Suppose P1(
∗A)≈ ∗P(∗A) for all A ∈B[X ], is it true that P1 = ∗P?

We do have the following partial result.

Lemma 5.3.4. Let us consider ([0,1],B[[0,1]]) and let P be a probability measure on it. Let P1 be

an internal probability measure on (∗[0,1], ∗B[[0,1]]) such that P1(
∗A) ≈ ∗P(∗A) for all A ∈B[[0,1]].

Then P1(I) = ∗P(I) where I is an interval contained in ∗[0,1].

Proof. It is easy to see that P1 = ∗P if P has countable support. Suppose P has uncountable support.

Then there is an interval [a,b] ⊂ [0,1] such that P([a,b]) > 0 and P({x}) = 0 for all x ∈ [a,b]. Thus,

without loss of generality, we can assume P is non-atomic on [0,1]. Let (x,y)⊂ ∗[0,1] be a ∗interval with

infinitesimal length. There is a a ∈ [0,1] such that (x,y)⊂ ∗(a,a+ 1
n) for all n ∈N. As limn→∞ P((a,a+

1
n)) = 0, we know that P1((x,y)) ≈ 0. Pick x1,x2 ∈ ∗[0,1]. Without loss of generality, we can assume

x1 < x2. We then have P1((x1,x2))≈ P1((st(x1),st(x2))≈ ∗P((st(x1),st(x2))≈ ∗P((x1,x2)).

It should not be too hard to extend this lemma to more general metric spaces. Note that the collection

of ∗intervals forms a basis of ∗[0,1]. An affirmative answer to Open Problem 5 may follow from a

variation of Theorem 3.3.33.

(v) Discrete-time Markov processes with finite state space can be characterized by its transition ma-

trix. The same is true for hyperfinite Markov processes. The Markov chain ergodic theorem as well as

the existence of stationary distribution are well understood for discrete-time Markov processes with fi-

nite state space. In Theorem 5.1.20, we establish a existence of stationary distribution result for general

Markov processes via studying its hyperfinite counterpart. Let {Xt}t≥0 be a standard Markov process

and let {X ′t }t∈T be its hyperfinite representation. Under moderate conditions, we showed that there is

a ∗stationary distribution Π for {X ′t }t∈T . Note that every ∗stationary distribution is a weakly stationary

distribution. By Theorem 3.1.26, under those conditions in Theorem 4.1.16, we know that the internal

transition probability of {X ′t }t∈T converges to the ∗stationary distribution Π. This shows that the Loeb

extension of Π is the same as the Loeb extension of any other weakly stationary distributions. However,

it seems that a weakly stationary distribution would differ from a ∗stationary distribution in general. We

raise the following two questions.

Open Problem 6. Is there an example of a hyperfinite Markov process where its ∗stationary distribution

differs from some of its weakly stationary distribution?
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Open Problem 7. Is there an example of a hyperfinite Markov process where the internal transition

probability does not converge to the ∗stationary distribution in the sense of Theorem 3.1.26?

(vi) In Section 4.2.2, we showed that the transition probability converges to the stationary distri-

bution weakly. We achieve this by showing that the transition probability converges to the stationary

distribution for every open ball which is also a continuity set. It is reasonable to expect such conver-

gence holds for all open balls, even all open sets. Such a result will “almost” imply the Markov chain

ergodic theorem by the following result.

Lemma 5.3.5. Let (X ,T ) be a topological space and let (X ,B[X ]) be a Borel-measurable space. Let

{Pn : n ∈ N} and P be Radon probability measures on (X ,B[X ]). Suppose

lim
n→∞

sup
U∈T
|Pn(U)−P(U)|= 0. (5.3.5)

Then (Pn : n ∈ N) converges to P in total variation distance.

Proof. Pick ε > 0. There is a n0 ∈ N such that supU∈T |Pn(U)−P(U)| < ε

4 for all n > n0. Let K (X)

denote the collection of compact subsets of X . Then we have supK∈K (X) |Pn(K)−P(K)| < ε

4 for all

n > n0. Fix B ∈B[X ] and n1 > n0. Without loss of generality, we can assume that Pn1(B) ≥ P(B). As

Pn1 is Radon, we can choose K compact, U open with K ⊂ B ⊂U such that Pn1(U)−Pn1(K) < ε

4 . We

then have

|Pn1(B)−P(B)| (5.3.6)

≤ |Pn1(U)−P(K)| (5.3.7)

≤ |Pn1(U)−Pn1(K)|+ |Pn1(K)−P(K)| (5.3.8)

≤ ε

2
. (5.3.9)

This implies that supB∈B[X ] |Pn1(B)−P(B)| < ε . Thus we have (Pn : n ∈ N) converges to P in total

variation distance.

Note that the lemma remains true if we replace convergence in total variation by limn→∞ Pn(A) =

P(A) both in condition and conclusion.

(vii) For general state space continuous-time Markov processes, the Markov chain ergodic theorem

applies to Harris recurrent chains. A Harris chain is a Markov chain where the chain returns to a
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particular part of the state space infinitely many times.

Definition 5.3.6. Let {Xt}t≥0 be a Markov process on a general state space X . The Markov chain {Xt}

is Harris recurrent if there exists A⊂ X , t0 > 0, 0 < ε < 1, and a probability measure µ on X such that

• P(τA < ∞|X0 = x) = 1 for all x ∈ X where τA denotes the stopping time to set A.

• P(t0)
x (B)> εµ(B) for all measurable B⊂ X and all x ∈ A.

The set A is called a small set.

The first equation ensures that {Xt} will always get into A, no matter where it starts. The second

equation implies that, once we are in A, Xn+t0 is chosen according to µ with probability ε . For two

i.i.d Markov processes {Xt}t≥0 and {Yt}t≥0 starting at two different points in A, then the two chains will

couple in t0 steps with probability ε .

Let {Xt}t≥0 be a continuous-time Markov process on a general state space X and let δ > 0. The

δ -skeleton chain of {Xt}t≥0 is the discrete-time process {Xδ ,X2δ , . . .}. As the total variation distance

is non-increasing, the convergence in total variation distance on the δ -skeleton chain will imply the

Markov chain ergodic theorem on {Xt}t≥0. The following version of the Markov chain ergodic theorem

is taken from Meyn and Tweedie [32]. Note that the skeleton condition is usually hard to check.

Theorem 5.3.7 ([32, Thm. 6.1]). Suppose that {Xt}t≥0 is a Harris recurrent Markov process with sta-

tionary distribution π . Then {Xt} is ergodic if at least one of its skeleton chains is irreducible.

Recall that the Markov chain ergodic theorem states that, under moderate conditions, the transition

probabilities will converge to its stationary distribution for almost all x ∈ X . The property of Harris

recurrent allows us to replace “almost all” by all. For a non-Harris chain, it needs not converge on a null

set.

Example 5.3.8 ([39, Example. 3]). Let X = {1,2, . . .}. Let P1({1}) = 1, and for x ≥ 2, Px({1}) = 1
x2

and Px({x+1}) = 1− 1
x2 . The chain has a stationary distribution π which is the degenerate measure on

{1}. Moreover, the chain is aperiodic and π-irreducible. On the other hand, for x≥ 2, we have

P[(∀n)(Xn = x+n)|X0 = x] =
∞

∏
i=x

(1− 1
i2
) =

x−1
x

> 0 (5.3.10)

Hence the convergence only holds if we start at {1}.
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The Markov chain ergodic theorem developed in this paper (Theorem 4.1.16) do not have such

restrictions. It does not require the skeleton condition on the underlying Markov process nor does it

require the Markov chain to be Harris recurrent.
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Chapter 6

Introduction to Statistical Decision Theory

More than eighty years after its formulation, statistical decision theory has served as a rigorous foun-

dation of statistics. One of the most fundamental problems in statistical decision theory, known as the

complete class theorem, is to study the relation between frequentist and Bayesian optimality. There is

a long line of research, originating with Wald’s development of statistical decision theory [54–57], that

connects frequentist and Bayesian optimality [5, 9, 10, 20, 25, 43, 50, 52–57]. One of the key results,

due to Le Cam [25], building off work of Wald, can be summarized as follows: under some technical

conditions, every admissible procedure is a limit of Bayes procedures.

This and related results deepen our understanding of both frequentist and Bayesian optimality. In

one direction, optimal frequentist procedures have (quasi) Bayesian interpretations that often provide

insight into strengths and weaknesses from an average-case perspective. In the other direction, optimal

frequentist procedures can be constructed via Bayes’ rule from carefully chosen priors or generalized

priors, such as improper priors or sequences thereof.

We give a general overview of statistical decision theory as well as an extensive literature review on

complete class theorems in this chapter. In Section 6.1, we introduce basic notions and key results in

standard statistical decision theory: domination, admissibility, and its variants; Bayes optimality; and

basic complete class and essentially complete class results. Classic treatments can be found in [14]

and [8], the latter emphasizing the connection with game theory, but restricting itself to finite discrete

spaces. A modern treatment can be found in [26].

In Section 6.2, we give a summary of extensive literature on complete class theorems. For finite

parameter spaces, it is well-known that a decision procedure is extended admissible if and only if it

is Bayes. We shall see that various relaxations of this classical equivalence have been established for
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infinite parameter spaces, but these extensions are each subject to technical conditions that limit their

applicability, especially to modern (semi- and nonparametric) statistical problems.

6.1 Standard Preliminaries

A (non-sequential) statistical decision problem is defined in terms of a parameter space Θ, each element

of which represents a possible state of nature; a set A of actions available to the statistician; a function

` : Θ×A→ R≥0 characterizing the loss associated with taking action a ∈ A in state θ ∈ Θ; and finally,

a family P = (Pθ )θ∈Θ of probability measures on a measurable sample space X . On the basis of an

observation from Pθ for some unknown element θ ∈ Θ, the statistician decides to take a (potentially

randomized) action a, and then suffers the loss `(θ ,a).

Formally, having fixed a σ -algebra on the space A of actions, every possible response by the statis-

tician is captured by a (randomized) decision procedure, i.e., a map δ from X to the space M1(A) of

probability measures A. As is customary, we will write δ (x,A) for (δ (x))(A). The expected loss, or

risk, to the statistician in state θ associated with following a decision procedure δ is

rδ (θ) = r(θ ,δ ) =
∫

X

[∫
A
`(θ ,a)δ (x,da)

]
Pθ (dx). (6.1.1)

For the risk function to be well-defined, the maps x 7→
∫
A `(θ ,a)δ (x,da), for θ ∈Θ, must be measurable,

and so we will restrict our attention to those decision procedures satisfying this weak measurability

criterion. A decision procedure δ is said to have finite risk if rδ (θ) ∈R for all θ ∈Θ. Let D denote the

set of randomized decision procedures with finite risk.

The set D may be viewed as a convex subset of a vector space. In particular, for all δ1, . . . ,δn ∈ D

and p1, . . . , pn ∈R≥0 with ∑i pi = 1, define ∑i piδi : X →M1(A) by (∑i piδi)(x) = ∑i piδi(x) for x ∈ X .

Then r(θ ,∑i piδi) = ∑i pi r(θ ,δi)< ∞, and so we see that ∑i piδi ∈D and r(θ , ·) is a linear function on

D for every θ ∈Θ. For a subset D⊆D , let conv(D) denote the set of all finite convex combinations of

decision procedures δ ∈ D.

A decision procedure δ ∈ D is called nonrandomized if, for all x ∈ X , there exists d(x) ∈ A such

that δ (x,A) = 1 if and only if d(x) ∈ A, for all measurable sets A ⊆ A. Let D0 ⊆ D denote the subset

of all nonrandomized decision procedures. Under mild measurability assumptions, every δ ∈D0 can be
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associated with a map x 7→ d(x) from X to A for which the risk satisfies

r(θ ,δ ) =
∫

X
`(θ ,d(x))Pθ (dx). (6.1.2)

Finally, writing S[<∞] for the set of all finite subsets of a set S, let

D0,FC =
⋃

D∈D0
[<∞]

conv(D) (6.1.3)

be the set of randomized decision procedures that are finite convex combinations of nonrandomized

decision procedures. Note that D0 ⊂D0,FC ⊂D and D0,FC is convex.

6.1.1 Admissibility

In general, the risk functions of two decision procedures are incomparable, as one procedure may present

greater risk in one state, yet less risk in another. Some cases, however, are clear cut: the notion of

domination induces a partial order on the space of decision procedures.

Definition 6.1.1. Let ε ≥ 0 and δ ,δ ′ ∈D . Then δ is ε-dominated by δ ′ if

1. ∀θ ∈Θ r(θ ,δ ′)≤ r(θ ,δ )− ε , and

2. ∃θ ∈Θ r(θ ,δ ′) 6= r(θ ,δ ).

Note that δ is dominated by δ ′ if δ is 0-dominated by δ ′. If a decision procedure δ is ε-dominated

by another decision procedure δ ′, then, computational issues notwithstanding, δ should be eliminated

from consideration. This gives rise to the following definition:

Definition 6.1.2. Let ε ≥ 0, C ⊆D , and δ ∈D .

1. δ is ε-admissible among C unless δ is ε-dominated by some δ ′ ∈ C .

2. δ is extended admissible among C if δ is ε-admissible among C for all ε > 0.

Again, note that δ is admissible among C if δ is 0-admissible among C . Clearly admissibility

implies extended admissibility. In other words, the class of all extended admissible decision procedures

contains the class of all admissible decision procedures.

Admissibility leads to the notion of a complete class.
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Definition 6.1.3. Let A ,C ⊆ D . Then A is a complete subclass of C if, for all δ ∈ C \A , there

exists δ0 ∈ A such that δ0 dominates δ . Similarly, A is an essentially complete subclass of C if, for

all δ ∈ C \A , there exists δ0 ∈A such that r(θ ,δ0) ≤ r(θ ,δ ) for all θ ∈ Θ. An essentially complete

class is an essentially complete subclass of D .

If a decision procedure δ is admissible among C , then every complete subclass of C must contain

δ . Note that the term complete class is usually used to refer to a complete subclass of some essentially

complete class (such as D itself or D0 under the conditions described in Section 6.1.3.)

The next lemma captures a key consequence of essential completeness:

Lemma 6.1.4. Suppose A is an essentially complete subclass of C , then extended admissible among

A implies extended admissible among C .

The class of extended admissible estimators plays a central role in this paper. It is not hard, however,

to construct statistical decision problems for which the class is empty, and thus not a complete class.

Example 6.1.5. Consider a statistical decision problem with sample space X = {0}, parameter space

Θ = {0}, action space A = (0,1], and loss function `(0,d) = d. Then every decision procedure is a

constant function, taking some value in A. For all c ∈ (0,1], the procedure δ ≡ c is c/2-dominated by

the decision procedure δ ′ ≡ c/2. Hence, there is no extended admissible estimator, hence the extended

admissible procedures do not form a complete class.

The following result gives conditions under which the class of extended admissible estimators are

a complete class. (See [8, §5.4–5.6 and Thm. 5.6.3] and [14, §2.6 Cor. 1] for related results for finite

spaces.)

Theorem 6.1.6. Let C ⊆ D . Suppose that, for all sequences δ ,δ1,δ2, . . . ∈ C and non-decreasing

sequences ε1,ε2, · · · ∈ R>0 such that ε0 = limi εi exists and δ is εi-dominated by δi for all i ∈ N, there

is a decision procedure δ0 ∈ C such that δ is ε0-dominated by δ0. Then the set of procedures that are

extended admissible among C form a complete subclass of C .

Proof. Let S = {x ∈RΘ : (∃δ ∈C )(∀θ ∈Θ)x(θ) = r(θ ,δ )} denote the risk set of C . Pick δ ∈C and

suppose δ is not extended admissible among C . Let

Qε(δ ) = {x ∈ RΘ : (∀θ ∈Θ)(x(θ)≤ r(θ ,δ )− ε)}. (6.1.4)

Let M be the set {ε ∈ R>0 : Qε(δ )∩S 6= /0}, which is nonempty because δ is not extended admissible

among C . As the risk is nonnegative and finite, M is also bounded above. Hence there exists a least
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upper bound ε0 of M. Pick a non-decreasing sequence ε1,ε2, . . . ∈ M that converges to ε0. We now

construct a (potentially infinite) sequence of decision procedures inductively:

1. Choose δ1 ∈ C such that δ is ε1-dominated by δ1. Because M is nonempty, there must exist such

a procedure.

2. Suppose we have chosen δ1, . . . ,δi ∈ C , and suppose there is an index j ∈ N such that δ is ε j-

dominated by δi but δ is not ε j+1-dominated by δi. Then we choose δi+1 ∈ C such that δ is

ε j+1-dominated by δi+1. Because M contains ε j+1, there must exist such a procedure. If no such

index j exist, the process halts at stage i.

Suppose the process halts at some finite stage i0. Then for, all j ∈ N, δ is not ε j-dominated by δi0

or δ is ε j+1-dominated by δi0 . But δ is ε1-dominated by δi0 and so, by induction, δ is ε j-dominated by

δi0 for all j ∈ N. As the sequence ε1,ε2, . . . is non-decreasing and has a limit ε0, it follows easily via a

contrapositive argument that δ is even ε0-dominated by δi0 . If δi0 were not extended admissible among

C , then this would contradict the fact that ε0 is a least upper bound on M.

Now suppose the process continues indefinitely. Then the claim is that δ is εi-dominated by δi for

all i ∈ N. Clearly this holds for i = 1. Supposing it holds for i ≤ k. Then δ is εi-dominated by δk for

all i ≤ k and there exists j ∈ N such that δ is ε j-dominated by δk but δ is not ε j+1-dominated by δk. It

follows that j ≥ k, hence δ is εk+1-dominated by δk+1, as was to be shown.

Thus, by hypothesis, there is a decision procedure δ ′ ∈ C such that δ is ε0-dominated by δ ′. As ε0

is the least upper bound of M, δ ′ is also extended admissible among C , completing the proof.

6.1.2 Bayes Optimality

Consider now the Bayesian framework, in which one adopts a prior, i.e., a probability measure π defined

on some σ -algebra on Θ. Irrespective of the interpretation of π , we may define the Bayes risk of a

procedure as the expected risk under a parameter chosen at random from π .1

Definition 6.1.7. Let δ ∈D , ε ≥ 0, and C ⊆D , and let π0 be a prior.

1. The Bayes risk under π0 of δ is r(π0,δ ) =
∫

Θ
r(θ ,δ )π0(dθ).

1We must now also assume that r(·,δ ) is a measurable function for every δ ∈ D . Normally, there is a natural choice of
σ -algebra on Θ that satisfies this constraint. Even if there is no natural choice, there is always a sufficiently rich σ -algebra that
renders every risk function measurable. In particular, the power set of Θ suffices. Note that the σ -algebra determines the set
of possible prior distributions. In the extreme case where the σ -algebra on Θ is taken to be the entire power set, the set of prior
distributions contain the purely atomic distributions and these are the only distributions if and only if there is no real-valued
measurable cardinal less than or equal to the continuum [19, Thm. 1D]. As we will see, the purely atomic distributions suffice
to give our complete class theorems.
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2. δ is ε-Bayes under π0 among C if r(π0,δ )< ∞ and, for all δ ′ ∈C , we have r(π0,δ )≤ r(π0,δ
′)+

ε .

3. δ is Bayes under π0 among C if δ is 0-Bayes under π0 among C .

4. δ is extended Bayes among C if, for all ε > 0, there exists a prior π such that δ is ε-Bayes under

π among C .

5. δ is ε-Bayes among C (resp., Bayes among C ) if there exists a prior π such that δ is ε-Bayes

under π among C (resp., Bayes under π among C ).

We will sometimes write Bayes among C with respect to π0 to mean Bayes under π0 among C , and

similarly for ε-Bayes among C .

The following well-known result establishes a basic connection between Bayes optimality and ad-

missibility (see, e.g., [8, Thm. 5.5.1]). We give a proof for completeness.

Theorem 6.1.8. If δ is Bayes among C , then δ is extended Bayes among C , and then δ is extended

admissible among C .

Proof. That Bayes implies extended Bayes follows trivially from definitions. Now assume δ is not

extended admissible among C . Then there exists ε > 0 and δ ′ ∈ C such that r(θ ,δ ′) ≤ r(θ ,δ )− ε

for all θ ∈ Θ. But then, for every prior π ,
∫

r(θ ,δ ′)π(dθ) ≤
∫

r(θ ,δ )π(dθ)− ε or
∫

r(θ ,δ ′)π(dθ) =∫
r(θ ,δ )π(dθ) = ∞, hence δ is not ε/2-Bayes among C , hence not extended Bayes among C .

Note that neither extended admissibility nor admissibility imply Bayes optimality, in general. E.g.,

the maximum likelihood estimator in a univariate normal-location problem is admissible, but not Bayes.

Essential completeness allows us to strengthen a Bayes optimality claim:

Theorem 6.1.9. Suppose A is an essentially complete subclass of C , then ε-Bayes among A implies

ε-Bayes among C for every ε ≥ 0.

Proof. Let δ0 be Bayes under π among A for some prior π . Let δ ∈ C . Then there exists δ ′ ∈ A

such that, for all r(θ ,δ ′) ≤ r(θ ,δ ) for all θ ∈ Θ. By hypothesis, r(π,δ0) ≤ r(π,δ ′), but r(π,δ ′) =∫
r(θ ,δ ′)π(dθ)≤

∫
r(θ ,δ )π(dθ) = r(π,δ ). Hence r(π,δ0)≤ r(π,δ ) for all δ ∈ C .
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6.1.3 Convexity

An important class of statistical decision problems are those in which the action space A is itself a vector

space over the field R. In that case, the mean estimate
∫
A aδ (x,da) is well defined for every δ ∈D0,FC

and x ∈ X , which motivates the following definition.

Definition 6.1.10. For δ ∈D0,FC, define E(δ ) : X →M1(A) by E(δ )(x,A) = 1 if
∫
A aδ (x,da) ∈ A and

0 otherwise, for every x ∈ X and measurable subset A⊆ A.

When the loss function is assumed to be convex, it is well known that the mean action will be

no worse on average than the original randomized one. We formalize this condition below and prove

several well-known results for completeness.

Condition LC (loss convexity). A is a vector space over the field R and the loss function ` is convex

with respect to the second argument.

Lemma 6.1.11. Let δ and E(δ ) be as in Definition 6.1.10, and suppose (LC) holds. Then r(·,δ ) ≥

r(·,E(δ )), hence E(δ ) ∈D0.

Proof. Let θ ∈Θ. By convexity of ` in its second parameter and a finite-dimensional version of Jensen’s

inequality [14, §2.8 Lem. 1], we have

r(θ ,δ ) =
∫

X

[∫
A
`(θ ,a)δ (x,da)

]
Pθ (dx) (6.1.5)

≥
∫

X
`(θ ,

∫
A aδ (x,da))Pθ (dx) = r(θ ,E(δ )). (6.1.6)

Remark 6.1.12. Irrespective of the dimensionality of the action space A, we may use a finite-dimensional

version of Jensen’s inequality because the procedure δ ∈ D0,FC is a finite mixture of nonrandomized

procedures. The proof for a general randomized procedure δ ∈D and a general action space A, would

require additional hypotheses to account for the possible failure of Jensen’s inequality (see [35]) and the

possible lack of measurability of E(δ ) (see [14, S2.8]).

Lemma 6.1.13. Suppose (LC) holds. Then D0 is an essentially complete subclass of D0,FC.

Proof. Let δ ∈ D0,FC. Then E(δ ) ∈ D0. By Lemma 6.1.11, E(δ ) is well defined and r(θ ,δ0) ≥

r(θ ,E(δ )), completing the proof.
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Remark 6.1.14. See the remark following [14, §2.8 Thm. 1] for a discussion of additional hypotheses

needed for establishing that D0 is an essentially complete subclass of D .

6.2 Prior Work

The first key results on admissibility and Bayes optimality are due to Abraham Wald, who laid the

foundation of sequential decision theory. In [54], working in the setting of sequential statistical decision

problems with compact parameter spaces, Wald showed that the Bayes decision procedures form an

essentially complete class. Sequential decision problems differ from the decision problems we will be

discussing in this paper in the sense that it gives the statistician the freedom to look at a sequence of

observations one at a time and to decide, after each observation, whether to stop and take an action or

to continue, potentially at some cost. The decision problems we will be discussing in this paper can be

seen as special cases of sequential decision problems with only one observation.

In order to prove his results, Wald required a strong form of continuity for his risk and loss functions.

Definition 6.2.1. A sequence of parameters {θi}i∈N converges in risk to a parameter θ when supδ∈D |r(θi,δ )−

r(θ ,δ )| → 0 as i→ ∞, and converges in loss when supa∈A |`(θi,a)− `(θ ,a)| → 0 as i→ ∞. Similar-

ly, a sequence of decision procedures {δi}i∈N in D converges in risk to a decision procedure δ when

supθ∈Θ |r(θ ,δi)− r(θ ,δ )| → 0 as i→ ∞. A sequence of actions {ai}i∈N converges in loss to an action

a ∈ A when supθ∈Θ |`(θ ,ai)− `(θ ,a)| → 0 as i→ ∞.

Topologies on Θ, A, and D are generated by these notions of convergence. In the following result

and elsewhere, a model P is said to admit (a measurable family of) densities ( fθ )θ∈Θ (with respect to a

dominating (σ -finite) measure ν) when Pθ (A) =
∫

A fθ (x)ν(dx) for every θ ∈Θ and measurable A⊆ X .

In terms of these densities, there is a unique Bayes solution with respect to a prior π on Θ when, for

every x ∈ X , except perhaps for a set of ν-measure 0, there exists one and only one action a∗ ∈ A for

which the expression

∫
Θ

`(θ ,a) fθ (x)π(dθ) (6.2.1)

takes its minimum value with respect to a ∈ A. (Another notion of uniqueness used in the literature is

to simply demand that the risk functions of two Bayes solutions agree.) The main result can be stated in

the special case of a non-sequential decision problem as follows:
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Theorem 6.2.2 ([54, Thms. 4.11 and 4.14]). Assume Θ and D are compact in risk, and that Θ and A

are compact in loss. Assume further that P admits densities ( fθ )θ∈Θ with respect to Lebesgue measure,

that these densities are strictly positive outside a Lebesgue measure zero set. Then every extended

admissible decision procedure is Bayes. If the Bayes solution for every prior π is unique, the class of

nonrandomized Bayes procedures form a complete class.

Wald’s regularity conditions are quite strong; he essentially requires equicontinuity in each variable

for both the loss and risk functions. For example, the standard normal-location problem under squared

error does not satisfy these criteria.

A similar result is established in the non-sequential setting in [55]:

Theorem 6.2.3 ([55, Thm. 3.1]). Suppose that P admits densities ( fθ )θ∈Θ, that Θ is a compact subset of

a Euclidean space, that the map (x,θ) 7→ fθ (x) is jointly continuous, that the loss `(θ ,a) is a continuous

function of θ for every action a, that the space A is compact in loss, and that there is a unique Bayes

solution for every prior π on Θ. Then every Bayes procedure is admissible and the collection of Bayes

procedures form an essentially complete class.

In many classical statistical decision problems, one does not lose anything by assuming that all risk

functions are continuous. The following theorem, taken from [26], formalizes this intuition: We will

say that a model P has a continuous likelihood function ( fθ )θ∈Θ when P admits densities ( fθ )θ∈Θ such

that θ 7→ fθ (x) is continuous for every x ∈ X .

Theorem 6.2.4 ([26, §5 Thm. 7.11]). Suppose P has a continuous likelihood function ( fθ )θ∈Θ and a

monotone likelihood ratio. If the loss function `(θ ,δ ) satisfies

1. `(θ ,a) is continuous in θ for each action a;

2. `(θ ,a) is decreasing in a for a < θ and increasing in a for a > θ ; and

3. there exist functions f and g, which are bounded on all bounded subsets of Θ×Θ, such that for

all a

`(θ ,a)≤ f (θ ,θ ′)`(θ ′,a)+g(θ ,θ ′), (6.2.2)

then the estimators with finite-valued, continuous risk functions form a complete class.

If we assume the loss function is bounded, then all decision procedures have finite risk. The follow-

ing theorem gives a characterization of continuous risk assuming boundedness of the loss.
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Theorem 6.2.5 ([14, §3.7 Thm. 1]). Suppose P admits densities ( fθ )θ∈Θ with respect to a dominating

measure ν . Assume

1. ` is bounded;

2. `(θ ,a) is continuous in θ , uniformly in a;

3. for every bounded measurable φ ,
∫

φ(x) fθ (x)ν(dx) is continuous in θ .

Then the risk r(θ ,δ ) is continuous in θ for every δ .

If we assume continuity of the risk function with respect to the parameter and restrict ourselves to

Euclidean parameter spaces, we have the following theorem from [4, Sec. 8.8, Thm. 12].

Theorem 6.2.6. Assume that A and Θ are compact subsets of Euclidean spaces and that the model

P admits densities ( fθ )θ∈Θ with respect to either Lebesgue or counting measure such that the map

(x,θ) 7→ fθ (x) is jointly continuous. Assume further that the loss `(θ ,a) is a continuous function of

a ∈ A for each θ , and that all decision procedures have continuous risk functions. Then the collection

of Bayes procedures form a complete class.

In the non-compact setting, Bayes procedures generally do not form a complete class. With a view

to generalizing the notion of a Bayes procedure and recovering a complete class, Wald [56] introduced

the notion of “Bayes in the wide sense”, which we now call extended Bayes (see Definition 6.1.7). The

formal statement of the following theorem is adapted from [14]:

Theorem 6.2.7. Suppose that there exists a topology on D such that D is compact and r(θ ,δ ) is lower

semicontinuous in δ ∈D for all θ ∈ Θ. Then the set of extended Bayes procedures form an essentially

complete class.

Wald also studied taking the “closure” (in a suitable sense) of the collection of all Bayes procedures,

and showed that every admissible procedure was contained in this new class. The first result of this form

appears in [56] and is extended later in [25]. Brown [10, App. 4A] extended these results and gave a

modern treatment. The following statement of Brown’s version is adapted from [26, §5 Thm. 7.15].

Theorem 6.2.8. Assume P admits strictly positive densities ( fθ )θ∈Θ with respect to a σ -finite measure

ν . Assume the action space A is a closed convex subset of Euclidean space. Assume the loss `(θ ,a) is

lower semicontinuous and strictly convex in a for every θ , and satisfies

lim
|a|→∞

`(θ ,a) = ∞ for all θ ∈Θ. (6.2.3)
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Then every admissible decision procedure δ is an a.e. limit of Bayes procedures, i.e., there exists a

sequence πn of priors with support on a finite set, such that

δ
πn(x)→ δ (x) as n→ ∞ for ν-almost all x, (6.2.4)

where δ πn is a Bayes procedure with respect to πn.

In the normal-location model under squared error loss, the sample mean, while not a Bayes estimator

in the strict sense, can be seen as a limit of Bayes estimators, e.g., with respect to normal priors of

variance K as K→∞ or uniform priors on [−K,K] as K→∞. (We revisit this problem in Example 8.3.2.)

In his seminal paper, Sacks [43] observes that the sample mean is also the Bayes solution if the notion of

prior distribution is relaxed to include Lebesgue measure on the real line. Sacks [43] raised the natural

question: if δ is a limit of Bayes estimators, is there a measure m on the real line such that δ is “Bayes”

with respect to this measure? A solution in this latter form was termed a generalized Bayes solution by

Sacks [43]. The following definition is adapted from [52]:

Definition 6.2.9. A decision procedure δ0 is a normal-form generalized Bayes procedure with respect

to a σ -finite measure π on Θ when δm minimizes r(π,δ ) =
∫

r(θ ,δ )π(dθ), subject to the restriction

that r(π,δm)< ∞. If P admits densities ( fθ )θ∈Θ with respect to a σ -finite measure ν and δ0 minimizes

the unnormalized posterior risk
∫
`(θ ,δ0(x)) fθ (x)π(dθ) for ν-a.e. x, then δ0 is a (extensive-form) gen-

eralized Bayes procedure with respect to π .

When a model admits densities, Stone [52] showed that every normal-form generalized Bayes proce-

dure is also extensive-form. (Sacks defined generalized Bayes in extensive form, but demanded also that∫
fθ (·)π(dθ) be finite ν-a.e. The notion of normal- and extensive-form definitions of Bayes optimality

were introduced by Raiffa and Schlaifer [37].) For exponential families, under suitable conditions, one

can show that every admissible estimator is generalized Bayes. The first such result was developed by

Sacks [43] in his original paper: he proved that, for statistical decision problems where the model admits

a density of the form exθ/Zθ with Zθ =
∫

exθ ν(dθ), every admissible estimator is generalized Bayes.

Stone [52] extended this result to estimation of the mean in one-dimensional exponential families under

squared error loss. These results were further generalized in similar ways by Brown [9, Sec. 3.1] and

Berger and Srinivasan [5]. The following theorem is given in [5]. We adapt the statement of this theorem

from [26].
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Theorem 6.2.10 ([26, §5 Thm. 7.17]). Assume the model is a finite-dimensional exponential family, and

that the loss `(θ ,a) is jointly continuous, strictly convex in a for every θ , and satisfies

lim
|a|→∞

`(θ ,a) = ∞ for all θ ∈Θ. (6.2.5)

Then every admissible estimator is generalized Bayes.

Other generalized notions of Bayes procedures have been proposed. Heath and Sudderth [16] study

statistical decision problems in the setting of finitely additive probability spaces. The following theorem

is their main result:

Theorem 6.2.11 ([16, Thm. 2]). Fix a class D of decision procedures. Every finitely additive Bayes

decision procedure is extended admissible. If the loss function is bounded and the class D is convex,

then every extended admissible decision procedure in D is finitely additive Bayes in D .

The simplicity of this statement is remarkable. However, the assumption of boundedness is very

strong, and rule out many standard estimation problems on unbounded spaces. We will succeed in

removing the boundedness assumption by moving to a sufficiently saturated nonstandard model.
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Chapter 7

Nonstandard Statistical Decision Theory

As the literature stands, for infinite parameter spaces, the connection between frequentist and Bayesian

optimality is subject to technical conditions, and these technical conditions (see Section 6.2) often rule

out semi-parametric problems and regularly rule out nonparametric problems. As a result, the relation-

ship between frequentist and Bayesian optimality in the setting of many modern statistical problems is

uncharacterized. Indeed, given the effort expended to derive general results, it would be reasonable to

assume that the connection between frequentist and Bayesian optimality was to some extent fragile, and

might, in general, fail in nonparametric settings.

Using results in mathematical logic and nonstandard analysis, we identify an equivalence between

the frequentist notion of extended admissibility (a necessary condition for both admissibility and mini-

maxity) and a novel notion of Bayesian optimality, and we show that this equivalence holds in arbitrary

decision problems without technical conditions: informally, we show that, among decision procedures

with finite risk functions, a decision procedure δ is extended admissible if and only if it has infinitesimal

excess Bayes risk.

The fact that an equivalence holds, not just under weaker hypotheses than those employed in classi-

cal results, but under no assumptions, is surprising and suggests that our approach may be able to reveal

further connections between frequentist and Bayesian optimality.

In Section 7.1, we define nonstandard counterparts of admissibility, extended admissibility, and

essential completeness, which we obtain by ignoring infinitesimal violations of the standard notions,

and then give key theorems relating standard and nonstandard notions for standard decision procedures

and their nonstandard extensions, respectively.

In Section 7.2, we define a notion called nonstandard Bayes. Nonstandard Bayes is the nonstandard
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counterpart to Bayes optimality, which we also obtain by ignoring infinitesimal violations of the standard

notion. We establish the connection between nonstandard Bayes and various notions of standard Bayes

(Bayes, extended Bayes, generalized Bayes, etc). Using saturation and a hyperfinite version of the

classical separating hyperplane argument on a hyperfinite discretization of the risk set, we show that

a decision procedure is extended admissible if and only if it its nonstandard extension is nonstandard

Bayes.

7.1 Nonstandard Admissibility

As we have seen in the previous section, strong regularity appears to be necessary to align Bayes op-

timality and admissibility. In non-compact parameter spaces, the statistician must apparently abandon

the strict use of probability measures in order to represent certain extreme states of uncertainty that cor-

respond with admissible procedures. Even then, strong regularity conditions are required (such as dom-

ination of the model and strict positiveness of densities, ruling out estimation in infinite-dimensional

contexts). In the remainder of the paper, we describe a new approach using nonstandard analysis, in

which the statistician uses probability measures, but has access to a much richer collection of real num-

bers with which to express their beliefs.

Let (Θ,A, `,X ,P) be a standard statistical decision problem.

The nonstandard notions are the same as in previous chapters. For convenience of readers, we sum-

marize them below. For a set S, let P(S) denote its power set. We assume that we are working within a

nonstandard model containing V ⊇R∪Θ∪A∪X , P(V ),P(V ∪P(V )), . . . , and we assume the model

is as saturated as necessary. We use ∗ to denote the nonstandard extension map taking elements, sets,

functions, relations, etc., to their nonstandard counterparts. In particular, ∗R and ∗N denote the non-

standard extensions of the reals and natural numbers, respectively. Given a topological space (Y,T ) and

a subset X ⊆ ∗Y , let NS(X) ⊆ X denote the subset of near-standard elements (defined by the monadic

structure induced by T ) and let st : NS(Y )→ Y denote the standard part map taking near-standard ele-

ments to their standard parts. In both cases, the notation elides the underlying space Y and the topology

T , because the space and topology will always be clear from context. As an abbreviation, we will write
◦x for st(x) for atomic elements x. For functions f , we will write ◦ f for the composition x 7→ st( f (x)).

Finally, given an internal (hyperfinitely additive) probability space (Ω,F ,P), we will write (Ω,F ,P)

to denote the corresponding Loeb space, i.e., the completion of the unique extension of P to σ(F ).
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7.1.1 Nonstandard Extension of a Statistical Decision Problem

We will assume that Θ is a Hausdorff space and adopt its Borel σ -algebra B[Θ].1

One should view the model P as a function from Θ to the space M1(X) of probability measures

on X . Write ∗Py for (∗P)y. For every y ∈ ∗Θ, the transfer principle implies that ∗Py is an internal

probability measure on ∗X (defined on the extension of its σ -algebra). By the transfer principle, we

know that ∗(Pθ ) =
∗Pθ for θ ∈Θ, as one would expect from the notation.

Recall that standard decision procedures δ ∈ D have finite risk functions. Therefore, the risk map

(θ ,δ ) 7→ r(θ ,δ ) is a function from Θ×D to R. By the extension and transfer principles, the nonstandard

extension ∗r is an internal function from ∗Θ× ∗D to ∗R. and ∗δ ∈ ∗D if δ ∈ D . The transfer principle

also implies that every ∆∈ ∗D is an internal function from ∗X to ∗M1(A). The ∗risk function of ∆∈ ∗D is

the function ∗r(·,∆) from ∗Θ to ∗R. By the transfer of the equation defining risk, the following statement

holds:

(∀θ ∈ ∗Θ) (∀∆ ∈ ∗D) (∗r(θ ,∆) =
∗∫
∗X

[ ∗∫
∗A
∗`(θ ,a)∆(x,da)

]
∗Pθ (dx). (7.1.1)

As is customary, we will simply write
∫

for ∗
∫

, provided the context is clear. (We will also drop ∗ from

the extensions of common functions and relations like addition, multiplication, less-than-or-equal-to,

etc.)

7.1.2 Nonstandard Admissibility

Let δ0,δ ∈D , let ε ∈ R≥0, and assume δ0 is ε-dominated by δ . Then there exists θ0 ∈Θ such that

(∀θ ∈Θ)(r(θ ,δ )≤ r(θ ,δ0)− ε)∧ (r(θ0,δ ) 6= r(θ0,δ0)). (7.1.2)

By the transfer principle,

(∀θ ∈ ∗Θ)(∗r(θ , ∗δ )≤ ∗r(θ , ∗δ 0)− ε)∧ (∗r(θ0,
∗
δ ) 6= ∗r(θ0,

∗
δ 0)). (7.1.3)

Because ∗r(θ0,
∗δ ) = r(θ0,δ ) and similarly for ∗r(θ0,

∗δ 0), we know that ∗r(θ0,
∗δ ) 6≈ ∗r(θ0,

∗δ 0). These

results motivate the following nonstandard version of domination.

1In one sense, this is a mild assumption, which we use to ensure that the standard part map st : NS(∗Θ)→Θ is well defined.
In another sense, Θ can always be made Hausdorff by, e.g., adopting the discrete topology. The topology determines the Borel
sets and thus determines the set of available probability measures on Θ (and on ∗Θ, by extension). Topological considerations
arise again in Section 8.1, Remark 8.2.8, and Remark 8.3.3.
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Definition 7.1.1. Let ∆,∆′ ∈ ∗D be internal decision procedures, let ε ∈ R≥0, and R,S⊆ ∗Θ. Then ∆ is

ε-∗dominated in R/S by ∆′ when

1. ∀θ ∈ S ∗r(θ ,∆′)≤ ∗r(θ ,∆)− ε , and

2. ∃θ ∈ R ∗r(θ ,∆′) 6≈ ∗r(θ ,∆).

Write ∗dominated in R/S for 0-∗dominated in R/S, and write ε-∗dominated on S for ε-∗dominated

in S/S.

The following results are immediate upon inspection of the definition above, and the fact that (1)

implies (2) for R⊆ S when ε > 0.

Lemma 7.1.2. Let ε ≤ ε ′, R ⊆ R′, and S ⊆ S′. Then ε ′-∗dominated in R/S′ implies ε-∗dominated in

R′/S. If ε > 0, then ε-∗dominated in S/S′ if and only if ε-∗dominated on S′, and ε ′-∗dominated on S′

implies ε-∗dominated on S.

The following result connects standard and nonstandard domination.

Theorem 7.1.3. Let ε ∈ R≥0 and δ0,δ ∈D . The following statements are equivalent:

1. δ0 is ε-dominated by δ .

2. ∗δ 0 is ε-∗dominated in Θ/∗Θ by ∗δ .

3. ∗δ 0 is ε-∗dominated on Θ by ∗δ .

If ε > 0, then the following statement is also equivalent:

4. ∗δ 0 is ε-∗dominated on ∗Θ by ∗δ .

Proof. (1 =⇒ 2) Follows from logic above Definition 7.1.1. (2 =⇒ 3) Follows from Lemma 7.1.2.

(3 =⇒ 1) By hypothesis,

(∀θ ∈Θ)(∗r(θ , ∗δ )≤ ∗r(θ , ∗δ 0)− ε)∧ (∃θ0 ∈Θ)(∗r(θ0,
∗
δ ) 6≈ ∗r(θ0,

∗
δ 0)). (7.1.4)

Because ∗r(θ0,
∗δ ) = r(θ0,δ ), and likewise for δ0, it follows that

(∀θ ∈Θ)(r(θ ,δ )≤ r(θ ,δ0)− ε). (7.1.5)
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Similarly, ◦(∗r(θ0,
∗δ )) = r(θ0,δ ), and likewise for δ0, hence ??.1 implies

(∃θ0 ∈Θ)(r(θ0,δ ) 6= r(θ0,δ0)). (7.1.6)

(2 =⇒ 4 =⇒ 3) Follow from Lemma 7.1.2.

Definition 7.1.4. Let ε ∈ R≥0, R,S⊆ ∗Θ, and C ⊆ ∗D , and ∆ ∈ ∗D .

1. ∆ is ε-∗admissible in R/S among C unless ∆ is ε-∗dominated in R/S by some ∆′ ∈ C .

2. ∆ is ∗admissible in R/S among C if ∆ is 0-∗admissible in R/S among C .

3. ∆ is ε-∗admissible on S among C if ∆ is ε-∗admissible in S/S among C .

4. ∆ is ∗extended admissible on S among C if ∆ is ε-∗admissible on S among C for every ε ∈ R>0.

The following result is immediate upon inspection of the definitions above.

Lemma 7.1.5. Let ε ≤ ε ′, R ⊆ R′, S ⊆ S′, and A ⊆ C . Then ε-∗admissible in R′/S among C implies

ε ′-∗admissible in R/S′ among A . For ε > 0, ε-∗admissible on S among C implies ε ′-∗admissible on S′

among A .

The analogous results for ∗admissible in R/S among C and ∗extended admissible on S among C

then follow immediately. The following result connects standard and nonstandard admissibility. First,

we must introduce the notion of the standard-part copy.

Definition 7.1.6. The standard-part copy of C ⊆D is σC = {∗δ : δ ∈ C }.

Note that σC ⊆ ∗C and σC is an external set unless C is finite.

Theorem 7.1.7. Let ε ∈ R≥0, δ0 ∈D , and C ⊆D . The following statements are equivalent:

1. δ0 is ε-admissible among C .

2. ∗δ 0 is ε-∗admissible in Θ/∗Θ among σC .

3. ∗δ 0 is ε-∗admissible on Θ among σC .

If ε > 0, then the following statements are also equivalent:

4. ∗δ 0 is ε-∗admissible on ∗Θ among σC .
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5. ∗δ 0 is ε-∗admissible on ∗Θ among ∗C .

Proof. Statement (1) is equivalent to

¬(∃δ ∈ C ) δ0 is ε-dominated by δ . (7.1.7)

By Theorem 7.1.3 and the definition of σC , this is equivalent to both

¬(∃∗δ ∈ σC ) ∗δ 0 is ε-∗dominated in Θ/∗Θ by ∗δ (7.1.8)

and

¬(∃∗δ ∈ σC ) ∗δ 0 ε-∗dominated on Θ by ∗δ , (7.1.9)

hence (1 ⇐⇒ 2 ⇐⇒ 3).

Now let ε > 0. Then the above statements are also equivalent to

¬(∃∗δ ∈ σC ) ∗δ 0 is ε-∗dominated on ∗Θ by ∗δ , (7.1.10)

hence (1 ⇐⇒ 4). From Lemma 7.1.5, we see that (5) implies (4). To see that (1) implies (5), note that,

because ε is standard and ε > 0, (1) is equivalent to

¬(∃δ ∈ C )(∀θ ∈Θ)(r(θ ,δ )≤ r(θ ,δ0)− ε). (7.1.11)

By transfer, this statement holds if and only if the following statement holds:

¬(∃∆ ∈ ∗C )(∀θ ∈ ∗Θ)(∗r(θ ,∆)≤ ∗r(θ , ∗δ 0)− ε). (7.1.12)

Again, ε > 0 implies ∗r(θ ,∆) 6≈ ∗r(θ , ∗δ 0) for all θ ∈ ∗Θ, hence (5) holds.

The following corollary for extended admissibility follows immediately.

Theorem 7.1.8. Let δ0 ∈D and C ⊆D . The following statements are equivalent:

1. δ0 is extended admissible among C .

2. ∗δ 0 is ∗extended admissible on Θ among σC .
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3. ∗δ 0 is ∗extended admissible on ∗Θ among σC .

4. ∗δ 0 is ∗extended admissible on ∗Θ among ∗C .

As in the standard universe, the notion of ∗admissibility lead to notions of complete classes.

Definition 7.1.9. Let A ,C ⊆ ∗D .

1. A is a ∗complete subclass of C if for all ∆∈C \A , there exists ∆′ ∈A such that ∆ is ∗dominated

on Θ by ∆′.

2. A is an ◦essentially complete subclass of C if for all ∆ ∈ C \A , there exists ∆′ ∈ A such that
∗r(θ ,∆′)/ ∗r(θ ,∆) for all θ ∈Θ.

Near-standard essential completeness allows us to enlarge the set of decision procedures amongst

which a decision procedure is extended admissible.

Lemma 7.1.10. Suppose A is an ◦essentially complete subclass of C ⊆D . Then ∗extended admissible

on Θ among A implies ∗extended admissible on Θ among C .

Proof. Let ∆0 ∈A and suppose ∆0 is not ∗extended admissible on Θ among C . Then there exists ∆∈C

and ε ∈R>0 such that ∗r(θ ,∆)≤ ∗r(θ ,∆0)−ε for all θ ∈Θ. But then by the ∗essential completeness of

A , there exists some ∆′ ∈A , such that ∗r(θ ,∆′)/ ∗r(θ ,∆) for all θ ∈Θ, hence ∗r(θ ,∆′)/ ∗r(θ ,∆0)−ε

for all θ ∈Θ. But then ∆0 is not ε/2-∗admissible on Θ among A hence not ∗extended admissible on Θ

among A .

7.2 Nonstandard Bayes

We now define the nonstandard counterparts to Bayes risk and optimality for the class ∗D of internal

decision procedures:

Definition 7.2.1. Let ∆ ∈ ∗D , ε ∈ ∗R≥0, and C ⊆ ∗D , and let Π0 be a nonstandard prior, i.e., an

internal probability measure on (∗Θ, ∗B[Θ]). The internal Bayes risk under Π0 of ∆ is ∗r(Π0,∆) =∫ ∗r(θ ,∆)Π0(dθ).

1. ∆ is ε-∗Bayes under Π0 among C if ∗r(Π0,∆) is hyperfinite and, for all ∆′ ∈C , we have ∗r(Π0,∆)≤
∗r(Π0,∆

′)+ ε .
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2. ∆ is nonstandard Bayes under Π0 among C if ∗r(Π0,∆) is hyperfinite and, for all ∆′ ∈C , we have
∗r(Π0,∆)/ ∗r(Π0,∆

′). 2

We will write nonstandard Bayes among C with respect to Π0 to mean nonstandard Bayes under

Π0 among C and will write nonstandard Bayes among C to mean nonstandard Bayes among C with

respect to some nonstandard prior Π. The same abbreviations will be used for ε-∗Bayes among C .

Note that the internal Bayes risk is precisely the extension of the standard Bayes risk. Similarly, if

we consider the relation {(δ ,ε,C ) ∈ D ×R≥0×P(D) : δ is ε-Bayes among C }, then its extension

corresponds to {(∆,ε,C ) ∈ ∗D × ∗R≥0× ∗P(D) : ∆ is ε-∗Bayes among C }. Note, however, that our

definition of “ε-∗Bayes among C ” allows the set C ⊆ ∗D to be external, and so it is not simply the

transfer of the standard relation. The following lemma relates the two nonstandard notions of Bayes

optimality: Recall that our nonstandard model is κ saturated.

Lemma 7.2.2. Let C ⊆ ∗D . If ε ≈ 0, then ε-∗Bayes under Π0 among C implies nonstandard Bayes

under Π0 among C . In the other direction, if C is either internal or has a fixed external cardinality

less than κ , then nonstandard Bayes under Π0 among C implies ε-∗Bayes under Π0 among C for some

ε ≈ 0.

Proof. The first statement is trivial. Suppose ∆0 is nonstandard Bayes under Π0 among C . By definition,

we have ∗r(Π0,∆0)/ ∗r(Π0,∆) for all ∆ ∈ C . Let

A = {|∗r(Π0,∆0)− ∗r(Π0,∆)| : ∆ ∈ C } (7.2.1)

and

An
∆ = {ε ∈ ∗R : |∗r(Π0,∆0)− ∗r(Π0,∆)| ≤ ε ≤ 1

n
}. (7.2.2)

If C is internal, then A is internal and so it has a least upper bound ε . Because A contains only

infinitesimals, ε ≈ 0, for otherwise ε/2 would also be an upper bound on A. Thus, we have ∗r(Π0,∆0)≤
∗r(Π0,∆)+ ε for all ∆ ∈ C which shows that ∆0 is ε-∗Bayes under Π0 among C .

If C has a fixed external cardinality less than κ , then F = {An
∆

: ∆ ∈ C ,n ∈ N} has a fixed external

cardinality less than κ . It is easy to see that F has the finite intersection property. By saturation, the

2The definition of nonstandard Bayes is obtained by extending the standard definition of Bayes, but allowing for infinites-
imal violations of the criterion. There was a consensus to denote such notion with the prefix “S-” rather than “nonstandard”.
However, we use “nonstandard Bayes” instead of “S-Bayes” to emphasize on the fact that this definition is nonstandard.
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total intersection of F is non-empty. That is, there exists ε0 ∈ ∗R such that ε0 ≤ 1
n for all n ∈ N and

ε0 ≥ |∗r(Π0,∆0)− ∗r(Π0,∆)| for all ∆ ∈ C . Thus ε0 ≈ 0 and ∆0 is ε0-∗Bayes under Π0 among C .

Transfer remains a powerful tool for relating the optimality of standard procedures with that of their

extensions. For example, by transfer, δ is ε-Bayes under π among C if and only if ∗δ is ε-∗Bayes under
∗π among ∗C . (Recall that ∗ε = ε for a real ε , by extension.) Transfer also yields the following result:

Theorem 7.2.3. Let δ0 ∈D and C ⊆D . The following statements are equivalent:

1. δ0 is extended Bayes among C .

2. ∗δ 0 is ε-∗Bayes among ∗C for all ε ∈ ∗R>0.

3. ∗δ 0 is ε0-∗Bayes among ∗C for some ε0 ≈ 0.

4. ∗δ 0 is nonstandard Bayes among ∗C .

Proof. Suppose δ0 is extended Bayes among C . By hypothesis, the following sentence holds:

(∀ε ∈ R>0)(∃π ∈M1(Θ))(∀δ ∈ C )(r(π,δ0)≤ r(π,δ )+ ε). (7.2.3)

By the transfer principle,

(∀ε ∈ ∗R>0)(∃π ∈ ∗M1(Θ))(∀δ ∈ ∗C )(∗r(π, ∗δ 0)≤ ∗r(π, ∗δ )+ ε). (7.2.4)

Thus, (1) implies (2). It is clear that (2) implies (3). By Lemma 7.2.2, we know that (3) implies (4).

Now suppose ∗δ 0 is nonstandard Bayes among ∗C . Pick ε ∈ R>0. It is easy to see that ∗δ 0 is

ε-∗Bayes among ∗C . Formally,

(∃π ∈ ∗M1(Θ))(∀δ ∈ ∗C )(∗r(π, ∗δ 0)≤ ∗r(π, ∗δ )+ ε). (7.2.5)

By the transfer principle,

(∃π ∈M1(Θ))(∀δ ∈ C )(r(π,δ0)≤ r(π,δ )+ ε). (7.2.6)

Thus δ0 is ε-Bayes among C . As ε was chosen arbitrarily, δ0 is extended Bayes among C .

We also establish the following result that connects normal-form generalized Bayes and nonstandard

Bayes.
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Theorem 7.2.4. Let δ0 ∈D be normal-form generalized Bayes among C ⊂D . Then ∗δ 0 is nonstandard

Bayes among σC .

Proof. Let µ be a nonzero σ -finite measure with respect to which δ0 is normal-form generalized Bayes

among C . As µ is σ -finite, we can write Θ =
⋃

n∈NVn where Vi ⊂Vj for i≤ j and µ(Vn) ∈ R>0 for all

n ∈ N. By extension, there exists an internal sequence of *measurable sets {Un : n ∈ ∗N} satisfying the

following conditions:

• Un =
∗Vn, for n ∈ N,

• Ui ⊂U j, for i≤ j ∈ ∗N, and

• ∗µ(Un) ∈ ∗R>0, for all n ∈ N.

Let F (C ) = {δ ∈C : r(µ,δ )<∞} and fix an infinitesimal ε > 0. For every δ ∈F (C ), the transfer

principle implies there exists Nδ ∈ ∗N such that

∫
UN

δ

∗r(θ , ∗δ )∗µ(dθ)≥
∫
∗r(θ , ∗δ )∗µ(dθ)− ε. (7.2.7)

Then, by saturation, there exists N ∈ ∗N such that

∫
Uk

∗r(θ , ∗δ )∗µ(dθ)≥
∫
∗r(θ , ∗δ )∗µ(dθ)− ε (7.2.8)

for all δ ∈F (C ) and all k ≥ N. By the generalized Bayes optimality of ∗δ 0 and the transfer principle,∫ ∗r(θ , ∗δ 0)
∗µ(dθ)≤

∫ ∗r(θ , ∗δ )∗µ(dθ) for all δ ∈F (C ). As ε is infinitesimal, we have

∫
Uk

∗r(θ , ∗δ 0)
∗
µ(dθ)/

∫
Uk

∗r(θ , ∗δ )∗µ(dθ) (7.2.9)

for all δ ∈F (C ) and all k ≥ N.

By the saturation principle, there exists r ∈ ∗R>0 such that
∫ ∗r(θ , ∗δ )∗µ(dθ)< r for all δ ∈F (C ).

By transfer and then saturation, there exists N′ ∈ ∗N such that

∫
UN′

∗r(θ , ∗d)∗µ(dθ)> r (7.2.10)

for all d ∈ C \F (C ). Let N0 = max{N,N′}. By Eqs. (7.2.9) and (7.2.10), we have

∫
UN0

∗r(θ , ∗δ 0)
∗
µ(dθ)/

∫
UN0

∗r(θ , ∗δ )∗µ(dθ) (7.2.11)
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for all δ ∈ C . Because ∗µ(UN0) ∈ ∗R>0, the quantity π(A) =
∗µ(A∩UN0 )
∗µ(UN0 )

is well defined for every *mea-

surable set A ⊆ ∗Θ. It is easy to see that π is an internal probability measure on ∗Θ. Moreover, by

Eq. (7.2.11), ∗δ 0 is nonstandard Bayes among σC with respect to π .

Remark 7.2.5. Note that our model is more saturated than the cardinality of D , and so Lemma 7.2.2

implies that ∗δ 0 is even ε0-∗Bayes among σC for some ε0 ≈ 0.

Example 7.2.6. Consider the classical normal-location problem with squared error loss. It is well

known that the maximum likelihood estimator δ (x) = x is normal-form generalized Bayes among all

estimators with respect to the Lebesgue measure µ on R. Inspecting the proof of Theorem 7.2.4, we

see that there exists an infinite K ∈ ∗R≥0 such that ∗δ is nonstandard Bayes with respect to the internal

uniform probability measure on [−K,K].

In general, we would not expect the extension of a standard procedure to be 0-∗Bayes under Π a-

mong C for a generic nonstandard prior Π and class C ⊆ ∗D . The definition of nonstandard Bayes

provides infinitesimal slack, which suffices to yield a precise characterization of extended admissible

procedures. The following result shows that nonstandard Bayes optimality implies nonstandard extend-

ed admissibility, much like in the standard universe.

Theorem 7.2.7. Let ∆0 ∈ ∗D , let C ⊆ ∗D , and suppose that ∆0 is nonstandard Bayes among C . Then

∆0 is ∗extended admissible on ∗Θ among C .

Proof. Suppose ∆0 is not ∗extended admissible on ∗Θ among C . Then for some standard ε ∈ R>0, ∆0

is ε-∗dominated on ∗Θ by some ∆ ∈ C , i.e.,

(∀θ ∈ ∗Θ)(∗r(θ ,∆)≤ ∗r(θ ,∆0)− ε). (7.2.12)

Hence, for every nonstandard prior Π, if ∗r(Π,∆) is not hyperfinite, then neither is ∗r(Π,∆0), and if
∗r(Π,∆) is hyperfinite, then

∗r(Π,∆0) =
∫
∗r(θ ,∆0)Π(dθ) (7.2.13)

≥
∫
∗r(θ ,∆)Π(dθ)+ ε = ∗r(Π,∆)+ ε. (7.2.14)

As ε ∈ R>0, we conclude that ∆0 cannot be nonstandard Bayes under Π among C . As Π was arbitrary,

∆0 is not nonstandard Bayes among C .
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Theorems 7.1.8 and 7.2.7 immediately yield the following corollary.

Corollary 7.2.8. Let δ ∈ D and C ⊆ D . If ∗δ is nonstandard Bayes among σC , then δ is extended

admissible among C .

The above result raises several questions: Are extended admissible decision procedures also non-

standard Bayes? What is the relationship with admissibility and its nonstandard counterparts?

In this section, we prove that a decision procedure δ is extended admissible if and only if ∗δ is

nonstandard Bayes. In later sections, we give several application of this equivalence, and then consider

the relationship with admissibility, which is far from settled. It is easy, however, to show that only

nonstandard Bayes procedures can ∗dominate other nonstandard Bayes procedures: To see this, suppose

that ∆ is nonstandard Bayes among C ⊆ ∗D with respect to some nonstandard prior Π and ∆ is not
∗admissible on ∗Θ among C .

Then ∆ is ∗dominated on ∗Θ by some ∆′ ∈ C . Thus we have ∗r(θ ,∆′) ≤ ∗r(θ ,∆) for all θ ∈ ∗Θ.

By Definition 7.2.1, we have ∗r(Π,∆) =
∫ ∗r(θ ,∆)Π(dθ) hyperfinite. But then, ∗r(Π,∆) / ∗r(Π,∆′) =∫ ∗r(θ ,∆′)Π(dθ)≤ ∗r(Π,∆), hence ∗r(Π,∆)≈ ∗r(Π,∆′), hence ∆′ is nonstandard Bayes under Π among

C . This proves a nonstandard version of a well-known standard result stating that every unique Bayes

procedure is admissible [14, §2.3 Thm. 1]:

Theorem 7.2.9. Suppose ∆ is nonstandard Bayes among C ⊆ ∗D with respect to a nonstandard prior

Π. If ∆ is ∗dominated on ∗Θ by ∆′ ∈ C , then ∆′ is nonstandard Bayes under Π among C . Therefore, if

∗r(θ ,∆′)≈ ∗r(θ ,∆) for all θ ∈ ∗Θ and for all ∆′ ∈ C such that ∆′ is nonstandard Bayes under Π among

C , then ∆ is ∗admissible on ∗Θ among C .

Proof. The first statement follows from the logic in the preceding paragraph. Now suppose that ∆ is
∗dominated on ∗Θ by some ∆′ ∈ C . Then ∆′ is nonstandard Bayes under Π among C . But then, by

hypothesis, its risk function is equivalent, up to an infinitesimal, to that of ∆, a contradiction.

7.2.1 Hyperdiscretized Risk Set

In a statistical decision problem with a finite parameter space, one can use a separating hyperplane

argument to show that every admissible decision procedure is Bayes (see, e.g., [14, §2.10 Thm. 1]). In

order to prove our main theorem, we will proceed along similar lines, but with the aid of extension,

transfer, and saturation.

When relating extended admissibility and Bayes optimality for a subclass C ⊆ D , the set of all

risk functions rδ , for δ ∈ C , is a key structure. On a finite parameter space, the risk set for D is a
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convex subset of a finite-dimensional vector space over R. When the parameter space is not finite, one

must grapple with infinite dimensional function spaces. However, in a sufficiently saturated nonstandard

model, there exists an internal set TΘ ⊂ ∗Θ that is hyperfinite and contains Θ. While the risk at all points

in TΘ does not suffice to characterize an arbitrary element of ∗D , it suffices to study the optimality of

extensions of standard decision procedure relative to other extensions. Because TΘ is hyperfinite, the

corresponding risk set is a convex subset of a hyperfinite-dimensional vector space over ∗R.

Let JΘ ∈ ∗N be the internal cardinality of TΘ and let TΘ = {t1, . . . , tJΘ
}. Recall that I(∗RJΘ) denotes

the set of (internal) functions from TΘ to ∗R. For an element x ∈ I(∗RJΘ), we will write xk for x(k).

Definition 7.2.10. The hyperdiscretized risk set induced by D⊆ ∗D is the set

S D = {x ∈ I(∗RJΘ) : (∃∆ ∈ D)(∀k ≤ JΘ)xk =
∗r(tk,∆)} ⊂ I(∗RJΘ). (7.2.15)

Lemma 7.2.11. Let D⊆ ∗D be an internal convex set. Then S D is an internal convex set.

Proof. S D is internal by the internal definition principle and the fact that D is internal. In order to

demonstrate convexity, pick p ∈ ∗[0,1], and let x,y ∈S D. Then there exist ∆1,∆2 ∈ D such that xk =

∗r(tk,∆1) and yk =
∗r(tk,∆2) for all k ≤ JΘ. Because D is convex, p∆1 +(1− p)∆2 ∈ D. But pxk +(1−

p)yk =
∗r(tk, p∆1 +(1− p)∆2) for all k ≤ JΘ, and so S D is convex.

Definition 7.2.12. For every C ⊆ ∗D , let

(C )FC =
⋃

D∈C [<∞]

∗conv(D) (7.2.16)

be the set of all finite ∗convex combinations of ∗δ ∈ C .

Let δ1,δ2 ∈D0 and let p ∈ ∗[0,1]. Then p∗δ 1 +(1− p)∗δ 2 ∈ σD0,FC if p ∈ [0,1]. However, p∗δ 1 +

(1− p)∗δ 2 ∈ (σD0)FC for all p ∈ ∗[0,1]. It is easy to see that (σD0,FC)FC = (σD0)FC. Thus, we have
σD0 ⊂ σD0,FC ⊂ (σD0,FC)FC = (σD0)FC ⊂ ∗D0,FC.

Lemma 7.2.13. For any C ⊆ ∗D , (C )FC is a convex set containing C .

Proof. Pick an C ⊆ ∗D . Clearly (C )FC ⊃ C . It remains to show that (C )FC is a convex set. Pick two

elements ∆1,∆2 ∈ (C )FC. Then there exist D1,D2 ∈C [<∞] such that ∆1 ∈ ∗conv(D1) and ∆2 ∈ ∗conv(D2).

Let p ∈ ∗[0,1]. It is easy to see that p∆1 +(1− p)∆2 ∈ ∗conv(D1∪D2).

Lemma 7.2.14. σD0,FC is an ◦essentially complete subclass of (σD0)FC.
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Proof. Let ∆ ∈ (σD0)FC. Then ∆ = ∑
n
i=1 pi

∗δ i for some n ∈ N, δ1, . . . ,δn ∈ D0, and p1, . . . , pn ∈ ∗R≥0,

∑
n
i=1 pi = 1. Define ∆0 = ∑

n
i=1
◦pi
∗δ i and let θ ∈ Θ. For all i ≤ n, pi

∗r(θ , ∗δ i) ≈ ◦pi
∗r(θ , ∗δ i) because

∗r(θ , ∗δ i) is finite, so ∗r(θ ,∆) ≈ ∗r(θ ,∆0). By Definition 7.1.9, σD0,FC is an ◦essentially complete sub-

class of (σD0)FC.

Having defined the (hyperdiscretized) risk set, we now describe a set whose intersection with the

risk set captures the notion of 1
n -∗domination, for some standard n ∈ N. In that vein, for ∆ ∈ ∗D , define

the 1
n -quantant

Q(∆)n = {x ∈ I(∗RJΘ) : (∀k ≤ JΘ)(xk ≤ ∗r(tk,∆)−
1
n
)}, n ∈ ∗N. (7.2.17)

Lemma 7.2.15. Fix ∆ ∈ ∗D . The set Q(∆)n is internal and convex and Q(∆)m ⊂Q(∆)n for every m < n.

Proof. By the internal definition principle, Q(∆)n is internal. Let x,y be two points in Q(∆)n, let p ∈
∗[0,1], and pick a coordinate k. Then

pxk +(1− p)yk ≤ p(∗r(tk,∆)−
1
n
)+(1− p)(∗r(tk,∆)−

1
n
) = (∗r(tk,∆)−

1
n
). (7.2.18)

Thus the set is convex. The second statement is obvious.

The following is then immediate from definitions.

Lemma 7.2.16. Let C ⊆ ∗D and n ∈N. Then ∆ is 1
n -∗admissible on TΘ among C if and only if Q(∆)n∩

S C = /0.

7.2.2 Nonstandard Complete Class Theorems

Lemma 7.2.17. Let ∆ ∈ ∗D and nonempty D ⊆ ∗D , and suppose there exists a nonzero vector Π ∈

I(∗RJΘ) such that 〈Π,x〉 ≤ 〈Π,s〉 for all x ∈
⋃

n∈N Q(∆)n and s ∈ S D. Then the normalized vector

Π/‖Π‖1 induces an internal probability measure π on ∗Θ concentrating on TΘ, and ∆ is nonstandard

Bayes under π among D.

Proof. We first establish that Π(k)≥ 0 for all k. Suppose otherwise, i.e., Π(k0)< 0 for some k0. Then

we can pick a point x0 in
⋃

n∈N Q(∆)n whose k0-th coordinate is arbitrarily large and negative, causing

〈Π,x0〉 to be arbitrary large, a contradiction because 〈Π,s〉 is hyperfinite for all s ∈ S D. Hence, all

coordinates of Π must be nonnegative.
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Define π ∈ I(∗RJΘ) by π = Π/‖Π‖1. Because Π 6= 0 and Π ≥ 0, we have π ≥ 0 and ‖π‖1 =

1. Therefore, π specifies an internal probability measure on (∗Θ, ∗B[Θ]), concentrating on TΘ, and

assigning probability π(k) to tk for every k≤ JΘ. Because ‖Π‖1 > 0, it still holds that 〈π,x〉 ≤ 〈π,s〉 for

all x ∈
⋃

n∈N Q(∆)n and s ∈S D.

Let s ∈S D. Then ◦(∑k∈JΘ
πk(
∗r(tk,∆)− 1

n)) ≤
◦(∑k∈JΘ

πksk) for every n ∈ N. The l.h.s. is simply
◦(−1

n +∑k∈JΘ
πk
∗r(tk,∆)), and the limit of this expression as n → ∞ is ◦(∑k∈JΘ

πk
∗r(tk,∆)). Hence,

∑k∈JΘ
πk(
∗r(tk,∆)/ ∑k∈JΘ

πksk. This shows that ∆ is nonstandard Bayes under π among D.

The previous result shows that if a nontrivial hyperplane separates the risk set from every 1
n -quantant,

for n ∈ N, then the corresponding procedure is nonstandard Bayes. In order to prove our main theorem,

we require a nonstandard version of the hyperplane separation theorem, which we give here. For a,b ∈

Rk for some finite k, let 〈a,b〉 denote the inner product. We begin by stating the standard hyperplane

separation theorem:

Theorem 7.2.18 (Hyperplane separation theorem). For any k ∈ N, let S1 and S2 be two disjoint convex

subsets of Rk, then there exists w ∈ Rk \ {0} such that, for all p1 ∈ S1 and p2 ∈ S2, we have 〈w, p1〉 ≥

〈w, p2〉.

Using a suitable encoding of this theorem in first-order logic, the transfer principle yields a hyperfi-

nite version:

Theorem 7.2.19. Fix any K ∈ ∗N. If S1,S2 are two disjoint internal convex subsets of I(∗RK), then there

exists W ∈ I(∗RK)\{0} such that, for all P1 ∈ S1 and P2 ∈ S2, we have 〈W,P1〉 ≥ 〈W,P2〉.

Proof. We first restate the standard hyperplane separation theorem. We shall view the set RN as the

set of functions from N to R. For every element x ∈ RN, we use x(k) to denote the value of the k-th

coordinate of x for any k ∈ N. The standard hyperplane separation theorem is equivalent to:

For any two disjoint convex S1,S2 ∈P(RN), if ∃k ∈ N such that ∀s ∈ S1∪ S2 ∀k′ > k we

have s(k′) = 0 then ∃a ∈ RN \{0} with a(k′) = 0 for all k′ > k such that ∀p1 ∈ S1, p2 ∈ S2

((∀k′ > k,a(k′) = 0)∧ (〈a, p1〉 ≤ 〈a, p2〉)).

By the transfer principle, we know that ∗(RN) denotes the set of all internal functions from ∗N to ∗R.

We shall view the inner product 〈·, ·〉 to be a function from RN×RN to R. Note that ∀p,s∈RN if ∃k ∈N

such that ∀k′ > k we have s(k′) = 0 then 〈p,s〉= ∑
k
i=1 p(i)s(i). Thus the nonstandard extension of 〈·, ·〉

is a function from ∗(RN)× ∗(RN) to ∗R satisfying the same property.

Now by the transfer principle we know that:
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For any two disjoint convex sets S1,S2 ∈ ∗P(RN). If ∃K ∈ ∗N such that ∀s ∈ S1 ∪ S2

∀K′ > K we have s(K′) = 0 then ∃W ∈ ∗(RN) \ {0} such that for all p1 ∈ S1, p2 ∈ S2 we

have ((∀K′ > K,W (K′) = 0)∧∑
K
i=1W (i)p1(i)≤ ∑

K
i=1W (i)p2(i)).

In this sentence, it is easy to see that we can view the projections of S1,S2 as internal subsets of

I(∗RK) and the projection of W as an element from I(∗RK)\{0}. Hence we have that: ∀K ∈ ∗N, if S1,S2

are two disjoint internal convex subsets of I(∗RK), then there exists W ∈ I(∗RK)\{0} such that for any

P1 ∈ S1 and any P2 ∈ S2, ∑
K
i=1W (i)P1(i)≤ ∑

K
i=1W (i)P2(i). Thus we have the desired result.

Recall that our nonstandard model is κ-saturated for some infinite κ .

Theorem 7.2.20. Let C ⊆ σD be a (necessarily finite or external) set with cardinality less than κ , and

suppose that C is a ◦essentially complete subclass of (C )FC. Let ∆0 ∈ ∗D and suppose ∆0 is ∗extended

admissible on Θ among C . Then, for every hyperfinite set T ⊆ ∗Θ containing Θ, ∆0 is nonstandard

Bayes among (C )FC with respect to some nonstandard prior concentrating on T .

Proof. Without loss of generality we may take T = TΘ. By Lemma 7.1.10 and the fact that C is

an ◦essentially complete subclass of (C )FC, ∆0 is ∗extended admissible on Θ among (C )FC. By

Lemma 7.1.5, ∆0 is 1
n -∗admissible on TΘ among (C )FC for every n ∈ N. Hence, by Lemma 7.2.16,

Q(∆0)n∩S (C )FC = /0 for all n ∈ N.

By the definition of (C )FC, we have Q(∆0)n∩S
∗conv(D) = /0 for every D∈C [<∞]. By Lemmas 7.2.11

and 7.2.15, S
∗conv(D) and Q(∆0)n are both internal convex sets, hence, by Theorem 7.2.19, there is a

nontrivial hyperplane ΠD
n ∈ I(∗RJΘ) that separates them.

For every D ∈ C [<∞] and n ∈ N, let φ D
n (Π) be the formula

(Π ∈ I(∗RJΘ))∧ (Π 6= 0∧ (∀x ∈ Q(∆0)n)(∀s ∈S
∗conv(D))〈Π,x〉 ≤ 〈Π,s〉), (7.2.19)

and let F = {φ D
n (Π) : n ∈ N, D ∈ C [<∞]}. By the above argument and the fact that C [<∞] is closed

under taking finite unions and the sets Q(∆0)n, for n ∈ N, are nested, F is finitely satisfiable. Note

that F has cardinality no more than κ , yet our nonstandard extension is κ-saturated by hypothesis.

Therefore, by the saturation principle, there exists a nontrivial hyperplane Π satisfying every sentence

in F simultaneously. That is, there exists Π ∈ I(∗RJΘ) such that Π 6= 0 and, for all x ∈
⋃

n∈N Q(∆0)n and

for all s ∈
⋃

D∈C [<∞] S
∗conv(D) = S (C )FC , we have 〈Π,x〉 ≤ 〈Π,s〉.

Hence, by Lemma 7.2.17, the normalized vector Π/‖Π‖1 is well-defined and induces a probability

measure π on ∗Θ concentrating on TΘ, and ∆0 is nonstandard Bayes under π among (C )FC.
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Theorem 7.2.21. For δ0 ∈D , the following are equivalent statements:

1. δ0 is extended admissible among D0,FC.

2. ∗δ 0 is nonstandard Bayes among σD0,FC.

3. ∗δ 0 is nonstandard Bayes among (σD0)FC.

If (LC) also holds, then the following statements are also equivalent:

4. δ0 is extended admissible among D0.

5. ∗δ 0 is nonstandard Bayes among σD0.

Moreover, statements (2), (3), and (5) can be taken to assert that, for all hyperfinite sets T ⊆ ∗Θ con-

taining Θ, Bayes optimality holds with respect to some nonstandard prior concentrating on T .

Proof. From (1) and Theorem 7.1.8, ∗δ 0 is ∗extended admissible on Θ among σD0,FC. It follows from

Lemma 7.2.14 and Theorem 7.2.20 that, for all hyperfinite sets T ⊆ ∗Θ containing Θ, ∗δ 0 is nonstandard

Bayes among (σD0)FC with respect to some nonstandard prior π concentrating on T . Hence (3) holds

and (2) follows trivially.

From (2) and Theorem 7.2.7, it follows that ∗δ 0 is ∗extended admissible on ∗Θ among σD0,FC. Then

(1) follows from Theorem 7.1.8.

It is the case that (1) implies (4) by Lemma 7.1.5, and the other direction follows from (LC), Lem-

ma 6.1.13, and Lemma 6.1.4. Similarly, (2) implies (5). Finally, from (5) and Theorem 7.2.7, it follows

that ∗δ 0 is ∗extended admissible on ∗Θ among σD0. Then (4) follows from Theorem 7.1.8.

It follows immediately that the class of extended admissible procedures is a complete class if and

only if the class of procedures whose extensions are nonstandard Bayes are a complete class.

Remark 7.2.22. σD0, σD0,FC, and (σD0)FC are all external. However, our model is more saturated than

the external cardinalities of σD0 and σD0,FC, as these sets are standard-part copies of standard sets.

Therefore, Lemma 7.2.2 implies an equivalence also when ∗δ 0 is ε-∗Bayes among σD0,FC for some

ε ≈ 0, and when ∗δ 0 is ε-∗Bayes among σD0 for some ε ≈ 0, under (LC).
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Chapter 8

Push-down Results and Examples

Having established the equivalence between extended admissibility and nonstandard Bayes optimality

in the previous chapter, in this chapter, we look at several implications of this result which suggests that

nonstandard analysis may yield other connections between Bayesian and frequentist optimality.

In Section 8.1, we apply the nonstandard theory to obtain a standard result: assuming the parameter

space is compact and risk functions are continuous, the nonstandard extension of a decision procedure

is nonstandard Bayes if and only if the decision procedure itself is Bayes. Hence, when the parameter

space is compact and risk functions are continuous, a decision procedure is extended admissible if and

only if it is Bayes.

In Section 8.2, we employ the results of the previous section to connect admissibility and non-

standard Bayes optimality under various regularity conditions on the space and the nonstandard prior.

In the process, we give a nonstandard variant of Blyth’s method which gives sufficient conditions for

admissibility.

In Section 8.3, we study several simple statistical decision problems to highlight the nonstandard

theory and its connections to the standard theory. In Example 8.3.4, we demonstrate the equivalence

between extended admissible and nonstandard Bayes in a nonparametric problem. In Example 8.3.5, we

give an example of a nonstandard Bayes but not standard Bayes decision procedure. Finally, we close

with some remarks and open problems in Section 8.4.
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8.1 Applications to Statistical Decision Problems with Compact Parame-

ter Space

In this section, we use our nonstandard theory to prove that, under the additional hypotheses that Θ

is compact (and thus normal) and all risk functions are continuous, the class of extended admissible

procedures is precisely the class of Bayes procedures. The strength of our result lies in the absence of

any additional assumptions on the loss or model.1

Assume ∗δ is nonstandard Bayes with respect to some nonstandard prior π on ∗Θ. In this section,

we will construct a standard probability measure πp on Θ from π in such a way that the internal risk

of ∗δ under π is infinitesimally close to the risk of δ under πp. This then implies that π is Bayes with

respect to πp, and yields a standard characterization of extended admissible procedures.

Extension allows us to associate an internal probability measure ∗π to every standard probability

measure π . The next theorem describes a reverse process via Loeb measures.

Lemma 8.1.1 ([11, Thm. 13.4.1]). Let Y be a compact Hausdorff space equipped with Borel σ -algebra

B[Y ], let ν be an internal probability measure defined on (∗Y , ∗B[Y ]), and let C = {C ⊂ Y : st−1(C) ∈
∗B[Y ]

ν
}. Define a probability measure νp on the sets C by νp(C) = ν(st−1(C)). Then (Y,C ,νp) is the

completion of a regular Borel probability space.

Note that st−1(E) is Loeb measurable for all E ∈B[Y ] by Theorem 2.3.9.

Definition 8.1.2. The probability measure νp : C → [0,1] in Lemma 8.1.1 is called the pushdown of the

internal probability measure ν .

Example 8.1.3. If a nonstandard prior concentrates on finitely many points in NS(∗Θ), then its push-

down concentrates on the standard parts of those points, hence is a standard measure with support on a

finite set.

Example 8.1.4. Suppose S = [K−1,2K−1, . . . ,1−K−1,1] for some nonstandard natural K ∈ ∗N \N.

Define an internal probability measure π on ∗[0,1] by π{s} = K−1 for all s ∈ S, and let πp be its

pushdown. Then πp is Lebesgue measure on [0,1].

The following lemma establishes a close link between Loeb integration and integration with respect

to the pushdown measure.

1In Section 7.2, the Hausdorff condition can be sidestepped by adopting the discrete topology. Unless Θ is finite, however,
Θ will not be compact under the discrete topology. Thus, the topological hypotheses in this section not only determine the
space of priors, but also restrict the set of decision problems to which the theory applies.
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Lemma 8.1.5. Let Y be a compact Hausdorff space equipped with Borel σ -algebra B[Y ], let ν be

an internal probability measure on (∗Y , ∗B[Y ]), let νp be the pushdown of ν , and let f : Y → R be a

bounded measurable function. Define g : ∗Y → R by g(s) = f (◦s). Then we have
∫

f dνp =
∫

gdν .

Proof. For every n ∈ N and k ∈ Z, define Fn,k = f−1([ k
n ,

k+1
n )) and Gn,k = g−1(∗[ k

n ,
k+1

n )). As f is

bounded, the collection Fn = {Fn,k : k ∈ Z} \ { /0} forms a finite partition of Y , and similarly for Gn =

{Gn,k : k ∈ Z}\{ /0} and ∗Y . For every n ∈ N, define f̂n : Y → R and ĝn : ∗Y → R by putting f̂n =
k
n on

Fn,k and ĝn =
k
n on Gn,k for every k ∈ Z. Thus f̂n (resp., ĝn) is a simple (resp., ∗simple) function on the

partition Fn (resp., Gn). By construction f̂n≤ f < f̂n+
1
n and ĝn≤ g< ĝn+

1
n . Note that Gn,k = st−1(Fn,k)

for every n ∈ N and k ∈ Z. Moreover, Y is even regular Hausdorff, hence Lemma 2.4.10 implies that

Gn,k is ν-measurable. It follows that
∫

f dνp = limn→∞

∫
f̂ndνp and

∫
gdν = limn→∞

∫
ĝndν . Moreover,

by Lemma 8.1.1, we have ν(Gn,k) = νp(Fn,k) for every n ∈ N and k ∈ Z. Thus, for every n ∈ N and

k ∈ Z, we have
∫

f̂ndνp =
∫

ĝndν . Hence we have
∫

gdν =
∫

f dνp, completing the proof.

In order to control the difference between the internal and standard Bayes risks under a nonstandard

prior π and its pushdown πp, it will suffice to require that risk functions be continuous. (Recall that we

quoted results listing natural conditions that imply continuous risk in Theorems 6.2.4 and 6.2.5.)

Condition RC (risk continuity). r(·,δ ) is continuous on Θ, for all δ ∈D .

In order to understand the nonstandard implications of this regularity condition, we introduce the

following definition from nonstandard analysis.

Definition 8.1.6. Let X and Y be topological spaces. A function f : ∗X → ∗Y is S-continuous at x ∈ ∗X

if f (y)≈ f (x) for all y≈ x.

A fundamental result in nonstandard analysis links continuity and S-continuity:

Lemma 8.1.7. Let X and Y be Hausdorff spaces, where Y is also locally compact, and let D ⊆ X. If

a function f : X → Y is continuous on D then its extension ∗ f is NS(∗Y )-valued and S-continuous on

NS(∗D).

See ?? for a proof of this classical result. We are now at the place to establish the correspondence

between internal Bayes risk and standard Bayes risk. The proof relies on the following technical lemma.

Lemma 8.1.8 ([3, Cor. 4.6.1]). Suppose (Ω,F ,P) is an internal probability space, and F : Ω→ ∗R is

an internal P-integrable function such that ◦F exists everywhere. Then ◦F is integrable with respect to

P and
∫

FdP≈
∫ ◦FdP.
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Lemma 8.1.9. Suppose Θ is compact Hausdorff and (RC) holds. Let π be an internal distribution on

∗Θ and let πp : C → [0,1] be its pushdown. Let δ0 ∈ D be a standard decision procedure. If ∗r(·, ∗δ 0)

is π-integrable then r(·,δ0) is a πp-integrable function and r(πp,δ0) ≈ ∗r(π, ∗δ 0), i.e., the Bayes risk

under πp of δ0 is within an infinitesimal of the nonstandard Bayes risk under π of ∗δ 0.

Proof. Because Θ is compact Hausdorff, ◦t exists for all t ∈ ∗Θ and Lemma 8.1.1 implies πp is a

probability measure on (Θ,C ), where C is the πp-completion of B[Θ]. By (RC) and Lemma 8.1.7, for

all t ∈ ∗Θ, we have

∗r(t, ∗δ 0)≈ ∗r(◦t, ∗δ 0) = r(◦t,δ0). (8.1.1)

Hence ◦(∗r(t,δ0)) = r(◦t,δ0) exists for all t ∈ ∗Θ. As ∗r(·, ∗δ 0) is π-integrable, by Lemma 8.1.8, we

know that ◦(∗r(·, ∗δ 0)) is π-integrable and

∫
∗r(t, ∗δ 0)π(dt)≈

∫
◦(∗r(t, ∗δ 0))π(dt) =

∫
∗r(◦t, ∗δ 0)π(dt). (8.1.2)

By (RC) and the fact that Θ is compact, it follows that r(·,δ0) is bounded. Thus, by Lemma 8.1.5,∫ ∗r(◦t, ∗δ 0)π(dt) =
∫

r(θ ,δ0)πp(dθ), completing the proof.

Lemma 8.1.10. Suppose Θ is compact Hausdorff and (RC) holds. Let δ0 ∈ D and C ⊆ D . If ∗δ 0 is

nonstandard Bayes among σC , then δ0 is Bayes among C .

Proof. By Theorem 7.2.21, we may assume that ∗δ 0 is nonstandard Bayes among σC with respect to

a nonstandard prior π that concentrates on some hyperfinite set T . Let δ ∈ C . Then ∗δ ∈ σC , hence
∗r(π, ∗δ 0)/ ∗r(π, ∗δ ). Let πp denote the pushdown of π . As Θ is compact Hausdorff, we know that πp

is a probability measure. As π concentrates on the hyperfinite set T , we know that ∗r(·, ∗δ 0) and ∗r(·, ∗δ )

are π-integrable. By Lemma 8.1.9, we have r(πp,δ0) ≈ ∗r(π, ∗δ 0) and r(πp,δ ) ≈ ∗r(π, ∗δ ). Thus, we

know that r(πp,δ0)≤ r(πp,δ ). As our choice of δ was arbitrary, δ0 is Bayes under πp among C .

Theorem 8.1.11. Suppose Θ is compact Hausdorff and (RC) holds. For δ0 ∈D , the following statements

are equivalent:

1. δ0 is extended admissible among D0,FC.

2. δ0 is extended Bayes among D0,FC.

3. δ0 is Bayes among D0,FC.
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If (LC) also holds, then the equivalence extends to these statements with D0 in place of D0,FC.

Proof. Suppose (1) holds. Then by Theorem 7.2.21, ∗δ 0 is nonstandard Bayes among σD0,FC. Then (3)

follows from Lemma 8.1.10. The reverse implications follows from Theorem 6.1.8.

The statements with D0,FC imply those for D0 ⊆ D0,FC trivially. When (LC) holds, we have Lem-

ma 6.1.13. Hence, the reverse implications follows from Lemma 6.1.4 and Theorem 6.1.9.

We conclude this section with a strengthening of Theorem 7.2.21, showing that infinitesimal ∗Bayes

risk yields zero ∗Bayes risk, and that a procedure is optimal among all extensions if and only if it optimal

among all internal estimators:

Corollary 8.1.12. Suppose Θ is compact Hausdorff and (RC) holds. For δ0 ∈ D , the following state-

ments are equivalent:

1. δ0 is extended admissible among D0,FC.

2. ∗δ 0 is nonstandard Bayes among ∗D0,FC.

3. ∗δ 0 is 0-∗Bayes among ∗D0,FC.

Moreover, the equivalence extends to these statements with σD0,FC in place of ∗D0,FC. If (LC) also holds,

the equivalence extends to these statement with D0/
σD0/

∗D0 in place of D0,FC/
σD0,FC/

∗D0,FC.

Proof. Statement (1) implies that δ0 is Bayes among D0,FC by Theorem 8.1.11. This implies (3) by

transfer, (3) implies (2) by definition, and (2) implies (1) by Theorem 7.2.21.

Statements (2) and (3) with ∗D0,FC imply their counterparts with σD0,FC in place of ∗D0,FC, trivially.

Statement (3) with σD0,FC implies (2) with σD0,FC which implies (1) by Theorem 7.2.21.

The additional equivalences under (LC) follow by the same logic as above and in the proof of

Theorem 7.2.21.

8.2 Admissibility of Nonstandard Bayes Procedures

Heretofore, we have focused on the connection between extended admissibility and nonstandard Bayes

optimality. In this section, we shift our focus to the admissibility of decision procedures whose exten-

sions are nonstandard Bayes. In all but the final result of this section, we will assume that Θ is a metric

space and write d for the metric.
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On finite parameter spaces with bounded loss, it is known that Bayes procedures with respect to pri-

ors assigning positive mass to every state are admissible. Similarly, when risk functions are continuous,

Bayes procedures with respect to priors with full support are admissible. We can establish analogues of

these result on general parameter spaces by a suitable nonstandard relaxation of a standard prior having

full support.

Definition 8.2.1. For x,y ∈ ∗R, write x� y when γ x > y for all γ ∈ R>0.

Definition 8.2.2. Let X be a metric space with metric d, and let ε ∈ ∗R≥0. An internal probability

measure π on ∗Θ is ε-regular if, for every θ0 ∈ Θ and non-infinitesimal r > 0, we have π({t ∈ ∗Θ :
∗d(t,θ0)< r})� ε .

The following result establishes ∗admissibility from ∗Bayes optimality under conditions analogues

to full support and continuity of the risk function.

Lemma 8.2.3. Suppose Θ is a metric space. Let ε ∈ ∗R≥0, ∆0 ∈ ∗D , and C ⊆ ∗D , and suppose ∗r(·,∆)

is S-continuous on NS(∗Θ) for all ∆ ∈ C ∪{∆0}.

If ∆0 is ε-∗Bayes among C with respect to an ε-regular nonstandard prior π , then ∆0 is ∗admissible

in Θ/∗Θ among C .

Proof. Suppose ∆0 is not ∗admissible in Θ/∗Θ among C . Then, for some ∆ ∈ C and θ0 ∈ Θ, it holds

that

(∀θ ∈ ∗Θ)(∗r(θ ,∆)≤ ∗r(θ ,∆0)) (8.2.1)

and ∗r(θ0,∆) 6≈ ∗r(θ0,∆0). (8.2.2)

From Eq. (8.2.2), ∗r(θ0,∆0)− ∗r(θ0,∆) > 2γ for some positive γ ∈ R. Let A be the set of all a ∈ ∗R>0

such that

(∀t ∈ ∗Θ) (∗d(t,θ0)< a =⇒ ∗r(t,∆0)− ∗r(t,∆)> γ). (8.2.3)

By the S-continuity of ∗r on NS(∗Θ), the set A contains all infinitesimals. By saturation and the fact that

A is an internal set, A must contain some positive a0 ∈ R. In summary,

(∀t ∈ ∗Θ) (∗d(t,θ0)< a0 =⇒ ∗r(t,∆0)− ∗r(t,∆)> γ). (8.2.4)
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Let M = {t ∈ ∗Θ : ∗d(t,θ0) < a0}. By the internal definition principle, M is an internal set. By

Eq. (8.2.1) and the definition and internality of M, the difference in internal Bayes risk between ∆0 and

∆ satisfies

∗r(π,∆0)− ∗r(π,∆) =
∫
∗Θ
(∗r(t,∆0)− ∗r(t,∆))π(dt) (8.2.5)

≥
∫

M
(∗r(t,∆0)− ∗r(t,∆))π(dt)> γ π(M). (8.2.6)

But γ π(M)> ε because π is ε-regular, hence ∆0 is not ε-∗Bayes among C with respect to π .

The following theorem is an immediate consequence of Lemma 8.2.3 and is a nonstandard analogue

of Blyth’s Method [26, §5 Thm. 7.13] (see also [26, §5 Thm. 8.7]). In Blyth’s method, a sequence

of (potentially improper) priors with sufficient support is used to establish the admissibility of a de-

cision procedure. In contrast, a single nonstandard prior witnesses the nonstandard admissibility of a

nonstandard Bayes procedure.

Theorem 8.2.4. Suppose Θ is a metric space and (RC) holds. Let δ0 ∈ D and C ⊂ D . If there exists

ε ∈ ∗R≥0 such that ∗δ 0 is ε-∗Bayes among σC with respect to an ε-regular nonstandard prior π , then

∗δ 0 is ∗admissible in Θ/∗Θ among σC .

Proof. By (RC) and Lemma 8.1.7, for all δ ∈D , θ0 ∈ Θ, and t ≈ θ0, we have ∗r(t, ∗δ )≈ ∗r(θ0,
∗δ ). By

Lemma 8.2.3, ∗δ 0 is ∗admissible in Θ/∗Θ among σC .

These theorems have the following consequence for standard decision procedures:

Theorem 8.2.5. Suppose Θ is a metric space and (RC) holds, and let δ0 ∈D and C ⊆D . If there exists

ε ∈ ∗R≥0 such that ∗δ 0 is ε-∗Bayes among σC with respect to an ε-regular nonstandard prior, then δ0

is admissible among C .

Proof. The result follows from Theorem 7.1.7 and Theorem 8.2.4.

Theorem 8.2.5 implies the well-known result that Bayes procedures with respect to priors with full

support are admissible [14, §2.3 Thm. 3] (see also [26, §5 Thm. 7.9]).

Theorem 8.2.6. Suppose Θ is a metric space and (RC) holds and let δ0 ∈ D . If δ0 is Bayes among D

with respect to a prior π with full support, then δ0 is admissible among D .
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Proof. Note that δ0 is Bayes under π among D if and only if ∗δ 0 is nonstandard Bayes under ∗π among
σD . As π has full support, ∗π is ε-regular for every infinitesimal ε ∈ ∗R>0. By Theorem 8.2.5, we have

the desired result.

We close with an admissibility result requiring no additional regularity:

Theorem 8.2.7. Let δ0 ∈ D and C ⊆ D . If there exists ε ∈ ∗R≥0 such that ∗δ 0 is ε-∗Bayes among ∗C

with respect to a nonstandard prior π satisfying π{θ} � ε for all θ ∈ Θ, then δ0 is admissible among

C .

Proof. Suppose δ0 is not admissible among C . Then by Theorem 7.1.7, ∗δ 0 is not ∗admissible in

Θ/∗Θ among σC . Thus there exists δ ∈ C and θ0 ∈ Θ such that ∗r(θ , ∗δ ) ≤ ∗r(θ , ∗δ 0) for all θ ∈ ∗Θ

and ∗r(θ0,
∗δ 0)− ∗r(θ0,

∗δ ) > γ for some γ ∈ R>0. Then ∗r(π, ∗δ 0)− ∗r(π, ∗δ ) ≥ π{θ0}γ > ε. But this

implies that ∗δ 0 is not ε-∗Bayes under π among C .

Remark 8.2.8. The astute reader may notice that Theorem 8.2.7 is actually a corollary of Theorem 8.2.5

provided we adopt the discrete topology/metric on Θ. Changing the metric changes the set of available

prior distributions and also changes the set of ε-regular nonstandard priors. See also Remark 8.3.3.

8.3 Some Examples

The following examples serve to highlight some of the interesting properties of our nonstandard theory

and its consequences for classical problems.

Example 8.3.1. Consider any standard statistical decision problem with a finite, discrete (hence com-

pact) parameter space. (RC) holds trivially, and so Theorem 8.1.11 and Corollary 8.1.12 imply that a

decision procedure is extended admissible if and only if it is extended Bayes if and only if it is Bayes

if and only if its extension is nonstandard Bayes among all internal decision procedures. By Theo-

rem 8.2.6, we obtain another classical result: if a procedure is Bayes with respect to a prior with full

support, it is admissible.

Example 8.3.2. Consider the classical problem of estimating the mean of a multivariate normal dis-

tribution in d dimensions under squared error when the covariance matrix is known to be the identity

matrix. By the convexity of the squared error loss function, Lemma 6.1.13 implies that the nonran-

domized procedures form an essentially complete class. (Indeed, the loss is strictly convex and so the
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nonrandomized procedures are a complete class.) Theorem 7.2.21 implies that every extended admissi-

ble estimator among D0 is nonstandard Bayes among σD0,FC.

We can derive further results if we can establish that risk functions are continuous. Indeed, one

can use Theorem 6.2.4 to establish that (RC) holds in the normal-location problem. Theorem 8.2.6

then implies that every Bayes estimator with respect to a prior with full support is admissible. In

particular, for every k > 0, the estimator δ B
k (x) =

k2

k2+1 x is Bayes with respect to the full-support prior

πk = N (0,k2Id), hence admissible.

Consider now the maximum likelihood estimator δ M(x) = x and let K be an infinite natural number.

Then ∗δ M(x)≈ (∗δ B)K(x) for all x ∈ NS(∗Rd), where ∗δ B is the extension of the function k 7→ δ B
k . The

normal prior (∗π)K is “flat” on Rd in the sense that, at every near-standard real number, the ratio of

the density to (2π)−
d
2 K−d is within an infinitesimal of 1. These observations provide a nonstandard

interpretation to the idea that the maximum likelihood estimator is a Bayes estimator given a “uniform”

prior.

Since (RC) holds, Theorem 8.2.5 implies that every estimator whose extension is ε-∗Bayes among
σD0 with respect to an ε-regular prior is admissible among D0. An easy calculation reveals that the

Bayes risk of (∗δ B)K with respect to (∗π)K is d K2

K2+1 , while the Bayes risk of ∗δ M with respect to (∗π)K

is d. Thus, ∗δ M is even nonstandard Bayes among ∗D , and in particular, ∗δ M is ε-∗Bayes under (∗π)K

among ∗D for ε = d (K2 + 1)−1. From the density above, it is then straightforward to verify that, for

d = 1, the prior (∗π)K is ε-regular, but that it fails to be for d ≥ 2. Therefore, by Theorem 8.2.5, it

follows that δ M is admissible among D0 for d = 1, as is well known. The theorem is silent in this case

for d ≥ 2. Indeed, Stein [50] famously showed that δ M is admissible for d = 2 and inadmissible for

d ≥ 3.

Remark 8.3.3. Here we have used Theorem 8.2.5 and the standard metric on Θ=Rd in order to establish

admissibility. Note that the infinite-variance Gaussian prior is not ε-regular with respect to the discrete

metric on Θ, and so a different nonstandard prior would have been needed to establish admissibility via

Theorem 8.2.7.

The next example is a simple demonstration of extended admissibility in a nonparametric estimation

problem.

Example 8.3.4. Let Θ ⊆M1(R) be the set of probability measures on R with finite first moment, and

consider the model Pθ = θ under which we observe a single sample from the unknown distribution θ of
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interest. Taking A= Θ, we would like to estimate an unknown θ ∈Θ under Wasserstein loss

`(θ , θ̂) = inf
µ

∫
d(x,y)µ(d(x,y))≥ 0, (8.3.1)

where d is the standard Euclidean metric and the infimum is taken over all couplings of θ and θ̂ , i.e.,

over all µ ∈M1(R×R) with marginals θ and θ̂ , respectively. Consider the estimator δ0(x) = Dirac(x)

that degenerates on the observed sample. Let H be a ∗Uniform distribution on [−k,k], for k infinite,

and let π be a ∗Dirichlet process prior with ∗base measure αH, where 0 < α � k−1. (We will drop

the modifier ∗ and rely on context to disambiguate whether we are referring to a standard concept or its

transfer.) Let G be a random probability measure with distribution π , and, conditioned on G, let X1,X2

be independent random variables with distribution G. By transfer and the properties of the Dirichlet

process, P{X1 6= X2} = α

α+1 . In terms of these random variables, the average risk of ∗δ 0 under π is

the expectation E[`(G,Dirac(X1))] and this quantity is bounded by α

α+1 k� 1, hence ∗δ 0 is nonstandard

Bayes among all ∗estimators, hence extended Bayes and extended admissible.

In Section 8.1, we established that class of Bayes procedures coincides with the class of extended

admissible estimators under compactness of the parameter space and continuity of the risk. The next

example demonstrates that extended admissibility and Bayes optimality do not necessarily align if we

drop the risk continuity assumption, even when the parameter space is compact. We study a non-Bayes

admissible estimator and characterize a nonstandard prior with respect to which it is nonstandard Bayes.

Example 8.3.5. Let X = {0,1} and Θ = [0,1], the latter viewed as a subset of Euclidean space. Define

g : [0,1]→ [0,1] by g(x) = x for x > 0 and g(0) = 1, and let Pt = Bernoulli(g(t)), for t ∈ [0,1], where

Bernoulli(p) denotes the distribution on {0,1} with mean p ∈ [0,1]. Every nonrandomized decision

procedure δ : {0,1} → [0,1] thus corresponds with a pair (δ (0),δ (1)) ∈ [0,1]2, and so we will express

nonrandomized decision procedures as pairs. Consider the loss function `(x,y) = (g(x)− y)2. (For

every x, the map y 7→ `(x,y) is convex but merely lower semicontinuous on [0,1]. It follows from

Lemma 6.1.13 that nonrandomized procedures form an essentially complete class.)

Theorem 8.3.6. In Example 8.3.5, (0,0) is an admissible non-Bayes estimator.

Proof. Let (a,b) ∈ [0,1]2 and let c = min{a,b}. For every n ∈ N, we have

r(n−1,(a,b)) = (1−n−1)`(1/n,a)+n−1 `(1/n,b) (8.3.2)
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and so, for sufficiently large n, we have r(n−1,(a,b)) ≥ r(n−1,(c,c)). But, for every d > 0 and suffi-

ciently large n, it also holds that r(n−1,(d,d)) > r(n−1,(0,0)). Hence, (a,b) does not dominate (0,0),

hence (0,0) is admissible.

To see that (0,0) is not Bayes, note that an estimator (a,b) has the same Bayes risk under π as it

would under the (pushforward) prior ν = π ◦g−1 in the statistical decision problem with sample space

X , parameter space Θ′ = g(Θ) = (0,1], model P′t = Bernoulli(t), and squared error loss `′(x,y) = (x,y).

However, in this case, the loss is strictly convex and so the Bayes optimal decision is unique and is the

posterior mean, which is a value in (0,1], hence (0,0) cannot be Bayes optimal for any prior.

The failure of (0,0) to be Bayes optimal is due to the fact that the posterior mean cannot be 0.

However, in the nonstandard universe, the posterior mean can be made to be infinitesimal, in which case

the Bayes risk of (0,0) is also infinitesimal.

Theorem 8.3.7. ∗(0,0) is nonstandard Bayes with respect to any prior concentrating on some infinites-

imal ε > 0.

Proof. Pick any positive infinitesimal ε and consider the nonstandard prior π concentrated on ε . The

nonstandard Bayes risk of (0,0) with respect to π is

∗r(π,(0,0)) = ∗r(ε,(0,0)) = ε(ε−0)2 +(1− ε)(ε−0)2 ≈ 0 (8.3.3)

Because the loss function in Example 8.3.5 is nonnegative, (0,0) must be a nonstandard Bayes estimator

with respect to π .

We close by observing that (0,0) is a generalized Bayesian estimator. In particular, the generalized

Bayes risk with respect to the improper prior π(dθ) = θ−2dθ is finite, whereas every other estimator

has infinite Bayes risk. The modified statistical decision problem with parameter space Θ′ = (0,1]

under the standard topology, model P′ and loss `′ meets the hypotheses of Theorem 6.2.10— indeed,

the modified problem is that of estimating the mean of an exponential family model— hence every

extended admissible procedure is generalized Bayes. The original problem does not meet the hypotheses

of Theorem 6.2.10, since the loss is not jointly continuous.
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8.4 Miscellaneous Remarks

(i) We have required Θ to be Hausdorff in order for the standard part map to be uniquely defined.

Relaxing this assumption would require that we work with a standard part relation instead. At this

moment, we see no roadblocks.

(ii) Assume ∗δ is nonstandard Bayes among σC . Under what conditions can we conclude that ∗δ is

ε-∗Bayes among σC for all ε ∈ ∗R>0? For ε = 0? When can we conclude δ is extended Bayes among

C ? Bayes? In Corollary 8.1.12, we show that all these conditions collapse for C = D0,FC when Θ

is compact Hausdorff and (RC) holds. Identifying problems that separate all of these conditions and

sufficient conditions that collapse them is important work.

(iii) As a starting point towards the questions in part (ii), it is an open problem to find a procedure δ

such that δ is extended admissible among D0,FC (or even extended Bayes among D0,FC) but ∗δ is not

0-∗Bayes among σD0,FC. Example 8.3.2 demonstrates that δ M is extended Bayes among D0,FC for every

dimension d ≥ 1. A well-known variance argument shows that δ M is also never Bayes among D0,FC,

hence ∗δ M is never 0-∗Bayes among ∗D0,FC. The inadmissibility of δ M in dimensions d ≥ 3 implies that,

if ∗δ M is 0-∗Bayes among σD0,FC with respect to some nonstandard prior π , then π is not a 0-regular

nonstandard prior.

(iv) We restricted our attention to decision procedures whose risk functions are everywhere finite.

However, if we do not make this restriction, it is possible for an admissible decision procedures to

have infinite risk in some state θ ∈ Θ [10, §4A.13 Part (iv)]. We make repeated use of the finite risk

property and so it would be an interesting contribution to relax this assumption. A related issue is our

restriction to nonnegative real-valued loss functions. It would be straightforward to allow loss functions

that are bounded below or above. Allowing arbitrary loss functions, however, raises the possibility that

a decision procedure’s risk could be undefined on some subset of the parameter space.

(v) It is worth searching for a converse to Theorem 8.2.7, perhaps with a view to identifying a non-

standard analogue of Stein’s necessary and sufficient condition for admissibility [49], but one witnessed

by a single (nonstandard) prior distribution.

(vi) Our standard result, Theorem 8.1.11, is similar to Theorem 6.2.6 of Berger [4] and Theorem 6.2.3

of Wald [54]. Our theorem identifies the class of extended admissible procedures and the class of Bayes

procedures, and does so by assuming that risk functions are continuous and the parameter space is
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compact Hausdorff. These are weaker assumptions than those of Berger, and more natural than those

of Wald. It would take some work to understand which assumptions of theirs are needed to show that

the extended admissible procedures (equivalently, the Bayes procedures) form a complete class. In our

opinion, it is preferable to understand conditions under which we can identifying extended admissibility

and Bayes optimality and then separately understand conditions under which the former is a complete

class. (The classical textbook by Blackwell and Girschick [8] adopts a similar aesthetic principle.)

We believe that the methods developed in this paper may allow us to remove or generalize regularity

conditions in other existing results.

(vii) It would be illuminating to uncover a complete characterization of the relationships between

nonstandard Bayes procedures, extended Bayes procedures, limits of Bayes procedures, and general-

ized Bayes procedures. Some connections can be identified simply by transfer: e.g., we already know

that extended Bayes procedures are equivalent to nonstandard Bayes by a simple transfer argument and

normal-form generalized Bayes implies nonstandard Bayes. Given our theorems connecting extend-

ed admissibility and nonstandard Bayes optimality, progress on this question immediately yields new

connections between extended admissibility and these relaxed notions of Bayes optimality.

(viii) In general, by our main result Theorem 7.2.21, extensions of extended admissible procedures

are nonstandard Bayes among the extensions of standard procedures. Under what conditions are they

also nonstandard Bayes among all internal decision procedures? By Theorem 7.2.3, this is equivalent to

the following natural question: When are extended admissible procedures also extended Bayes? Under

the assumption of bounded risk, [8, Thm. 5.5.3] gives necessary and sufficient conditions in terms of

derived two-player games. Under compactness and risk continuity, Theorem 8.1.11 shows that extended

admissible procedures are even Bayes, and so of course the equivalence holds there. Identifying natural

sufficient conditions or counterexamples in natural decision problems would be very enlightening.
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Conclusion

In this dissertation, we studied two fundamental problems in Markov processes and statistical decision

theory using nonstandard analysis. In the first case, we characterized every continuous-time Markov

processes with general state space by a hyperfinite Markov process, i.e infinite Markov processes with

the same first-order logic properties as finite Markov processes. By proving the ergodicity of hyperfinite

Markov processes, we establish the standard Markov chain ergodic theorem for continuous-time Markov

processes with general state space under moderate regularity conditions. Unlike existing results in the

literature, our Markov chain ergodic theorem does not depend on drift conditions or skeleton chains.

In the second case, we studied the relation between frequentist and Bayesian optimality in statistical

decision theory framework, showing that a decision procedure is extended admissible if and only if it is

nonstandard Bayes, i.e. it has infinitesimal excess Bayes risk. We show that this equivalence holds for

arbitrary decision problems without technical conditions. Using this equivalence relation, we show that

extended admissibility is equivalent to standard Bayes for decision problems with compact parameter

spaces and continuous risk functions and also a nonstandard variant of Blyth method.

The idea of “hyperfinite representation” in nonstandard analysis provide a direct connection between

finite mathematics and infinite mathematics. Given a infinite mathematic problem, the hyperfinite coun-

terpart of this problem has the same first-order logic properties as the finite version of this problem.

Thus, we can obtain a solution of the hyperfinite counterpart as long as we have a solution for the fi-

nite version of the problem. We then apply push-down technique to obtain the solution of the original

problem. The hyperfinite Markov processes constructed from continuous-time Markov processes with

general state space can be considered as hyperfinite representations of the original Markov processes

since its internal transition probability differs from the transition probability of the original Markov

process by only infinitesimal. Thus, many features of general Markov processes can be understood via

studying its hyperfinite counterpart.

Nonstandard analysis, in many cases, offers insights to existing problems from a new prospective.
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For statistical decision problem with infinite parameter spaces, one must relax the notion of Bayesian

optimality to obtain connections between frequentist and Bayesian optimality. Moreover, such results

are subject to regularity conditions. However, using nonstandard analysis and nonstandard probability

theory, we are able to establish a link between admissibility and Bayesian optimality without techni-

cal conditions. Such surprising connection suggests that nonstandard analysis maybe able to generate

fruitful result and provide new insights to mathematical statistics.

There are many avenues worth further investigation. In the proof of Theorem 8.1.11, the existence

of a standard prior relies critically on compactness or, at least, on the near-standard part have Loeb-

measure one. As a result, in a general non-compact setting, the pushdown measure may fail to be a

probability measure, and might even be the null measure. Other notions of pushdown measure exist,

although they generally produce merely finitely additive probability measures. There is a substantial

body of work on finitely additive probability and its application to foundational problems in statistics

and game theory [16, 21, 45–48]. It would be worthwhile identifying relationships between the nonstan-

dard and finitely additive frameworks. Understanding such relation will enable us to answer questions

such as, when does nonstandard Bayes imply finitely-additive Bayes? Other questions include but not

restricted to: 1)studying particular stochastic processes (Dirichlet process, Langevin diffusion, etc) from

a nonstandard prospective. 2) understanding minimaxity, stepwise Bayes, limit of Bayes by considering

their hyperfinite counterpart.

As one might has already noticed, nonstandard analysis is very powerful in establishing existence

result. One of many ongoing work is to show the existence of matching prior for compact parameter

spaces. The idea is to first show the existence of nonstandard matching prior in the hyperfinite counter-

part of this problem. As the parameter space is compact, we apply the same technique in Theorem 8.1.11

to obtain a standard marching prior.

This dissertation has explored the boundary of stochastic processes, probability theory, statistical

decision theory and nonstandard analysis. In closing, we believe that nonstandard analysis will greatly

enhance our understanding on connections between finite problems and infinite problems and it has

much to offer to the statistical community beyond those subjects mentioned in this dissertation.
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