## A Clarification in the Paper eigen.pdf

This note expands on the argument at the top of page 11 of the paper "Convergence rates of Markov chains" (J.S. Rosenthal, SIAM Review 37 (1995), 387-405).

As stated there, suppose $P$ is the transition matrix for a Markov chain on a finite state space $\mathcal{X}$, and $x \in \mathcal{X}$ is transient, and we have found $y \in \mathcal{X}$ and $r \in \mathbf{N}$ such that $P^{r}(x, y)=$ $\epsilon>0$ but $P^{m}(y, x)=0$ for all $m \geq 0$.

Then if $T=\left\{j \in \mathcal{X}: P^{m}(j, x)>0\right.$ for some $\left.m \geq 0\right\}$, then $x \in T$ but $y \notin T$.
Furthermore, for $j \in T$ and $z \notin T$, we must have $P^{n}(z, j)=0$ for all $n$. [Proof: Since $j \in T$, we must have $P^{m}(j, x)>0$ for some $m \geq 0$. If we had $P^{n}(z, j)>0$, then we would have $P^{n+m}(z, x) \geq P^{n}(z, j) P^{m}(j, x)>0$, contradicting the fact that $z \notin T$.]

Using this fact, we then compute that

$$
\sum_{j \in T}\left|\left(v P^{r}\right)(j)\right|=\sum_{j \in T} \sum_{z \in \mathcal{X}}\left|v(z) P^{r}(z, j)\right|=\sum_{j \in T} \sum_{z \in T}\left|v(z) P^{r}(z, j)\right|
$$

Hence,

$$
\begin{gathered}
\sum_{j \in T}\left|\left(v P^{r}\right)(j)\right|=\left(\sum_{z \in T} \sum_{j \in \mathcal{X}}\left|v(z) P^{r}(z, j)\right|\right)-\left(\sum_{z \in T} \sum_{j \notin T}\left|v(z) P^{r}(z, j)\right|\right) \\
\leq\left(\sum_{z \in T} \sum_{j \in \mathcal{X}}|v(z)| P^{r}(z, j)\right)-\left(\sum_{z \in T} \sum_{j \notin T}\left|v(z) P^{r}(z, j)\right|\right) \\
=\left(\sum_{z \in T}|v(z)|\right)-\left(\sum_{z \in T} \sum_{j \notin T}\left|v(z) P^{r}(z, j)\right|\right) .
\end{gathered}
$$

Then, since $x \in T$ but $y \notin T$, it follows as claimed that

$$
\sum_{j \in T}\left|\left(v P^{r}\right)(j)\right| \leq\left(\sum_{z \in T}|v(z)|\right)-\left(\left|v(x) P^{r}(x, y)\right|\right)=\left(\sum_{z \in T}|v(z)|\right)-\epsilon|v(x)|
$$

Then, as noted in the paper, if $v P=\lambda v$ with $|\lambda|=1$, then

$$
\sum_{j \in T}\left|\left(v P^{r}\right)(j)\right|=\sum_{j \in T}\left|\lambda^{r} v(j)\right|=\sum_{j \in T}|v(j)|,
$$

so we must have $\epsilon|v(x)|=0$, hence $v(x)=0$, as claimed.

