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1. Introduction.

This short note considers the usual coupling approach to bounding convergence of

Markov chains. It addresses the question of whether it suffices to have two chains become

equal at a single time, or whether it is necessary to have them then remain equal for all

future times.

Let P (x, ·) be the transition probabilities for a Markov chain on a Polish state space

X . Let µ and ν be two initial distributions for the chain. This paper is related to the

problem of bounding the total variation distance ‖µP k−νP k‖ = sup
A⊆X

|µP k(A)−νP k(A)|,

after k steps, between the chain started in these two initial distributions.

(Often ν will be taken to be a stationary distribution for the chain, so that νP k = ν

for all k ≥ 0. The problem then becomes one of convergence to stationarity for the Markov

chain when started in the distribution µ. This is an important question for Markov chain

Monte Carlo algorithms; see Gelfand and Smith, 1990; Smith and Roberts, 1993; Meyn

and Tweedie, 1994; Rosenthal, 1995.)

The standard coupling approach to this problem (see Doeblin, 1938; Griffeath, 1975;

Pitman, 1976; Lindvall, 1992; Thorisson, 1992) is as follows. We jointly define random

variables Xk and Yk, for k = 0, 1, 2, . . ., such that {Xk} is Markov (µ, P ) (i.e. Pr(X0 ∈
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A) = µ(A) and Pr(Xk+1 ∈ A |X0 = x0, . . . , Xk = xk) = P (xk, A) for any measurable

A ⊆ X and any choices of xi ∈ X ) and {Yk} is Markov (ν, P ). It then follows that

L(Xk) = µP k and L(Yk) = νP k, so that if T is a random time with

Xk = Yk for all k ≥ T, (∗)

then the coupling inequality gives that

‖µP k − νP k‖ = ‖L(Xk)− L(Yk)‖ ≤ Pr(Xk 6= Yk) ≤ Pr(T > k) .

This technique has been successfully applied to give useful bounds on distance to station-

arity for a large number of examples (see for example Aldous, 1983; Lindvall, 1992). We

emphasize that it is not required that the processes {Xk} and {Yk} proceed independently;

indeed, it is desired to define them jointly so that their probability of becoming equal to

each other is as large as possible.

When constructing couplings, instead of establishing condition (∗) directly, one often

begins by establishing the simpler condition that XT = YT , i.e. that the two chains become

equal at some one time without necessarily remaining equal for all future times. Then,

given such a construction, one defines a new process {Zk} by

Zk =

{
Yk, k ≤ T

Xk, k > T .
(∗∗)

If one can show that {Zk} is again Markov (µ, P ), then one can proceed as above, with

{Xk} replaced by {Zk}. However, {Zk} will not be Markov (µ, P ) in general; a simple

counter-example is provided in Section 3.

The purpose of this note is to provide (Section 2) a fairly general condition (“faith-

fulness”) under which the process {Zk} above will automatically be Markov (µ, P ). We

note that such issues are rather well studied, and we provide only a slight extension of

previous ideas. Indeed, it has been argued by Pitman (1976, pp. 319-320) that {Zk} will

be Markov (µ, P ) provided that {Xn} and {Yn} are conditionally independent, given T

and XT . However, this is a somewhat strong condition, and we shall provide an example

(Section 3) of a common coupling which satisfies our faithfulness condition, but for which

this conditional independence does not hold.
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In Section 4, we shall show that our approach generalizes to a similar condition for

the related method of shift-coupling.

Remarks.

1. This work arose out of discussions with Richard Tweedie concerning bounding quanti-

ties like ‖Pn(α, ·)−Pn−1(α, ·)‖, where α is an atom, which arise in Meyn and Tweedie

(1994). One possibility was to use coupling by choosing X0 = α, letting {Xk} proceed

according to the Markov chain, and then letting T be the smallest time at which {Xk}

stays still for one step, i.e. for which XT+1 = XT . One could then set

Yk =

{
Xk, k ≤ T

Xk−1, k > T .

If it were true that {Yk} marginally followed the transition probabilities, then we

would have

‖Pn(α, ·)− Pn−1(α, ·)‖ = ‖L(Yn)− L(Xn−1)‖ ≤ Pr(Yn 6= Xn−1) ≤ Pr(T > n) .

However, this will not be the case in general. (For example, the first time k for which

Yk+1 = Yk will be stochastically too large.) Such considerations motivated the current

work.

2. If bounds on ‖µP k − νP k‖ are the only item of interest, and an actual coupling

is not required, then it may not be necessary to construct the process {Zk} at all.

Indeed, the approach of distributional or weak coupling (Pitman, 1976, p. 319; Ney,

1981; Thorisson, 1983; Lindvall, 1992, §I.4) shows that if {(Xk, Yk)} is a process on

X × X , with XT = YT , then if T is a randomized stopping time for each of {Xk}

and {Yk}, or more generally if (T,XT , XT+1, . . .)
d=(T, YT , YT+1, . . .), then we have

‖L(Xn)− L(Yn)‖ ≤ Pr(T > n), with no coupling construction necessary. (Note that

these conditions on T will not always hold; cf. Pitman, 1976, p. 319, and also the

example in the proof Proposition 3 below with, say, T = 0. But they will hold for

couplings which are faithful.)
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2. Faithful couplings.

Given a Markov chain P (x, ·) on a state space X , we define a faithful coupling to be a

collection of random variables Xk and Yk for k ≥ 0, defined jointly on the same probability

space, such that

(i) Pr(Xk+1 ∈ A |Uk = u, X0 = x0, . . . , Xk = xk, Y0 = y0, . . . , Yu = yu) = P (xk, A)

and

(ii) Pr(Yk+1 ∈ A |Uk = u, X0 = x0, . . . , Xu = xu, Y0 = y0, . . . , Yk = yk) = P (yk, A)

for all measurable A ⊆ X and xi, yj ∈ X , where

Uk = min (k, inf{j ≥ 0 ; Xj = Yj}) .

Intuitively, a faithful coupling is one in which the influence of each chain upon the other

is not too great.

To check faithfulness, it suffices to check it with Uk is replaced by k (because then we

are conditioning on more information), in which case it becomes equivalent to the following

two conditions:

(a) the pairs process {(Xk, Yk)}∞k=1 is a Markov chain on X × X ;

(b) for any k ≥ 0 and xk, yk ∈ X , and for any measurable A ⊆ X ,

Pr(Xk+1 ∈ A |Xk = xk, Yk = yk) = P (xk, A)

and

Pr(Yk+1 ∈ A |Xk = xk, Yk = yk) = P (yk, A) .

Here condition (a) merely says that the coupling is jointly Markovian; condition (b) says

that the updating probabilities for one process are not affected by the previous value of

the other process. Both of these conditions are satisfied (and easily verified) in many

different couplings used in specific examples. This is the case, e.g., for couplings defined

by minorization conditions (see Section 3).

In this section we prove that for faithful couplings, the process {Zk} will automatically

be Markov (µ, P ). In the next section, we provide an example to show that in general

condition (a) alone is not sufficient for this.
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Theorem 1. Given a Markov chain P (x, ·) on a Polish state space X , let {Xk, Yk}∞k=0 be

a faithful coupling as defined above. Set µ = L(X0) and ν = L(Y0), and let

T = inf{k ≥ 0 ; Xk = Yk} . (∗ ∗ ∗)

Then the process {Zk}, defined by (∗∗), is Markov (µ, P ). (Hence, ‖µP k−νP k‖ ≤ Pr(T >

k).)

Proof. We first note (cf. Lindvall, 1992, p. 12) that, since X is assumed to be Polish,

sets of the form {Xk = Yk} are measurable, and hence T is a well-defined random variable.

As for the process {Zk}, we clearly have L(Z0) = µ. To proceed, we note that

Pr(Zk+1 ∈ A,Z0 ∈ dz0, . . . , Zk ∈ dzk)

= Pr(Zk+1 ∈ A,Z0 ∈ dz0, . . . , Zk ∈ dzk, T ≥ k + 1)

+
k∑

t=0

Pr(Zk+1 ∈ A,Z0 ∈ dz0, . . . , Zk ∈ dzk, T = t)

=
∫

x0,...,xk∈X
xi 6=zi, 0≤i≤k

Pr(Yk+1 ∈ A,X0 ∈ dx0, . . . , Xk ∈ dxk, Y0 ∈ dz0, . . . , Yk ∈ dzk)

+
k∑

t=0

∫
x0,...,xt−1∈X

xi 6=zi, 0≤i≤t−1

Pr(Xk+1 ∈ A,X0 ∈ dx0, . . . , Xt−1 ∈ dxt−1,

Xt ∈ dzt, . . . , Xk ∈ dzk, Y0 ∈ dz0, . . . , Yt ∈ dzt) .

Using conditions (i) and (ii) above, this is equal to∫
x0,...,xk∈X

xi 6=zi, 0≤i≤k

P (zk, A) Pr(X0 ∈ dx0, . . . , Xk ∈ dxk, Y0 ∈ dz0, . . . , Yk ∈ dzk)

+
k∑

t=0

∫
x0,...,xt−1∈X

xi 6=zi, 0≤i≤t−1

P (zk, A) Pr(X0 ∈ dx0, . . . , Xt−1 ∈ dxt−1,

Xt ∈ dzt, . . . , Xk ∈ dzk, Y0 ∈ dz0, . . . , Yt ∈ dzt)
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= P (zk, A) Pr(Z0 ∈ dz0, . . . , Zk ∈ dzk, T ≥ k + 1)

+ P (zk, A)
k∑

t=0

Pr(Z0 ∈ dz0, . . . , Zk ∈ dzk, T = t)

= P (zk, A)Pr(Z0 ∈ dz0, . . . , Zk ∈ dzk) .

It follows that {Zk} marginally follows the transition probabilities P (x, ·), as required.

We thus obtain the following corollary, which also follows from the distributional

coupling method (see the final remark of the Introduction).

Corollary 2. Let {Xk, Yk} be a faithful coupling, and let T ′ be any random time with

XT ′ = YT ′ . Then

‖µP k − νP k‖ ≤ Pr(T ′ > k) .

Proof. We clearly have T ≤ T ′. Hence, ‖µP k − νP k‖ ≤ Pr(T > k) ≤ Pr(T ′ > k).

Remark. Analogous results to the above clearly hold for continuous-time Markov pro-

cesses as well.

3. Examples.

We first present an example to show that condition (a) alone is not sufficient for the

above construction.

Proposition 3. There exists a Markov chain P (x, ·) on a state space X , and a Marko-

vian coupling {(Xk, Yk)} on X × X with each of {Xk} and {Yk} marginally following the

transition probabilities P (x, ·), such that if T is defined by (∗ ∗ ∗), and the process {Zk}

is then defined by (∗∗), then the process {Zk} will not marginally follow the transition

probabilities P (x, ·).
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Proof. Let X = {0, 1}. Define a Markov chain on X by P (0, 0) = P (1, 1) = P (0, 1) =

P (1, 0) = 1
2 . (That is, this is the Markov chain corresponding to i.i.d. choices at each

time.)

Define a Markov chain on X × X as follows. At time 0, take Pr(Y0 = 0) = Pr(Y0 =

1) = Pr(X0 = 0) = Pr(X0 = 1) = 1
2 . For k ≥ 0, conditional on (Xk, Yk) ∈ X × X , we let

Pr(Yk+1 = 0 |Xk, Yk) = Pr(Yk+1 = 1 |Xk, Yk) =
1
2

,

and set

Xk+1 = Xk ⊕ Yk ≡ Xk + Yk (mod 2) .

In words, {Yk} proceeds according to the original Markov chain P (x, ·), without regard

to the values of {Xk}. On the other hand, {Xk} changes values precisely when the corre-

sponding value of {Yk} is 1.

It is easily verified that, for all k ≥ 0, we will have {Yk} i.i.d. equal to 0 or 1 with

probability 1
2 . Using this, it is easily verified that {Xk} will be similarly i.i.d.

Hence, {(Xk, Yk)} is a Markovian coupling, with each coordinate marginally following

the chain P (x, ·). On the other hand, conditions (i) and (b) above are clearly violated.

Now, letting T = inf{k ≥ 0 ; Xk = Yk}, and defining {Zk} as in (∗∗), we have that

Pr(Z1 = 1, Z0 = 0) = Pr(Z1 = 1, Z0 = 0, T > 0) + Pr(Z1 = 1, Z0 = 0, T = 0)

= Pr(Y1 = 1, Y0 = 0, X0 = 1) + Pr(X1 = 1, Y0 = 0, X0 = 0)

=
1
8

+ 0

= 1/8 .

It follows that Pr(Z1 = 1 |Z0 = 0) = 1/4, which is not equal to P (0, 1) = 1/2.

We now mention an example of a coupling which is faithful, but which does not satisfy

the simpler condition that the processes {Xk} and {Yk} are conditionally independent,

given T and XT . Our example involves minorization conditions (Nummelin, 1984; Meyn

and Tweedie, 1993; Rosenthal, 1995).
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Specifically, suppose that for our transition probabilities P (x, ·), there is a subset C,

some ε > 0, and a probability measure Q(·) on X , such that the minorization condition

P (x, ·) ≥ ε Q(·) , x ∈ C

holds. Then we can define processes {Xk} and {Yk} jointly as follows. Given Xn and Yn,

(I) if (Xn, Yn) ∈ C × C, then flip an independent coin with probability of heads

equal to ε. If the coin is heads, set Xn+1 = Yn+1 = q where q ∼ Q(·) is chosen

independently. If the coin is tails, choose Xn+1 ∼ 1
1−ε (P (Xn, ·)− ε Q(·)) and

Yn+1 ∼ 1
1−ε (P (Yn, ·)− ε Q(·)), independently.

(II) if (Xn, Yn) 6∈ C × C, then choose Xn+1 ∼ P (Xn, ·) and Yn+1 ∼ P (Yn, ·), inde-

pendently.

Then each of {Xn} and {Yn} marginally follows the transition probabilities P (x, ·). Fur-

thermore the joint construction is easily seen to be faithful. Hence the results of the

previous section apply. (In particular, we may let T ′ be the first time we choose option

(I) above and the coin comes up heads.)

However, it is not the case that the two processes {Xn} and {Yn} are conditionally

independent given T and XT . Indeed, given T and XT , then for n < T−1 and Xn ∈ C, the

conditional distribution of Xn+1 may depend greatly on the event {Yn ∈ C}. Thus, this is

an example where the faithfulness condition holds, even though the simpler condition of

conditional independence does not hold.

4. Faithful shift-coupling.

A result analogous to Theorem 1 can also be proved for the related method of shift-

coupling.

Given processes {Xk} and {Yk} on a state space X , each marginally following the

transition probabilities P (x, ·), random times T and T ′ are called shift-coupling epochs

(Aldous and Thorisson, 1993; Thorisson, 1992, Section 10) if XT+k = YT ′+k for all k ≥ 0.

The shift-coupling inequality (Thorisson, 1992, equation 10.2; Roberts and Rosenthal,

1994, Proposition 1) then gives that∥∥∥∥ 1
n

n∑
k=1

Pr(Xk ∈ ·) − 1
n

n∑
k=1

Pr(X ′
k ∈ ·)

∥∥∥∥ ≤ 1
n
E (min (max(T, T ′), n)) .
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The quantity max(T, T ′) thus serves to bound the difference of the average distributions

of the two chains.

For shift-coupling, since we will not in general have T = T ′, the definition of faithful

given above is not sufficient. Thus, we define a collection of random variables {Xk, Yk} to

be a faithful shift-coupling if we have

(i′) Pr(Xk+1 ∈ A |Rk = r, X0 = x0, . . . , Xk = xk, Y0 = y0, . . . , Yr = yr) = P (xk, A)

and

(ii′) Pr(Yk+1 ∈ A |Sk = s,X0 = x0, . . . , Xs = xs, Y0 = y0, . . . , Yk = yk) = P (yk, A)

for all A ⊆ X and xi, yi ∈ X , where

Rk = inf{j ≥ 0 ; ∃ i ≤ k, Yj = Xi} ; Sk = inf{i ≥ 0 ; ∃ j ≤ k,Xi = Yj} .

If {Xk, Yk} is a faithful shift-coupling, then the following theorem (cf. Roberts and

Rosenthal, 1994, Corollary 3) shows that it suffices to have XT = YT ′ for some specific

pair of times T and T ′.

Theorem 4. Let {Xk, Yk} be a faithful shift-coupling on a Polish state space X , and let

τ = inf{k ≥ 0 ; ∃ i, j ≤ k with Xi = Yj} .

Then ∥∥∥∥ 1
n

n∑
k=1

Pr(Xk ∈ ·) − 1
n

n∑
k=1

Pr(X ′
k ∈ ·)

∥∥∥∥ ≤ 1
n
E (min (τ, n)) .

Proof. Let I, J ≤ τ be random times with XI = YJ . By minimality of τ , we must have

max(I, J) = τ . Define {Zk} by

Zk =

{
Yk, k ≤ J

Xk−J+I , k > J .

Using properties (i′) and (ii′) above, and summing over possible values of I and J

and of intermediate states, it is checked as in Theorem 1 that {Zk} marginally follows the

transition probabilities P (x, ·). Hence L(Zk) = L(Yk). Furthermore, the times T = I and

T ′ = J are shift-coupling epochs for {Xk} and {Zk}. Since max(T, T ′) = τ , the result

follows from the shift-coupling inequality applied to {Xk} and {Zk}.
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Corollary 5. Let {Xk, Yk} be a faithful shift-coupling, and let T and T ′ be random times

with XT = YT ′ . Then∥∥∥∥ 1
n

n∑
k=1

Pr(Xk ∈ ·) − 1
n

n∑
k=1

Pr(X ′
k ∈ ·)

∥∥∥∥ ≤ 1
n
E (min (max(T, T ′), n)) .

Proof. We clearly have τ ≤ max(T, T ′). The result follows.
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