
Fields Institute Communications
Volume 00, 0000

Extension of Fill’s perfect rejection sampling algorithm
to general chains

(EXT. ABS.)

James Allen Fill
Department of Mathematical Sciences

The Johns Hopkins University
Baltimore, MD 21218–2682, U. S. A.

jimfill@jhu.edu

Motoya Machida
Department of Mathematical Sciences

The Johns Hopkins University

Baltimore, MD 21218–2682, U. S. A.
machida@mts.jhu.edu

Duncan J. Murdoch
Department of Statistical and Actuarial Sciences

University of Western Ontario

London, Ontario N6G 2E9, Canada

murdoch@fisher.stats.uwo.ca

Jeffrey S. Rosenthal
Department of Statistics

University of Toronto

Toronto, Ontario M5S 3G3, Canada
jeff@math.toronto.edu

Abstract. We provide an extension of the perfect sampling algorithm
of Fill (1998) to general chains, and describe how use of bounding pro-
cesses can ease computational burden. Along the way, we unearth a
simple connection between the Coupling From The Past (CFTP) algo-
rithm originated by Propp and Wilson (1996) and our extension of Fill’s
algorithm.

1 Introduction

Markov chain Monte Carlo (MCMC) methods have become extremely popu-
lar for Bayesian inference problems (consult, e.g., Gelfand and Smith [16], Smith

1991 Mathematics Subject Classification. Primary 60J10, 68U20; Secondary 60G40, 62D05,

62E25.
The first and second authors have been supported in part by NSF grants DMS–9626756 and

DMS–9803780, and by the Acheson J. Duncan Fund for the Advancement of Research in Statistics.

The third and fourth authors have been supported in part by NSERC.

c©0000 American Mathematical Society

1

2 James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S. Rosenthal

and Roberts [36], Tierney [38], Gilks et al. [17]), and for problems in other ar-
eas, such as spatial statistics, statistical physics, and computer science (see, e.g.,
Fill [11] or Propp and Wilson [32] for pointers to the literature) as a way of sam-
pling approximately from a complicated unknown probability distribution π. An
MCMC algorithm constructs a Markov chain with one-step transition kernel K and
stationary distribution π; if the chain is run long enough, then under reasonably
weak conditions (cf. Tierney [38]) it will converge in distribution to π, facilitating
approximate sampling.

One difficulty with these methods is that it is difficult to assess convergence to
stationarity. This necessitates the use of difficult theoretical analysis (e.g., Meyn
and Tweedie [27], Rosenthal [35]) or problematic convergence diagnostics (Cowles
and Carlin [5], Brooks, et al. [2]) to draw reliable samples and do proper inference.

An interesting alternative algorithm, called coupling from the past (CFTP), was
introduced by Propp and Wilson [32] (see also [33] and [34]) and has been studied
and used by a number of authors (including Kendall [23], Møller [28], Murdoch
and Green [30], Foss and Tweedie [15], Kendall and Thönnes [25], Corcoran and
Tweedie [4], Green and Murdoch [18], Murdoch and Rosenthal [31]). By searching
backwards in time until paths from all starting states have coalesced, this algorithm
uses the Markov kernel K to sample exactly from π.

Another method of perfect simulation, for finite-state stochastically monotone
chains, was proposed by Fill [11]. Fill’s algorithm is a form of rejection sampling.
This algorithm was later extended by Møller and Schladitz [29] and Thönnes [37]
to non-finite chains, motivated by applications to spatial point processes. Fill’s
algorithm has the advantage over CFTP of removing the correlation between the
length of the run and the returned value, which eliminates bias introduced by an
impatient user or a system crash and so is “interruptible”. However, it has been
used only for stochastically monotone chains, making heavy use of the ordering of
state space elements. In his paper, Fill [11] indicated that his algorithm could be
suitably modified to allow for the treatment of “anti-monotone” chains and (see
his Section 11.2) indeed to generic chains. In this extended abstract we present a
version of Fill’s algorithm for generic chains; we, too, will provide an explanation
in terms of rejection sampling. We have strived to keep to the spirit of the talks
presented at the Workshop on Monte Carlo Methods held at the Fields Institute
for Research in Mathematical Sciences in Toronto in October, 1998 and make our
results accessible to a broad audience. Technical details are provided in the full
paper [14].

Following is our interruptible algorithm for generic chains. We discuss some of
the terminology used and other details of the algorithm in Section 3.

Algorithm 1.1 Choose and fix a positive integer t, choose an initial state Xt

from any distribution absolutely continuous with respect to π, and perform the fol-
lowing routine. Run the time-reversed chain K̃ for t steps, obtaining Xt,Xt−1, . . . ,
X0 in succession. Then, reversing the direction of time, generate (possibly de-
pendent) Markov chains, one [say ~Y(x) = (Y0(x), . . . ,Yt(x)), with Y0(x) = x]
evolving from each element x of the state space X and each with transition ker-
nel K. All these trajectories are to be multivariately coupled ex post facto with the
trajectory ~X = (X0, . . . ,Xt), which is regarded as a trajectory from K; in partic-
ular, ~Y(X0) = ~X. Finally, we check whether all the values Yt(x), x ∈ X , agree. If
they do, we call this coalescence, and the value X0 is accepted as an observation
from π. If not, then the value X0 is rejected and so the routine fails. We then start

Extension of Fill’s perfect rejection sampling algorithm to general chains (EXT. ABS.) 3

the routine again with an independent simulation, perhaps with a fresh choice of t
and Xt, and repeat until the algorithm succeeds.

Here is a simple intuitive explanation of why the algorithm works correctly.
Imagine (1) starting the construction with X0 ∼ π and independently (2) building
all of the paths ~Y(x) [including ~X = ~Y(X0)] simultaneously . Since determination
of coalescence and the value of the coalesced paths at time t rely only on the second
piece of randomness, conditionally given coalescence to Xt = z (for any z) we will
still have X0 ∼ π, as desired. The algorithm builds the randomness in a different
order, starting from Xt.

Remark 1.2 (a) Note that no assumption is made in Algorithm 1.1 concerning
monotonicity or discreteness of the state space.

(b) See (3.1) for the definition of K̃.
(c) To couple all of the trajectories ~Y(x) ex post facto with the trajectory ~X

means first to devise a multivariate coupling for all the trajectories by means of a
transition rule and then to employ that coupling conditionally having observed the
single trajectory ~Y(X0) = ~X. Just how this is done is described in Section 3.

(d) If coalescence occurs, then of course the common value of Yt(x), x ∈ X , is
the initial state Xt.

(e) We have reversed the direction of time, and the roles of the kernels K and K̃,
compared to Fill [11]. Furthermore, Fill’s original algorithm also incorporated a
search for a good value of t by doubling the previous value of t until the first success.
For the most part, we shall not address such issues, instead leaving the choice of t
entirely up to the user; but see Section 5.2.

(f) We have included the technical absolute continuity restriction on the dis-
tribution of Xt to ensure correctness. In a typical application, one might know a
density for π with respect to some measure λ (for example, λ = Lebesgue measure)
up to a normalizing constant. Then if, for example, that density is positive on the
entire state space X , one need only take Xt to have any distribution having density
with respect to λ (for example, a normal distribution).

Also, if the state space is discrete, or if it is continuous and all probabilistic
ingredients to the algorithm (such as the kernel K) are sufficiently smooth, then
the user may choose Xt deterministically and arbitrarily.

As mentioned above, we will discuss the details of Algorithm 1.1 in Section 3.
First, in Section 2, we motivate our algorithm in the context of a rather general
rejection sampling framework. A more rigorous treatment may be found in the full
paper [14].

In Section 4 we discuss how the computational burden of tracking all of the
trajectories Y(x) can be eased by the use of coalescence detection events in general
and bounding processes in particular; these processes take on a very simple form
(see Section 4.3) when the state space is partially ordered and the transition rule
employed is monotone. In the full paper we present a computationally efficient
modification of Algorithm 1.1 that applies when K is assumed to be stochasti-
cally monotone. (As discussed in Fill and Machida [13] and Machida [26], this is a
weaker assumption than that of the existence of a monotone transition rule.) When
the state space is finite, the algorithm for the stochastically monotone case reduces
to Fill’s original algorithm. The full paper also discusses a “cross-monotone” gen-
eralization of stochastic monotonicity.

4 James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S. Rosenthal

In Section 5 we compare Algorithm 1.1 and CFTP. We also demonstrate a sim-
ple connection between CFTP and an infinite-time-window version of Algorithm 1.1
(namely, Algorithm 5.1).

This extended abstract discusses only algorithms for generating a single ob-
servation from a distribution π of interest. In the full paper, we discuss various
strategies for perfect generation of samples of arbitrary size from π.

The goal of this extended abstract is to describe how to apply Fill’s perfect
sampling algorithm to a broad spectrum of problems of real interest, not to develop
any specific applications in detail. But an underlying theme here is that while our
extended algorithm (Algorithm 1.1) tends to be computationally more intricate
than CFTP (see Section 5.1), theoretically it is as broadly applicable as is CFTP.
In this spirit, we will point to the applied perfect sampling literature at appropriate
junctures, taking note of past applications of both CFTP and Fill’s algorithm as
examples. We hope that our extension of the latter algorithm will stimulate further
research into this less-used alternative for perfect MCMC simulation.

A valuable background resource is the annotated bibliography of perfect sam-
pling maintained by Wilson [39].

2 Rejection sampling using auxiliary randomness

Given a bivariate distribution L(X, X ′), suppose that, for each x′, we can
simulate X from the conditional distribution L(X|X ′ = x′). How can we simulate X
from its marginal distribution π := L(X)? This is the problem confronting us in
the context of Algorithm 1.1, with (X, X ′) := (X0,Xt) and Xt chosen according
to π. Indeed, we assumed there that the user can simulate from L(X0 |Xt = x′) =
K̃t(x′, ·), where K̃t is the t-step time-reversal transition kernel; and, when Xt ∼ π,
we have L(X0) = π. Of course, if the user could simulate Xt ∼ π, then either Xt

or X0 could be used directly as an observation from π. But, for MCMC, this is an
unreasonable assumption.

So we turn to rejection sampling (e.g., Devroye [6]), done conditionally given
X ′ = x′. Our goal is to use the observation x from L(X|X ′ = x′) to simulate one
from π. This can be done by accepting x as an observation from π with probability

γx′,x := αx′
π(dx)

P (X ∈ dx|X ′ = x′)

for any αx′ chosen to make 0 < γx′,x ≤ 1; indeed, then

P (X ∈ dx |X ′ = x′, accept) =
P (X ∈ dx, accept |X ′ = x′)

P (accept |X ′ = x′)
=

αx′π(dx)
αx′

∫
π(dy)

= π(dx).

The question remains how to engineer a coin-flip with probability γx′,x of heads,
given that one can rarely compute γx′,x in practice.

However, if we can find an event C so that

P (C |X ′ = x′, X = x) = γx′,x for all x′, x, (2.1)

then we need only accept when (and only when) C occurs. Condition (2.1) requires
precisely that

P ({X ′ ∈ B′} ∩ C ∩ {X ∈ B}) = π(B)
∫

B′
αx′P (X ′ ∈ dx′) for all B,B′. (2.2)

Extension of Fill’s perfect rejection sampling algorithm to general chains (EXT. ABS.) 5

Note that if we can choose C so that condition (2.2) holds, then setting B to be
the entire state space X for X, we obtain

P ({X ′ ∈ B′} ∩ C) =
∫

B′
αx′P (X ′ ∈ dx′) for all B′

and hence

P ({X ′ ∈ B′} ∩ C ∩ {X ∈ B}) = π(B) P ({X ′ ∈ B′} ∩ C) for all B,B′. (2.3)

Conversely, if we can choose C so that condition (2.3) holds, then we can choose

αx′ := P (C |X ′ = x′)

to satisfy (2.1) and (2.2).
How might we choose C to satisfy (2.3)? Observe that if C and another vari-

able Y are such that (i) Y = X ′ over the event C and (ii) X and the pair (Y, C)
are independent, then

LHS(2.3) = P ({X ′ ∈ B′} ∩ C ∩ {X ∈ B}) = P ({Y ∈ B′} ∩ C ∩ {X ∈ B})
= P ({Y ∈ B′} ∩ C) π(B).

Setting B = X and then substituting, we obtain (2.3). The Algorithm 1.1 is
designed precisely so that we may take (Y, C) := (Yt(x∗0), {coalescence}) for an
arbitrarily chosen (but fixed) x∗0 ∈ X to satisfy (i) and (ii). This is discussed
further in Section 3.1 below.

3 Details for Algorithm 1.1

3.1 The ingredients. The goal of this subsection is to describe in some detail
how to apply Algorithm 1.1.

The space (X ,B): It is sufficient that (X ,B) be a complete separable metric
space. In particular, this covers the case that X is discrete or Euclidean. See
Section 3.1 of the full paper [14] for further discussion.

The kernel K and its time-reversal K̃: Let K be a Markov transition kernel
on X . The kernel is chosen (by the user) so that π is a stationary distribution, i.e.,
so that ∫

X
π(dx)K(x, dy) = π(dy) on X .

The time-reversed kernel K̃ (also on X) is then defined by

π(dx)K(x, dy) = π(dy)K̃(y, dx) on X × X . (3.1)

The transition rule φ: There exists a transition rule which can be used to drive
the construction of the Markov chain of interest. More precisely, there exists a
probability space (U ,F , µ) and a (suitably measurable) function φ : X × U → X
such that

K(x, B) = µ{u : φ(x, u) ∈ B}, x ∈ X , B ∈ B. (3.2)
Such φ (with accompanying µ) is sometimes called a transition rule. We choose
and fix such a (φ, µ).

Remark 3.1 (a) A transition rule φ can always be found that uses (U ,F , µ) =
([0, 1], Borels,uniform distribution). In the special case that X is the unit interval,
we can in fact use

φ(x, u) ≡ G(x, u)

6 James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S. Rosenthal

where G(x, ·) is the usual inverse probability transform corresponding to the dis-
tribution function u 7→ K(x, [0, u]).

(b) If X is discrete (finite or countably infinite), a very simple alternative choice
is the following “independent-transitions” transition rule. Let U = XX , let µ be
product measure with xth marginal K(x, ·) (x ∈ X), and let φ be the evaluation
function

φ(x, u) := u(x).

(c) Many interesting examples of transition rules can be found in the literature,
including Diaconis and Freedman [8] and the references cited in Section 1.

(d) Usually there is a wealth of choices of transition rule, and the art is to find
one giving rapid and easily detected coalescence. Without going into details at this
point, we remark that the transition rule in (b) usually performs quite badly, while
transition rules having a certain monotonicity property will perform well under
monotonicity assumptions on K.

The Markov chain and a first probability space: We will need to set up two
probability spaces. The first space (Ω,A, P)—designated in ordinary typeface—
will be useful for theoretical considerations and for the computation of certain
conditional probability distributions. The second space (Ω,A,P)—designated in
boldface type—will be the probability space actually simulated when the algorithm
is run. All random variables defined on the first space (respectively, second space)
will also be designated in ordinary typeface (resp., boldface type). We have cho-
sen this notational system to aid the reader: Corresponding variables, such as X0

and X0, will play analogous roles in the two spaces.
From our previous comments it is easy to see that there exists a space (U ,F),

a transition rule (φ, µ), and a probability space (Ω,A, P) on which are defined
independent random variables X0, U1, U2, . . . , Ut with X0 ∼ π and each Us ∼ µ.
Now inductively define

Xs := φ(Xs−1, Us), 1 ≤ s ≤ t. (3.3)

Then ~X := (X0, . . . , Xt) is easily seen to be a stationary Markov chain with ker-
nel K, in the sense that

P (X0 ∈ dx0, . . . , Xt ∈ dxt) = π(dx0)K(x0, dx1)· · ·K(xt−1, dxt) on X t+1.
(3.4)

In fact, for each x ∈ X we obtain a chain with kernel K started from x by defining
Y0(x) := x and, inductively,

Ys(x) := φ(Ys−1(x), Us).

Let ~Y (x) := (Y0(x), . . . , Yt(x)). In this notation we have ~Y (X0) = ~X. Let

C := {Yt(x) does not depend on x} (3.5)

denote the event that the trajectories ~Y (x) have all coalesced by time t. Fixing
x∗0 ∈ X arbitrarily and taking

X = X0, X ′ = Xt, Y = Yt(x∗0), C as at (3.5)

to match up with the notation in Section 2, key observations are that, for any
(measurable) subset B of X , Y = X ′ over the event C, and X and the event
{Y ∈ B}∩C are independent. The independence here follows from the fact that X0

and ~U := (U1, . . . , Ut) have been chosen to be independent.

Extension of Fill’s perfect rejection sampling algorithm to general chains (EXT. ABS.) 7

A second probability space and the algorithm: We make use of the auxiliary
randomness provided by X1, . . . , Xt−1 and ~U and compute conditional probability
distributions for the first probability space in stages. First observe from (3.4) and
repeated use of (3.1) that

P (X0 ∈ dx0, . . . , Xt−1 ∈ dxt−1 |Xt = xt) = K̃(xt, dxt−1) · · · K̃(x1, dx0).

Next, we will discuss in Section 3.2 how to compute L(~U | ~X = ~x). Finally, whether
or not C occurs is determined solely by the randomness in ~U , so the conditional
probability of C given (~X, ~U) = (~x, ~u) is degenerately either 0 or 1.

Moreover, our discussion has indicated how to set up and simulate the sec-
ond space. As discussed in Section 1, we assume that the user knows enough
about π qualitatively to be able to simulate Xt so that LP(Xt) � π. Having
chosen Xt = xt, the user draws an observation Xt−1 = xt−1 from K̃(xt, ·), then
an observation Xt−2 = xt−2 from K̃(xt−1, ·), etc. Next, having chosen ~X = ~x

[i.e., (X0, . . . ,Xt) = (x0, . . . , xt)], the user draws an observation ~U = ~u from
L(~U | ~X = ~x) and constructs ~Y(x) = (Y0(x), . . . ,Yt(x)) by setting Y0(x) := x
and, inductively,

Ys(x) := φ(Ys−1(x),Us).

Finally, the user declares that C, or coalescence, has occurred if and only if the
values of Yt(x), x ∈ X , all agree. The conditional distribution of output from
Algorithm 1.1 given that it ultimately succeeds (perhaps only after many iterations
of the basic routine) is π, as desired.

Remark 3.2 (a) If P(C) > 0 for suitably large t, then ultimate success is
(a.s.) guaranteed if the successive choices of t become large. A necessary condition
for ultimate positivity of P(C) is uniform ergodicity of K. This condition is also
sufficient, in the (rather weak) sense that if K is uniformly ergodic, then there
exists a finite integer m and a transition rule φm for the m-step kernel Km such
that Algorithm 1.1, applied using φm, has P(C) > 0 when t is chosen sufficiently
large. Compare the analogous Theorem 4.2 for CFTP in Foss and Tweedie [15].

(b) Just as discussed in Fill [11] (see especially the end of Section 7 there),
the algorithm (including its repetition of the basic routine) we have described is
interruptible; that is, its running time (as measured by number of Markov chain
steps) and output are independent random variables, conditionally given that the
algorithm eventually terminates.

(c) If the user chooses the value of Xt (= z, say) deterministically, then all that
can be said in general is that the algorithm works properly for π-a.e. such choice.
In this case, let the notation Pz(C) reflect the dependence of P(C) on the initial
state z. Then clearly ∫

Pz(C) π(dz) = P (C),

which is the unconditional probability of coalescence in our first probability space
and therefore equal to the probability that CFTP terminates over an interval of
width t. This provides a first link between CFTP and Algorithm 1.1. (Very) roughly
recast, the distribution of running time for CFTP is the stationary mixture, over
initial states, of the distributions of running time for Algorithm 1.1. For further
elaboration of the connection between the two algorithms, see Section 5.3.

8 James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S. Rosenthal

3.2 Imputation. In order to be able to run Algorithm 1.1, the user needs to
be able to impute ~U from ~X, i.e., to draw from L(~U | ~X = ~x). In this subsection
we explain how to do this. We begin with the computation

P (~U ∈ d~u | ~X = ~x)

= P (~U ∈ d~u |X0 = x0, φ(x0, U1) = x1, . . . , φ(xt−1, Ut) = xt) by (3.3)

= P (~U ∈ d~u |φ(x0, U1) = x1, . . . , φ(xt−1, Ut) = xt) by indep. of X0 and ~U

= P (U1 ∈ du1 |φ(x0, U1) = x1)× · · · × P (Ut ∈ dut |φ(xt−1, Ut) = xt)
by independence of U1, . . . , Ut

= P (U1 ∈ du1 |φ(x0, U1) = x1)× · · · × P (U1 ∈ dut |φ(xt−1, U1) = xt)
since U1, . . . , Ut are identically distributed

= P (U1 ∈ du1 |X0 = x0, X1 = x1)× · · · × P (U1 ∈ dut |X0 = xt−1, X1 = xt),

where the last equality is justified in the same fashion as for the first two. This
establishes

Lemma 3.3 The t-fold product of the measures

P (U1 ∈ du1 |X0 = x0, X1 = x1), . . . , P (U1 ∈ dut |X0 = xt−1, X1 = xt)

serves as a conditional probability distribution P (~U ∈ d~u | ~X = ~x).

In setting up the second probability space, therefore, the user, having chosen
~X = ~x, draws an observation ~U = ~u by drawing U1, . . . ,Ut independently, with
Us chosen according to the distribution L(U1 |X0 = xs−1, X1 = xs).

Remark 3.4 (a) If X is discrete, suppose we use the “independent-transitions”
rule φ discussed in Remark 3.1(b). Then the measure µ, but with the x0th marginal
replaced by δx1 , serves as L(U1 |φ(x0, U1) = x1) = L(U1 |U1(x0) = x1) and there-
fore as L(U1 |X0 = x0, X1 = x1). Informally stated, having chosen Xs = xs and
Xs−1 = xs−1, the user imputes the forward-trajectory transitions from time s− 1
to time s in Algorithm 1.1 by declaring that the transition from state xs−1 is to
state xs and that the transitions from other states are chosen independently ac-
cording to their usual non- ~X-conditioned distributions.

(b) As another example, suppose that X = [0, 1] and we use the inverse proba-
bility transform transition rule discussed in Remark 3.1(a). Suppose also that each
distribution function F (x0, ·) = K(x0, [0, ·]) is strictly increasing and onto [0, 1].
Then δF (x0,x1) serves as L(U1 |X0 = x0, X1 = x1). Informally stated, a generated
pair (Xs,Xs−1) = (xs, xs−1) completely determines the value F (xs−1, xs) for Us.

3.3 A toy example. We illustrate Algorithm 1.1 for a very simple example
and two different choices of transition rule. Consider the discrete state space X =
{0, 1, 2}, and let π be uniform on X . Let K correspond to simple symmetric random
walk with holding probability 1/2 at the endpoints; that is, putting k(x, y) :=
K(x, {y}),

k(0, 0) = k(0, 1) = k(1, 0) = k(1, 2) = k(2, 1) = k(2, 2) = 1/2,

k(0, 2) = k(1, 1) = k(2, 0) = 0.

The stationary distribution is π. As for any ergodic birth-and-death chain, K is
reversible with respect to π, i.e., K̃ = K. Before starting the algorithm, choose a
transition rule; this is discussed further below.

Extension of Fill’s perfect rejection sampling algorithm to general chains (EXT. ABS.) 9

For utter simplicity of description, we choose t = 2 and (deterministically)
Xt = 0 (say); as discussed in Section 1, a deterministic start is permissible here.
We then choose X1 ∼ K(0, ·) and X0 |X1 ∼ K(X1, ·). How we proceed from this
juncture depends on what we chose for φ.

One choice is the independent-transitions rule discussed in Remarks 3.1(b)
and 3.4(a). The algorithm’s routine can then be run using 6 independent random
bits: these decide X1 (given X2), X0 (given X1), and the 4 transitions in the second
(forward) phase of the routine not already determined from the rule

Xs−1 7→ Xs from time s− 1 to time s (s = 1, 2).

There are thus a total of 26 = 64 possible overall simulation results, each hav-
ing probability 1/64. We check that exactly 12 of these produce coalescence. Of
these 12 accepted results, exactly 4 have X0 = 0, another 4 have X0 = 1, and a fi-
nal 4 have X0 = 2. Thus P(C) = 12/64 = 3/16, and we confirm that LPC

(X0) = π,
as should be true. An identical result holds if instead we choose Xt = 1 or Xt = 2.

An alternative choice adapts Remarks 3.1(a) and 3.4(b) to our discrete setting.
Note that we can use (U , µ) = ({0, 1},uniform) and

φ(·, u) =

{
the mapping taking 0, 1, 2 to 0, 0, 1, respectively, if u = 0

the mapping taking 0, 1, 2 to 1, 2, 2, respectively, if u = 1.

Choosing t = 2 and Xt = 0 as before, the algorithm can now be run with just 2
random bits. In this case we check that exactly 3 of the 4 possible simulation
results produce coalescence, 1 each yielding X0 = 0, 1, 2. Note that P(C) = 3/4 is
much larger for this choice of φ. In fact, since φ is a monotone transition rule (see
Definition 4.2 in Fill [11] or Definition 4.3 below), for the choice Xt = 0 it gives the
highest possible value of P(C) among all choices of φ: see Remark 9.3(e) in Fill [11].
It also is a best choice when Xt = 2. [On a minor negative note, we observe that
P(C) = 0 for the choice Xt = 1. Also note that the π = (1/3, 1/3, 1/3)-average
of the acceptance probabilities (3/4, 0, 3/4), namely, 1/2, is the probability that
forward coupling (or CFTP) done with the same transition rule gives coalescence
within 2 time units; this corroborates Remark 3.2(c).]

Remark 3.5 Both choices of φ are easily extended to handle simple symmetric
random walk on {0, . . . , n} for any n; the second (monotone) choice is again best
possible. (We assume Xt = 0.) For fixed c ∈ (0,∞) and large n, results in Fill [11]
and Section 4 of Diaconis and Fill [7] imply that, for t = cn2, the routine’s success
probability is approximately p(c); here p(c) increases smoothly from 0 to 1 as c
increases from 0 to ∞. We have not attempted the corresponding asymptotic
analysis for the independent-transitions rule. Of course our chain is only a “toy”
example anyway, because direct sampling from π is elementary.

4 Coalescence detection and bounding processes

4.1 Conservative detection of coalescence and detection processes.
Even for large finite state spaces X , determining exactly whether or not coalescence
occurs in Algorithm 1.1 can be prohibitively expensive computationally; indeed, in
principle this requires tracking each of the trajectories ~Y (x), x ∈ X to completion.
However, observe that if we repeat the development of Sections 3.1–3.2, replacing
the coalescence event {Yt(x) does not depend on x} of (3.5) by any subset C of this
event whose occurrence (or not) can still be determined solely from ~U , then every-
thing goes through as before. We call such an event C a coalescence detection event

10 James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S. Rosenthal

and reiterate that C is a conservative indication of coalescence: the occurrence of a
given coalescence detection event is sufficient, but not necessary, for the occurrence
of coalescence of the paths ~Y (x).

In practice, a coalescence detection event is constructed in terms of a detection
process. What we mean by this is a stochastic process ~D = (D0, . . . , Dt), defined
on the same probability space (Ω,A, P) as ~U and ~X, together with a subset ∆ of
its state space D, such that

(a) ~D is constructed from ~U , and
(b) {Ds ∈ ∆ for some s ≤ t} ⊆ {Yt(x) does not depend on x}.

Then C := {Ds ∈ ∆ for some s ≤ t} is a coalescence detection event.

Remark 4.1 In practice, ~D usually evolves Markovianly using ~U ; more pre-
cisely, it is typically the case that there exists deterministic d0 ∈ D and δ : D×U →
D such that D0 = d0 and [paralleling (3.3)]

Ds := δ(Ds−1, Us), 1 ≤ s ≤ t.

The important consequence is that, having determined the trajectory ~X and
the imputed ~U, the user need only follow a single trajectory in the forward phase of
the routine, namely, that of ~D (or rather its analogue ~D in the simulated probability
space).

Example 4.2 We sketch two illustrative examples of the use of detection
processes that do not immediately fall into the more specific settings of Sections 4.2
or 4.3. We hasten to point out, however, that because of the highly special structure
of these two examples, efficient implementation of Algorithm 1.1 avoids the use of
the forward phase altogether; this is discussed for example (a) in Fill [12].

(a) Our first example is provided by the move-to-front (MTF) rule studied
in [12]. Let K be the Markov kernel corresponding to MTF with independent and
identically distributed record requests corresponding to probability weight vector
(w1, . . . , wn); see (2.1) of [12] for specifics. The arguments of Section 4 of [12]
show that if Ds is taken to be the set of all records requested at least once among
the first s requests and ∆ is taken to consist of all (n − 1)-element subsets of the
records 1, . . . , n, then ~D is a detection process. Similar detection processes can be
built for the following generalizations of MTF: move-to-root for binary search trees
(see Dobrow and Fill [9] [10]) and MTF-like shuffles of hyperplane arrangement
chambers and more general structures (see Bidigare, et al. [1] and Brown and
Diaconis [3]).

(b) A second example of quite similar spirit is provided by the (now well-
known) Markov chain (Xt) for generating a random spanning arborescence of the
underlying weighted directed graph, with vertex set U , of a Markov chain (Ut) with
kernel q. Consult Propp and Wilson [34] (who also discuss a more efficient “cycle-
popping” algorithm) for details. We consider here only the special case that (Ut) is
an i.i.d. sequence, i.e., that q(v, w) ≡ q(w). A transition rule φ for the chain (Xt)
is created as follows: for vertex u and arborescence x with root r, φ(x, u) is the
arborescence obtained from x by adding an arc from r to u and deleting the unique
arc in x whose tail is u. Then it can be shown that if Ds is taken to be the set
of all vertices appearing at least once in (U1, . . . , Us) and ∆ := {U}, then ~D is a
detection process.

Extension of Fill’s perfect rejection sampling algorithm to general chains (EXT. ABS.) 11

4.2 Bounding processes. We obtain a natural example of a detection pro-
cess ~D when (a) ~D is constructed from ~U , (b) the corresponding state space D is
some collection of subsets of X , with

∆ := {{x′} : x′ ∈ X},

and
(c) Ds ⊇ {Ys(x) : x ∈ X}.

The concept is simple: in this case, each set Ds is just a “conservative estimate”
(i.e., a superset) of the corresponding set {Ys(x) : x ∈ X} of trajectory values;
thus if Ds = {x′}, then the trajectories ~Y (x) are coalesced to state x′ at time s and
remain coalesced thereafter. We follow the natural impulse to call such a set-valued
detection process a bounding process. Such bounding processes arise naturally in
the contexts of monotone and anti-monotone transition rules (and have been used
by many authors): see the next subsection. Other examples of bounding processes
can be found in works of Huber: see [20] and [21] in connection with CFTP and [22]
in connection with our algorithm.

Of course, nothing is gained, in comparison to tracking all the trajectories, by
the use of a bounding process unless the states of D have more concise representa-
tions than those of generic subsets of X ; after all, we could always choose D = 2X

and Ds = {Ys(x) : x ∈ X}. One rather general setting where compact represen-
tations are often possible, discussed in the next subsection, is that of a partially
ordered set (poset) X .

4.3 Monotone transition rules. We now suppose that X is equipped with a
partial order. We also assume here that there exist (necessarily unique) elements 0̂
and 1̂ in X (called bottom element and top element , respectively) such that 0̂ ≤
x ≤ 1̂ for all x ∈ X . We will discuss the case of monotone transition rules, where
we can build from ~U a bivariate process ((Ls, Vs)), taking values at each time s in
X × X , such that

Ls ≤ Ys(x) ≤ Vs for all 0 ≤ s ≤ t and all x ∈ X . (4.1)

Then Ds := [Ls, Vs] = {x ∈ X : Ls ≤ x ≤ Vs} gives a bounding process, and the
pair (Ls, Vs) is a quite concise representation of Ds.

Recall that our construction (3.3) of the Markov chain ~X with kernel K relies
on the choice of a transition rule (φ, µ) satisfying (3.2).

Definition 4.3 A transition rule φ is said to be monotone if each of the map-
pings
φ(·, u) : X → X , u ∈ U , is monotone increasing, i.e., if

φ(x, u) ≤ φ(y, u) for all u ∈ U

whenever x ≤ y.

Suppose now that φ is monotone. Set (L0, V0) := (0̂, 1̂) and, inductively,

(Ls, Vs) := (φ(Ls−1, Us), φ(Vs−1, Us)), 1 ≤ s ≤ t.

One immediately verifies by induction that (4.1) is satisfied. Note that (Ls, Vs)
is determined solely by ~U (as is the coalescence detection event C = {Lt = Vt})
and is nothing more than (Ys(0̂), Ys(1̂)). In plain language, since monotonicity is
preserved, when the chains ~Y (0̂) and ~Y (1̂) have coalesced, so must have every ~Y (x).

12 James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S. Rosenthal

Remark 4.4 (a) Lower and upper bounding processes can also be constructed
when Algorithm 1.1 is applied with a so-called “anti-monotone” transition rule;
we omit the details. See Häggström and Nelander [19], Huber [21], Kendall [23],
Møller [28], Møller and Schladitz [29], and Thönnes [37] for further discussion
in various specialized settings. There are at least two neat tricks associated with
anti-monotone rules. The first is that, by altering the natural partial order on X ,
such rules can be regarded, in certain bipartite-type settings, as monotone rules,
in which case the performance analysis in Section 5.3 of [14] is available: consult
Section 3 of [19], the paper [29], and Definition 5.1 in [37]. The second is that the
poset X is allowed to be “upwardly unbounded” and so need not have a 1̂: consult
Section 2 of [28] and, again, [29] and [37].

(b) Dealing with monotone rules on partially ordered state spaces without 1̂ is
problematic and requires the use of “dominating processes.” We comment that a
dominating process provides a sort of random bounding process and is useful when
the state space is noncompact, but we shall not pursue these ideas any further here.
See Kendall [23] and Kendall and Møller [24] in the context of CFTP; we hope to
discuss the use of dominating processes for our algorithm in future work.

5 Our algorithm and CTFP: comparison and connection

5.1 Comparison. How does our extension of Fill’s algorithm, as given by
Algorithm 1.1 and discussed in detail in Section 3, compare to CFTP? As we see
it, our algorithm has two main advantages and one main disadvantage.

Advantages: As discussed in Section 1 and Remark 3.2(b) and in [11], a pri-
mary advantage of our algorithm is interruptibility. Given the close connection
between the algorithms described in Section 5.3, one may reasonably view the ex-
tra computational costs of our algorithm (see “Disadvantage” below) as the costs
of securing interruptibility. A related second advantage concerns memory alloca-
tion. Suppose, for example, that our state space X is finite and that each time-step
of Algorithm 1.1, including the necessary imputation (recall Section 3.2), can be
carried out using a bounded amount of memory. Then, for fixed t, our algorithm
can be carried out using a fixed finite amount of memory. Unfortunately, it is rare
in practice that the kernel K employed is sufficiently well analyzed that one knows
in advance a value of t (and a value of the seed Xt) giving a reasonably large prob-
ability P(C) of acceptance. Furthermore, the fixed amount of memory needed is
in practice larger than the typical amount of memory allocated dynamically in a
run of CFTP. Finally, we should note that Wilson [40] has very recently presented
a version of CFTP which also can be carried out with a fixed finite amount of
memory, and which does not require an a priori estimate of the mixing time of the
chain.

Disadvantage: A major disadvantage of our Algorithm 1.1 concerns computa-
tional complexity. We refer the reader to [11] and [12] for a more detailed discus-
sion in the setting of our Section 4.3 (and, more generally, the setting of stochastic
monotonicity). Briefly, if no attention is paid to memory usage, our algorithm has
running time competitive with CFTP: cf. Remark 3.2(c), and also the discussion
in Remark 9.3(e) of [11] that the running time of our algorithm is, in a certain
sense, best possible in the stochastically monotone setting. However, this analy-
sis assumes that running time is measured in Markov chain steps; unfortunately,
time-reversed steps can sometimes take longer than do forward steps to execute
(e.g., [12]), and the imputation described in Section 3.2 is sometimes difficult to

Extension of Fill’s perfect rejection sampling algorithm to general chains (EXT. ABS.) 13

carry out. Moreover, the memory usage for naive implementation of our algorithm
can be exorbitant; how to trade off speed for reduction in storage needs is described
in [11].

5.2 An alternative to Algorithm 1.1. Thus far we have been somewhat
sketchy about the choice(s) of t in Algorithm 1.1. As discussed in Section 1, one
possibility is to run the repetitions of the basic routine independently, doubling t
at each stage. However, another possibility is to continue back in time, reusing
the already imputed values Us and checking again for coalescence. (There is an
oblique reference to this alternative in Remark 9.3 of Fill [11].) This idea leads to
the following algorithm.

Algorithm 5.1 Choose an initial state X0 ∼ π̂, where π̂ is absolutely contin-
uous with respect to π. Run the time-reversed chain K̃, obtaining X0,X−1, . . . in
succession. Conditionally given (X0,X−1, . . .) = (x0, x−1, . . .), generate indepen-
dent random variables U0,U−1, . . . with marginals

P(Us ∈ du) = P (U ∈ du |φ(xs−1, U) = xs), s = 0,−1, . . . , (5.1)

where, on the right, LP (U) = µ is given by (3.2). For t = 0, 1, . . . and x ∈ X , set
Y(−t)
−t (x) := x and, inductively,

Y(−t)
s (x) := φ(Y(−t)

s−1 (x),Us), −t + 1 ≤ s ≤ 0.

If T < ∞ is the smallest t such that

Y(−t)
0 (x), x ∈ X , agree (= X0), (5.2)

then the algorithm succeeds and reports W := X−T as an observation from π.
Otherwise, the algorithm fails.

Remark 5.2 (a) We need only generate X0,X−1, . . . ,X−t and then impute
U0, U−1, . . . ,U−t+1 using (5.1) in order to check whether or not (5.2) holds. Thus
if T < ∞, then the algorithm terminates in finite time.

(b) We omit the detailed description à la Section 3. But the key in setting up
the first probability space is first to choose W ∼ π and U0, U−1, . . . all mutually
independent and then, having determined the backwards coalescence time T from
U0, U−1, . . ., to set X−T := W .

(c) We may relax the condition that T be the smallest t satisfying (5.2), via
the use of coalescence detection events as in Section 4. In particular, to save
considerably on computational effort, we may let T′ be the smallest t which is a
power of 2 such that (5.2) holds and report X−T′ instead.

(d) Algorithm 5.1, and likewise its variant in remark (c), is interruptible: T
and W are conditionally independent given success.

(e) Uniform ergodicity of K is necessary (and, in a weak sense, sufficient) for
almost sure success of Algorithm 5.1; cf. Remark 3.2(a).

5.3 Connection with CFTP. There is a strong and simple connection be-
tween CFTP and our Algorithm 5.1. Indeed, suppose we carry out the usual
CFTP algorithm to sample from π, using kernel K, transition rule φ, and driv-
ing variables ~U = (U0, U−1, . . .). Let T denote the backwards coalescence time
and let X0 ∼ π denote the terminal state output by CFTP. Let W ∼ π indepen-
dent of ~U , and follow the trajectory from X−T := W to X0; call this trajectory
~X = (X−T , . . . , X0). Since X0 is determined solely by ~U , the random variables W
and X0 are independent.

14 James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S. Rosenthal

When π̂ = π in Algorithm 5.1, the algorithm simply constructs the same prob-
ability space as for CFTP, but with the ingredients generated in a different chrono-
logical order: first X0, X−1, . . .; then ~U (which determines T); then W := X−T .
Again X0 ∼ π and W ∼ π are independent.

Remark 5.3 (a) Because of this statistical independence, it does not matter
in Algorithm 5.1 that we actually use X0 ∼ π̂ 6= π.

(b) The fact (1) that W , unlike X0, is independent of ~U , together with (2) that
T depends solely on ~U , explains why our algorithm is interruptible and CFTP is
not.

(c) In a single run of CFTP, the user would of course be unable to choose
W ∼ π as above, just as in a single run of Algorithm 5.1 we do not actually choose
X0 ∼ π. So one might regard our described connection between the two algorithms
as a bit metaphorical. But see Section 7.2 of [14].

References

[1] Bidigare, P., Hanlon, P., and Rockmore, D. A combinatorial description of the spectrum for
the Tsetlin library and its generalization to hyperplane arrangements. Duke Math. J. (1997),

to appear.

[2] Brooks, S. P., Dellaportas, P., and Roberts, G. O. An approach to diagnosing total variation
convergence of MCMC algorithms. J. Comput. Graph. Statist. 6 (1997), 251–265.

[3] Brown, K. and Diaconis, P. Random walk and hyperplane arrangements. Ann. Probab. (1997),

to appear.
[4] Corcoran, J. and Tweedie, R. L. Perfect simulation of Harris recurrent Markov chains.

Preprint (1999). Colorado State University.

[5] Cowles, M. K. and Carlin, B. P. Markov chain Monte Carlo convergence diagnostics: a
comparative review. J. Amer. Statist. Assoc. 91 (1996), 883–904.

[6] Devroye, L. Nonuniform random variate generation, Springer–Verlag, New York, 1986.

[7] Diaconis, P. and Fill, J. A. Strong stationary times via a new form of duality. Ann. Probab.
18 (1990), 1483–1522.

[8] Diaconis, P. and Freedman, D. Iterated random functions. SIAM Rev. 41 (1999), 45–76.
[9] Dobrow, R. P. and Fill, J. A. On the Markov chain for the move-to-root rule for binary search

trees. Ann. Appl. Probab. 5 (1995), 1–19.

[10] Dobrow, R. P. and Fill, J. A. Rates of convergence for the move-to-root Markov chain for
binary search trees. Ann. Appl. Probab. 5 (1995), 20–36.

[11] Fill, J. A. An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl.

Probab. 8 (1998), 131–162.
[12] Fill, J. A. The move-to-front rule: a case study for two perfect sampling algorithms. Probab.

Engrg. Inform. Sci. 12 (1998), 283–302.

[13] Fill, J. A. and Machida, M. Stochastic and realizable monotonicity. Preprint (1998). Available
from http://www.mts.jhu.edu/~fill/.

[14] Fill, J. A., Machida, M., Murdoch, D., and Rosenthal, J. Extension of Fill’s per-

fect rejection sampling algorithm to general chains. Preprint (1999). Available from
http://www.mts.jhu.edu/~fill/.

[15] Foss, S. G. and Tweedie, R. L. Perfect simulation and backward coupling. Comm. Statist.
Stochastic Models 14 (1998), 187–203.

[16] Gelfand, A. E. and Smith, A. F. M. Sampling-based approaches to calculating marginal den-
sities. J. Amer. Statist. Assoc. 85 (1990), 398–409.

[17] Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., editors. Markov Chain Monte Carlo

in Practice, Chapman and Hall, London, 1996.

[18] Green, P. J. and Murdoch, D. J. Exact sampling for Bayesian inference: towards general
purpose algorithms. Preprint (1998).

[19] Häggström, O. and Nelander, K. Exact sampling from anti-monotone systems. Statist. Neer-

landica 52 (1998), 360–380.
[20] Huber, M. Efficient exact sampling from the Ising model using Swendsen–Wang. Preprint

(1998). A two-page version appears in Tenth Annual ACM-SIAM Symposium on Discrete

Algorithms.

Extension of Fill’s perfect rejection sampling algorithm to general chains (EXT. ABS.) 15

[21] Huber, M. Exact sampling and approximate counting techniques, Proceedings of the 30th
ACM Symposium on the Theory of Computing, 1998, pp. 31–40.

[22] Huber, M. Interruptible exact sampling and construction of strong stationary times for

Markov chains. Preprint (1998).
[23] Kendall, W. Perfect simulation for the area-interaction point process. Accardi, L. and

Heyde, C. C., editors, Probability Towards 2000, Springer–Verlag, New York, 1998, pp. 218–

234.
[24] Kendall, W. and Møller, J. Perfect Metropolis–Hastings simulation of locally stable point

processes. Preprint (1999).

[25] Kendall, W. and Thönnes, E. Perfect simulation in stochastic geometry. Pattern Recognition
(1998), special issue on random sets, to appear.

[26] Machida, M. Stochastic monotonicity and realizable monotonicity, Ph.D. dissertation, De-
partment of Mathematical Sciences, The Johns Hopkins University, 1999. Available from
http://www.mts.jhu.edu/~machida/.

[27] Meyn, S. P. and Tweedie, R. L. Computable bounds for convergence rates of Markov chains.
Ann. Appl. Probab. 4 (1994), 981–1011.

[28] Møller, J. Perfect simulation of conditionally specified models. J. R. Stat. Soc. Ser. B 61

(1999), 251–264.
[29] Møller, J. and Schladitz, K. Extensions of Fill’s algorithm for perfect simulation. J. R. Stat.

Soc. Ser. B (1998), to appear.

[30] Murdoch, D. J. and Green, P. J. Exact sampling from a continuous state space. Scand. J.
Statist. 25 (1998), 483–502.

[31] Murdoch, D. J. and Rosenthal, J. S. Efficient use of exact samples. Preprint (1998).

[32] Propp, J. G. and Wilson, D. B. Exact sampling with coupled Markov chains and applications
to statistical mechanics. Random Structures Algorithms 9 (1996), 223–252.

[33] Propp, J. G. and Wilson, D. B. Coupling from the past: a user’s guide. Aldous, D. and

Propp, J. G., editors, Microsurveys in Discrete Probability, vol. 41 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Amer. Math. Soc., Providence, RI,

1998, pp. 181–192.
[34] Propp, J. G. and Wilson, D. B. How to get a perfectly random sample from a generic Markov

chain and generate a random spanning tree of a directed graph. J. Algorithms 27 (1998), 170–

217.
[35] Rosenthal, J. S. Minorization conditions and convergence rates for Markov chain Monte

Carlo. J. Amer. Statist. Assoc. 90 (1995), 558–566.

[36] Smith, A. F. M. and Roberts, G. O. Bayesian computation via the Gibbs sampler and related
Markov chain Monte Carlo methods (with discussion). J. R. Stat. Soc. Ser. B 55 (1993),

3–23.

[37] Thönnes, E. Perfect simulation of some point processes for the impatient user. Adv. in Appl.
Probab. (1997), to appear.

[38] Tierney, L. Markov chains for exploring posterior distributions (with discussion). Ann.

Statist. 22 (1994), 1701–1762.
[39] Wilson, D. B. Annotated bibliography of perfectly random sampling with Markov chains.

Aldous, D. and Propp, J., editors, Microsurveys in Discrete Probability, vol. 41 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Amer.

Math. Soc., Providence, RI, 1998, pp. 209–220. Updated versions are posted at

http://www.dbwilson.com/exact/.
[40] Wilson, D. B. How to couple from the past using a read-once source of randomness. Preprint

(1999). Available from http://dbwilson.com/rocftp/.

