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Abstract. We review recent work concerning optimal proposal scalings for
Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for
trying to improve the algorithm on the fly.

1. Introduction.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) requires

choice of proposal distributions, and it is well-known that some proposals work much bet-

ter than others. Determining which proposal is best for a particular target distribution is

both very important and very difficult. Often this problem is attacked in an ad hoc man-

ner involving much trial-and-error. However, it is also possible to use theory to estimate

optimal proposal scalings and/or adaptive algorithms to attempt to find good proposals

automatically. This chapter reviews both of these possibilities.

1.1. The Metropolis-Hastings Algorithm.

Suppose our target distribution has density π with respect to some reference measure

(usually d-dimensional Lebesgue measure). Then given Xn, a “proposed value” Yn+1 is

generated from some pre-specified density q(Xn,y), and is then accepted with probability

α(x,y) =

{
min{π(y)

π(x)
q(y,x)
q(x,y)

, 1}, π(x) q(x,y) > 0

1, π(x) q(x,y) = 0 .
(1)
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If the proposed value is accepted, we set, Xn+1 = Yn+1; otherwise, we set Xn+1 = Xn. The

function α(x,y) is chosen, of course, precisely to ensure that the Markov chain X0,X1, . . .

is reversible with respect to the target density π(y), so that the target density is stationary

for the chain. If the proposal is symmetric, i.e. q(x,y) = q(y,x), then this reduces to

α(x,y) =

{
min{π(y)

π(x)
, 1}, π(x) q(x,y) > 0

1, π(x) q(x,y) = 0 .

1.2. Optimal Scaling.

It has long been recognised that the choice of the proposal density q(x,y) is crucial to

the success (e.g., rapid convergence) of the Metropolis-Hastings algorithm. Of course, the

fastest-converging proposal density would be q(x,y) = π(y) (in which case α(x,y) ≡ 1,

and the convergence is immediate), but in the MCMC context we assume that π cannot

be sampled directly. Instead, the most common case (which we focus on here) involves a

symmetric random-walk Metropolis algorithm (RMW) in which the proposal value is given

by Yn+1 = Xn + Zn+1, where the increments {Zn} are i.i.d. from some fixed symmetric

distribution (e.g., N(0, σ2Id)). In this case, the crucial issue becomes how to scale the

proposal (e.g., how to choose σ): too small and the chain will move too slowly; too large and

the proposals will usually be rejected. Instead, we must avoid both extremes (we sometimes

refer to this as the “Goldilocks Principle”).

Metropolis et al. (1953) recognised this issue early on, when they considered the case

Zn ∼ Uniform[−α, α] and noted that “the maximum displacement α must be chosen with

some care; if too large, most moves will be forbidden, and if too small, the configuration will

not change enough. In either case it will then take longer to come to equilibrium.”

In recent years, significant progress has been made in identifying optimal proposal scal-

ings, in terms of such tangible values as asymptotic acceptance rate. Under certain condi-

tions, these results can describe the optimal scaling precisely. These issues are discussed in

Section 2 below.

1.3. Adaptive MCMC.

The search for improved proposal distributions is often done manually, through trial and

error, though this can be difficult especially in high dimensions. An alternative approach is

adaptive MCMC, which asks the computer to automatically “learn” better parameter values

“on the fly”, i.e. while an algorithm runs. (Intuitively, this approach is attractive since

computers are getting faster and faster, while human speed is remaining about the same.)
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Suppose {Pγ}γ∈Y is a family of Markov chains, each having stationary distribution π.

(For example, perhaps Pγ corresponds to a RWM algorithm with increment distribution

N(0, γ2Id).) An adaptive MCMC algorithm would randomly update the value of γ at each

iteration, in an attempt to find the best value. Adaptive MCMC has been applied in a

variety of contexts (e.g. Haario et al., 2001; Roberts and Rosenthal, 2006; Giordani and

Kohn, 2006) including to problems in statistical genetics (Turro et al., 2007).

Counterintuitively, adaptive MCMC algorithms may not always preserve the stationarity

of π. However, if the adaptions are designed to satisfy certain conditions, then stationarity

is guaranteed, and significant speed-ups are possible. These issues are discussed in Section 3

below.

1.4. Comparing Markov Chains.

Since much of what follows will attempt to find “better” or “best” MCMC samplers, we

pause to consider what it means for one Markov chain to be better than another.

Suppose P1 and P2 are two Markov chains, each with the same stationary distribution π.

Then P1 converges faster than P2 if supA |P n
1 (x,A)− π(A)| ≤ supA |P n

2 (x,A)− π(A)| for all

n and x. This definition concerns distributional convergence (in total variation distance) as

studied theoretically in e.g. Rosenthal (1995, 2002) and Roberts and Tweedie (1999).

Alternatively, P1 has smaller variance than P2 if Var( 1
n

∑n
i=1 g(Xi)) is smaller when {Xi}

follows P1 than when it follows P2. This definition concerns variance of a functional g, and

may depend on which g is chosen, and also perhaps on n and/or the starting distribution.

Usually we assume the Markov chain {Xn} is in stationarity, so P(Xi ∈ A) = π(A), and

P(Xi+1 ∈ A |Xi = x) = P (x,A) where P is the Markov chain kernel being followed.

If the Markov chain {Xn} is in stationarity, then for large n, Var( 1
n

∑n
i=1 g(Xi)) ≈

1
n
Varπ(g) τg, where τg =

∑∞
k=−∞Corr(g(X0), g(Xk)) = 1 + 2

∑∞
i=1 Corr(g(X0), g(Xi)) is the

integrated autocorrelation time. So, a related definition is that P1 has smaller asymptotic

variance than P2 if τg is smaller under P1 than under P2. (Under strong conditions involving

the so-called Peskun ordering, this improvement is sometimes uniform over choice of g; see

e.g. Mira, 2001.)

Another perspective is that a Markov chain is better if it allows for faster exploration of

the state space. Thus, P1 mixes faster than P2 if E[(Xn − Xn−1)2] is larger under P1 than

under P2, where again {Xn} is in stationarity. (Of course, E[(Xn−Xn−1)2] would usually be

estimated by 1
n

∑n
i=1(Xi −Xi−1)2, or perhaps by 1

n−B
∑n

i=B(Xi −Xi−1)2 to allow a burn-in

B to approximately converge to stationarity.) Note that the evaluation of E[(Xn −Xn−1)2]

is over all proposed moves, including rejected ones where (Xn −Xn−1)2 = 0. Thus, rejected
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moves slow down the chain, but small accepted moves don’t help too much either. Best is

to find reasonably large proposed moves which are reasonably likely to be accepted.

Such competing definitions of “better” Markov chain mean that the optimal choice of

MCMC may depend on the specific question being asked. However, we will see in Section 2

that in some circumstances, these different definitions are all equivalent, leading to uniformly

optimal choices of algorithm parameters.

2. Optimal Scaling of Random-Walk Metropolis.

We restrict ourselves to the RWM algorithm, where the proposals are of the form Yn+1 =

Xn + Zn+1, where {Zi} are i.i.d. with fixed symmetric density, with some scaling parameter

σ > 0, e.g. Zi ∼ N(0, σ2Id). To avoid technicalities, we assume that the target density π is

a positive, continuous function. The task is to choose σ in order to optimise the resulting

MCMC algorithm.

2.1. Basic Principles.

A first observation is that if σ is very small, then virtually all proposed moves will be

accepted, but they will represent very small movements, so overall the chain will not mix

well (Figure 1).
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Figure 1. Trace plot with small σ, large acceptance rate, poor mixing.

Similarly, if σ is very large, then most moves will be rejected, so the chain will usually

not move at all (Figure 2).
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Figure 2. Trace plot with large σ, small acceptance rate, poor mixing.

What is needed is a value of σ between the two extremes, thus allowing for reasonable-

sized proposal moves together with a reasonably high acceptance probability (Figure 3).
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Figure 3. Trace plot with medium σ, medium acceptance rate, good mixing.

A simple way to avoid the extremes is to monitor the acceptance rate of the algorithm,

i.e. the fraction of proposed moves which are accepted. If this fraction is very close to 1, this

suggests that σ is too small (as in Figure 1). If this fraction is very close to 0, this suggests

that σ is too large (as in Figure 2). But if this fraction is far from 0 and far from 1, then we

have managed to avoid both extremes (Figure 3).

So, this provides an easy rule-of-thumb for scaling random-walk Metropolis algorithms:

choose a scaling σ so that the acceptance rate is far from 0 and far from 1. However, this

still allows for a wide variety of choices. Under some conditions, much more can be said.
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2.2. Optimal Acceptance Rate as d→∞.

Major progress about optimal scalings was made by Roberts, Gelman, and Gilks (1997).

They considered RWM on Rd for very special target densities, of the form

π(x1, x2, . . . , xd) = f(x1) f(x2) . . . f(xd) (2)

for some one-dimensional smooth density f . That is, the target density is assumed to consist

of i.i.d. components. Of course, this assumption is entirely unrealistic for MCMC, since it

means that to sample from π it suffices to sample each component separately from the

one-dimensional density f (which is generally easy to do numerically).

Under this restrictive assumption, and assuming proposal increment distributions of the

form N(0, σ2Id), Roberts et al. (1997) proved the remarkable result that as d → ∞, the

optimal acceptance rate is precisely 0.234. This is clearly a major refinement of the general

principle that the acceptance rate should be far from 0 and far from 1.

More precisely, their result is the following. Suppose σ = `/
√
d for some ` > 0. Then as

d → ∞, if time is speeded up by a factor of d, and space is shrunk by a factor of
√
d, then

each component of the Markov chain converges to a diffusion having stationary distribution

f , and speed function given by h(`) = 2 `2 Φ
(
−
√
I`
2

)
. (Here Φ is the cdf of a standard

normal, and I is a constant depending on f , in fact I =
∫∞
−∞

[(
f ′(X)
f(X)

)2
]
f(x) dx.)

It follows that this diffusion is optimised (in terms of any of the criteria of Subsection 1.4)

when ` is chosen to maximise h(`). It is computed numerically that this optimal value of `

is given by `opt
.
= 2.38/

√
I.

Furthermore, the asymptotic (stationary) acceptance rate is given byA(`) = 2 Φ
(
−
√
I`/2

)
.

Hence, the optimal acceptance rate is equal to A(`opt)
.
= 2 Φ(−2.38/2)

.
= 0.234, which is

where the figure 0.234 comes from.

Figure 4 plots h(`) versus `, and Figure 5 plots h(`) versus A(`). (We take I = 1 for

definiteness, but any other value of I would simply multiple all the values by a constant.) In

particular, the relative speed h(`) remains fairly close to its maximum as long as ` is within,

say, a factor of 2 of its optimal value. Equivalently, the algorithm remains relatively efficient

as long as the asymptotic acceptance rate A(`) is between, say, 0.1 and 0.6.

Of course, the above results are all asymptotic as d→∞. Numerical studies (e.g. Gelman

et al., 1996; Roberts and Rosenthal, 2001) indicate that the limiting results do seem to well

approximate finite-dimensional situations for d as small as five. On the other hand, they

do not apply to e.g. one-dimensional increments; numerical studies on normal distributions

show that when d = 1, the optimal acceptance rate is approximately 0.44. Finally, these
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results are all on continuous spaces, but there have also been studies of optimal scaling for

discrete Metropolis algorithms (Neal et al., 2007).
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Figure 4. Algorithm relative speed h(`) as a function of the parameter `.
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Figure 5. Algorithm relative speed h(`) as a function of acceptance rate A(`).
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2.3. Inhomogeneous Target Distributions.

The above result of Roberts et al. (1997) requires the strong assumption that π(x) =∏d
i=1 f(xi), i.e. that the target distribution has i.i.d. components. In later work, this as-

sumption was relaxed in various ways.

Roberts and Rosenthal (2001) considered inhomogeneous target densities of the form

π(x) =
d∏
i=1

Ci f(Cixi) , (3)

where {Ci} are themselves i.i.d. from some fixed distribution. (Thus, (2) corresponds to the

special case where the Ci are constant.) They proved that in this case, the result of Roberts

et al. (1997) still holds (including the optimal acceptance rate of 0.234), except that the

limiting diffusion speed is divided by an “inhomogeneity factor” of b ≡ E(C2
i )/(E(Ci))

2 ≥ 1.

In particular, the more inhomogeneous the target distribution, i.e. the more variability of

the Ci, the slower the resulting algorithm.

As a special case, if the target distribution is N(0,Σ) for some d-dimensional covariance

matrix Σ, and the increment distribution is of the form N(0,Σp), then by change-of-basis this

is equivalent to the case of proposal increment N(0, Id) and target distribution N(0,Σ Σ−1
p ).

In the corresponding eigenbasis, this target distribution is of the form (3) where now Ci =
√
λi, with {λi}di=1 the eigenvalues of the matrix Σ Σ−1

p . For large d, this approximately

corresponds to the case where the {Ci} are random with E(Ci) = 1
d

∑d
j=1

√
λj and E(C2

i ) =
1
d

∑d
j=1 λj. The inhomogeneity factor b then becomes

b ≡ E(C2
i )/(E(Ci))

2 ≈
1
d

∑d
j=1 λj(

1
d

∑d
j=1

√
λj

)2 = d

∑d
j=1 λj(∑d

j=1

√
λj

)2 , (4)

with {λj} the eigenvalues of Σ Σ−1
p . This expression is maximised when the {λj} are constant,

i.e. when Σ Σ−1
p is a multiple of the identity, i.e. when Σp is proportional to Σ.

We conclude: with increment distribution N(0,Σp), and target distribution N(0,Σ), it

is best if Σp is approximately proportional to Σ, i.e. Σp ≈ kΣ for some k > 0. If not, this

will lead to additional slow-down by the factor b.

Once we fix Σp = kΣ, then we can apply the original result of Roberts et al., to conclude

that the optimal constant k is then (2.38)2/d. That is, it is optimal to have

Σp = [(2.38)2/d] Σ . (5)

In a related direction, Bédard (2007, 2008, 2006; see also Bédard and Rosenthal, 2008)

considered the case where the target distribution π has independent coordinates with vastly
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different scalings (i.e., different powers of d as d → ∞). She proved that if each individual

component is dominated by the sum of all components, then the optimal acceptance rate

of 0.234 still holds. In cases where one component is comparable to the sum, the optimal

acceptance rate is in general less (not more!) than 0.234. Sherlock (2006) did explicit finite-

dimensional computations for the case of normal target distributions, and came to similar

conclusions.

2.4. Metropolis-Adjusted Langevin Algorithm (MALA).

Finally, Roberts and Tweedie (1996) and Roberts and Rosenthal (1998) considered the

more sophisticated Metropolis-Adjusted Langevin algorithm. This algorithm is similar to

RWM, except that the proposal increment distribution Zi ∼ N(0, σ2Id) is replaced by

Zi ∼ N(
σ2

2
∇ log π(Xn), σ2Id) .

Here the extra term σ2

2
∇ log π(Xn), corresponding to the discrete-time approximation to the

continuous-time Langevin diffusion for π, is an attempt to move in the direction in which

the (smooth) target density π is increasing.

Roberts and Rosenthal (1998) proved that in this case, under the same i.i.d. target

assumption (2), a similar optimal scaling result holds. This time the scaling is σ = `/d1/6

(as opposed to `/
√
d), and the optimal value `opt has the optimal asymptotic acceptance rate

A(`opt) = 0.574 (as opposed to 0.234).

This proves that the optimal proposal scaling σ and the acceptance rate are both sig-

nificantly larger for MALA than for RWM, indicating that MALA an improved algorithm

with faster convergence. The catch, of course, is that the gradient of π must be computed

at each new state reached, which could be difficult and/or time-consuming. Thus, RWM is

much more popular than MALA in practice.

2.5. Numerical Examples.

Here we consider some simple numerical examples, in dimension d = 10. In each case,

the target density π is that of a ten-dimensional normal with some covariance matrix Σ, and

we consider various forms of random-walk Metropolis (RMW) algorithms.

2.5.1. Off-Diagonal Covariance.

Let M be the d× d matrix having diagonal elements 1, and off-diagonal elements given

by the product of the row and column number divided by d2, i.e. mii = 1, and mij = ij/d2

9



for j 6= i. Then let Σ−1 = M2 (since M is symmetric, Σ is positive-definite), and let the

target density π be that of N(0,Σ). (Equivalently, π is such that X ∼ π if X = M Z where

Z is a 10-tuple of i.i.d. univariate standard normals.)

We compute numerically that the top-left entry of Σ is equal to 1.0305. So, if h is the

functional equal to the square of the first coordinate, then in stationarity the mean value of

h should be 1.0305.

We consider a random-walk Metropolis (RWM) algorithm for this target π(·), with initial

value X0 = (1, 0, 0, . . . , 0), and with increment distribution given by N(0, σ2Id) for various

choices of σ. For each choice of σ, we run the algorithm for 100,000 iterations, and average

all the values of the square of the first coordinate to estimate its stationary mean. We repeat

this 10 times for each σ, to compute a sample standard error (over the 10 independent runs)

and a root mean squared error (RMSE) for each choice of σ. Our results are as follows:

σ mean acc. rate estimate RMSE

0.1 0.836 0.992 ± 0.066 0.074
0.7 0.230 1.032 ± 0.019 0.018
3.0 0.002 1.000 ± 0.083 0.085

We see from this table that the value σ = 0.1 is too small, leading to an overly high

acceptance rate (83.6%), a poor estimate (0.992) of the mean functional value with large

standard error (0.066) and large root mean squared error (0.074). Similarly, the value σ = 3.0

is too high, leading to an overly low acceptance rate (0.2%), a poor estimate (1.000) of the

mean functional value with large standard error (0.083) and large root mean squared error

(0.085). On the other hand, the value σ = 0.7 is just right, leading to a nearly-optimal

acceptance rate (23.0%), a good estimate (1.032) of the mean functional value with smaller

standard error (0.019) and smaller root mean squared error (0.085).

This confirms that, when scaling the increment covariance as σId, it is optimal to find σ

to make the acceptance rate close to 0.234.

2.5.2. Inhomogeneous Covariance.

To consider the effect of non-diagonal proposal increments, we again consider a case

where the target density π is that of N(0,Σ), again in dimension d = 10, but now we take

Σ = diag(12, 22, 32, . . . , 102). Thus, the individual covariances are now highly variable. Since

the last coordinate now has the highest variance and is thus most “interesting”, we consider

the functional given by the square of the last coordinate. So, the functional’s true mean is

now 100. We again start the algorithms with the initial value X0 = (1, 0, 0, . . . , 0).
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We first consider a usual RWM algorithm, with proposal increment distributionN(0, σ2Id),

with σ = 0.7 chosen to get an acceptance rate close to the optimal value of 0.234. The result

(again upon running the algorithm for 100,000 iterations, repeated 10 times to compute a

sample standard error) is as follows:

σ mean acc. rate estimate RMSE
0.7 0.230 114.8 ± 28.2 30.5

We thus see that, even though σ was well chosen, the resulting algorithm still converges

poorly leading to a poor estimate (114.8) with large standard error (28.2) and large RMSE

(30.5).

Next we consider running the modified algorithm where now the increment proposal is

equal to N(0, σ2Σ) where Σ is the target covariance matrix as above, but otherwise the run

is identical. In this case, we find the following:

σ mean acc. rate estimate RMSE
0.7 0.294 100.25 ± 1.91 1.83

Comparing the two tables, we can see that the improvement from using an increment

proposal covariance proportional to the target covariance (rather than the identity matrix)

is very dramatic. The estimate (100.25) is much closer to the true value (100), with much

smaller standard error (1.91) and much smaller RMSE (1.83). (Furthermore, the second

simulation was simply run with σ = 0.7 as in the first simulation, leading to slightly too

large an acceptance rate, so a slightly larger σ would make it even better.) This confirms,

as shown by Roberts and Rosenthal (2001), that when running a Metropolis algorithm, it is

much better to use increment proposals which mimic the covariance of the target distribution

if at all possible.

Of course, in general the target covariance matrix will not be known, and it is not

at all clear (especially in high dimensions) how one could arrange for proposal increment

covariances to mimic the target covariance. One promising solution is adaptive MCMC,

discussed in the next section. In particular, Section 3 considers the adaptive Metropolis

algorithm and shows how it can successfully mimic the target covariance without any a

priori knowledge about it, even in hundreds of dimensions.

2.6. Frequently Asked Questions.
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Isn’t a larger acceptance rate always preferable?

No. For RWM, if the acceptance rate is close to 1, this means the proposal increments are

so small that the algorithm is highly inefficient despite all the acceptances.

Is it essential that the acceptance rate be exactly 0.234?

No. As shown in Figure 5, the algorithm’s efficiency remains high whenever the acceptance

rate is between about 0.1 and 0.6.

Are these asymptotic results relevant to finite-dimensional problems?

Yes. While the theorems are only proven as d → ∞, it appears that in many cases the

asymptotics approximately apply whenever d ≥ 5, so the infinite-dimensional results are

good approximations to finite-dimensional situations.

Do these results hold for all target distributions?

No. They are only proved for very special cases involving independent target components.

However, within that class they appear to be fairly robust (albeit sometimes with an even

lower optimal acceptance rate than 0.234), and simulations seem to suggest that they ap-

proximately hold in other cases too. Furthermore, by change-of-basis, the results apply to

all normal target distributions, too. And, the general principle that the scaling should be

neither too large nor too small, applies much more generally, to virtually all “local” MCMC

algorithms.

Do these results hold for multi-modal distributions?

In principle, yes, at least for distributions with independent (though perhaps multi-modal)

components. However, the asymptotic acceptance rate is by definition the acceptance rate

with respect to the entire target distribution. So, if a sampler is stuck in just one mode, it

may mis-represent the asymptotic acceptance rate, leading to an incorrect estimate of the

asymptotic acceptance rate, and a mis-application of the theorem.

In high dimensions, is the proposal scaling parameter σ the only quantity of

interest?

No. The entire proposal distribution is of interest. In particular, it is best if the covariance

of the proposal increment distribution mimics the covariance of the target distribution as
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much as possible. However, often significant gains can be realised simply by optimising σ

according to the theorems.

Doesn’t optimality depend on which criterion is used?

Yes in general, but these asymptotic diffusion results are valid for any optimality measure.

That is because in the limit the processes each represent precisely the same diffusion, just

scaled with a different speed factor. So, running a suboptimal algorithm for n steps is

precisely equivalent (in the limit) to running the optimal algorithm for m steps, where

m < n. In other words, with a suboptimal algorithm you have to run for longer to achieve

precisely the same result, which is less efficient by any sensible efficiency measure at all,

including all of those in Subsection 1.4.

Do these results hold for, say, Metropolis-within-Gibbs algorithms?

No, since they are proved for full-dimensional Metropolis updates only. Indeed, the Metropolis-

within-Gibbs algorithm involves updating just one coordinate at a time, and thus essentially

corresponds to the case d = 1. In that case, it appears that the optimal acceptance rate is

usually closer to 0.44 than 0.234.

Isn’t it too restrictive to scale σ specifically as O(d−1/2) for RWM, or O(d−1/6) for

MALA? Wouldn’t other scalings lead to other optimality results?

No, a smaller scaling would correspond to letting ` → 0, while a larger scaling would cor-

respond to letting ` → ∞, either of which would lead to an asymptotically zero-efficiency

algorithm (cf. Figure 5). The O(d−1/2) or O(d−1/6) scaling is the only one that leads to a

non-zero limit, and are thus the only scaling leading to optimality as d→∞.

3. Adaptive MCMC.

Even if we have some idea of what criteria makes an MCMC algorithm optimal, this

still leaves the question of how to find this optimum, i.e. how to run a Markov chain with

(approximately) optimal characteristics. For example, even if we are convinced that an

acceptance rate of 0.234 is optimal, how do we find the appropriate proposal scaling to

achieve this?

One method, commonly used, is by trial-and-error: if the acceptance rate seems too high,

then we reduce the proposal scaling σ and try again (or if it seems too low, then we increase

the scaling). This method is often successful, but it is generally time-consuming, requiring
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repeated manual intervention by the user. Furthermore, such a method cannot hope to find

more complicated improvements, for example making the proposal covariance matrix Σp

approximately proportional to the (unknown) target covariance matrix Σ as in (5) (which

requires choosing d(d − 1)/2 separate covariance matrix entries). It is possible to use more

refined versions of this, for example with increasing trial run lengths to efficiently zero in

on good proposal scale and shape values (Pasarica and Gelman, 2006), but this is still not

sufficient in difficult high-dimensional problems.

As an alternative, we consider algorithms which themselves try to improve the Markov

chain. Specifically, let {Pγ}γ∈Y be a family of Markov chain kernels, each having the same

stationary distribution π. Let Γn be the chosen kernel choice at the nth iteration, so

P(Xn+1 ∈ A |Xn = x,Γn = γ,Xn−1, . . . , X0,Γn−1, . . . ,Γ0) = Pγ(x,A)

for n = 0, 1, 2, . . .. Here the {Γn} are updated according to some adaptive updating algo-

rithm. In principle, the choice of Γn could depend on the entire historyXn−1, . . . , X0,Γn−1, . . . ,Γ0,

though in practice it is often the case that the pairs process {(Xn,Γn)}∞n=0 is Markovian.

In general the algorithms are quite easy to implement, requiring only moderate amounts of

extra computer programming (and there are even some efforts at generic adaptive software,

e.g. Rosenthal, 2007).

Whether such an adaptive scheme will improve convergence depends, obviously, on the

adaptive algorithm selected. An even more fundamental question, which we now consider,

is whether the adaption might destroy convergence.

3.1. Ergodicity of Adaptive MCMC.

One might think that, as long as each individual Markov chain Pγ converges to π, there-

fore any adaptive mixture of the chains must also converge to π. However, this is not

the case. For a simple counter-example (illustrated interactively by Rosenthal, 2004; see

also Atchadé and Rosenthal, 2005, and Roberts and Rosenthal, 2005), let Y = {1, 2}, let

X = {1, 2, 3, 4}, let π(1) = π(3) = π(4) = 0.333 and π(2) = 0.001. Let each Pγ be

a RWM algorithm, with proposal Yn+1 ∼ Uniform{Xn − 1, Xn + 1} for P1, or Yn+1 ∼
Uniform{Xn − 2, Xn − 1, Xn + 1, Xn + 2} for P2. (Of course, any proposed moves out of X
are always rejected, i.e. π(x) = 0 for x 6∈ X .) Define the adaption by saying that Γn+1 = 2 if

the nth proposal was accepted, otherwise Γn+1 = 1. Then each Pγ is reversible with respect

to π. However, the adaptive algorithm can get “stuck” with Xn = Γn = 1 for long stretches

(and only escape with probability 0.001/0.333), so the limiting distribution of Xn is weighted

too heavily towards 1 (and too lightly towards 3 and 4).
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In light of such counter-examples, it is important to have sufficient conditions to guarantee

convergence in distribution of {Xn} to π. In recent years, a number of authors (Haario et al.,

2001; Atchadé and Rosenthal, 2005; Andrieu and Moulines, 2006; Roberts and Rosenthal,

2007; Giordani and Kohn, 2006; Andrieu and Atchadé, 2007) have proved ergodicity of

adaptive MCMC under various assumptions.

In particular, Roberts and Rosenthal (2005) proved that limn→∞ supA⊆X ‖P(Xn ∈ A)−
π(A)‖ = 0 (asymptotic convergence), and also limn→∞

1
n

∑n
i=1 g(Xi) = π(g) for all bounded

g : X → R (WLLN), assuming only the Diminishing (a.k.a. Vanishing) Adaptation condition

lim
n→∞

sup
x∈X
‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 in probability , (6)

and also the Containment (a.k.a. Bounded Convergence) condition

{Mε(Xn,Γn)}∞n=0 is bounded in probability , ε > 0 , (7)

where Mε(x, γ) = inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε} is the convergence time of the kernel Pγ

when beginning in state x ∈ X .

Now, (7) is a technical condition which is satisfied for virtually all reasonable adaptive

schemes. For example, it holds whenever X × Y is finite, or is compact in some topology

in which either the transition kernels Pγ, or the Metropolis-Hastings proposal kernels Qγ,

have jointly continuous densities. It also holds for adaptive RWM and Metropolis-within-

Gibbs algorithms under very general conditions (Bai et al., 2008). (It is, however, possible to

construct pathalogical counter-examples, where containment does not hold; see Yang, 2008b,

and Bai et al., 2008.) So, in practice, the requirement (7) can be largely ignored.

By contrast, condition (6) is more fundamental. It requires that the amount of adapting

at the nth iteration goes to 0 as n → ∞. (Note that the sum of the adaptions can still be

infinite, i.e. an infinite total amount of adaption is still permissible, and it is not necessarily

required that the adaptive parameters {Γn} converge to some fixed value.) Since the user can

choose the adaptive updating scheme, (6) can be ensured directly through careful planning.

For example, if the algorithm adapts at the nth iteration only with probability p(n), then (6)

is automatically satisfied if p(n)→ 0. Alternatively, if the choice of γ depends on an empirical

average over iterations 1 through n, then the influence of the nth iteration is just O(1/n)

and hence goes to 0.

Such results allow us to update our parameters {Γn} in virtually any manner we wish,

so long as (6) holds. So, what adaptions are beneficial?
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3.2. Adaptive Metropolis (AM).

The first important modern use of adaptive MCMC was the Adaptive Metropolis (AM)

algorithm of Haario et al. (2001). This algorithm is motivated by the observation (5) that

for RWM in Rd, at least with normal target distributions, it is optimal to have a proposal

covariance matrix of the form (2.38)2/d times the target covariance matrix Σ. Since Σ is in

general unknown, it is estimated by Σn, the empirical covariance matrix of X0, . . . , Xn.

Thus, the AM algorithm essentially uses a proposal distribution for the nth iteration

given by

Yn+1 ∼ N(Xn, [(2.38)2/d] Σn) .

To ensure that the proposal covariances don’t simply collapse to 0 (which could violate (7)),

Haario et al. (2001) added ε Id to Σn at each iteration, for some small ε > 0. Another possi-

bility (Roberts and Rosenthal, 2006) is to instead let the proposal be a mixture distribution

of the form

(1− β)N(Xn, [(2.38)2/d] Σn) + β N(Xn, Σ0)

for some 0 < β < 1 and some fixed non-singular matrix Σ0 (e.g., Σ0 = [(0.1)2/d] Id). (With

either version, it is necessary to use some alternative fixed proposal distribution for the first

few iterations when the empirical covariance Σn is not yet well-defined.)

Since empirical estimates change at the nth iteration by only O(1/n), it follows that

the Diminishing Adaptation condition (6) will be satisfied. Furthermore, the containment

condition (7) will certainly be satisfied if one restricts to compact regions (Haario et al.,

2001; Roberts and Rosenthal, 2006), and in fact containment still holds provided the target

density π decays at least polynomially in each coordinate, a very mild assumption (Bai et

al., 2008). So, AM is indeed a valid sampling algorithm.

Computer simulations (Roberts and Rosenthal, 2006) demonstrate that this AM algo-

rithm will indeed “learn” the target covariance matrix, and approach an optimal algorithm,

even in very high dimensions. While it may take many iterations before the adaption sig-

nificantly improves the algorithm, in the end it will converge enormously faster than a

non-adapted RWM algorithm. The following figures show a trace plot of the first coordinate

(Figure 6), and also a graph of the inhomogeneity factor b in (4) (Figure 7), for an AM run in

dimension d = 100 (where the target was a normal distribution with an irregular and highly

skewed covariance matrix). They show that the run initially underestimates the variability

of the first coordinate, which would lead to drastically incorrect estimates. However, after

about 250,000 iterations, the algorithm has “found” a good proposal increment covariance

matrix, so that b gets close to 1, and the trace plot correctly finds the true variability of the
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first coordinate. Such adaptation could never have been done manually, because of the large

dimension, but the computer eventually finds a good algorithm. This shows the potential of

adaptive MCMC to find good algorithms that cannot be found by hand.
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Figure 6. Trace plot of first coordinate of AM in dimension 100.
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Figure 7. Trace plot of inhomogeneity factor b for AM in dimension 100.

3.3. Adaptive Metropolis-Within-Gibbs.

A standard alternative to the usual full-dimensional Metropolis algorithm is the “Metropolis-

Within-Gibbs” algorithm (arguably a misnomer, since the original work of Metropolis et al.,

1953, corresponded to what we now call Metropolis-Within-Gibbs). Here the variables are
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updated one at a time (in either systematic or random order), each using a Metropolis

algorithm with a one-dimensional proposal.

To be specific, suppose that the ith coordinate is updated using a proposal increment

distributionN(0, e2 lsi), so lsi is the log of the standard deviation of the increment. Obviously,

we would like to find optimal values of the lsi, which may of course be different for the

different variables. We even have a rule of thumb from the end of Subsection 2.3, that each

lsi should be chosen so that the acceptance rate is approximately 0.44. However, even with

this information, it is very difficult (if not impossible) in high dimensions to optimise each

lsi manually. Instead, an adaptive algorithm might be used.

One way (Roberts and Rosenthal, 2006) to adapt the lsi values is to break up the run

into “batches” of, say, 50 iterations each. After the nth batch, we update each lsi by adding

or subtracting an adaption amount δ(n). The adapting attempts to make the acceptance

rate of proposals for variable i as close as possible to 0.44. Specifically, we increase lsi by

δ(n) if the fraction of acceptances of variable i was more than 0.44 on the nth batch, or

decrease lsi by δ(n) if it was less. (A related component-wise adaptive scaling method, a

one-dimensional analog of the original Adaptive Metropolis algorithm of Haario et al., 2001,

is presented in Haario et al., 2005.)

To satisfy condition (6) we require δ(n) → 0; for example, we might take δ(n) =

min(0.01, n−1/2). As for (7), it is easily seen to be satisfied if we restrict each lsi to a

finite interval [−M,M ]. However, even this is not necessary, since it is proved by Bai et

al. (2008) that (7) is always satisfied for this algorithm, provided only that the target den-

sity π decreases at least polynomially in each direction (a very mild condition). Hence, the

restriction (7) is once again not of practical concern.

Simulations (Roberts and Rosenthal, 2006) indicate that this adaptive Metropolis-within-

Gibbs algorithm does a good job of correctly scaling the lsi values, even in dimensions as

high as 500, leading to chains which mix much faster than those with pre-chosen proposal

scalings. The algorithm has recently been applied successfully to high-dimensional inference

for statistical genetics (Turro et al., 2007). We believe it will be applied to many more

sampling problems in the near future. Preliminary general-purpose software to implement

this algorithm is now available (Rosenthal, 2007).

3.4. State-Dependent Proposal Scalings.

Another approach involves letting the proposal scaling depend on the current state Xn,

so that e.g. given Xn = x, we might propose Yn+1 ∼ N(x, σ2
x). In this case, the acceptance
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probability (1) becomes

α(x, y) = min
[
1,

π(y)

π(x)
(σx/σy)

d exp (− 1

2
(x− y)2(σ−2

y − σ−2
x ))

]
. (8)

The functional form of σx can be chosen and adapted in various ways to attempt to achieve

efficient convergence.

For example, in many problems the target distribution becomes more spread out as we

move farther from the origin. In that case, it might be appropriate to let, say, σx = ea(1+|x|)b

where a and b are determined adaptively. For example, we could again divide the run into

batches of 50 iterations as in the previous subsection. After each iteration, the algorithm

updates a by adding or subtracting δ(n) in an effort to make the acceptance rate as close as

possible to e.g. 0.234 or 0.44. The algorithm also adds or subtracts δ(n) to b in an effort to

equalise the acceptance rates in the two regions {x ∈ X : |x| > C} and {x ∈ X : |x| ≤ C}
for some fixed C.

Once again, condition (6) is satisfied provided δ(n) → 0, and (7) is satisfied under very

mild conditions. So, this provides a convenient way to give a useful functional form to

σx, without knowing in advance what values of a and b might be appropriate. Simulations

(Roberts and Rosenthal, 2006) indicate that this adaptive algorithm works well, at least in

simple examples.

Another approach, sometimes called the Regional Adaptive Metropolis Algorithm (RAMA),

use a finite partition of the state space: X = X1
•∪ . . . •∪Xm. The proposal scaling is then

given by σx = eai whenever x ∈ Xi, with the acceptance probability (8) computed accord-

ingly. Each of the values ai is again adapted after each batch of iterations, by adding or

subtracting δ(n) in an attempt to make the acceptance fraction of proposals from Xi close

to 0.234. (As a special case, if there were no visits to Xi during the batch, then we always

add δ(n) to ai, to avoid the problem of ai becoming so low that proposed moves to Xi are

never accepted.) Once again, the algorithm will be valid under very mild conditions provided

δ(n)→ 0.

Recent work of Craiu et al. (2008) considers certain modifications of RAMA, in which

multiple copies of the algorithm are run simultaneously in an effort to be sure to “learn”

about all modes rather than getting stuck in a single mode. Their work also allows the

proposal distribution to be a weighted mixture of the different N(x, e2ai), to allow for the

possibility that the partition {Xi} was imperfectly chosen. It appears that such greater

flexibility will allow for wider applicability of RAMA-type algorithms.

Of course, Langevin (MALA) algorithms may also be regarded as a type of state-

dependent scaling, and it is possible to study adaptive versions of MALA as well (Atchadé,
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2006).

3.5. Limit Theorems.

Many applications of MCMC make use of such Markov chain limit theorems as the Weak

Law of Large Numbers (WLLN), Strong Law of Large Numbers (SLLN), and Central Limit

Theorem (CLT), in order to guarantee good asymptotic estimates and estimate standard

errors (see e.g. Tierney, 1994; Jones and Hobert, 2001; Hobert et al., 2002; Roberts and

Rosenthal, 2004; and Jones, 2004). So, it is natural to ask if such limit theorems hold for

adaptive MCMC as well.

Under the assumptions of Diminishing Adaptation and Containment, the WLLN does

hold for all bounded functionals (Roberts and Rosenthal, 2007, Theorem 23). So, this at

least means that when using adaptive MCMC for estimating means of bounded functionals,

one will obtain an accurate answer with high probability if the run is sufficiently long.

For unbounded functionals, the WLLN usually still holds, but not always (Yang, 2008a,

Theorem 2.1). Even for bounded functionals, the SLLN may not hold (Roberts and Rosen-

thal, 2007, Example 24), and that same example shows that a CLT might not hold as well.

So, this suggests that the usual estimation of MCMC standard errors may be more challeng-

ing for adaptive MCMC if we assume only Diminishing Adaptation and Containment.

Under stronger assumptions, more can be said. For example, Andrieu and Moulines

(2006; see also Andrieu and Atchadé, 2007, and Atchadé, 2007) prove various limit the-

orems (including CLTs) for adaptive MCMC algorithms, assuming that the adaptive pa-

rameters converge to fixed values sufficiently quickly. They also prove that such adaptive

algorithms will inherit many of the asymptotic optimality properties of the corresponding

fixed-parameter algorithms. Such results facilitate further applications of adaptive MCMC,

however they require various technical conditions which may be difficult to check in practice.

3.6. Frequently Asked Questions.

Can’t I adapt my MCMC algorithm any way I like, and still preserve conver-

gence?

No. In particular, if the Diminishing Adaption condition (6) does not hold, then there are

simple counter-examples showing that adaptive MCMC can converge to the wrong answer,

even though each individual Markov chain kernel would correctly converge to π.
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Do I have to learn lots of technical conditions before I can apply adaptive

MCMC?

Not really. As long as you satisfy Diminishing Adaption (6), which is important but quite

intuitive, then your algorithm will probably be asymptotically valid.

Have adaptive MCMC algorithms actually been used to speed up convergence

on high-dimensional problems?

Yes, they have. Simulations on test problems involving hundreds of dimensions have been

quite successful (Roberts and Rosenthal, 2006), and adaptive Metropolis-within-Gibbs has

also been used on statistical genetics problems (Turro et al., 2007).

Does adaption have to be designed specifically to seek out optimal parameter

values?

No. The ergodicity results presented herein do not require that the parameters {Γn} converge

at all, only that they satisfy (6) which still allows for the possibility of infinite total adaption.

However, many of the specific adaptive MCMC algorithms proposed are indeed designed to

attempt to converge to specific values (e.g., to proposal scalings which give an asymptotic

acceptance rate of 0.234).

Why not just do the adaption by hand, with trial runs to determine optimal

parameter values, and then a long run using these values?

Well, if you can really determine optimal parameter values from a few trial runs, then that’s

fine. However, in high dimensions, with many parameters to choose (e.g., a large proposal

covariance matrix), it is doubtful that you can find good parameter values manually.

Suppose I just have the computer adapt for some fixed, finite amount of time,

and then continue the run without further adapting. Won’t that guarantee

asymptotic convergence to π?

Yes, it will (provided each individual kernel Pγ is ergodic), and this is a sensible method to

try. However, it may be unclear how much adaption should be done before you stop. For

example, with adaptive Metropolis in 200 dimensions, it took well over a million iterations

(Roberts and Rosenthal, 2006) before a truly good proposal covariance matrix was found –

and it was not clear a priori that it would take nearly so long.
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Can I use adaption for other types of MCMC algorithms, like the Gibbs sampler?

In principle, yes. For example, an adaptive Gibbs sampler could adapt such quantities

as the order of update of coordinates (for systematic-scan), or the probability weights of

various coordinates (for random-scan), or coordinate blockings for joint updates, or such

reparameterisations as rotations and centerings and so on. Only time will tell what adaptions

turn out to be useful in what contexts.

Am I restricted to the specific adaptive MCMC algorithms (Adaptive Metropo-

lis, Adaptive Metropolis-within-Gibbs, RAMA, . . . ) presented herein?

Not at all! You can make up virtually any rules for how your Markov chain parameters

{Γn} adapt over time, as long as the adaption diminishes, and your algorithm will probably

be valid. The challenge is then to find sensible/clever adaption rules. Hopefully more and

better adaptive methods will be found in the future!

Are any other methods, besides adaptive MCMC, available to help algorithms

“learn” how to converge well?

Yes, there are many. For example, particle filters (e.g. Pitt and Sheppard, 1999), population

Monte Carlo (e.g. Cappé et al., 2004), and sequential Monte Carlo (e.g. Del Moral et al.,

2006), can all be considered as methods which attempt to “learn” faster convergence as they

go. However, the details of their implementations are rather different than the adaptive

MCMC algorithms presented herein.

4. Conclusion.

We have reviewed optimal proposal scaling results, and adaptive MCMC algorithms.

While the optimal scaling theorems are all proved under very restrictive and unrealistic

assumptions (e.g., target distributions with independent coordinates), they appear to provide

useful guidelines much more generally. In particular, results about asymptotic acceptance

rates provide useful benchmarks for Meteropolis algorithms in a wide variety of settings.

Adaptive MCMC algorithms appear to provide simple, intuitive methods of finding

quickly-converging Markov chains without great effort on the part of the user (aside from the

initial programming, and there is even some generic software available, e.g. Rosenthal, 2007).

While certain conditions (notably Diminishing Adaptation) must be satisfied to guarantee

asymptotic convergence, these conditions are generally not onerous or difficult to achieve.
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Overall, we feel that these results indicate the widespread applicability of both optimal

scaling and adaptive MCMC algorithms to many different MCMC settings (Roberts and

Rosenthal, 2006; Turro et al., 2007), including to complicated high-dimensional distributions.

We hope that many MCMC users will be guided by optimal scaling results, and experiment

with adaptive algorithms, in their future applications.
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