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Abstract. We examine the convergence properties of some simple Gibbs
sampler examples under various scans. We find some surprising results, in-
cluding Gibbs samplers where deterministic-scan is much more efficient than
random-scan, and other samplers where the opposite is true. We also present
an example where the convergence takes precisely the same time with any fixed
deterministic scan, but modifying the scan in any way leads to significantly
slower convergence.
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1. Introduction.

Since their introduction into the Bayesian statistical community by Gelfand and Smith

(1990), Gibbs samplers and other Markov chain Monte Carlo (MCMC) algorithms have

been very widely studied and used to approximately sample from probability distributions

of statistical interest (see e.g. Brooks et al., 2011, and the references therein). One central

and ongoing question is their convergence rate, i.e. the number of iterations they need to

be run to make their distribution close to stationarity. This question has been considered

by a number of authors (e.g. Liu et al., 1995; Rosenthal, 1995; Roberts and Sahu, 1997;

Papaspiliopoulos and Roberts, 2008), but many questions remain unanswered.

The Gibbs sampler is usually defined for a target probability distribution π on a d-

dimensional product state space such as Rd for d ≥ 2. (The case d = 2 corresponds to

the data augmentation algorithm of Tanner and Wong, 1987.) The algorithm proceeds by
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replacing, in turn, the current value of the ith coordinate by a draw from the conditional

distribution of that coordinate according to π conditional on the current values of all the other

coordinates. The choices of the coordinate i to replace can be chosen either in deterministic

order (usually by replacing the first coordinate, then the second coordinate, . . ., then the

dth coordinate), or in random order (usually where the coordinate to replace next is chosen

uniformly from {1, 2, . . . , d}). The replacements then continue indefinitely. Under mild

conditions (see e.g. Tierney, 1994; Roberts and Rosenthal, 2004), the resulting d-dimensional

vector will asymptotically converge in distribution to the target stationary distribution π.

In this paper, we consider some very simple and artificial examples of Gibbs samplers,

on both discrete and continuous state spaces. We investigate their rates of convergence to

stationarity, and find some surprising results, in particular regarding how this rate is affected

by various algorithm choices (especially random- versus deterministic-scan).

This question has previously been studied mostly for Gaussian target distributions. In

that case, Amit and Grenander (1991) give analytic bounds for rates of convergence for

both random and deterministic scan Gibbs samplers, and tentatively conclude in favour of

the random scan implementation. However, Roberts and Sahu (1997) give a more detailed

comparison for the (statistically very important) family of positively associated Gaussian

distributions, showing that for these distributions, the deterministic scan has a uniformly

faster rate of convergence than its random scan competitor. In fact this result extends

trivially to all partial correlation structures which can be reduced to the positive association

case by a succession of transformations which just switch the sign of a given co-ordinate.

Thus, even for the Gaussian case, we do not have a full understanding of the problem.

Other work has been successful in comparing random and deterministic scans for specific

classes of problems, for instance see Diaconis and Ram (2000) and Diaconis et al. (2008). See

also Andrieu (2015) for some recent results in the special case of d = 2 coordinates. However,

it appears very difficult to postulate general conditions under which one scan outperforms

the other. In this paper we shall contribute towards the general heuristic emanating from the

Roberts and Sahu study: namely that distributions exhibiting positive associations (which

will need to be defined carefully) tend to be explored more rapidly using deterministic scans,
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whereas distributions outside this class often prefer random scans. Our results, all from

outside the Gaussian framework, support this heuristic, although a completely a general

result still eludes us. Nevertheless, we believe our work will be practically beneficial in

providing useful rules of thumb for Gibbs sampling implementation.

In this paper, to avoid confusion when comparing different scans, we will always measure

convergence times in terms of the total number of individual coordinate updates which are

required. Thus, one complete iteration (i.e., sweep) of a deterministic-scan Gibbs sampler

corresponds to d individual updates. This allows for fair comparison between deterministic-

and random-scan Gibbs sampler algorithms.

This paper begins (Section 2) by considering the case of target distributions with in-

dependent components, where we see that random-scan takes about log d times as many

updates to converge. We next look (Section 3) at a continuous simplex example with pair-

wise updates whose convergence was recently analysed by Smith (2014), where we show that

the first coordinate process converges in O(d) iterations, as opposed to Smith’s O(d log d)

full-process convergence time. In Section 4 we present a related discrete-simplex example

where random-scan converges much faster (O(d2)) than deterministic-scan. In Section 5 we

present a discrete-pyramid example where again random-scan converges much faster (O(d))

than deterministic-scan. In Section 6 we present a different discrete-staircase example where

the opposite holds, i.e. discrete-scan converges faster (by at least a factor of 2); furthermore,

any fixed deterministic-scan coordinate ordering converges equally quickly, but changing the

coordinate ordering at any stage slows down the convergence dramatically. We close with a

discussion (Section 7) of how our simple examples relate to general convergence principles

of Roberts and Sahu (1997), and what lessons can be learned regarding the use of Gibbs

samplers in more realistic applications.

2. The Independent Case.

We first consider the special case where the stationary distribution π consists of indepen-

dent components, i.e. has probability density function of the form π(x) =
∏d

i=1 fi(xi). In

this case, once each coordinate has been updated at least once, the chain has converged to
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stationarity.

For a deterministic-scan Gibbs sampler, this necessarily happens after one complete scan,

i.e. after precisely d individual updates.

For a random-scan Gibbs sampler, this corresponds to the coupon collector’s problem,

i.e. to how many i.i.d. choices of a coordinate from {1, 2, . . . , d} must be made before each

coordinate has been chosen at least once. This is well known to take approximately d log d

updates, and indeed for any β < 1 the probability of achieving success after bβ d log dc

updates goes to 0 as d→∞ (see e.g. Erdos and Renyi, 1961). This shows:

Conclusion: If the target distribution has independent components, then the random-scan

Gibbs sampler takes log d times as many updates to converge as does the deterministic-scan

Gibbs sampler.

3. Continuous Simplex Example.

We next consider the following simple Markov chain first presented in Aldous and Fill

(2002), and later analysed by Smith (2014). Let X = {(x1, . . . , xd) : xi ≥ 0,
∑

i xi = 1} be a

d-dimensional simplex in Rd. Let {Xn} be the Markov chain on X defined as follows. Given a

stateXn = (Xn,1, Xn,2, . . . , Xn,d) ∈ X , first select distinct indices i and j uniformly at random

from {1, 2, . . . , d}, then choose λ ∼ Uniform[0, 1], and then set Xn+1,i = λ(Xn,i + Xn,j) and

Xn+1,j = (1−λ)(Xn,i+Xn,j), with Xn+1,k = Xn,k for k 6= i, j. These Markov chain dynamics

are easily seen to be reversible with respect to π := Uniform(X ), so that π is the (unique)

stationary distribution for {Xn}. (This Markov chain {Xn} is described in the literature as

a “Gibbs sampler”; strictly speaking it is a “block Gibbs sampler”, with overlapping blocks

– which is necessary since the rigid condition
∑

i xi = 1 does not allow any single coordinate

xi to be updated by itself.)

Smith (2014) analyses this Markov chain in detail. His Theorem 1.1 implies that for any

fixed ε > 0, there is cε <∞ such whenever n ≥ cε d log d, the distribution of Xn will be within

ε of π in total variation distance, i.e. ‖L(Xn)−π‖TV := supA |P(Xn ∈ A)−π(A)| < ε. (Total

variation distance is a standard way of measuring MCMC convergence; see e.g. Tierney, 1994
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or Roberts and Rosenthal, 2004.) Hence, this process converges to stationary in O(d log d)

iterations as d→∞. (That is, the number of iterations required to get within a fixed ε > 0

of stationarity, divided by d log d, remains bounded as d→∞.)

3.1. The high-dimensional limiting process {Ym}.

Since the convergence bounds of Smith (2014) are most relevant as d→∞, we consider

the limiting dynamics of {Xn} as d→∞. As in the MCMC diffusion limits of e.g. Roberts

et al. (1997) and Roberts and Rosenthal (1998), we focus on a rescaled version of the first

coordinate process {Xn,1} when the remaining coordinates are in stationarity. Specifically, we

let Ym be d times the value of the first coordinate of Xn after Nm iterations, i.e. Ym = dXNm,1.

where Nm is the mth time that the first coordinate of {Xn} is updated (i.e. the mth time

that one of the coordinate choices i and j is equal to 1). In particular, since at each iteration

coordinate 1 is chosen with probability 2/d, it follows that for large m, Nm is approximately

m/(2/d) = md/2. That is, {Ym} follows the first coordinate of {Xn}, except multiplied by

a factor of d, and sped up by a factor of approximately d/2.

We claim that as d → ∞, the dynamics of this re-scaled process {Ym} are described

by Ym+1 = Um(Ym + Zm), where Zm and Um follow the probability distributions Zm ∼

Exponential(1) and Um ∼ Uniform[0, 1] and are independent. (So, the {Ym} process is

similar to an autoregressive process.) Indeed, the logic is as follows. The uniform distribution

π = Uniform(X ) on a symplex correspondes to a Dirichlet(1, 1, . . . , 1) distribution, whose

one-dimensional marginal distributions are each Beta(1, d−1) with density function (1−x)d−2

for 0 < x < 1. That is, if Xn ∼ π, then each component Xn,j has density function (1−x)d−2

for 0 < x < 1. It follows that dXn,j has density function proportional to (1 − x/d)d−2 for

0 < x < d. This last density function converges, as d → ∞, to e−x for x > 0. That is, as

d→∞, the distribution under π of dXn,j converges to the Exponential(1) distribution. Now,

when coordinate 1 of {Xn} is updated, the update is of the form Xn+1,1 = λ(Xn,1 + Xn,j).

Hence, dXn+1,1 = λ(dXn,1 + dXn,j), i.e. Ym+1 = λ(Ym + dXn,j). Here λ ∼ Uniform[0, 1],

and dXj ≈ Exponential(1). This corresponds to the above claimed limiting dynamics, with

Um = λ and Zm = dXn,j.
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The stationary distribution of this process {Ym} is then given by πY = Exponential(1).

Indeed, this can be checked directly: if Ym ∼ πY = Exponential(1) and Zm ∼ Exponential(1),

then since the Exponential(1) probability distribution is the same as the Gamma(1, 1) prob-

ability distribution, therefore by a basic property of the Gamma distribution, Ym + Zm ∼

Gamma(2, 1) which has density function g(x) = x e−x 1x>0. Also Um ∼ Uniform[0, 1] with

density h(x) = x10<x<1, so by the usual convolution formula for densities, Um(Ym+Zm) has

density function given by f(x) =
∫∞
−∞ h(s) g(x/s) 1

|s| ds =
∫ 1

0
g(x/s) 1

|s| ds = e−x for x > 0,

i.e. Um(Ym + Zm) ∼ Exponential(1) = πY , as it should.

3.2. The convergence rates of {Ym} and {Xn}.

We next observe that the limiting process {Ym} converges to πY in O(1) iterations as

d→∞. Indeed, it eventually converges to πY since it is φ-irreducible and aperiodic (see e.g.

Tierney, 1994; Roberts and Rosenthal, 2004). Furthermore the convergence time must be

O(1) since the quantity d does not appear in the above description of the dynamics of {Ym}.

Now, since index 1 is only selected with probability 2/d, this means that Nm ≈ md/2,

and in particular time in the Nm scale is O(d) times as large as in the original scale. Hence,

in the original time scale, convergence takes O(d) times as long. That is:

Conclusion: For the continuous simplex example, in the original time scale, the first

coordinate process {Xn,1} converges to its stationary distribution in O(d) iterations.

Now, compared to this O(d) convergence result, the O(d log d) convergence bound of

Smith (2014) has an extra factor of log d. This extra factor arises since Smith considers the

entire process {Xn}, while we consider just the first coordinate process {Xn,1}. Indeed, the

coordinate are approximately independent as d→∞. And, in the independent case,

‖µ1 × . . .× µd − ν1 × . . .× νd‖TV = 1−
∏
i

(1− ‖µi − νi‖TV ) .
∑
i

‖µi − νi‖TV .

(Here the equality follows by recalling that 1 − ‖µ − ν‖ is the maximal probability that

X = Y where X ∼ µ and Y ∼ ν, and the final approximation follows since if r is small

then 1− r ≈ e−r.) This means that each individual coordinate’s total variation distance to

stationarity should be about ε/d to make the overall total variation distance equal ε. This
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requires an additional factor of log d iterations to achieve. (Another way to think about

this is that, by the coupon-collector’s problem, about O(d log d) iterations, not just O(d)

iterations, are required to ensure that each coordinate gets selected O(1) times, see e.g.

Erdos and Renyi, 1961.)

This simple example thus provides an alternative perspective on the convergence rate

results of Smith (2014). However, we wish to focus more on the comparison of different

Gibbs samplers with different updating schemes. To do so, we next consider a discrete

version of this example.

4. Discrete Simplex Example.

We next consider a discrete version of the previous example. Specifically, let X =

{(x1, . . . , xd) ∈ {0, 1}d :
∑

i xi = 1} be a discrete simplex, so that |X | = d (see Figure 1).

Define a Markov chain on X as follows. Given a state Xn = (Xn,1, Xn,2, . . . , Xn,d) ∈ X , first
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select distinct indices i and j uniformly at random from {1, 2, . . . , d}. Then, with probability

1/2 set Xn+1 = Xn. Otherwise, with probability 1/2, “swap” the ith and jth coordinates by

setting Xn+1,i = Xn,j and Xn+1,j = Xn,i, with Xn+1,k = Xn,k for k 6= i, j. These Markov

chain dynamics are again easily seen to be reversible with respect to π := Uniform(X ), so

that π is the (unique) stationary distribution for {Xn}.

4.1. Convergence rate.

We next consider the rate of convergence of this process. Suppose it begins with xk = 1.

Then the index k is considered for a swap with probability 2/d at each iteration, and is then

swapped with probability 1/2. So, the time T until the process first has xk = 0 is distributed

as a Geometric random variable with mean about 1/ [(2/d)(1/2)] = d. But once xk = 0, then

the 1 is equally likely to be at any of the other d−1 coordinates, so the process is within 1
d

of

stationarity. We conclude that the ‖L(Xn)−π‖TV ≤ P(T > n)+ 1
d

= (1− 1
d
)n+ 1

d
≈ e−n/d+ 1

d
,

which is small (as d→∞) if n is a large multiple of d. That is:

Conclusion: The discrete simplex example converges in O(d) updates.

4.2. Deterministic scan modified version.

We next consider a “deterministic scan” version of the above process in which the pairs

(i, j) are not chosen at random, but rather are chosen in sequence to be first (1, 2), then

(2, 3), then (3, 4), then . . . , then (d− 1, d), and then finally (d, 1), before returning to (1, 2)

and repeating.

This deterministic-scan version has rather different dynamics. One full deterministic-

scan “sweep” of the algorithm now consists of a sequence of d − 2 long “wasted” moves

where both sites i and i + 1 are 0 and thus cannot be changed; followed by a random

sequence of moves which involve a possible change. In each of these ‘possible move sequences’,

the algorithm will move the “1” one coordinate backwards with probability 1/2, leave it

unchanged with probability 1/4, move it one forwards with probability 1/8, move it two

forwards with probability 1/16, etc. That is, if Zr is the position of the “1” after n complete
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‘possible move sequences’, then Zr+1 = Zr−1+Gr where Gr is a Geometric random variable

with mean 1 (and where the arithmetic is done modulo d, to wrap around the circle).

The movement of the “1” in this version thus follows a mean 0 random walk around the

circle. Such random walks are well-known (e.g. Diaconis, 1988) to require O(d2) iterations

to converge, as d → ∞. So, we conclude that the deterministic-scan version of this process

converges in O(d2) complete sweeps. Since each sweep corresponds to d individual updates,

this implies:

Conclusion: The deterministic-scan modified version of the discrete simplex example

converges in O(d3) individual updates.

This indicates that in this example the deterministic-scan version is much less efficient

than the random-scan version. Indeed, here random-scan converges in O(d) updates, while

deterministic-scan converges in O(d3) updates. That is, random-scan is more efficient than

deterministic-scan by a factor of O(d2), which is a very substantial improvement. We shall

discuss this issue further below.

5. Discrete Pyramid Example.

One limitation of the above examples is that they are not conventional Gibbs samplers

which update the coordinates one at a time. Rather, the coordinates had to be updated

in blocks of two coordinates at a time, which was necessitated by the rigid condition that∑
i xi = 1. We now present a modified version of the previous example, which has the same

general conclusions, but is a “true” Gibbs sampler which updates the coordinates one at a

time.

We now let X = {(x1, . . . , xd) ∈ {0, 1}d :
∑

i xi ≤ 1}, so that X is sort of a discrete

“pyramid” rather than a simplex. (Thus, X contains all states like the one in Figure 1, but

also contains the state (0, 0, . . . , 0).) We again let π = Uniform(X ). We then consider the

usual (true) Gibbs sampler dynamics, where each coordinate i is updated, one at a time,

from its conditional distribution given the current value of all the other coordinates. In this

case, to update coordinate i, we proceed as follows: if any other xj = 1 for j 6= i then we must
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keep xi = 0, while if all the other xj = 0 then we set xi = 1 or xi = 0 with probability 1/2

each. Such updates are all reversible with respect to π, so π is again the (unique) stationary

probability distribution for this process.

5.1. Random-scan version.

For this Gibbs sampler, the usual random-scan version proceeds at each iteration by

choosing i uniformly from {1, 2, . . . , d}, and then updating xi as above. We now analyse the

convergence of this random-scan version.

Suppose this version begins with xk = 1. Then at each iteration, the index k is selected

for update with probability 1/d, and if it is selected then xk is set to 0 with probability 1/2.

So, the time U until the process first has xk = 0 is distributed as a Geometric random variable

with mean about 1/ [(1/d)(1/2)] = 2d. Furthermore, once xk = 0, then the chain is in the

state (0, 0, . . . , 0). From there, the time V until the process leaves the state (0, 0, . . . , 0)

is distributed as a Geometric random variable with mean 1. Furthermore, after U + V

iterations the process is uniformly distributed on X \ {(0, 0, . . . , 0)}, and hence again is

within 1
d

of stationarity in total variation distance. We conclude, similar to the above, that

‖L(Xn)−π‖TV ≤ P(U+V > n)+ 1
d
. Furthermore, since U is O(d), and V is O(1), it follows

that the process converges to within ε of stationarity after O(d) updates:

Conclusion: The random-scan Gibbs sampler for the discrete pyramid example, starting

with xk = 1 for some k, converges in O(d) individual updates.

(By contrast, if the process happens to begin in the state (0, 0, . . . , 0), then U = 0 above,

and the convergence then occurs in just O(1) individual updates.)

Remark. Another way to see the above result is to let I be independent of {Xn} with

P(I = 1) = 1
d+1

= 1 − P(I = 0), and let T = IU + (1 − I)(U + V ) = U + (1 − I)V , i.e. T

is usually equal to U + V but has probability 1
d+1

of just equalling U . In this case, we have

L(XT ) = π exactly. That is, this T is a strong stationary time in the sense of Aldous and

Diaconis (1987) and Diaconis and Fill (1990). It follows that ‖L(Xn)−π‖TV ≤ P(T > n) ≤

P(U + V > n), thus giving a slightly stronger (and still O(d)) convergence time bound.
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5.2. Deterministic-scan version.

The usual deterministic-scan version of this Gibbs sampler proceeds by updating first x1,

then x2, then x3, . . . , and then xd, before returning to x1 and repeating. We now analyse

the convergence of this deterministic-scan version.

We shall use an argument analogous to that in Subsection 4.2.. In this case a “possible

move sequence” consists of a sequence of consecutive update steps in which a move might

possibly have been made. We describe the effect of a single “possible move sequence”.

Suppose we begin with xk = 1 for some k, then the updates will change nothing until

they reach coordinate k. At this point, xk will either remain equal to 1 with probability

1/2, or will be changed to 0 with probability 1/2. If it is changed to 0, then the “possible

move sequence” will continue until it changes some other coordinate to 1, after which the

remaining updates will change nothing. That is, each “possible move sequence” will advance

the “1” some distance Z around the circle, where Z is a Geometric random variable with

P(Z = m) = 2−m−1 for m = 0, 1, 2, . . . (and where arithmetic is again done modulo d so it

wraps around the circle).

The process thus again corresponds to a random walk on the circle, though this time a

walk with positive-mean. However, by subtracting off the mean at each iteration (which does

not affect the convergence since π is uniform), it is easily seen that the convergence time for

this positive-mean random walk will again be O(d2) complete sweeps, i.e. O(d3) individual

updates, just like in the mean-0 case above:

Conclusion: The deterministic-scan Gibbs sampler for the discrete pyramid example con-

verges in O(d3) individual updates.

We thus conclude that in this example, as in the previous one, convergence requires

O(d3) updates in the deterministic-scan case, but just O(d) updates in the random-scan

case. Hence, even for this true Gibbs sampler, the random-scan version is more efficient by

the very large factor of O(d2).
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5.3. Spectral Radius Comparisons.

We have also verified the above comparison directly with numerical computations of the

corresponding Markov operator spectral gaps. Specifically, for 1 ≤ d ≤ 100, we computed

the Markov transition probability matrix for both the random-scan and deterministic-scan

versions of the Discrete Pyramid Gibbs sampler example. We then computed the spectral

radius of each of these matrices. Finally, we transformed these spectral radius values ρ

into convergence time estimates −1/log(ρ), and normalised them so each convergence time

was measured in units of d individual updates. Figure 2 shows a plot of the logarithms of

the corresponding normalised convergence times for deterministic (top, blue) and random

(bottom, red) scans, as a function of the dimension d; it is clear that the convergence time

for random-scan is remaining constant on this scale (corresponding to convergence in O(d)

individual updates), while the deterministic-scan is growing quickly.
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6. Discrete Staircase Example.

We now instead let

X = {(x1, . . . , xd) ∈ Zd : x1 ∈ {0, 1}, xi ∈ {xi−1, xi−1 + 1} for 2 ≤ i ≤ d} ,

so that X consists of different possible “staircases” which each begin at the origin and move

either up one or straight ahead as the index i increases (see Figure 3). We further let

π(x) ∝ exp (d
∑

i xi), so that π gives much more weight to staircases which ascend more

quickly, and gives almost all of its weight to the maximal staircase with xi = i for all i.

We then consider usual (true) Gibbs samplers for this X and π. In this case, if we attempt

to update coordinate i, then if xi−1 = xi and xi+1 = xi + 1 then we will increase the value of

xi to xi+ 1 with probability nearly 1, while if these conditions are not both satisfied then we

will leave xi unchanged. (For convenience here we take x0 = 0, and ignore xd+1 if it arises.)

To fix ideas, we will imagine starting this process in the minimal staircase state (0, 0, . . . , 0).

The question then becomes, how quickly will this process increase from this minimal staircase
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(0, 0, . . . , 0) to the maximal staircase state (1, 2, . . . , d).

6.1. Usual deterministic scan version.

For this Gibbs sampler, the usual deterministic-scan version proceeds by updating first

x1, then x2, then x3, etc. This version benefits from some “cascading effect”. Indeed, if we

start at the minimal staircase (0, 0, . . . , 0), then the first complete sweep increases only xd,

the second complete sweep increases xd−1 and xd, the third complete sweep increases xd−2

and xd−1 and xd, etc. It follows that in precisely d complete sweeps, i.e. after precisely d2

individual updates, xd reaches the value d, and hence the process is in the maximal staircase

state and has converged (disregarding exponentially-small probabilities). That is:

Conclusion: For the discrete staircase example, the usual deterministic-scan Gibbs sampler

converges in precisely d2 individual updates.

6.2. Other deterministic scan orderings.

We next consider other versions of the deterministic scan Gibbs sampler, with other

orderings of the indices.

For the reverse index ordering d, d−1, . . . , 1, the first scan increases each of x1, x2, . . . , xd,

the second scan increases x2, . . . , xd, the third scan increases x3, . . . , xd, etc. Hence, again,

in precisely d complete sweeps, i.e. after precisely d2 individual updates, xd reaches the value

d so the process reaches the maximal staircase giving near-convergence to stationarity.

It turns out, surprisingly, that all other index orderings have updates which remain

“sandwiched” between these two extremes, and thus still converge in precisely d complete

sweeps, i.e. precisely d2 iterations. To make this more precise, let c = (c1, c2, . . . , cd) be any

index ordering (i.e., any permutation of {1, 2, . . . , d}). Let zi = xi − xi−1 (with z1 = x1)

record the differences, so each zi equals either 0 or 1. In this notation, the minimal staircase

corresponds to z1 = z2 = . . . = zd = 0, and the maximal staircase corresponds to z1 = z2 =

. . . = zd = 1.

Suppose we start this process with all zi = 0, and run a Gibbs sampler with the deter-

ministic scan order c. Then the sampler actually moves from having all zi = 0 to having all
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zi = 1 in precisely d complete sweeps, in the following manner. First, find the value d within

the scan order c. Then, move right from there within c, decreasing your value to d−1 if d−1

is to the right of d, and then to d−2 if d−2 is to the right of d−1, etc. Whatever value i you

end up with is equal to the first coordinate i to get zi = 1. Then, find the value i− 1 within

the scan order c, and repeat the process, i.e. move right from there and decrease to i− 1 if

i− 1 is to the right of i, then to i− 2 if i− 2 is to the right of i− 1, etc. Whatever value j

you end up with is equal to the second coordinate j to get zj = 1. And so on. Then, once

you reach the coordinate 1, then on subsequent sweeps the other zi become 1 in sequence

from left to right. In particular, on each complete deterministic sweep, one additional value

zi changes from 0 to 1, and surprisingly, no such value ever changes from 1 back to 0. So,

after d complete sweeps, the process has converged. That is:

Conclusion: For the discrete staircase example, any fixed-order deterministic-scan Gibbs

sampler still converges in precisely d2 individual updates.

An example will help clarify the above. Suppose d = 5, and the scan is c = (2, 1, 5, 3, 4).

Then starting from 5 and moving right, it decreases to 4 (but not to 3), so after one scan,

z4 = 1. Then, starting from 3 and moving right, it does not decrease to 2, so after two

sweeps z2 = z4 = 1. Then, starting from 2 and moving right, it decreases to 1, so after three

sweeps z1 = z2 = z4 = 1. Then after four sweeps z3 = z1 = z2 = z4 = 1, and after five sweeps

z5 = z3 = z1 = z2 = z4 = 1. In terms of the original xi variables, they progress in turn to:

(0,0,0,0,0), (0,0,0,1,1), (0,1,1,2,2), (1,2,2,3,3), (1,2,3,4,4), (1,2,3,4,5), and thus converges in

d = 5 iterations.

As mentioned above, what is notable about this process is that once zi = 1 for some i,

it never returns to 0, which is not at all obvious a priori. Furthermore, this property is not

preserved if we change the scan ordering as we go. That is, using any fixed deterministic

scan order, the sampler converges in precisely d iterations. However, if we change scan order

as we go (e.g. from the usual order to the inverse order) then it will converge much slower.

This suggests that when using deterministic-scan samplers, in this example at least, it is

important to keep the update order consistent.
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6.3. Random-scan version.

The random-scan version of this Gibbs sampler proceeds by choosing the index i uniformly

from {1, 2, . . . , d}, and then attempting to update xi conditional on the current configuration.

Now, index i can only increase if xi−1 = xi and xi+1 = xi + 1, otherwise it does not change.

The random-scan algorithm is thus rather inefficient.

To make this more precise, consider just the last two coordinates, xd−1 and xd. In any

given configuration, at most one of these two coordinates can increase (since if xd−1 = xd

then xd−1 cannot increase, while if xd−1 = xd+1 then xd cannot increase). So, in expectation,

the sum xd−1 +xd increases at most once every d random-scan updates. For convergence, we

need to reach the maximal state where xd−1 + xd = (d− 1) + d = 2d− 1, so in expectation

it takes d(2d− 1) updates to converge.

To get an actual convergence bound, we can use a simple large deviations principle,

see e.g. Theorem 9.3.4 of Rosenthal (2006), to conclude that for any ε > 0, the prob-

ability of reaching the maximal state after (1 − ε)d(2d − 1) updates is ≤ ρ2d−1 where

ρ = infs>0[e
−s(d(2d−1)+ε)M(s)] < 1; here M(s) = E[esG] =

1
d
es

1−(1− 1
d
)es

is the moment

generating function of G ∼ Geometric(1/d) corresponding to the time it takes to increase

the value of xd−1 + xd by 1. The important point is that the probability of reaching the

maximal state after (1 − ε)d(2d − 1) updates is exponentially small as a function of d and

thus insignificant, i.e. it really does take d(2d− 1) updates to converge:

Conclusion: For the discrete staircase example, the usual random-scan Gibbs sampler

requires at least d(2d− 1) individual updates.

Comparing this to the deterministic-scan convergence time, this shows that for this ex-

ample as d→∞, random-scan converges more slowly than deterministic-scan by at least a

factor of 2. This provides a non-trivial classical Gibbs sampler example where random-scan

is clearly less efficient than deterministic-scan. And most interestingly, this conclusion re-

mains for any fixed deterministic-scan ordering, but fails if the index ordering is modified in

any way during the run.
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6.4. Numerical Comparison.

The above shows that for the discrete staircase example, the convergence time for random-

scan has a lower bound of about d(2d− 1), which is about twice the d2 convergence time for

deterministic-scan. That is, in this example, the ratio of the convergence time for random-

scan versus for deterministic-scan is bounded below by d(2d − 1)/d2 = 2 − (1/d), which

for large d is about 2. We suspect that for large d the true ratio is actually larger than 2,

perhaps growing as O(log d) as d → ∞. To test this, we repeated 100 simulations of the

random-scan sampler in each dimension from 1 to 200, and plotted the ratio of the number

of updates required to converge, divided by the d2 iterations required by random-scan. The

results are shown in Figure 4. As expected, this ratio quickly increases above 2 (red line).

Now, as the dimension d increases still larger up to 200, the ratio continues to increase very

slightly, though it appears to mostly level off at approximately the value 3.78. We are unable

to determine whether the ratio grows to infinity as d→∞, perhaps at the rate O(log d), or

whether it remains bounded.

7. Discussion.

This paper has presented several different simple examples of Gibbs samplers, and con-

sidered their convergence times under different scans.

In particular, for the examples of Sections 4 and 5, the random-scan versions are orders-of-

magnitude more efficient than deterministic-scan versions. Now, in these examples,
∑

i xi is

constrained, so the different xi values are negatively correlated with each other in stationarity,

which may be relevant as we discuss below.

By contrast, for the example of Section 6, deterministic-scan versions (with any ordering)

are significantly more efficient than the random-scan version. On the other hand, in that

example, xi is constrained to be within 1 of xi−1,, so the different xi values are positively

correlated with each other.

Taken together, these examples suggest that often random-scan is more efficient when

dealing with negative correlations, while deterministic-scan is more efficient when dealing
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with positive correlations. This is consistent with the results of Roberts and Sahu (1997),

e.g. their Theorem 6 shows that for Gaussian targets with positive correlations, random-scan

has larger spectral radius (and hence smaller spectral gap, and hence slower convergence)

than does deterministic-scan. Our examples thus provide further support for this rule of

thumb, though we are unable to prove it more generality. (For some related results, see e.g.

Liu et al., 1995, and Papaspiliopoulos and Roberts, 2008.)

Perhaps most interestingly, for the example of Section 6, any fixed deterministic-scan

Gibbs sampler is very efficient, but mixing and matching different scan orderings is much

worse. So, in this case, the scan ordering chosen doesn’t really matter (they all converge in

precisely the same number of iterations), but it is essential to keep the ordering consistent.

Other examples further muddy the waters, e.g. consider the following (suggested by

A. Smith, personal communication). Let G = (V,E) be a graph with two vertices A and B

in the “middle”, and d additional vertices in an outer ring, with A and B connected to each

other and to each vertex in the outer ring (so A and B each have degree 2d + 1, while the
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other vertices each have degree 2). Consider the “hard-core model” with state space

X = {f : V → {0, 1} s.t. f(u) f(v) = 0 ∀ (u, v) ∈ E} ,

and with stationary distribution π(f) ∝ c
∑

v∈V f(v) for some (large) c > 0. (That is, π

is biased towards having as many 1’s as possible, subject to no two 1’s being connected.)

Suppose we start at the state with f(A) = 1 and all other f(v) = 0, and consider the

convergence time to reach the (modal) state where f(v) = 1 for all v in the outer ring. With

the random-scan Gibbs sampler, it takes about cd updates to reduce f(A) to 0, and then

about d log d updates (by the coupon-collector’s problem) to visit and hence set to 1 the

entire outer ring, for a total time of cd+ d log d. For a deterministic-scan ordering in which

A is followed by B, it again takes about cd updates to reduce f(A) to 0, but then f(B) is

probably immediately set to 1, after which it takes another cd updates to reduce f(B) to

0, and then a further d updates to systematically set the outer ring to 1, for a total time of

2cd+ d. So, if c grows as O(d) or larger, then random-scan is faster by a factor of about 2.

However, if c = O(1), then random-scan is slower by a factor of O(log d). That is, depending

on the relation of the parameters c and d, either scan can be superior.

We find all of these results to be surprising and interesting, but admittedly their impli-

cations for the Gibbs sampler practitioner are not completely clear. They do suggest that if

the target distribution’s partial correlation signs are known, then one should perhaps choose

deterministic-scan for positive correlations or targets which can be reduced to such by simple

sign-changing transformations of individual components. Rather more tentatively they also

suggest the use of random-scan where we have at least some negative partial correlations

which cannot be removed by sign-changing transformations. However even in the Gaussian

case, there is as yet no rigorous theory to back this up.

If the partial correlation signs are unknown, then it is wise to try both versions, and

then attempt to estimate (perhaps via convergence diagnostics, see e.g. Gelman and Rubin,

1992) which one is performing more efficiently. Furthermore, when using deterministic-scan

algorithms, it may be that a fixed scan ordering should be chosen throughout a simulation,

and not be modified during the run.
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Our specific examples do not provide definitive information about how Gibbs samplers

will perform in other, more complicated contexts. However, they do provide one more piece

of information in the complex puzzle of how Gibbs samplers can be used more efficiently and

effectively for different target distributions.
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